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ABSTRACT

Stochastic sampling is a special anti-aliasing technique that originated in signal theory exam-

ining functions of one variable (time). However, in computer graphics two-dimensional images

are sampled instead of one dimensional signals, thus the original results must be extended

to two-dimensional space. This extension can provide better understanding of the applica-

tion of stochastic sampling in computer graphics and can lead to new methods which have

no one-dimensional counterpart. In this paper a two-dimensional adaptive �ltering technique

is discussed, which can eliminate aliasing artifacts without introducing two much noise in the

resulting image.
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INTRODUCTION

From the information or signal processing
point of view, modeling can be regarded as
the de�nition of the intended world by digital
and discrete data which are processed later
by image synthesis. Since the intended world

model, like the real world, is continuous, mod-

eling always involves an analog-digital con-
version to the internal representation of the
digital computer. Later in image synthesis,

the digital model is resampled and requan-

tized to meet the requirements of the display
hardware, which is much more drastic than

the sampling of modeling, making this step
responsible for the generation of artifacts due

to the approximation error in the sampling
process. Sampling methods applying regular

grids produce regularly spaced artifacts that

are easily detected by the human eye, since
the eye is especially sensitive to regular and

periodic signals. Random placement of sam-

ple locations can break up the periodicity of

the aliasing artifacts, converting the aliasing

e�ects to random noise which is more tolera-
ble for human observers. Two types of ran-
dom sampling patterns have been proposed
[Cook1986], namely the Poisson disk dis-

tribution and the jittered sampling.

Jittered sampling is based on a regular
sampling grid which is perturbed slightly by

random noise. Unlike the application of

dithering algorithms, the perturbations are
now assumed to be independent random vari-
ables. Compared to Poisson disk sampling

its result is admittedly not quite as good,

but it is less expensive computationally and
is well suited to image generation algorithms

designed for regular sampling grids.

Jittered sampling was �rst examined in

1962 by Balakrishnan who analyzed it as a
negative phenomenon in sampling of continu-

ous time functions [Balakrishnan1962]. More

than twenty years later Cook [Cook1986] re-
alized that the e�ects of stochastic sampling

can be advantageous in computer graphics to

reduce aliasing artifacts. He relied on the



original paper of Balakrishnan and took ad-

vantage of notational simplicity of single vari-

ate functions. His followers used the same ap-

proach, and have achieved important practi-

cal results [Cook et al.1987]. However, the

image space is two-dimensional, thus dis-

cussing its sampling using one-dimensional

analogy may miss important properties. This

paper tries to �ll that gap by analyzing the

stochastic sampling in the two-dimensional

space and by proposing sampling strategies

that are based on this more general formula-

tion.

JITTERED SAMPLING IN THE

TWO-DIMENSIONAL SPACE
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Figure 1: Signal processing model of jittered

sampling

First the theory of jittered sampling will
be discussed in two dimensions. Suppose
function f(x; y) is sampled and then recon-
structed by an ideal low-pass �lter. The
perturbations of the various sample locations

are assumed to be uncorrelated random vec-
tor variables de�ned by the probability den-

sity function p(�; �). The e�ect of jitter-

ing can be simulated by replacing f(x; y) by
g(x; y) = f(x � �x(x; y); y � �y(x; y)), and

sampling it by a regular grid, where function
~�(x; y) = [�x(x; y); �y(x; y)] is an independent

stochastic vector process whose probability
density function is p(x; y) (Fig. 1).

Jittered sampling can be analyzed by com-
paring the spectral power distributions of

g(x; y) and f(x; y). Since g(x; y) is a ran-

dom process, if it were stationary and ergodic
[Lamperti1972], then its frequency distribu-

tion would be best described by the power

density spectrum which is the Fourier trans-

form of its autocorrelation function.

The autocorrelation function of g(x; y) is

derived as an expectation value:

R(x; y; u; v) = E[g(x; y) �g(x+u; y+v)]: (1)

If u 6= 0_v 6= 0, then ~�(x; y) and ~�(x+u; y+v)

are stochastically independent random vari-

ables, thus we get :

R(x; y; u; v) = E[g(x; y) � g(x+ u; y + v)] =

E[g(x; y)] � E[g(x+ u; y + v)]: (2)

The expectation value of g(x; y) is

E[g(x; y)] = E[f(x� �x(x; y); y� �y(x; y))] =

1Z
�=�1

1Z
�=�1

f(x� �; y � �) � p(�; �) d� d� =

(f � p)jx;y; (3)

where f �p is the convolution of the two func-
tions. Thus the autocorrelation function for

any u 6= 0 _ v 6= 0 is:

R(x; y; u; v) = (f � p)jx;y � (f � p)jx+u;y+v : (4)

If u; v = 0, then:

R(x; y; 0; 0) = E[g2(x; y)] =

1Z
�=�1

1Z
�=�1

f2(x� �; y � �) � p(�; �) d� d�;

(5)

that is the second moment of g(x; y). The

autocorrelation function, for any u; v, is:

R(x; y; u; v) = (f � p)jx;y � (f � p)jx+u;y+v+

[E[g2(x; y)]� E2[g(x; y)]] � �(u; v); (6)

where �(u; v) is the delta function which is 1

for u; v = 0 and 0 for u 6= 0 _ v 6= 0. This

delta function introduces an \impulse" in the
autocorrelation function at u; v = 0. The size

of the impulse in the autocorrelation function
is the square variance of the random variable

g(x; y), that is

�2

g(x;y) = E[g2(x; y)]� E2[g(x; y)]:

Unfortunately g(x; y) is usually not a sta-

tionary process, thus in order to analyze its



spectral properties, the power density spec-

trum is calculated from the \average" auto-

correlation function which is de�ned as:

R̂(u; v) =

lim
X;Y!1

1

4XY

XZ
x=�X

YZ
y=�Y

R(x; y; u; v) dx dy:

(7)

The power density of g(x; y) is the Fourier

transform of the autocorrelation function as

de�ned by the following formula (| =
p
�1):

Sg(�; �) = F �F� R̂(u; v) =

1Z
u=�1

1Z
v=�1

R̂(u; v) �e�2�|�ue�2�|�v du dv : (8)

This integral can be expressed using some
identity relations:

Sg(�; �) = F �F�R̂(u; v) =

F �F� lim
X;Y!1

1

4XY

XZ
�X

YZ
�Y

R(x; y; u; v) dxdy =

lim
1

4XY

XR
�X

YR
�Y

[(f�p)jx;y�F�F�
(f�p)jx+u;y+v +�2g]dxdy:

(9)
Since

F �F�(f �p)jx+u;y+v = e2�|(�x+�y) �F �F�(f �p);

we have

Sg(�; �) =

[ lim
X;Y!1

1

4XY

XZ
�X

YZ
�Y

(f � p)jx;ye2�|(�x+�y)dxdy]�

�F �F�(f � p)+

+ lim
X;Y!1

1

4XY

XZ
�X

YZ
�Y

�2

g dx dy =

lim
1

4XY
[F �

XF�
Y (f � p)]� � [F �F�(f � p)]+

�2

g(x;y); (10)

where superscript � means the conjugate

complex pair of a number, �2

g(x;y) is the av-

erage variance of the random variable g(x; y)

for di�erent x; y values, and FX;Y stands for

the truncated Fourier transform de�ned by

the following equation:

F �
XF

�
Y w(x; y) =

XZ
x=�X

YZ
y=�Y

w(x; y)�e�2�|�xe�2�|�y dx dy: (11)

Let us compare this power density

(Sg(�; �)) of the perturbed signal with the

power density of the original function f(x; y),

which can be de�ned as follows:

Sf (�; �) = lim
X;Y!1

1

4XY
jF �

XF�
Y f j2 (12)

This can be substituted into Eq. 10 yielding:

Sg(�; �) =
jF �F�(f � p)j2

jF �F�f j2
� Sf (�; �) + �2

g (13)

The spectrum consists of a part propor-
tional to the spectrum of the unperturbed
f(x; y) signal and an additive noise carrying

�2
g power in a unit frequency range. Thus the

perturbation of the sample positions can, in

fact, be modeled by a linear network or �lter
and some additive noise (Fig. 2).
The gain of the �lter perturbing the sample

positions by an independent random process
can be calculated as the ratio of the power
density distributions of f(x; y) and g(x; y) ig-

noring the additive noise:

Gain(�; �) =
jF �F�(f � p)j2
jF �F�f j2 =

jF �F�f j2 � jF �F�pj2
jF �F�f j2 = jF �F�pj2 (14)

Thus, the gain is the Fourier transform of

the probability density used for jittering the

sample positions.

The most often used jitter is the white
noise jitter which distributes the jitter val-

ues uniformly between [�T=2;�T=2] and
[T=2; T=2], where T is the periodicity of the

regular sampling grid and jittering in x and

y directions are stochastically independent.
The gain of the white noise jitter is:

Gainwn(�; �) = sinc2(��T ) � sinc2(��T ) (15)

where sinc(x) = sinx=x:
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Figure 2: System model of sample position

perturbation

The white noise jitter is a fairly good low-

pass �lter suppressing the spectrum of the

sampled signal above the Nyquist limit, and

thus greatly reducing aliasing artifacts.

Jittering trades o� aliasing for noise. In

order to intuitively explain this result, let us
consider the sample position perturbation for
a sine wave. If the extent of the possible
perturbations is less than the length of half
a period of the sine wave, the perturbation

does not change the basic shape of the sig-
nal, just distorts it a little bit. The level of
distortion depends on the extent of the per-
turbation and the \average derivative" of the
perturbed function as suggested by the for-

mula of the noise intensity de�ning it as the
variance �2

g . If the extent of the perturba-
tions exceeds the length of period, the result
is an almost random value in place of the am-
plitude. The sine wave has disappeared from
the signal, only the noise remains.

FILTER CONSTRUCTION

Filters based on stochastic sampling can thus

be constructed by selecting the probability

density of the jitter appropriately. To do so,
two di�erent criteria must be taken into con-
sideration. This �lter must suppress frequen-

cies above the Nyquist limit without destroy-

ing the low-frequency ranges. On the other
hand, the noise introduced by the method

should be minimized. However, the two dif-
ferent criteria are contradicting. The opti-

mal low-pass �lter would have a sinc-like in-

verse Fourier transform, which would require
a sinc like probability density function. The

sinc function is known to have quite wide in-

terval where it signi�cantly di�ers from zero,
which makes the average square variance �2

g

big, and thus the resulting image rather noisy.

On the other hand, the noise could be min-

imized by a concentrated, delta function-like

density function which has no high frequency

suppression at all.

Obviously, a compromise must be chosen

between aliasing and noise. Examining the

images generated by white-noise jitters, we

can conclude that the compromise o�ered by

this jitter is not at all optimal, but sacri�ces

the minimal noise criterion for the elimination

of the aliasing artifacts (Fig. 5). The compro-

mise should depend on the properties of the

image. If it contains high frequency compo-

nents, then the primary objective is the elim-

ination of those frequency components that

are above the Nyquist limit. If the high fre-

quency components are not signi�cant, the
noise must be minimized. Moreover, this
compromise is not necessarily global. The
priorities of the �lter may be required to
change over the image. This idea leads to an

adaptive �ltering method that evaluates the
frequency characteristics of a small portion
of the image and adapts itself to the mea-
sured properties and prefers high-frequency
suppression to noise or vice versa. In order to

make this idea practically useful, the calcula-
tions needed to measure the frequency char-
acteristics should not be much more complex
than the simplest stochastic sampling algo-
rithm. An algorithm meeting this require-

ment is discussed in the next section.

ADAPTIVE FILTER

CONSTRUCTION

In order to introduce the proposed adaptive

�lter, we �rst describe the basic idea infor-

mally, then a rigorous mathematical analy-
sis is provided, �nally simulation results are
shown.

Informal description of the algorithm

Let us examine the compromise of the noise

and aliasing by controlling the noise factor.
As calculated, the intensity of the noise re-

sulting from the stochastic sampling is �2
g.

Looking at Fig. 3, we can see that the in-

tensity of the noise is the square variance of a

random variable controlled by the probability
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Figure 3: Noise intensity

density function of the �lter and ampli�ed by

the gradient of the sampled function f . This

means that the noise can be kept under con-

trol if the direction of the jitter is selected to

minimize the ampli�cation of the gradient of
the signal. This requires the calculation of the
gradient of f(x; y) in the center of the pixel,
and the perturbation of the sample position
to be selected from a line perpendicular to the

gradient. This jitter is called the line-jitter.
Comparing this to the white-noise jitter, it is
quite obvious that restricting jitter to a sin-
gle line instead of a rectangle decreases the
high-frequency suppression of the �lter.

To calculate the gradient we must use dis-
crete samples of a possibly non band-limited
signal, thus aliasing might also occur in this
calculation. To reduce aliasing the tricks of
stochastic sampling can be used again. If

the sample points used to calculate the gradi-
ent is perturbed by a white-noise jitter, then

the high-frequency components will be sup-

pressed and noise will be added to the cal-
culated gradient. This means that in image

portions having low frequency characteristics
the calculated gradient dominates the noise,

but for high frequencies the results calculated
in this way are random variables. The direc-

tion calculated in this way approximates the

real gradient for low-frequency signals, but

becomes a random variable for signals above

the Nyquist limit. This property makes this
strategy adaptive, which behaves as a line jit-

ter for low-frequency signals but tends to be-

have as a white-noise jitter for high frequen-

cies.

Formal analysis

Calculation of the signal gradient

The gradient of a signal can be approxi-

mated by the following di�erences:

gradf � �(x; y) =

[f(x+ 1

2
; y � 1

2
)� f(x� 1

2
; y � 1

2
);

f(x� 1

2
; y + 1

2
)� f(x� 1

2
; y � 1

2
)]: (16)

However, this approximation also uses sam-

ples of the signal which can cause aliasing ar-

tifacts in the gradient. This can be recognized

having evaluated the Fourier transform of the

gradient signal:

F �F��(x; y) =

[e�|��| � sin ��; e�|��| � sin ��] � F �F�f: (17)

For small frequencies, we can use the Taylor's
approximation:

F �F��(x; y) � [|��; |��] � F �F�f =

F �F�[
@f

@x
;
@f

@y
]: (18)

Thus, for small frequencies, this really ap-
proximates the gradient of f . For high fre-

quencies, however, the results are very far
from the gradient of the function.
To avoid aliasing, the trick of stochastic

sampling is used. If the sample point is per-
turbed by random vector variable �, we get:

gradf(x; y) �

[f(x+ 1

2
+�x;y�

1

2
+�y)�f(x�

1

2
+�x;y�

1

2
+�y);

f(x� 1

2
+�x;y+

1

2
+�y)�f(x�

1

2
+�x;y�

1

2
+�y)]: (19)

The e�ect of perturbing the sample point
by a white-noise jitter distributed between

[�1=4;�1=4] and [1=4; 1=4] is equivalent to
the application of a low-pass �lter of gain

sinc2(��=2)�sinc2(��=2) and addition of some

random noise. The e�ective gain of the gra-
dient �lter with random sampling is:

Gain(�; �) =

sinc2 (��=2 )�sinc2 (��=2 )[sin2 ��; sin2 ��]; (20)

which forces the signal gradient to vanish for

frequencies above the Nyquist limit, but gives

back the real gradient for lower frequencies.
For higher frequencies the noise added to the

signal will determine the values sampled.



Analysis of the line-jitter

Let [vx; vy] be a unit vector that is perpen-

dicular to the gradient, that is:

[vx ; vy ] = [�
@f

@y
;
@f

@x
]

,s�
@f

@y

�2

+

�
@f

@x

�2

(21)

Then the sampled signal is f(x+vx�l; y+vy �l)
where l is a random variable. Let [�L=2; L=2]
be the domain of this random variable. This

leads to a stochastic sampling scheme where

the sampling position is selected from a line

segment of length L centered at the pixel

point, unlike white noise jitter which selected

the position form a square. Assume that the

point is selected from the line segment by a

uniform distribution. Thus the two dimen-

sional probability density function of the sam-
pling location can be expressed as:

p(x; y) =
1

L

L=2Z
l=�L=2

�(x�vx�l; y�vy�l) dl: (22)

The gain of the �lter realized by this stochas-
tic sampling can be evaluated using Equ. 14
as follows:

Gain(�; �) = jF �F�pj2 =

j 1
L

L=2R
l=�L=2

R
x

R
y

�(x�vx�l;y�vy�l)�e
�2�|(�x+�y) dx dy dlj2=

sinc2(�L(�vx + �vy)): (23)

Comparing this frequency function to that of
the white-noise jitter (Eq. 15), it has worse

high frequency suppression, limiting the use
of this jittering type when the signal sam-

pled is under the Nyquist limit. The adaptive

property of the gradient calculation, however,
ensures that vx and vy are approximately con-
stant only if the signal has no high frequency

components. For signals of higher frequencies

vx and vy are random variables, which makes
the line-jitter similar to the white-noise jitter

that is good in eliminating aliasing artifacts.

SIMULATION RESULTS AND

CONCLUSIONS

In order to demonstrate the merits of the new
adaptive algorithm, the widely accepted test

�gure of a chess-table is used and is rendered

by mathematical sampling, white-noise jitter

and �nally by the new adaptive jitter. The

images demonstrate that the adaptive jitter

does not add too much noise to the image

where it is not necessary unlike white-noise

jitter, but it is not worse than that in elim-

inating aliasing. In low-frequency ranges of

the picture demonstrating the adaptive jit-

ter, that is in the front section of the picture,

the noise does not destroy the image. The

result is similar to that of the mathemati-

cal sampling. In the back section, however,

where frequency is higher than allowed by the

sampling theorem, the Moire pattern gener-

ated from the chess-board is fully replaced by

noise.

Concerning the e�ectiveness of the algo-

rithm, it should be mentioned that it requires
just three more samples and the calculations
required are simple.

ACKNOWLEDGEMENT

This work has been supported by the Hun-
garian National Scienti�c Research Fund
(OTKA), under the reference Number F-
015884.

References

A.V. Balakrishnan. On the problem of time

jitter in sampling. IRE Trans. Inf. Theory,

Apr:226{236, 1962.

Robert L. Cook, Loren Carpenter, and Edwin

Catmull. The reyes image rendering architec-

ture. In Proceedings of SIGGRAPH '87, pages

95{102, 1987.

Robert L. Cook. Stochastic sampling in com-

puter graphics. ACM Transactions on Graph-

ics, 5(1):51{72, 1986.

John F. Lamperti. Stochastic Processes.

Springer-Verlag, 1972.



Figure 4: Mathematically sampled image

Figure 5: Image sampled using white noise jitter



Figure 6: Image sampled using adaptive jitter


