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Abstract

This paper presents the state of the art and recent devel-
opments of Monte-Carlo global illumination algorithms.
First it surveys the basic tasks of global illumination,
which can be formulated as the solution of either the ren-
dering or the potential equation, then reviews the basic so-
lution techniques, including inversion, expansion and iter-
ation. The paper explains why stochastic approaches are
good to solve these integral equations and highlights what
kind of fundamental choices we have when designing such
an algorithm. It compares, for example, finite-element and
continuous methods, pure Monte-Carlo and quasi-Monte
Carlo techniques, different versions of importance sam-
pling, Russian roulette, etc. Then, a lot of methods are
reviewed in a unified framework, that also allows to make
comparisons.

Keywords: Rendering and potential equations, Monte-
Carlo and quasi-Monte Carlo quadratures, finite-element
techniques, importance sampling, Russian roulette, shoot-
ing and gathering random walks, stochastic iteration,
Metropolis sampling, distributed ray-tracing, path tracing,
photon tracing, light tracing, bi-directional path tracing,
photon-map, instant radiosity, global ray-bundle tracing,
stochastic ray-radiosity, transillumination method, first-
shot.

1 Introduction

Generally, the global illumination problem is a
quadruple[23]:

hS; fr(!
0; ~x; !); Le(~x; !);We(~x; !)i

whereS is the geometry of surfaces,fr is the BRDF of
surface points,Le is the emitted radiance of surface points
at different directions andWe is a collection of measuring
functions.

Global illumination algorithms aim at the modeling and
simulation of multiple light-surface interactions to find out
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the power emitted by the surfaces and landing at the mea-
suring devices after some reflections. A light-surface in-
teraction can be formulated by therendering equationor
alternatively by its adjoint equation, called thepotential
equation.

The rendering equation[21] expresses theradiance
L(~x; !) [W � m�2 � sr�1] of a surface point~x in direc-
tion!, and has the following form:

L = Le + T L: (1)

If only direct contribution is considered, thenL = Le. The
light-surface interaction is described by integral operator
T , which has the following form

(T L)(~x; !) =

Z



L(h(~x;�!0); !0)�fr(!
0; ~x; !)�cos �0 d!0

(2)
whereL(~x; !) andLe(~x; !) are the radiance and emission
of the surface in point~x at direction!, 
 is the directional
sphere,h(~x; !0) is the visibility function defining the point
that is visible from point~x at direction!0, fr(!0; ~x; !) is
the bi-directional reflection/refraction function, and�0 is
the angle between the surface normal and the incoming
direction�!0 (figure 1).
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Figure 1: Geometry of the rendering equation

The potential equation[36], on the other hand, uses
the potentialW (~y; !0) as a fundamental measure, which
expresses the effect of emitting unit power from~y in
direction !0 on a measuring device having sensitivity
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Figure 2: Geometry of the potential equation

W e(~y; !0) (for example, this device can measure the
power going through a single pixel of the image, or leaving
a surface element at any direction). If only direct contri-
bution is considered, thenW (~y; !0) =W e(~y; !0). To take
into account light reflections, we can establish the poten-
tial equation

W =W e + T 0W: (3)

In this equation integral operatorT 0 — which is the adjoint
of T — describes the potential transport

(T 0W )(~y; !0) =

Z



W (h(~y; !0); !) � fr(!
0; h(~y; !0); !) � cos � d!; (4)

where� is the angle between the surface normal and the
outgoing direction!.

According to the definition of the radiance

L(~y; !) =
d�(~y; !)

d~y d! cos �
;

the power detected by a measuring device can be com-
puted by the measuring function from the radiance

Z
S

Z



d�(~y; !) �W e(~y; !) =

Z
S

Z



L(~y; !) cos � �W e(~y; !) d~y d! =ML; (5)

whereM is the radiance measurement operator. Having
introduced the scalar producthu; vi

hu; vi =

Z
S

Z



u(~y; !) � v(~y; !) d~y d!;

and the cosine weighted scalar producthu; vicos

hu; vicos = hu � cos �; vi = hu; v � cos �i;

we can obtain an alternative form of the measurement op-
erator

ML = hL;W eicos:

A simple measurement function for a pinhole camera is

W e(~y; !) =
�(! � !f )

cos �
� �(h(~y; !))

where!f is the focal point andcos � is the cosine angle
between the normal of the visible surface and the viewing
direction. With this measurement function, the power go-
ing through a pixel of areaP can be obtained using equa-
tion (5): Z

SP

L(h(~p;�!~p); !~p) � �(~p) d~p; (6)

whereSP is the support of�. SP is usually, but not neces-
sarily, equal to the pixel surface.

Alternatively to the radiance, the power arriving at the
measuring device can also be computed from the potential:

Z
S

Z



d�e(~y; !0) �W (~y; !0) =

Z
S

Z



W (~y; !0) � Le(~y; !0) � cos � d~y d!0 =M0W; (7)

whereM0 is the potential measuring operator. Note that
unlike the radiance measuring operator, the potential mea-
suring operator integrates on the lightsource.

This measuring operator can also be given in a scalar
product form

M0W = hLe;W icos: (8)

Since the rendering or the potential equation contain
the unknown radiance function both inside and outside
the integral, in order to express the solution, this coupling
should be resolved. The possible solution techniques fall
into one of the following three categories:inversion, ex-
pansionanditeration.

OperatorT represents light-surface interaction, thus
each of its application generates a higher-bounce esti-
mate of the light transport (or alternativelyT 0 represents
potential-surface interaction). For physically plausible op-
tical material models, a reflection or refraction always de-
creases the total energy, thus the integral operator is al-
ways a contraction. However, when the transport is evalu-
ated numerically, computation errors may pose instability
problems if the scene is highly reflective. As we shall see,
expansion and iteration exploit the contractive property of
the transport operator, but inversion does not.

1.1 Inversion

Inversiongroups the terms that contain the unknown func-
tion on the same side of the equation and applies formally
an inversion operation:

(1� T )L = Le =) L = (1� T )�1Le: (9)



Thus the measured power is

ML =M(1� T )�1Le: (10)

However, sinceT is infinite dimensional, it cannot be
inverted in closed form. Thus it should be approximated
by a finite dimensional mapping, that is usually given as a
matrix. This kind of approximation is provided by finite-
element techniques that project the problem into a finite
dimensional function space, and approximate the solu-
tion here. This projection converts the original integral
equation into a system of linear equations, which can be
inverted, for example, by Gaussian elimination method.
This approach was used in early radiosity methods, but
have been ruled out due to the cubic time complexity and
the numerical instability of the Gaussian elimination.

Since no stochastic alternative has been proposed yet for
the deterministic inversion, we do not consider this option
any further in this paper.

1.2 Expansion

Expansion techniques eliminate the coupling by obtaining
the solution in the form of an infinite Neumann series.

1.2.1 Expansion of the rendering equation:
gathering walks

Substituting the right side’sL byLe+ T L, which is obvi-
ouslyL according to the equation, we get:

L = Le+T L = Le+T (Le+T L) = Le+T Le+T 2L:
(11)

Repeating this stepn times, the original equation can be
expanded into a Neumann series:

L =

nX
i=0

T iLe + T n+1L: (12)

If integral operator T is a contraction, then
limn!1 T n+1L = 0, thus

L =

1X
i=0

T iLe: (13)

The measured power is

ML =

1X
i=0

MT iLe: (14)

The terms of this infinite Neumann series have intuitive
meaning as well:MT 0Le = Le comes from the emis-
sion,MT 1Le comes from a single reflection,MT 2Le

from two reflections, etc.
MT dLe is a2d+ 2-dimensional integral where the in-

tegrand is a product of the radiance of a lightsource point
and the probability that a patch of lengthd connects the
eye to this lightsource point.

To obtain the integrand for a single point, a ray is em-
anated recursively from the visible point at direction!01
then from the found surface at!0

2
, etc. until!0

n
. The emis-

sion intensity at the end of the walk is read and multiplied
by the BRDFs and the cosine terms of the stages of the
walk. These walks provide the value of the integrand at
“point” ~p; !0

1
; !0

2
; : : : ; !0

n
.

Note that a single walk of lengthn can be used to es-
timate the 1-bounce, 2-bounce, etc.n-bounce transfer si-
multaneously, if the emission is transferred not only from
the last visited point but from all visited points.

The presented walking technique starts at the eye and
gathersthe illumination encountered during the walk. The
gathered illumination is attenuated according to the cosine
weighted BRDFs of the path.

1.2.2 Expansion of the potential equation:
shooting walks

The potential equation can also be expanded into a Neu-
mann series similarly to the rendering equation.

W =

1X
i=0

T 0iW e; (15)

which results in the following measured power:

M0W =

1X
i=0

M0T 0iW e: (16)

M0W e is the power measured by the device from direct
emission.M0T 0W e is the power after a single reflection,
M0T 02W e is after two reflections, etc.

This type of walk, calledshooting, starts at a known
point ~y1 of a lightsource and simulates the photon reflec-
tion for a few times and finally arrives at a pixel whose
radiance this walk contributes to.

Note that in gathering walks the BRDF is multiplied
with the cosine of the angle between the normal and the
incoming direction, while in shooting walks with the co-
sine of the angle between the normal and the outgoing di-
rection. On the other hand, in gathering walks, the cosine
angle of the emitting surface is not used, while in shoot-
ing walks the cosine angle of the last visible surface is
neglected.

1.2.3 Merits and disadvantages of expansion
methods

The main problem of expansion techniques is that they
require the evaluation of very high dimensional integrals
that appear as terms in the infinite series. Practical imple-
mentations usually truncate the infinite Neumann series,
which introduces some bias, or stop the walks randomly,
which significantly reduces the samples of higher order
interreflections. These can result in visible artifacts for
highly reflective scenes.



On the other hand, expansion methods also have an im-
portant advantage. Namely, they do not require temporary
representations of the complete radiance function, thus
do not necessitate finite-element approximations. Conse-
quently, these algorithms can work with the original geom-
etry without tessellating the surfaces to planar polygons.

Expansion techniques generate random walks indepen-
dently. It can be an advantage, since these algorithms can
be suitable for parallel computing. However, it also means
that these methods “forget” the previous history of walks,
and they cannot reuse the visibility information gathered
when computing the previous walks, thus they are not as
fast as they could be.

1.3 Iteration

Iteration techniquesrealize that the solution of integral
equation (1) is the fixed point of the following iteration
scheme

Ln = Le + T Ln�1; (17)

thus if operatorT is a contraction, then this scheme will
converge to the solution from any initial functionL0.

The measured power can be obtained as a limiting value

ML = lim
n!1

MLn; (18)

In order to store the approximating functionsLn, usu-
ally finite-element techniques are applied, as for example,
in diffuse radiosity[47], or in non-diffuse radiosity using
partitioned hemisphere[16], directional distributions[49]
or illumination networks[5].

There are two critical problems here. On the one hand,
since the domain ofLn 4 dimensional, an accurate finite-
element approximation usually requires very many basis
functions, which, in turn, need a lot of storage space. Al-
though,hierarchical methods[14, 3], waveletor multires-
olution methods[8, 41] andclustering[48, 7, 51] can help,
the memory requirements are still prohibitive for complex
scenes. This problem is less painful for the diffuse case
since here the domain is only 2 dimensional.

On the other hand, when finite element techniques are
applied, operatorT is only approximated, which intro-
duces some non-negligible error in each step. If the con-
traction ratio of the operator is�, then the total accumu-
lated error will be approximately1=(1 � �) times the er-
ror of a single step[59]. For highly reflective scenes, the
iteration is slow and the result is inaccurate if the approx-
imation of the operator is not very precise. Very accurate
approximations of the transport operator, however, require
a lot of computation time and storage space.

Both the problem of prohibitive memory requirements
and the problem of error accumulation can be successfully
attacked bystochastic iteration.

Compared to expansion techniques, iteration has both
advantages and disadvantages. Its important advantage is
that it can potentially reuse all the information gained in
previous computation steps, thus iteration is expected to

be faster than expansion. Iteration can also be seen as a
single infinite length random walk. If implemented care-
fully, iteration does not reduce the number of estimates for
higher order interreflections, thus it is more robust when
rendering highly reflective scenes than expansion.

2 Why should we use stochastic
methods?

Expansion techniques require the evaluation of very high-
dimensional — in fact, infinite dimensional — inte-
grals. When using classical quadrature rules for multi-
dimensional integrals [38], such as for example the trape-
zoidal rule, in order to provide a result with a given ac-
curacy, the number of sample points is in the order of
O(MD), whereD is the dimension of the domain. This
phenomenon is called thedimensional coreor dimen-
sional explosionand makes classical quadrature rules pro-
hibitively expensive for higher dimensions. The reason
of the dimensional explosion is that these rules are usu-
ally based on uniform grids — that are simple Cartesian
products of the 1D grid in higher dimensions — in which
different dimensions do not effectively interact.

However, Monte-Carlo or quasi-Monte Carlo tech-
niques distribute the sample points simultaneously in all
dimensions, thus they can avoid dimensional explosion.
For example, the probabilistic error bound of Monte-Carlo
integration isO(M�0:5), independently of the dimension
of the domain.D-dimensional low discrepancy series[35]
can even achieveO(logDM=M) = O(M�(1��)) conver-
gence rates for finite variation integrands.

Furthermore, classical quadrature cannot be used for
infinite dimensional integrals, thus the Neumann series
should be truncated afterD terms. This truncation intro-
duces a bias of order�D+1�jjLejj=(1��). Using a Russian
roulette based technique, on the other hand, Monte-Carlo
methods are appropriate for even infinite dimensional in-
tegrals.

Thus we can conclude that the stochastic approach is
indispensable for expansion methods.

The application of randomized techniques in iteration
is not so evident, but can also be justified. On the sim-
plest level, these methods also use integration in each it-
eration step. The dimension of the domain is usually not
very high. For example, iterative diffuse radiosity methods
need to evaluate 4-dimensional integrals to obtain form
factors. The dimension is often reduced to 2 by a bru-
tal simplification, which computes one of the two surface
integrals from a single value. For even 4-dimensional in-
tegrals Monte-Carlo methods are superior than classical
quadratures thus in accurate algorithms they are highly
recommended.

Furthermore, when stochastic iteration is applied, the
operator should be like the real operator just in the aver-
age case. This allows us to use significantly simpler re-



alizations. For example, the integral part of the operator
can also be approximated as an expectation value, thus in
a single transfer usually no explicit integral is computed.
As we shall see, it is relatively easy to apply random oper-
ators whose expected case behavior gives exactly back that
of the real operator. Thus the error accumulation problem
can also be avoided.

If the operator is highly simplified, it does not require
the integrand everywhere in the domain, thus a lot of stor-
age space can be saved. Compared to the astronomical
storage requirements of non-diffuse radiosity methods, for
example, with stochastic iteration we can achieve the same
goal with one variable per patch[62]. This argument loses
some of its importance when view-independent solution
is also required, since the final solution should be stored
anyway. This is not a problem if only the diffuse case is
considered, since using a single radiosity value per patch
the image can be generated from any viewpoint. For the
non-diffuse case, the reduced storage gets particularly use-
ful when the image is to be calculated in only a single, or
in a few eye positions.

Summarizing, the advantages of stochastic iteration are
the simplicity speed, affordable storage requirements and
numerical stability even for very large systems containing
highly reflective materials.

3 Options in stochastic render-
ing

3.1 Monte-Carlo versus quasi-Monte
Carlo

The core of the computations of all methods is the eval-
uation of high-dimensional integrals (for inversion and it-
eration it means 4 dimensional integrals, for expansion,
it means, at least theoretically, infinite-dimensional inte-
grals). To evaluate an integral, we can use quadrature for-
mulae, that have the following form in the simplest case:

Z

[0;1]D

f(z) dz �
1

M
�

MX
i=1

f(zi): (19)

Those sets of sample points that provide an exact inte-
gral value in the asymptotic sense are calleduniform se-
quences.

Well known examples for uniform sequences are the
uniform grid, the uniformly distributed random samples
and the family of low-discrepancy sequences.

To find out which are those sample sets that can ef-
fectively be used in numerical integration, theKoksma-
Hlawka inequality[35] gives us some hints (unfortunately,
it is valid only for finite-variation functions, but the ba-
sic observations are still useful in more general circum-

stances):

j

Z
z2[0;1]D

f(z) dz�
1

M

MX
i=1

f(zi)j � VHK �D
�(z1; : : : zN );

(20)
whereVHK is thevariationof f in the sense of Hardy and
Krause, andD�(z1; : : : zN ) is thestar-discrepancyof the
used sample set (for the bounds and computation of the
discrepancy refer to [35, 43, 11]).

According to this inequality, the error can be upper-
bounded by the product of two independent factors, the
variation of the integrand and the discrepancy of the used
samples set. The discrepancy shows how uniformly the
set is distributed[43]. This immediately presents two
orthogonal strategies to improve the quality of quadra-
tures. Either we try to make the function flat by ap-
propriate variable transformations, or use very uniformly
distributed sample sets. The first technique is called
importance sampling[50], while the second involves the
stratification[50, 30, 1] of random points or the applica-
tion of low-discrepancy series[35, 71, 38, 24, 50].

Low-discrepancy samples are deterministic point sets
that are designed to be optimally uniform, thus replac-
ing the random points by them improves the accuracy of
the integral quadrature. Quadrature rules that use low-
discrepancy series instead of random points are called
quasi-Monte Carlo methods.

Quasi-Monte Carlo techniques have been first applied to
solve the diffuse rendering equation by Keller[22], where
the integrand was generally discontinuous and therefore
of infinite variation, thus the superiority of quasi-Monte
Carlo method could not been theoretically justified (note
that the Koksma-Hlawka inequality is meaningless if the
variation is infinite). However, the numerical evidence
showed that quasi-Monte Carlo methods can slightly be
better than Monte-Carlo techniques.

The efficiency of the quasi-Monte Carlo integration for
the rendering equation has been theoretically analyzed in
[63] and an empirical study was presented in [4]. These
studies concluded that quasi-Monte Carlo methods are still
better but lose their advantage in higher dimensions. The
difference is significant when the integrand is relatively
smooth, which is the case in finite-element approaches.
In [4] the different low-discrepancy series have also been
compared, and it was conlcuded that all have them provide
similar performance.

The other important problem is that although a low-
discrepancy series has almost linearly decreasing discrep-
ancy in the asymptotic sense, this discrepancy can still be
high for not very many points (in the solution of the ren-
dering equation we rarely use more than 1000 samples for
the estimation of a single pixel). In the case of the Halton
series, for example, thebaseof the series strongly affects
the initial behavior of the discrepancy. These base num-
bers are different prime numbers for different dimensions,
thus for high-dimensional integrals the base numbers can
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Figure 3: Error measurements for 1, 5 and 10 bounces

be quite high, which results in degraded performance.
To demonstrate this, in figure 3 the errors of different

bounces generated by quasi-Monte Carlo and the Monte-
Carlo quadratures have been compared for a spherical
diffuse scene where only a part is lightsource. For this
scene the analytical solution of the rendering equation is
possible[15, 63].

3.2 Continuous versus finite-element
based methods

Iteration requires the representation of the temporary radi-
ance functionLn. So does expansion if view-independent
solution is needed since the final radiance distribution
must be represented in a continuous domain.

To represent a function over a continuous domain, fi-
nite element methods can be used which approximate the
function in the following form:

L(~x; !) �

nX
j=1

Lj � bj(~x; !) = b
T (~x; !) � L (21)

wherebj(~x; !) is a system of predefined basis functions,
andLj factors are unknown coefficients.

This representation can also be seen as projecting the
infinite dimensional space of the possible radiance func-
tions into a finite-dimensional function space defined by
the basis functions.

Substituting this approximation into the rendering equa-
tion we can obtain:

bT � L � bT � Le + T (bT � L): (22)

Note that equality cannot be guaranteed, since even if
bT (~x; !) � L is in the subspace defined by the basis func-
tions, the integral operatorT may result in a function that
is out of this space. This can be solved by projecting the
result back to the subspace and using a projected integral
operatorTF in the following way:

TFL = hT bT � L; ~bi: (23)

wherehT L; ~bi is a vector of scalar products

hT L;~b1i; : : : hT L;~bni

and ~bi is an adjoint basis ofbi, since we require that
h~bi; bji = 1 if i = j and 0 otherwise.

SinceL is constant, we can also obtain

TFL = hT bT ; ~bi � L = F � L; (24)

whereF = hT bT ; ~bi is a matrix, where thei; j element
is hT bj ;~bii: Thus the projection converts the original inte-
gral to the following form:

L = Le + TFL = Le +F � L: (25)

An adjoint of this linear equation can be derived by sup-
posing that each basis functionbi is associated with a mea-
surement deviceW e

i
that measures the powerPi leaving

the support of the basis function. Thus we obtain

hW e

i
;bT � Licos = hW e

i
; biicos � Li = Pi:

Similarly, the measured emission power is

hW e

i
;bT � Leicos = hW e

i
; biicos � L

e

i
= Pe

i
:

Applying measurement operatorW e

i
for equation (25),

we can obtain the following equation:

P = Pe +H �P; (26)

where

Hij = Fij �
hW e

i
; biicos

hW e

j
; bjicos

: (27)

When finite-element techniques are used together with
expansion, finite-element representation can either be used
to represent the final result[22], or even be involved in the
random walk[36].

The latter case may correspond either to the random-
walk solution of the linear equation derived by projecting
the integral equation, or to the Monte-Carlo evaluation of
the multi-dimensional integral containing both the trans-
port and the projection operators. The second case is pre-
ferred, because it does not require matrixF to be explicitly
computed and stored.

The main problem of finite-element representations is
that they require a lot of basis functions to accurately



approximate high-variation, high-dimensional functions.
Not surprisingly, finite-element methods become really
popular only for the diffuse case, where the radiance de-
pends on 2 scalars and is relatively smooth. For solving
the non-diffuse case, they are good only if the surfaces are
not very specular.

The property that certain methods require tessellation
and finite-element representation is usually considered as
a disadvantage. And indeed, sharp shadows and highlights
on highly specular materials can be incorrectly rendered
and light-leaks may appear, not to mention the unneces-
sary increase of the complexity of the scene description
(think about, for example, the definition of the original
and tessellated sphere). However, finite-element represen-
tation can also provide smoothing during all stages of ren-
dering, which results in more visually pleasing and dot-
noise free images.

3.3 Global versus local methods

Randomized transport operators transfer the radiance or
the potential in the scene. The source and destination of
the transfer can be points in the case of continuous meth-
ods or patches in the case of finite-element methods.

If the random operator is such that it always selects a
single source for shooting or single destination for gather-
ing, then the method is calledlocal method. On the other
hand, if many sources and destinations are taken into con-
sideration simultaneously in each transfer, then the method
is calledglobal methodor multi-path method[39].

Since global methods handle larger transfers in a sin-
gle step, they can be expected to be more efficient than
local methods. On the other hand, the single source or
destination points of local methods directly correspond to
the single “eye” of classical visibility algorithms. Thus, to
exploit the capabilities of global methods, classical visi-
bility algorithms should also be generalized for “moving”
eye positions. These algorithms are calledglobal visibility
algorithms[37].

4 Stochastic expansion: random
walks

In computer graphics the first Monte-Carlo random
walk algorithm — calleddistributed ray-tracing— was
proposed by Cook et al. [9], which spawned to
a set of variations, includingpath tracing[21], light-
tracing[12], bi-directional path tracing[25, 67], Monte-
Carlo radiosity[44, 31, 36], andtwo-pass methodswhich
combine radiosity and ray-tracing [42, 72, 69].

The problem of naive generation of walks is that the
probability that a shooting path finds the eye is zero for a
pin-hole camera or very small if a non-zero aperture cam-
era model is used, while the probability that a gathering
random path ends in a lightsource may be very little if the
lightsources are small, thus the majority of the paths do

not contribute to the image at all, and their computation
is simply waste of time. Note that shooting is always su-
perior for view-independent algorithms since they do not
have to face the problem of small aperture.

Thus, on the one hand, random walk must be combined
with a deterministic step that forces the walk to go to the
eye and to find a lightsource. On the other hand,impor-
tance sampling[50] should be incorporated to prefer use-
ful paths along which significant radiance is transferred.
Note that although the contribution on the image is a func-
tion of the complete path, computer graphics applications
usually assign estimated importance to individual steps of
this path, which might be quite inaccurate. In a single
step the importance is usually selected according to the
BRDF [12, 25], or according to the direction of the direct
lightsources [46]. Combined methods that find the impor-
tant directions using both the BRDF and the incident il-
lumination have been proposed in [66, 17, 26, 56]. Just
recently, Veach and Guibas[68] proposed the Metropolis
method to be used in the solution of the rendering equa-
tion. Unlike other approaches, Metropolis sampling[29]
can assign importance to a complete walk not just to the
steps of this walk, and it explores important regions of the
domain adaptively while running the algorithm. Thus no
a-priori knowledge is required about the important rays to
construct a probability density function in advance. In-
stead, the algorithm converges to this probability density
automatically.

4.1 Handling infinite-dimensional inte-
grals

Expansion methods require the evaluation of infinite-
dimensional integrals. One way of attacking the problem
is truncating the Neumann series, but this introduces some
bias, which can be quite high if the scene is highly reflec-
tive.

Fortunately, there is another approach that solves the
infinite-dimensional integration problem through random-
ization. In the context of Monte-Carlo integration, this ap-
proach is called theRussian roulette[2], but here a some-
what more general treatment is given that can also justify
this approach for quasi-Monte Carlo quadratures.

The basic idea is very simple. Higher order terms are
included in the quadrature only randomly with probability
decreasing with the order of the term. In order to com-
pensate the missing terms in the expected value, the com-
puted terms are multiplied by an appropriate factor. If the
used probability goes to zero quickly, then the possibility
of requiring very high dimensional integrals is rather low,
which saves computation time but increases the variance.
However, the expected value will still be correct, thus the
integral quadrature will provide an asymptotically unbi-
ased estimate.

A term of the Neumann series has generally the follow-



ing form

In =

Z
: : :

Z
W (z1; : : : zn) � L

e(z1; : : : zn) dz1 : : : zn;

(28)
whereW (z1; : : : zn) = w0 � w1 � : : : � wn is the product
of the weights including the cosine functions of the angles
and the BRDFs.

Let us randomize this integral by introducing a random
variableC(z1; : : : zn), called thecontribution indicator,
that is 1 if a samplez1; : : : zn should be taken into account
in the integral quadrature and 0 if it should not. Using this,
we can define the following random variable,

I�
n
=

Z
: : :

Z
C � ~W � ~Le dz1 : : : zn; (29)

where ~W and ~Le are appropriate modifications ofW and
Le, which can compensate the missing terms.

The expectation value of this random variable is

E[I�
n
] =

Z
: : :

Z
E[C(z1; : : : zn)] � ~W � ~Le dz1 : : : zn =

Z
: : :

Z
p(z1; : : : zn) � ~W � ~Le dz1 : : : zn; (30)

where p(z1; : : : zn) is the probability of using sample
z1; : : : zn in the integral quadrature.

Obviously, this equals to the original integralI if

p(z1; : : : zn) � ~W � ~Le =W � Le: (31)

There are many possible selection of the contribution
indicator and the~W and~Le functions, that can satisfy this
requirement, thus there are many different unbiased esti-
mators.

A widely used selection is letting

~W = 1; ~Le = Le and p(z1; : : : zn) = W (z1; : : : zn):

which corresponds to continuing the walk after stepi with
probabilityw(zi).

4.2 Importance sampling

When solving the rendering equation, usually directional
integrals (or surface integrals in other formulation) should
be evaluated. Thus to allow the application of random or
low-discrepancy point sets, the integration domain should
be transformed to the unit cube or square.

For example, when dealing with directions, we have to
find a mapping! = T (z) that projects the unit square
to the surface of the sphere (or hemisphere) and use the
following integration rule

Z



f(!) d! =

Z
[0;1]D

f(T�1(z)) �

����dT
�1(z)

dz

���� dz; (32)

where ����dT
�1(z)

dz

���� = 1

t(z)

is the Jacobi determinant of the inverse mapping.
If the Jacobi determinant is large, then a small portion of

the unit square is mapped onto a large region. Thus sample
points that are uniformly distributed in the unit square will
be quite rare in these regions. Alternatively, where the Ja-
cobi determinant is small, the sample points will be dense.
Considering this, the meaning oft(T�1(z)) is the den-
sityof sample points in the neighborhood of! = T�1(z).
This has an illustrative content for the random case. Ifz is
uniformly distributed random variable, then the probabil-
ity density of! = T (z) will be t(z).

Mathematically, the solution of either the rendering or
the potential equation for a given point(~x; !) requires the
evaluation of the following multi-dimensional integral

L(~x; !) = Le + T Le + T 2Le + : : : =

Z
: : :

Z
Le+

w1

t1
�Le+

w1

t1
�
w2

t2
�Le+: : : dz1dz2 : : : (33)

which can be estimated using formula (19) by evaluating
the integrand in sample points and averaging the results.

An important design decision of such an algorithm is the
selection of mappingsTi. Using probabilistic approach,
it means the determination of the probability densities of
finding new directions during the walks.

Following the directions concluded from the Koksma-
Hlawka inequality, the mappings should make the inte-
grand flat — that is of low variation, or constant in the
ideal case. It means that the probability of selecting a walk
is proportional to its contribution.

Looking at formula (33), which is the single multi-
dimensional solution of the rendering equation, this deci-
sion seems to be hard to made, since there are too many
free parameters to control simultaneously. Fortunately,
this solution can also be presented in the following recur-
sive form:

Le+

Z
w1

t1
� [Le+

Z
w2

t2
� [Le+ : : :] : : :] dz1dz2 : : : (34)

If we could ensure that each of the integrands of the form

Z
wi

ti
� [Le +

Z
: : :] dzi

is constant (at least approximately), then the integrand of
the single multi-dimensional integral will also be constant.

An optimal importance sampling strategy thus requires
densityti to be proportional to the product of the incoming
illuminationLe+

R
: : : and the cosine weighted BRDFwi.

Unfortunately, during random walks the incoming non-
direct illumination is not known (the random walk is just
being done to estimate it).



Thus, we have three alternatives. Information about
the illumination in the space can be gathered in a prepro-
cessing phase, then this information can be used to ob-
tain probability densities for importance sampling. This is
called theglobal importance sampling.

The second alternative is using the information gained
during previous walks to approximate the illumination.
This strategy is calledadaptive importance sampling.

In the third alternative, the problem is simplified and the
indirect illumination is not considered in importance sam-
pling. When the directions are generated, we use onlywi

depending on the local orientation, the BRDF andLe rep-
resenting the direct illumination of the actual point. This
is called thelocal importance sampling.

It turns out that we have to encounter severe problems
when we have to find a mapping which has density that is
proportional to the product of the effects of the BRDF and
the direct lighting. Consequently, local importance sam-
pling strategies usually use only eitherwi or Le to iden-
tify important directions. The first alternative is called the
BRDF sampling, while the second is called thelightsource
sampling.

4.2.1 BRDF sampling

BRDF based importance sampling means that at stepi the
densityti of the sample points is proportional to the weight
wi, that is

ti / wi = fr(!in; ~x; !out) � cos � (35)

In gathering algorithms!out is known,� is the angle be-
tween!in and the surface normal, and!in should be de-
termined. In shooting algorithms, on the other hand,!in
is known,� is the angle between!out and the surface nor-
mal, and!out should be determined.

Due to the fact thatti represents density (probability
density for Monte-Carlo methods), its integral is 1. Thus
for gathering walks, the ratio of proportionality in equa-
tion (35) is
Z

w d!in =

Z
fr(!in; ~x; !out)�cos �in d!in = a(~x; !out)

wherea(~x; !out) is thealbedoof the surface at point~x in
the outgoing direction. Similarly, the proportionality ratio
for shooting walks is
Z

w d!out =

Z
fr(!in; ~x; !out)�cos �out d!out = a(~x; !in):

Thus the weightswi=ti are the albedos at the visited
points.

When combining this with Russian roulette of type
~W = 1; ~Le = Le, the probability of continuing the walk

will be equal to the albedo. This can also be interpreted
in the following way. When the next direction is sampled,
we use a subcritical densitywi which does not integrate

to 1 but to a valuea(~x; !) and with the “missing” proba-
bility 1 � a(~x; !) it is decided whether or not the walk is
stopped.

In order to use BRDF sampling, random samples should
be generated with probability densities that are equal to
fr(!in; ~x; !out) � cos �. This can be very difficult for com-
plex BRDF models. Therefore, an important research di-
rection focuses on the design of BRDF models that are
physically realistic, simple and also allows for albedo
computation and importance sampling [33].

4.2.2 Global importance sampling

Global importance sampling methods are two-phase pro-
cedures. In a preprocessing phase they build a data struc-
ture that guides the second phase to find important di-
rections. These methods can be classified according to
their incorporated data structure. Since the ray-space is
5-dimensional, it is straightforward to apply a5D adap-
tive tree[26] that is similar to the well-known octree
to store radiance information. Jensen proposed the ap-
plication of thephoton-mapas the basis of importance
sampling[17]. We assigned the power computed in the
preprocessing phase tolinks established between two in-
teracting patches[56, 57].

4.2.3 Adaptive importance sampling

Adaptive importance sampling methods neither require the
non-uniform probability densities to be constructed in ad-
vance, nor simplify them to take only into account local
properties, but converge to a desired probability density
using the knowledge of previous samples. Three tech-
niques are particularly important, which have also been
used in rendering:genetic algorithms[27] the Metropolis
sampling[29, 68] and the VEGAS method[28, 52]. In this
paper only the Metropolis sampling is discussed.

4.2.4 Metropolis sampling

The Metropolis algorithm[29] converges to the optimal
probability density that is proportional to the importance,
that is in the limiting caseI(z) = b � p(z):

However, this probability density cannot be stored, thus
in the Monte-Carlo formula the importance should be used
instead, in the following way:

I =

Z
V

f(z)

I(z)
� I(z) dz = b �

Z
V

f(z)

I(z)
� p(z) dz =

b � E

�
f(z)

I(z)

�
�

b

M
�

MX
i=1

f(zi)

I(zi)
(36)

In order to generate samples according top(z) = 1=b �
I(z), a Markovian process is constructed whose station-
ary distribution is justp(z). Informally, the next statezi+1
of this process is found by letting an almost arbitraryten-
tative transition functionT (zi ! zt) generate atentative



samplezt which is either accepted as the real next state or
rejected making the next state equal to the actual state us-
ing an “acceptance probability” a(zi ! zt) that expresses
the increase of the importance (if this “acceptance proba-
bility” is greater that 1, then the sample is accepted de-
terministically). The formal definition of this Markovian
processfz1; z2; : : : zi : : :g is as follows:

for i = 1 to M do
Based on the actual statezi,

choose another random, tentative pointzt

a(zi ! zt) =
I(zt)�T (zt!zi)

I(zi)�T (zi!zt)

if a(zi ! zt) � 1 then accept(zi+1 = zt)
else // accept with probabilitya(zi ! zt)

Generate random numberr in [0; 1].
if r < a(zi ! zt) then zi+1 = zt
else zi+1 = zi

endif
endfor

Note that “acceptance probability”a(x ! y) has the
following property:a(x! y) = 1=a(y! x).

The transition probability of this Markovian process is:

P (x! y) =

8<
:
T (x! y) if a(x! y) � 1 ;

T (x! y) � a(x! y) otherwise:
(37)

In equilibrium state, the transitions between two statesx

andy are balanced, that is

p(x) � P (x! y) = p(y) � P (y ! x):

Using this and equation (37), and assuming without the
loss of generality thata(x ! y) � 1, we can prove that
the stationary probability distribution is really proportional
to the importance:

p(x)

p(y)
=

P (y ! x)

P (x! y)
=

T (y! x)

T (x! y)
� a(y ! x) =

I(x)

I(y)
:

(38)
When we use Metropolis sampling in the solution of the

global illumination problem, the “state”z corresponds to
a complete walk. Mutation strategies are responsible for
changing the walk a “little”, by perturbing one or more
directions or surface points, adding or deleting steps in the
path, etc.

The first use of Metropolis sampling in rendering aimed
at speeding up bi-directional path tracing[68]. The perfor-
mance of the Metropolis sampling has been theoretically
investigated in [58].

4.3 Random walk solution of the pro-
jected integral equation

Expansion expands the solution into a discrete Neumann
series

L = Le +F � Le +F2 � Le +F3 � Le + : : : (39)

A elementi of theFn�Le term can be expressed as a multi-
dimensional integral, where the integrand in a single point
can be obtained by executing the following walk:

A point ~x1 is selected on patchi. Then a ray has to
be traced from~x1 in direction�!0

1
and the visible patch

should be identified. Following this, another point on the
identified patchj should be selected, which is denoted
by ~x2, and a ray is traced in direction�!0

2
. We keep

doing thisn times, and finally the emission of the last
patch is propagated back on the walk. During propaga-
tion, the emission is multiplied by the BRDFs (fi; fj ; : : :
) and the cosine (cos �0

i
; cos �0

j
; : : :) factors of the visited

patches (figure 4).
Note that this is basically the same walking scheme, as

used to solve the original integral equation. The funda-
mental difference is that when a patch is hit by the ray,
the walk is not continued from the found point but from
another point of the patch.

In the section on comparing finite-element and discrete
techniques, we conlcuded that discretization makes the in-
tegrand smoother, which improves the speed of the con-
verges, especially for quasi-Monte Carlo techniques. Thus
for such walks the quasi-Monte Carlo method should be
selected [4].
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Figure 4: Random walk solution of linear equation

4.4 Gathering-type random walk algo-
rithms

Gathering type random walks correspond to the Monte-
Carlo solution of the rendering equations. They start at the
eye position and gather the emission of the visited points.
This approach is quite ineffective if the lightsources are
small, since it has rather low probability that a walk visits
a lightsource.

4.4.1 Distributed ray-tracing

Distributed ray tracingsuggested by Cook[9] extends the
classical ray-tracing method to model all the possible
paths. In this method the ray tracing is not terminated
when reaching a diffuse surface. After a ray has hit a dif-
fuse surface, child rays are generated randomly according
to the BRDF characterizing the surface. For the appropri-
ate estimation of the diffuse interreflection, child rays have



Light Source

Eye

Image Plane

Figure 5: Distributed ray-tracing

to be traced and the average of their contributions have to
be computed.

4.4.2 Path-tracing

Light Source

Eye

Image Plane

Figure 6: Path tracing

Path tracing, that was proposed by Kajiya, simply cre-
ates a path history for a single particle interacting with the
environment until absorption. That is, instead of spawning
new rays at an intersection, it simply chooses a random di-
rection according to the BRDF for the ray to follow. The
walk is continued with a probability equal to the albedo.

4.5 Shooting-type walks methods

Shooting walks are based on the Monte-Carlo solution of
the potential equation.

4.5.1 Photon tracing

Photon tracing(forward ray-tracing) is the inverse of vis-
ibility ray-tracing and uses similar simplifying assump-
tions, thus they also stop tracing when hitting a surface that
does not have coherent reflection or refraction. In photon
tracing the rays are emitted from the light sources, and at
each hit it is examined whether the surface has ideal re-
flection, refraction and incoherent reflection or refraction.

In the directions of ideal reflection or refraction, the trac-
ing is continued by starting new child rays. The effect of
incoherent interactions, on the other hand, is stored in a
map or is projected to the eye by tracing a ray towards the
camera position.

4.5.2 Light Tracing

In light tracing[12] photons perform random walk through
the scene starting at the lightsources. Whenever a surface
is hit, a ray is traced from the intersection point to the eye
and the contribution is added to the selected pixel (if any).

Light Source

Eye

Image Plane

particle path
contribution path

Figure 7: Light tracing

When the next direction is determined, the BRDF based
importance sampling can be applied and combined with
the random termination according to the albedo.

4.5.3 Bi-directional Path Tracing

Bi-directional path tracing[25, 67] is based on the combi-
nation of shooting and gathering walks thus it can combine
the advantages of both techniques. Namely, it can effec-
tively handle small lightsources and small aperture cam-
eras.

Walks are initiated at the same time from a selected light
source and from the viewpoint. After some steps, either a
single deterministic shadow ray is used to connect the two
types of walks[67], or all points of the gathering walk are
connected to all points of the shooting walk using deter-
ministic rays[25]. If the deterministic shadow ray detects
that the two points are occluded from each other, then the
contribution of this path is zero.

Note that gathering and shooting walks use different in-
tegration variables, namely a gathering walk is specified
by a point on the pixel area and a sequence of incoming
directions, while a shooting walk is defined by a point on
the lightsource and a sequence of the outgoing directions.
Thus when the two walks are connected, appropriate trans-
formations should take place, which requires a multiplica-
tion of the radiance by

cos �0
k
� cos �n�k+1
r2
k

;



where�0
k

and�n�k+1 are the angles between the surface
normals and the direction of the connection at the last point
of the gathering and shooting walks respectively, andrk is
the length of the connection.
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Figure 8: Bi-directional path tracing with a single deter-
ministic step
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Figure 9: Bi-directional path tracing with multiple deter-
ministic steps

In Lafortune’s version of the bi-directional path
tracing[25] not only the endpoints of the shooting and
gathering walks are connected, but all intersection points
are linked by shadow rays.

4.5.4 Photon-map

Bi-directional path tracing connects a single gathering
walk to a single shooting walk. However, if the effects
of a shooting walk, for instance, could be stored, then
when a new gathering walk is computed, it could be con-
nected to all of them simultaneously. This is exactly what
Jensen[19, 18, 20] proposed, also giving the definition of a
data structure, called thephoton-mapwhich can efficiently
store the effects of many shooting walks.

A photon map is a collection of photon hits generated
in the shooting phase of the algorithm. The photon-map
is organized in akd-treeto support efficient retrieval. A
photon hit is stored with the power of the photon on dif-
ferent wavelengths, position, direction of arrival and with
the surface normal.

The gathering phase is based on the following approxi-

A =   r∆ π 2

Figure 10: The information stored in the photon map

mation of the transport operator:

L(~x; !0) =

Z



L(h(~x;�!0); !0)�fr(!
0; ~x; !)�cos �0 d!0 =

Z



d�(!0)

dA cos �0d!0
� fr(!

0; ~x; !) � cos �0 d!0 �

nX
i=1

��(!0
i
)

�A
� fr(!

0
i
; ~x; !); (40)

where��(!0
i
) is the power of a photon landing at the

surface�A from direction!0
i
. The�� and�A quantities

are approximated from the photons in the neighborhood
of ~x in the following way. A sphere centered around~x is
extended until it containsn photons. If at this point the
radius of the sphere isr, then the intersected surface area
is�A = �r2.

4.5.5 Instant radiosity

Instant radiosity[23] elegantly subdivides the shooting
walks into a view-independent walk and into the projec-
tion of the contribution to the eye. Let us call this last step
with eye projection theeye-step. The view-independent
walk is quite similar to the light-tracing algorithm, but the
new directions are sampled from the Halton sequence in-
stead of a random distribution.

When a surface hit is found, the eye-step is calculated
taking advantage of the rendering hardware of advanced
workstations. The reflection of this hit is assumed to be
a point lightsource (in the radiosity setting the emission
of the lightsource is also diffuse), and the rendering hard-
ware is used to render the effect of this lightsource on the
scene and also to compute shadows. The final image is the
average of such estimates, which are computed using the
hardware accumulation buffer.

Instant radiosity is quite similar to photon-map based
techniques. However, instead of using ray-tracing for fi-
nal gather, the photons in the photon map are used as
lightsources and fast and hardware supported visibility and
shadow algorithms are applied. The other fundamental
difference is that instant radiosity allows just a relatively
low number of photons which therefore should be very



well distributed. The optimal distribution is provided by
quasi-Monte Carlo light walks.

4.5.6 Global ray-bundle tracing

Realizing that an accurate solution requires great many
samples,global ray-bundle tracing[61, 62, 52] uses a bun-
dle of very many (e.g. 1 million or even infinite) global
parallel rays, which can be traced simultaneously using
image coherence techniques. In order to represent the radi-
ance that is transferred by a ray, finite-element techniques
are applied that approximate the positional (but not the di-
rectional) dependence of the radiance by piece-wise con-
tinuous or piece-wise linear functions[60].

L(~x; !) �

nX
j=1

bj(~x) � Lj(!) = b
T � L(!): (41)

Note that this is a mixed finite-element and continuous
method, since the positional dependence of the radiance
is approximated by finite-elements, while the directional
dependence is not.

Substituting this into the rendering equation and pro-
jecting that into an adjoint base we obtain

L(!) = Le(!) + TFL(!); (42)

whereTF is a composition of the original transport opera-
tor and its projection to the adjoint base

TFL(!) = hT bT � L(!); ~bi: (43)

Let us use again piece-wise constant basis functions. Then
the result of the application of the transport operator on
patchi is

TFL(!)ji =
1

Ai

�

Z



Z
Ai

L(h(~x;�!0); !0)�cos �0� ~fi(!
0

; !) d~x d!0:

(44)
Taking into account that the integrand of the inner surface
integral is piece-wise constant, it can also be presented in
closed form:Z

Ai

L(h(~x;�!0); !0) � cos �0 � ~fi(!
0; !) d~x =

nX
j=1

~fi(!
0; !) � A(i; j; !0) � Lj(!

0); (45)

whereA(i; j; !0) expresses the projected area of patchj
that is visible from patchi in direction!0. In the unoc-
cluded case this is the intersection of the projections of
patchi and patchj onto a plane perpendicular to!0. If
occlusion occurs, the projected areas of other patches that
are in between patchi and patchj should be subtracted as
shown in figure 11.
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Figure 11: Interpretation ofA(i; j; !0)

This projected area can be efficiently calculated simulta-
neously for all patch pairs using global discrete or continu-
ous visibility algorithms[52] and also exploiting the hard-
ware z-buffer[62]. These algorithms can also have random
nature, that is, they can result inA(i; j; !0) �Lj(!0) just as
an the expected value[64, 53].

Using equation (45) the rendering equation can be ob-
tained as:

L(!) = Le(!) +

Z



F(!0; !) �A(!0) � L(!0) d!0; (46)

whereL(!) is the vector of radiance values,F(!0; !) is a
diagonal matrix of BRDFs, andgeometry matrixA con-
tains the relative visible areas:A(!0)jij = A(i; j; !0)=Ai.

Note that equation (46) is highly intuitive as well. The
radiance of a patch is the sum of the emission and the re-
flection of all incoming radiance. The role of the patch-
direction-patch “form-factors” is played byA(i; j; !0)=Ai.

This is also an integral equation but unlike the original
rendering equation it provides the radiance of not only a
single point but for all points at once. This integral equa-
tion is solved by random or quasi-random shooting type
walks.

image plane

direction 1

direction 2

direction 3

Figure 12: A path of ray-bundles

A single walk starts by selecting a direction either ran-
domly or quasi-randomly, and the emission transfer of all
patches is calculated into this direction (figure 12). Then a
new direction is found, and the emission is transferred and
the incoming radiance generated by the previous transfer
is reflected from all patches into this new direction. The
algorithm keeps doing this for a few times depending on
how many bounces should be considered, then the emis-
sion is sent and the incoming radiance caused by the last



transfer is reflected towards the eye. Averaging these con-
tributions results in the final image.

5 Stochastic iteration

The basic idea of stochastic iteration is that instead of ap-
proximating operatorT in a deterministic way, a much
simpler random operator is used during the iteration which
“behaves” as the real operator just in the “average” case.
The concept of stochastic iteration was proposed for the
diffuse radiosity problem in [31], that is for the solution of
finite-dimensional linear equations.

In this section we present a generalized formulation
that is somewhat different from the original concepts
to allow to attack also non-diffuse global illumination
problems[53]. Suppose that we have a random linear op-
eratorT � so that

E[T �L] = T L (47)

for any integrable functionL.
In the case of finite-element representations, equa-

tion (47) should be true for theTFL operator that also
involves the projection to the finite function space.

During stochastic iteration a random sequence of op-
eratorsT �

1
; T �

2
; : : :T �

i
: : : is generated, which are instan-

tiations ofT �, and this sequence is used in the iteration
formula:

Ln = Le + T �
n
Ln�1: (48)

Since in computer implementations the calculation of
a random operator may invoke finite number of random
number generator calls, we are particularly interested
in random operators having the following construction
scheme:

1. Random “point”pi is found from a finite dimensional
set� using probability densityprob(p). This prob-
ability density may or may not depend on function
L.

2. Usingpi a “deterministic” operatorT �(pi) is applied
toL.

Point pi is called therandomization pointsince it is re-
sponsible for the random nature of operatorT �.

Using a sequence of random transport operators, the
measured power

Pn =MLn (49)

will also be a random variable which does not converge
but fluctuates around the real solution. Thus the solution
can be found by averaging the estimates of the subsequent
iteration steps.

Formally the sequence of the iteration is the following:

P1 = ML1 =M(Le + T �
1
Le)

P2 = ML2 =M(Le + T �
2
Le + T �

2
T �
1
Le)

...

PM = MLM =M(Le + T �
M
Le + T �

M
T �
M�1L

e + : : :)

Averaging the firstM steps, we obtain:

~P =
1

M

MX
i=1

MLi =

M(Le +
1

M

MX
i=1

T �

i L
e +

1

M

M�1X
i=1

T �

i+1T
�

i L
e + : : :) =

M(Le+
1

M

MX
i=1

T �

i L
e+

M � 1

M
�

1

M � 1

M�1X
i=1

T �

i+1T
�

i L
e+: : :):

(50)

The expected value of the averaged solution~P is [55]:

E[ ~P ] =

M(Le+T Le+
M � 1

M
T 2

L
e+

M � 2

M
T 3

L
e+: : :+

1

M
T M

L
e);

(51)
which converges to the real solution

M(Le + T Le + T 2Le + T 3Le + : : :)

if M goes to infinity.

5.1 Definition of random transport op-
erators

In order to use this general stochastic iteration scheme in
practice, the key problem is the definition of the random
transport operator. This operator should meet the require-
ment of equation (47) and should be easy to compute.

For the continuous case, a single application of the
transport operator contains a directional integral. For the
finite element case, the transport operator also includes the
projection to the adjoint basis which requires additional in-
tegration in the domain of basis functions. This additional
integration means a surface integral for the diffuse radios-
ity setting and also for the ray-bundle tracing. For other
non-diffuse finite-element methods a surface and a direc-
tional integrals need to be evaluated (note that directional
integrals are sometimes “hidden” by integrals on the sur-
faces visible at different directions).

Following the general concepts of Monte-Carlo meth-
ods, we usually do not intend to compute the integrals
explicitly, but want to get them as an expected value.
Thus different random transport operators can be classi-
fied according to which integrals are evaluated explicitly
using some deterministic quadrature and which integrals
are computedimplicitly as an expectation value.



5.2 Transport operator for the continu-
ous, non-diffuse setting

The continuous formulation has just a single directional
integral, thus a random transport operator can evaluate this
single integral implicitly. This results in a method that uses
a “single” random walk to obtain the solution.

An example of such single walk techniques is the fol-
lowing modification of the light tracing algorithm[53]:

In each stepi a ray is obtained that has random origin
~yi and direction!i with a probability that is proportional
to the cosine weighted radiance of this point at the given
direction. This ray is traced and the whole power

� =

Z
S

Z



L(~y; !0) cos �~y d!
0 d~y

is transported to that point~x which is hit by the ray. For-
mally the random transport operator is

(T �L)(~x; !) = � � �(~x� h(~y; !i)) � fr(!i; ~x; !): (52)

Interestingly this iteration is a sequence of variable
length random walks, since at each step the point that is
last hit by the ray is only selected with a given probabil-
ity as the starting point of the next ray. This probability
depends on the albedoa~xi(!i) of the found point.

The algorithm selects initially a point from a lightsource
and then starts a random walk. The walk finishes after
each step with probability1=(1 + a~xi(!i)) and also when
the ray hits no object. If a walk finishes, another walk is
initiated from the lightsource. When the walk is continued,
the transferred power is weighted by(1+ a~xi(!i)), which
provides unbiased estimate even if less number of samples
are used to simulate higher order bounces. This technique
is called theRussian roulette[2, 47].

5.3 Random transport operators for the
diffuse radiosity

In the gathering type radiosity algorithms the projected
transport operator has the following form

TFL = F � L:

Alternatively, shooting radiosity algorithms are based on
the projected potential equationT 0

F
P = H �P:

According to the basic requirement of stochastic iter-
ation we need to find random operatorsT �

F
or T

0
�

F
that

behave as the real operator in average, that is

E[T �
F
L] = F � L; (53)

E[T
0
�

F
P] = H �P: (54)

The evaluation of(F � L)i or alternatively(H � P)ji
requires a surface and a directional integration (or in other
formulations two surface integrations).

The possible alternatives for a random transport opera-
tor are

1. Both integrals are explicitly computed but only for a
randomly selected subset of the patches.

2. The surface integral explicitly computed but the di-
rectional integral implicitly.

3. Compute the surface integral implicitly but the direc-
tional integral explicitly. This method can, for exam-
ple, use hemicubes for the directional integration but
selects the center of the hemicube randomly on the
patch.

4. Both integrals are computed implicitly.

5.3.1 Stochastic radiosity

In stochastic radiosity[32], the randomized operator is
simplified in a sense that it first selects a single (or a few)
patches with probability proportional to their power and
then calculates the transfer only from this important patch
as if it had all the power� =

P
n

k=1
Pk: Thus here both

integrals are explicitly computed but only for a subset of
patches.

To prove that it meets requirement stated by equa-
tion (54), let us examine the new power of patchi and
suppose that patchj has been selected.

(T
0
�

F
P)ji = Hij �� (55)

Since the probability of selecting patchj isPj=�, the ex-
pectation of the new power is

E[(T
0
�

F
P)ji] =

nX
j=1

Hij �� �
Pj

�
=

nX
j=1

Hij �Pj (56)

which we wanted to prove.

5.3.2 Transillumination radiosity

The transillumination radiosity method[31, 59] has also a
stochastic iteration version. It defines the random trans-
port operator by uniformly selectingM transillumination
directions!0

1
; : : : !0

M
and allowing patches to interact only

in these transillumination directions. In order to calculate
these interactions, a large discretized window is placed
perpendicularly to each transillumination direction and the
radiance transfer to a patch is approximated by elementary
transfers going through the pixels covering the projection
of the patch.

Let us consider a single transillumination direction.
Projecting patchAi onto a plane that is perpendicular to
the transillumination direction and then approximating the
integral of the incoming radiance here by a discrete sum,
we get Z

Ai

L(h(~x;�!0
d
)) � cos �0

d
d~x =

Z

A
p

i

L(h(~x0;�!0
d
)) � d~x0 �

X
P2A

p

i

Lbu�erd[P ]
� �A: (57)



wherebu�erd[P ] stores the index of that patch which is
visible in pixel P in the transillumination direction!0

d

from patchi, and�A is the size of a pixel of the buffer
(figure 13).

x A

L

 A

transillumination
plane

transillumination
direction

δA

i

i

pixelP

buffer[P]

d

p

ω

Figure 13: Integration on the transillumination plane

Thus the random transfer operator is

(T �
F
L)ji =

4� � fi � �A

M

MX
d=1

X
P2A

p

i

Lbu�erd[P ]
: (58)

If the transillumination directions are uniformly dis-
tributed and the buffer is uniformly jittered, then the ex-
pected value of this operator is equal to the real operator
[54].

5.3.3 Stochastic ray-radiosity

Stochastic ray-radiosity[34] approximates the transport
operator byM random rays that are sampled proportion-
ally to the power of the patches. On a patch the starting
point of the ray is sampled using a uniform distribution,
while the direction follows a cosine distribution. A single
ray carries�=M power. Thus this method approximates
both integrals implicitly.

Let us examine the case when a single ray is selected
(since different rays are sampled from the same distribu-
tion, the effect ofM rays will beM times the effect of
a single ray in the expected value). Suppose that patch
j is selected as a shooting patch. The probability of the
selection event isPj=�. Thus the probability density of
selecting a point~x of a patch and a direction! is

Pj

�
�
1

Aj

� cos �:

This transfers�=M power to the patch that is hit by the ray
where the reflected power is computed. Thus the random
transport operator for a single ray is

E[(T
0
�

F P)ji] =

M � fi �

nX
j=1

Z
Aj

Z



bi(h(~y; !)) �
�

M
�
1

Aj

� cos � d~yd! �
Pj

�
=

nX
j=1

fi

Aj

�

Z
Aj

Z



bi(h(~y; !)) � cos � d~yd! �Pj =

nX
j=1

Hij �Pj :

(59)

5.4 Transport operators for the non-
diffuse finite-element case

When moving towards the non-diffuse case, another re-
quirement must be imposed upon the random transport
operator. It must not only meet the requirement of equa-
tion (47), be easy to compute, but it must also allow the
compact representation of theT �

i
L functions. This extra

requirement is evident if we take into account that unlike in
the diffuse case, the domain ofL is a 4-dimensional con-
tinuous space, so is the domain ofT �

i
L (for ray-bundle

tracing only 2-dimensional continuous space). From the
point of view of compact representation, what we have to
avoid is the representation of these functions over the com-
plete domain.

Thus those transport operators are preferred, which re-
quire the value ofL just in a few “domain points” (e.g. in
a single “domain point”). Note that the evaluation ofT �

i
L

now consists of the following steps: first a randomization
point pi is found to define random operatorT �

i
, which in

turn determines at which domain point the value ofL is
required. Up to now, we have had complete freedom to
define the set of randomization points. One straightfor-
ward way is defining this set to be the same as the domain
of the radiance function and using random transport op-
erators that require the value of the radiance function at
their randomization points. Although this equivalence is
not obligatory, it can significantly simplify the computa-
tions, since when the randomization point is generated, the
required domain point is also known.

Using random operators that evaluate the radiance in a
single point is not enough in itself, since even a single
“point” can result in a continuousT �

i
L function, which

must be stored and re-sampled in the subsequent itera-
tion step and also by the measurement. The solution is
the postponing of the complete calculation ofT �

i
L until

it is known where its value is needed in the next iteration
step and by the measuring device. In this way, the random
operator should be evaluated twice but just for two points.
Once for the actual and the previous “points” resulting in
[T �(pi)L(pi)](pi+1), and once forpeye which is needed
by the measuring device and for previous point providing
[T �(pi)L(pi)](peye).

The complete iteration goes as follows:

P = 0
Findp1 randomly
L(p1) = Le(p1)
for i = 1 to M do

P new = Le(peye) + [T �(pi)L(pi)](peye)
P =MP new � 1=i+ (1� 1=i) � P
Findpi+1 randomly
L(pi+1) = Le(pi+1) + [T �(pi)L(pi)](pi+1)

endfor
Display final image



5.4.1 Global ray-bundle based iteration

Recall that the finite-element approximation applied by
ray-bundle tracing converts the rendering equation to the
following form (section 4.5.6):

L(!) = Le(!) + TFL(!); (60)

whereTF is a composition of the original transport opera-
tor and its projection to the adjoint base

TFL(!) =

Z



F(!0; !) �A(!0) � L(!0) d!0: (61)

Let the random approximation of the transport opera-
tor be the transfer of the radiance of all surface points of
the scene in a single uniformly distributed random direc-
tion. This transfer can be effectively realized by sending a
ray-bundle into this direction. Thus the random transport
operator is!0

(T �L)(!) = 4� �F(!0; !) �A(!0) � L(!0): (62)

If the directions are sampled from a uniform distribu-
tion, then this obviously gives back the integral operator
as an expected value:

E[(T �

L)(!)] =

Z



4��F(!0; !)�A(!0)�L(!0)
d!0

4�
= TFL(!):

(63)
In the definition of the random operator! is the actually

generated direction and!0 is the previously generated di-
rection. Thus a “randomization point” is a global direction
in this method.

The resulting algorithm is quite simple. In a step of the
stochastic iteration a new direction is found and this direc-
tion together with the previous direction are used to evalu-
ate the random transport operator. Then an image estimate
is computed by reflecting the previously computed radi-
ance estimate towards the eye. The complete algorithm is
summarized in the following:

Generate the first random global direction!1
for each patchi doL[i] = Le

i
(!1)

for m = 1 to M do // iteration cycles
Calculate the image estimate relfecting

the incoming radianceL[1]; L[2]; : : :L[n]
from!m towards the eye

Average the estimate with the Image
Generate random global direction!m+1

for each patchi do
Lnew[i] = Le

i
(!m+1) + 4��P

n

j=1
~fi(!m; !m+1) � A(i; j; !m)=Ai � L[j]

endfor
endfor
Display Image

6 Handling point lightsources

Monte-Carlo integration is efficient if the integrand is rel-
atively smooth and does not exhibit high variations. For
gathering walks and for global methods, point lightsources
may pose problems. Fortunately, these lightsources can be
easily handled separately by deterministic techniques.

This algorithm can be applied either in a preprocessing
step when it is called thefirst-shotor during the calculation
of the random walks. For the diffuse radiosity problem,
the preprocessing type first-shot algorithm has been first
presented in [40], extended to multiple interreflections in
[6] and has been generalized to non-diffuse environments
in [62].

+=

Figure 14: First shot technique

Formally, the unknown radianceL is decomposed into
two terms:

L = Lep + Lnp (64)

whereLep is the emission of the small, point-like light-
sources,Lnp is the emission of the area lightsources and
the reflected radiance. Substituting this into the rendering
equation we have:

Lep + Lnp = Le + T (Lep + Lnp): (65)

Introducing the new lightsource term

Le� = Le � Lep + T Lep (66)

which just replaces the point lightsources (Lep) by their ef-
fect (T Lep), the equation forLnp is similar to the original
rendering equation:

Lnp = Le� + T Lnp: (67)

It means that first the direct illumination caused by the
point lightsources must be computed, then they can be re-
moved from the scene and added again at the end of the
computation.

This idea can be combined with gathering type walks.
In this caseLe� is computed on the fly when needed. To
obtainLe�, shadow rays are traced from each visited point
of the walk towards every point lightsource and the direct
lighting is deterministically computed. For finite-element-
type methods, the computation ofLe� can be moved to
a preprocessing phase. In diffuse environments the stor-
age of the direction independentLe� function requires just
one extra variable per patch. In non-diffuse environments,



however,Le� can be a non-constant function, which is dif-
ficult to represent and store. Instead, the incoming radi-
ance received by the patches from each point lightsource
should be stored (this requiresl additional variables per
patch, wherel is the number of point lightsources). When
Le� is needed for a given direction, then it is computed on
the fly from these incoming radiances.

7 Conclusions

This paper presented a review of stochastic global illumi-
nation algorithms. We concluded that stochastic methods
are indispensible since they present the only reasonable
alternative to compute the very high-dimensional integrals
that emerge in global illumination methods.

Monte-Carlo algorithms take random or quasi-random
samples and approximate the solution as an average. In
order to make these methods fast, we either reduce the
number of samples or reduce the cost of the samples. The
number of samples depend on the variation of the inte-
grand, that is how heterogeneous the light is in the space.
Techniques, including importance sampling or the special
treatment of point lightsources aim at the smoothing the
integrand. The number of samples can also be reduced
by distributing them very uniformly, which leads to the
application of low-discrepancy series instead of random
points. However, care should be taken, since these meth-
ods can be less efficient in higher dimensions, and can
even provide wrong results in iteration. The other main di-
rection, which aims at reducing the computational costs of
the samples, includes global methods. This paper focused
on ray-bundle tracing, which reduces the cost of tracing
ray by tracing it with many other parallel rays and exploit-
ing coherence properties.
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