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Abstract the power emitted by the surfaces and landing at the mea-
suring devices after some reflections. A light-surface in-

This paper presents the state of the art and recent deveteraction can be formulated by thendering equatioror

opments of Monte-Carlo global illumination algorithms. alternatively by its adjoint equation, called tpetential

First it surveys the basic tasks of global illumination, equation

which can be formulated as the solution of either the ren- The rendering equatioj21] expresses theadiance

dering or the potential equation, then reviews the basic so1,(Z,w) [W - m~2 - sr '] of a surface point? in direc-

lution techniques, including inversion, expansion and iter-tion w, and has the following form:

ation. The paper explains why stochastic approaches are

good to solve these integral equations and highlights what L=L*+TL. (1)

kind of fundamental choices we have when designing such

an algorithm. It compares, for example, finite-element andlf only direct contributioniis considered, thén= L¢. The

continuous methods, pure Monte-Carlo and quasi-Montdight-surface interaction is described by integral operator

Carlo techniques, different versions of importance sam-7, which has the following form

pling, Russian roulette, etc. Then, a lot of methods are

reviewed in a unified framework, that also allows to make (TL)(Z,w) = /L(h(j’, —w'), W) fr (W', B, w)-cos b dw'

comparisons.

Keywords: Rendering and potential equations, Monte- . . . (2).
Carlo and quasi-Monte Carlo quadratures, finite-elementVNereL(#,w) andL*(z,w) are the radiance and emission
techniques, importance sampling, Russian roulette, shooff the surf:acel in point at directionw, {1 is the directional
ing and gathering random walks, stochastic iteration,Sphereh(x’“’ ) is the visibility function defining the point

Metropolis sampling, distributed ray-tracing, path tracing, that i visible from point’ at direction.’, f(w', #,w) is
photon tracing, light tracing, bi-directional path tracing, the bi-directional reflection/refraction function, afitis

photon-map, instant radiosity, global ray-bundle tracing,the angle between the surface normal and the incoming

stochastic ray-radiosity, transillumination method, first- direction—" (figure 1).
shot.

1 Introduction

Generally, the global illumination problem is a
qguadruple[23]:

(S, fr(W', F,w), L¢(F,w), W (Z,w))

whereS is the geometry of surfaceg, is the BRDF of

surface pointsL® is the emitted radiance of surface points

at different directions an8V¢ is a collection of measuring

functions. Figure 1: Geometry of the rendering equation
Global illumination algorithms aim at the modeling and

simulation of multiple light-surface interactions to find out ~ The potential equatiof86], on the other hand, uses
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and the Spanish-Hungarian Fund (ref.No.: E9). direction w’ on a measuring device having sensitivity




Figure 2: Geometry of the potential equation

We(y,w') (for example, this device can measure the
power going through a single pixel of the image, or leaving
a surface element at any direction). If only direct contri-
bution is considered, théW (7, w') = W¢(¢,w’). To take

into account light reflections, we can establish the poten-

tial equation
W =W+ T'W. 3)

In this equation integral operat®’ — which is the adjoint
of T — describes the potential transport

(T'W)(F,w")

/W(h(g‘, 0),0) - ol h(Fw'),w) - cosf dw, (4)
Q

A simple measurement function for a pinhole camera is

-

y,w

We@w) = 209 g,w))

Y,

cos 6

wherewy is the focal point an@os @ is the cosine angle
between the normal of the visible surface and the viewing
direction. With this measurement function, the power go-
ing through a pixel of are& can be obtained using equa-
tion (5):

L(h(p, —wp), wp) - £(P) dp, (6)

Sp

whereSp is the support of. Sp is usually, but not neces-
sarily, equal to the pixel surface.

Alternatively to the radiance, the power arriving at the
measuring device can also be computed from the potential:

| [ der@.e) e

5 Q
//W(gj’, W' - LE(,w") - cos O dif dw' = M'W, (7)
5 Q

where M’ is the potential measuring operator. Note that
unlike the radiance measuring operator, the potential mea-
suring operator integrates on the lightsource.

This measuring operator can also be given in a scalar
product form

wheref is the angle between the surface normal and the

outgoing directionu.
According to the definition of the radiance
d® (7, w)

dif dw cos B’

—

L(j,w) =

the power detected by a measuring device can be co
puted by the measuring function from the radiance

[ [ e wegw)

S Q

//L(g’,w) cos - W (§,w) djf dw = ML, (5)
S Q

where M is the radiance measurement operator. Having
introduced the scalar produgt, v)

(wo) = [ [uldw)- o) di do,
S Q

and the cosine weighted scalar prod{gtv)cos

(U, VYeos = (u - cosB,v) = (u,v - cosb),

we can obtain an alternative form of the measurement opg

erator
ML = (L, W*¢)cos.

MW = (Le, W>cos- (8)
Since the rendering or the potential equation contain
the unknown radiance function both inside and outside
the integral, in order to express the solution, this coupling
should be resolved. The possible solution techniques fall

Mhto one of the following three categoriegwversion ex-

pansionanditeration.

Operator7 represents light-surface interaction, thus
each of its application generates a higher-bounce esti-
mate of the light transport (or alternative]y represents
potential-surface interaction). For physically plausible op-
tical material models, a reflection or refraction always de-
creases the total energy, thus the integral operator is al-
ways a contraction. However, when the transport is evalu-
ated numerically, computation errors may pose instability
problems if the scene is highly reflective. As we shall see,
expansion and iteration exploit the contractive property of
the transport operator, but inversion does not.

1.1 Inversion

Inversiongroups the terms that contain the unknown func-
tion on the same side of the equation and applies formally
n inversion operation:

(1-T)L=L° = L=(01-T) 'L (9)



Thus the measured power is To obtain the integrand for a single point, a ray is em-
anated recursively from the visible point at directioh
then from the found surface af, etc. untilw!,. The emis-

) L ) , sion intensity at the end of the walk is read and multiplied
However, sincef is infinite dimensional, it cannot be by the BRDFs and the cosine terms of the stages of the

inverted in closed form. Thus it should be approximated, 4 - These walks provide the value of the integrand at
by a finite dimensional mapping, that is usually given as a“point” 7wl o
Wl wh, . wh

rr:atnx. Th'shk'.nd of aﬁproxmatmrr]] IS proglllded. by f'mft.eT Note that a single walk of length can be used to es-
element techniques that project the problem into a finite; e the 1-hounce, 2-bounce, etebounce transfer si-

Q|mer:1$|onajr:19nctlop space, and apﬁroxmgtelthe So"lj'multaneously, if the emission is transferred not only from
tion here. Is projection converts the original integral y, |t yisited point but from all visited points.

equation into a system of linear equations, which can be The presented walking technique starts at the eye and

inverted, for example, by Gaussian elimination metho‘i‘é/athersthe illumination encountered during the walk. The

ML= M(1-T) 'L (10)

;I]'h|s %pproaclh (;/vas lésed mhearlybr.ad}osny metIhO(_js, bu athered illumination is attenuated according to the cosine
ave been ruled out due to the cubic time complexity an eighted BRDFs of the path.

the numerical instability of the Gaussian elimination.

Since no stochastic alternative has been proposed yet for ) . ]
the deterministic inversion, we do not consider this option1-2-2 Expansion of the potential equation:
any further in this paper. shooting walks

The potential equation can also be expanded into a Neu-

1.2 Expansion mann series similarly to the rendering equation.

Expansion techniques eliminate the coupling by obtaining o
the solution in the form of an infinite Neumann series. w=> T"We, (15)
i=0
1.2.1 Expansion of the rendering equation: which results in the following measured power:
gathering walks
Substituting the right side’s by L¢ + 7 L, which is obvi- MW = Z M Twe. (16)

ously L according to the equation, we get: i—0
L=L+TL=L+T(L°+TL)=L*+TL*+T*L.

(11)
Repeating this step times, the original equation can be
expanded into a Neumann series:

M'WWe is the power measured by the device from direct
emission. M'T'We is the power after a single reflection,
M!'T2We is after two reflections, etc.

This type of walk, calledshooting starts at a known
pointi; of a lightsource and simulates the photon reflec-

n . . . . .
7= Z TiLe 4 THHL tion for a few times and finally arrives at a pixel whose

P (12) radiance this walk contributes to.
Note that in gathering walks the BRDF is multiplied
If integral operator 7 is a contraction, then with the cosine of the angle between the normal and the
lim, s 7"TL = 0, thus incoming direction, while in shooting walks with the co-
- sine of the angle between the normal and the outgoing di-
I = Z TiLe. (13) rection. On the other hand, in gathering walks, the cosine
= angle of the emitting surface is not used, while in shoot-
ing walks the cosine angle of the last visible surface is
The measured power is neglected.
(o0}
ML = Z MTLe. (14) 1.2.3 Merits and disadvantages of expansion

i=0 methods

The terms of this infinite Neumann series have intuitive The main problem of expansion techniques is that they

meaning as wellMT7°L¢ = L° comes from the emis-
sion, MT'L¢ comes from a single reflection\{72L¢
from two reflections, etc.

MTLe is a2d + 2-dimensional integral where the in-

require the evaluation of very high dimensional integrals
that appear as terms in the infinite series. Practical imple-
mentations usually truncate the infinite Neumann series,
which introduces some bias, or stop the walks randomly,

tegrand is a product of the radiance of a lightsource pointwhich significantly reduces the samples of higher order

and the probability that a patch of lengihconnects the
eye to this lightsource point.

interreflections. These can result in visible artifacts for
highly reflective scenes.



On the other hand, expansion methods also have an imbe faster than expansion. Iteration can also be seen as a
portant advantage. Namely, they do not require temporangingle infinite length random walk. If implemented care-
representations of the complete radiance function, thugully, iteration does not reduce the number of estimates for
do not necessitate finite-element approximations. Consehigher order interreflections, thus it is more robust when
guently, these algorithms can work with the original geom- rendering highly reflective scenes than expansion.
etry without tessellating the surfaces to planar polygons.

Expansion techniques generate random walks indepen-
dently. It can be an advantage, since these algorithms ca@® Why should we use stochastic
be suitable for parallel computing. However, it also means 5
that these methods “forget” the previous history of walks, methods"

and they cannot reuse the visibility information gathered

when computing the previous walks, thus they are not adEXxpansion techniques require the evaluation of very high-
fast as they could be. dimensional — in fact, infinite dimensional — inte-

grals. When using classical quadrature rules for multi-
13 | . dimensional integrals [38], such as for example the trape-
: teration zoidal rule, in order to provide a result with a given ac-

lteration techniquesealize that the solution of integral Ccuracy, the number of sample points is in the order of

equation (1) is the fixed point of the following iteration O(M "), whereD is the dimension of the domain. This
scheme phenomenon is called thdimensional coreor dimen-

Ln=L°+TLy 1, (17)  sional explosiorand makes classical quadrature rules pro-
) ) . . . hibitively expensive for higher dimensions. The reason
thus if operator7"is a contraction, then this scheme will ¢ the dimensional explosion is that these rules are usu-
converge to the solution from any initial functidn. ally based on uniform grids — that are simple Cartesian
The measured power can be obtained as a limiting Val“%roducts of the 1D grid in higher dimensions — in which
ML = lim ML, (18) different dimensions do not effectively interact.
n—o0 However, Monte-Carlo or quasi-Monte Carlo tech-
In order to store the approximating functiohg, usu-  Niques distribute the sample points simultaneously in all
ally finite-element techniques are applied, as for exampledimensions, thus they can avoid dimensional explosion.
in diffuse radiositj47], or in non-diffuse radiosity using Or €xample, the probabilistic error bound of Monte-Carlo
partitioned hemisphef#6], directional distributiong4g]  integration isO(M %), independently of the dimension
or illumination networkgs]. of the domamD-dlmeBsmnal low discrepancy series[35]
. i — —(1—e _
There are two critical problems here. On the one hand@n even achiev®(log™ M /M) = O(M )) conver
since the domain of.,, 4 dimensional, an accurate finite- 9€nce rates for finite variation integrands.
element approximation usually requires very many basis Furthermore, classical quadrature cannot be used for
functions, WhiCh, in turn, need a lot of storage space. A|_infinite dimensional integrals, thus the Neumann series
though,hierarchical methodd4, 3], waveletor multires- should be truncated aftdp terms. This truncation intro-
olution methodi8, 41] andclustering48, 7, 51] can help, ~ducesabias of order”**-||L[|/(1-)). Using a Russian
the memory requirements are still prohibitive for complex foulette based technique, on the other hand, Monte-Carlo
scenes. This problem is less painful for the diffuse casemethods are appropriate for even infinite dimensional in-
since here the domain is only 2 dimensional. tegrals.
On the other hand, when finite element techniques are Thus we can conclude that the stochastic approach is
applied, operatofl is only approximated, which intro- indispensable for expansion methods.
duces some non-negligible error in each step. If the con- The application of randomized techniques in iteration
traction ratio of the operator i, then the total accumu- is not so evident, but can also be justified. On the sim-
lated error will be approximately/(1 — )) times the er-  plest level, these methods also use integration in each it-
ror of a single step[59]. For highly reflective scenes, theeration step. The dimension of the domain is usually not
iteration is slow and the result is inaccurate if the approx-very high. For example, iterative diffuse radiosity methods
imation of the operator is not very precise. Very accurateneed to evaluate 4-dimensional integrals to obtain form
approximations of the transport operator, however, requirdactors. The dimension is often reduced to 2 by a bru-
a lot of computation time and storage space. tal simplification, which computes one of the two surface
Both the problem of prohibitive memory requirements integrals from a single value. For even 4-dimensional in-
and the problem of error accumulation can be successfulljegrals Monte-Carlo methods are superior than classical
attacked bystochastic iteration guadratures thus in accurate algorithms they are highly
Compared to expansion techniques, iteration has botfiecommended.
advantages and disadvantages. Its important advantage is Furthermore, when stochastic iteration is applied, the
that it can potentially reuse all the information gained in operator should be like the real operator just in the aver-
previous computation steps, thus iteration is expected t@age case. This allows us to use significantly simpler re-



alizations. For example, the integral part of the operatorstances):
can also be approximated as an expectation value, thus in

a single transfer usually no explicit integral is computed. 1 X .

As we shall see, it is relatively easy to apply random oper- f(z) dz— iV Z f(2i)| < Vik-D*(z1,. .. 2n),
ators whose expected case behavior gives exactly back thatc[o,1]P =1

of the real operator. Thus the error accumulation problem (20)
can also be avoided. whereVyk is thevariationof f in the sense of Hardy and

If the operator is highly simplified, it does not require Krause, and*(zi, ...zy) is thestar-discrepancyf the
the integrand everywhere in the domain, thus a lot of stor-used sample set (for the bounds and computation of the
age space can be saved. Compared to the astronomicgiscrepancy refer to [35, 43, 11]).
storage requirements of non-diffuse radiosity methods, for According to this inequality, the error can be upper-
example, with stochastic iteration we can achieve the sam&ounded by the product of two independent factors, the
goal with one variable per patch[62]. This argument losesVariation of the integrand and the discrepancy of the used
some of its importance when view-independent solutions@mples set. The discrepancy shows how uniformly the
is also required, since the final solution should be storecfet is distributed[43]. This immediately presents two
anyway. This is not a problem if only the diffuse case is Orthogonal strategies to improve the quality of quadra-
considered, since using a single radiosity value per patcfures. Either we try to make the function flat by ap-
the image can be generated from any viewpoint. For thegdropriate variable transformations, or use very uniformly
non-diffuse case, the reduced storage gets particularly usélistributed sample sets. The first technique is called
ful when the image is to be calculated in only a single, orimportance samplir{§0], while the second involves the
in a few eye positions. s_tratificatior[_SO, 30, 1] of r'fandom points or the applica-
Summarizing, the advantages of stochastic iteration ardiOn Of low-discrepancy seri¢8s, 71, 38, 24, 50].
the simplicity speed, affordable storage requirements and -OW-discrepancy samples are deterministic point sets
numerical stability even for very large systems containingth@t are designed to be optimally uniform, thus replac-

highly reflective materials. ing the random points by them improves the accuracy of

the integral quadrature. Quadrature rules that use low-

discrepancy series instead of random points are called

. . . quasi-Monte Carlo methods

3 Options in stochastic render- Quasi-Monte Carlo techniques have been first applied to
ing solve the diffuse rendering equation by Keller[22], where

the integrand was generally discontinuous and therefore
. of infinite variation, thus the superiority of quasi-Monte
3.1 Monte-Carlo versus quasi-Monte Carlo method could not been theoretically justified (note
Carlo that the Koksma-Hlawka inequality is meaningless if the
variation is infinite). However, the numerical evidence

Th? core 9f the.comp.utatiqns of all methods i,S the ev,a"showed that quasi-Monte Carlo methods can slightly be
uation of high-dimensional integrals (for inversion and it- better than Monte-Carlo techniques.

eration it means 4 dimensional integrals, for expansion,
it means, at least theoretically, infinite-dimensional inte-
grals). To evaluate an integral, we can use quadrature fo
mulae, that have the following form in the simplest case:

The efficiency of the quasi-Monte Carlo integration for

the rendering equation has been theoretically analyzed in
r[63] and an empirical study was presented in [4]. These
studies concluded that quasi-Monte Carlo methods are still
better but lose their advantage in higher dimensions. The

M
1 ' difference is significant when the integrand is relatively
f(z) dz ~ M ;f(z’)' (19) smooth, which is the case in finite-element approaches.
[0.1]2 = In [4] the different low-discrepancy series have also been

compared, and it was conlcuded that all have them provide

Those sets of sample points that provide an exact intesjmilar performance.
gral value in the asymptotic sense are calledform se- The other important problem is that although a low-
quences discrepancy series has almost linearly decreasing discrep-

Well known examples for uniform sequences are theancy in the asymptotic sense, this discrepancy can still be
uniform grid, the uniformly distributed random samples high for not very many points (in the solution of the ren-
and the family of low-discrepancy sequences. dering equation we rarely use more than 1000 samples for

To find out which are those sample sets that can efthe estimation of a single pixel). In the case of the Halton
fectively be used in numerical integration, tkeksma-  series, for example, tHeaseof the series strongly affects
Hlawka inequality35] gives us some hints (unfortunately, the initial behavior of the discrepancy. These base num-
it is valid only for finite-variation functions, but the ba- bers are different prime numbers for different dimensions,
sic observations are still useful in more general circum-thus for high-dimensional integrals the base numbers can
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Figure 3: Error measurements for 1, 5 and 10 bounces

be quite high, which results in degraded performance. and b; is an adjoint basis ob;, since we require that
To demonstrate this, in figure 3 the errors of different (b;, b;) = 1if i = j and 0 otherwise.

bounces generated by quasi-Monte Carlo and the Monte- SinceL is constant, we can also obtain

Carlo quadratures have been compared for a spherical

diffuse scene where only a part is lightsource. For this TrL=(Tb",b)-L=F-L, (24)
scene the analytical solution of the rendering equation is . . o
possible[15, 63]. whereF = (7Tb',b) is a matrix, where the, j element

is(7bj, b;). Thus the projection converts the original inte-

) . ral to the following form:
3.2 Continuous versus finite-element g g

based methods L=L4+7;L=L°+F-L. (25)

Iteration requires the representation of the temporary radi- - An adjoint of this linear equation can be derived by sup-
ance functionl,,. So does expansion if view-independent ;5sing that each basis functidyis associated with a mea-
solution is needed since the final radiance distributiong rement devic&/¢ that measures the powE; leaving

must be represented in a continuous domain. ~_ the support of the basis function. Thus we obtain
To represent a function over a continuous domain, fi-
nite element methods can be used which approximate the (WE BT - L)eos = (WF,bi)cos - Li = Pi.

function in the following form:
Similarly, the measured emission power is

y ~ . . r g T 7 -
L(l',w) ~ ;LJ bJ (wi) b (wi) L (21) <Wie,bT . Le>cos — <Wieabi>cos . Lf — Pf.

whereb; (#,w) is a system of predefined basis functions, Applying measurement operatdr; for equation (25),

andL; factors are unknown coefficients. we can obtain the following equation:
This representation can also be seen as projecting the .
infinite dimensional space of the possible radiance func- P=P°+H-P, (26)
tions into a finite-dimensional function space defined by
: . where
the basis functions. (We, b;)
. . . . . . . i s Yi/cos
Substituting this approximation into the rendering equa- Hij=F; ——F1— (27)
. g (W£,bj)cos
tion we can obtain:
T T e T When finite-element techniques are used together with
b’ -L~b" -L°+T(b" -L). (22) expansion, finite-element representation can either be used

Note that equality cannot be guaranteed, since even ito represent the final result[22], or even be involved in the
b?(%,w) - L is in the subspace defined by the basis func-random walk[36].

tions, the integral operatdF may result in a functionthat ~ The latter case may correspond either to the random-
is out of this space. This can be solved by projecting thewalk solution of the linear equation derived by projecting
result back to the subspace and using a projected integréhe integral equation, or to the Monte-Carlo evaluation of

operator7 in the following way: the multi-dimensional integral containing both the trans-
. . port and the projection operators. The second case is pre-
TrL =(Tb" - L,b). (23)  ferred, because it does not require maRito be explicitly

computed and stored.
B} B The main problem of finite-element representations is
(TL,by),...(TL,by,) that they require a lot of basis functions to accurately

where(7T L, b) is a vector of scalar products



approximate high-variation, high-dimensional functions. not contribute to the image at all, and their computation
Not surprisingly, finite-element methods become reallyis simply waste of time. Note that shooting is always su-
popular only for the diffuse case, where the radiance deperior for view-independent algorithms since they do not
pends on 2 scalars and is relatively smooth. For solvinghave to face the problem of small aperture.

the non-diffuse case, they are good only if the surfaces are Thus, on the one hand, random walk must be combined
not very specular. with a deterministic step that forces the walk to go to the

The property that certain methods require tessellationeye and to find a lightsource. On the other hanthor-

and finite-element representation is usually considered agance samplins0] should be incorporated to prefer use-
a disadvantage. And indeed, sharp shadows and highlightg| paths along which significant radiance is transferred.
on highly specular materials can be incorrectly rendered\ote that although the contribution on the image is a func-
and light-leaks may appear, not to mention the unnecestion of the complete path, computer graphics applications
sary increase of the complexity of the scene descriptionysually assign estimated importance to individual steps of
(th|nk about, for example, the definition of the Original this path, which m|ght be quite inaccurate. In a Sing|e
and tessellated sphere). However, finite-element represe@-[ep the importance is usua”y selected according to the
tation can also provide smoothing during all stages of renBRDF [12, 25], or according to the direction of the direct
dering, which results in more visually pleasing and dot- jightsources [46]. Combined methods that find the impor-

noise free images. tant directions using both the BRDF and the incident il-
lumination have been proposed in [66, 17, 26, 56]. Just
3.3 Global versus local methods recently, Veach and Guibas[68] proposed the Metropolis

method to be used in the solution of the rendering equa-
Randomized transport operators transfer the radiance o§gn. Unlike other approaches, Metropolis sampling[29]
the potential in the scene. The source and destination of4p, assign importance to a complete walk not just to the
the transfer can be points in the case of continuous methgteps of this walk, and it explores important regions of the
ods or patches in the case of finite-element methods. domain adaptively while running the algorithm. Thus no
If the random operator is such that it always selects ag_priori knowledge is required about the important rays to
single source for shooting or single destination for gather-construct a probability density function in advance. In-

ing, then the method is callédcal method On the other  stead, the algorithm converges to this probability density
hand, if many sources and destinations are taken into conyytomatically.

sideration simultaneously in each transfer, then the method

is calledglobal methodr multi-path methofB9].

Since global methods handle larger transfers in a sin- . s . . .
gle step, they can be expected to be more efficient tharﬂ'l Handling infinite-dimensional inte-
local methods. On the other hand, the single source or grals
destination points of local methods directly correspond to

the single “eye” of classical visibility algorithms. Thus, to EXPansion methods require the evaluation of infinite-
exploit the capabilities of global methods, classical visi- dimensional integrals. One way of attacking the problem

bility algorithms should also be generalized for “moving’” is truncating the Neumann series, but this introduces some

eye positions. These algorithms are catiébal visibility ~ PiaS» which can be quite high if the scene is highly reflec-

algorithmg37]. tive.
Fortunately, there is another approach that solves the

. . infinite-dimensional integration problem through random-
4 Stochastic expansion: random ization. In the context of Monte-Carlo integration, this ap-
walks proach is called th®ussian roulett], but here a some-
what more general treatment is given that can also justify

In computer graphics the first Monte-Carlo random this approach for quasi-Monte Carlo quadratures.

walk algorithm — calleddistributed ray-tracing— was The basic idea is very simple. Higher order terms are
proposed by Cook et al. [9], which spawned to included inthe quadrature only randomly with probability
a set of variations, includingath tracing21], light- decreasing with the order of the term. In order to com-

tracing[12], bi-directional path tracing@5, 67], Monte-  Pensate the missing terms in the expected value, the com-
Carlo radiosityj44, 31, 36], andwo-pass methodshich puted terms are multiplied by an appropriate factor. If the
combine radiosity and ray-tracing [42, 72, 69]. used probability goes to zero quickly, then the possibility
The problem of naive generation of walks is that the Of requiring very high dimensional integrals is rather low,
probability that a shooting path finds the eye is zero for awhich saves computation time but increases the variance.
pin-h0|e camera or very small if a non-zero aperture camHOW@VGF, the expected value will still be correct, thus the
era model is used, while the probability that a gatheringintegral quadrature will provide an asymptotically unbi-
random path ends in a lightsource may be very little if the @sed estimate.
lightsources are small, thus the majority of the paths do A term of the Neumann series has generally the follow-



ing form where

‘dTl(z) 1
In:/ /W (z1,...2n) - L°(21,...2,) d2y .. . 2y dz t(z)

(28) is the Jacobi determinant of the inverse mapping.
whereW(zi,...2,) = wo - wy - ... - wy is the product If the Jacobi determinantis large, then a small portion of
of the weights including the cosine functions of the anglesthe unit square is mapped onto a large region. Thus sample
and the BRDFs. points that are uniformly distributed in the unit square will

Let us randomize this integral by introducing a random be quite rare in these regions. Alternatively, where the Ja-
variableC(z,,...z,), called thecontribution indicator  cobi determinantis small, the sample points will be dense.
thatis 1 if a sample, . . . z, should be taken into account Considering this, the meaning ofT~*(z)) is the den-
in the integral quadrature and O if it should not. Using this, sity of sample points in the neighborhoodot= 7-!(z).
we can define the following random variable, This has an illustrative content for the random case.i¢f

uniformly distributed random variable, then the probabil-
= //c W Lfdzy ...z,  (29) ity density ofw = T(z) will be t(z).
Mathematically, the solution of either the rendering or
the potential equation for a given poifit, w) requires the

- . . .
wherel andL® are appropriate modifications o and evaluation of the following multi-dimensional integral

L¢, which can compensate the missing terms.
The expectation value of this random variable is L(#w) =L+ TLE +T2L° + ... =

=/ ...| ElC(zy,...2, WL dzy ...27, =
/ / @ ) ' / /Le Yooy “’1 2’2 L°+...dz,dz; ... (33)

2
/m/p(Zh .zp) W -Lodzy ...z, (30)  which can be estimated using formula (19) by evaluating
the integrand in sample points and averaging the results.
where p(zi,...z,) is the probability of using sample An important design decision of such an algorithm is the

Z1,. . . Z in the integral quadrature. selection of mapping%;. Using probabilistic approach,
Obviously, this equals to the original integaif it means the determination of the probability densities of
finding new directions during the walks.
p(z1,...2,) - W -LE =W - L°. (31) Following the directions concluded from the Koksma-

Hlawka inequality, the mappings should make the inte-
There are many possible selection of the contributiongrand flat — that is of low variation, or constant in the
indicator and thé” andL* functions, that can satisfy this  ideal case. It means that the probability of selecting a walk
requirement, thus there are many different unbiased estiis proportional to its contribution.

mators. Looking at formula (33), which is the single multi-

A widely used selection is letting dimensional solution of the rendering equation, this deci-

- . sion seems to be hard to made, since there are too many
W=1, L°=L°and p(z1,...2,) = W(z1,...2n). free parameters to control simultaneously. Fortunately,

i . ) this solution can also be presented in the following recur-
which corresponds to continuing the walk after stepth sive form:
probabilityw(z;).
L6+/ L+ /ﬂ~[Le+...]...]dz1dz2... (34)
ty t2

4.2 Importance sampling

When solving the rendering equation, usually directionallf we could ensure that each of the integrands of the form
integrals (or surface integrals in other formulation) should
be evaluated. Thus to allow the application of random or /% L+ / .. dz;
low-discrepancy point sets, the integration domain should ti
be transformed to the unit cube or square.

For example, when dealing with directions, we have to
find a mappingv = T'(z) that projects the unit square
to the surface of the sphere (or hemisphere) and use thg

following integration rule
T (z) Unfortunately, during random walks the incoming non-
/f(w / (T ‘ 7| 4z (32)  direct illumination is not known (the random walk is just
Q 0,1]P being done to estimate it).

is constant (at least approximately), then the integrand of
the single multi-dimensional integral will also be constant.
An optimal importance sampling strategy thus requires
ensityt; to be proportional to the product of the incoming
illumination L¢ + | .. . and the cosine weighted BRD#;.




Thus, we have three alternatives. Information aboutto 1 but to a value(Z,w) and with the “missing” proba-
the illumination in the space can be gathered in a preprobility 1 — a(#,w) it is decided whether or not the walk is
cessing phase, then this information can be used to obstopped.
tain probability densities for importance sampling. Thisis Inorderto use BRDF sampling, random samples should
called theglobal importance sampling be generated with probability densities that are equal to

The second alternative is using the information gainedf, (win, &, wout ) - cos 8. This can be very difficult for com-
during previous walks to approximate the illumination. plex BRDF models. Therefore, an important research di-
This strategy is calleddaptive importance sampling rection focuses on the design of BRDF models that are

In the third alternative, the problem is simplified and the physically realistic, simple and also allows for albedo
indirect illumination is not considered in importance sam- computation and importance sampling [33].
pling. When the directions are generated, we use anly
depending on the local orientation, the BRDF drfdep- 4.2.2 Global importance sampling

resenting the direct illumination of the actual point. This ] )
is called thdocal importance sampling Global importance sampling methods are two-phase pro-

It turns out that we have to encounter severe problem§ed“res- Ina preprocessing phase they _builq a data struc
when we have to find a mapping which has density that idure that guides the second phase to find important di-

proportional to the product of the effects of the BRDF and '€ctions. These methods can be classified according to
the direct lighting. Consequently, local importance sam-their incorporated data structure. Since the ray-space is

pling strategies usually use only either or ¢ to iden-  >-dimensional, it is straightforward to applys® adap-
tify important directions. The first alternative is called the tive tred26] that is similar to the well-known octree

BRDF samplingwhile the second is called thightsource  t© Store radiance information. Jensen proposed the ap-
sampling plication of thephoton-mapas the basis of importance

sampling[17]. We assigned the power computed in the
preprocessing phase lioks established between two in-
teracting patches[56, 57].

4.2.1 BRDF sampling

BRDF based importance sampling means that atiste@ o _
densityt; of the sample points is proportionalto the weight 4.2.3 Adaptive importance sampling

wi, thattis Adaptive importance sampling methods neither require the

non-uniform probability densities to be constructed in ad-
vance, nor simplify them to take only into account local

In gathering algorithmss,.; is known,d is the angle be- prqperties, but converge to a desired probability density

tweenw, and the surface normal, ang, should be de-  USiNg the knowledge of previous samples. Three tech-

termined. In shooting algorithms, on the other hang, niques are par.tlcularly 'lmporta}nt, which have also .been

is known,d is the angle between,; and the surface nor- used in renderinggenetic algorithmi@7] the Metropolis .

mal, andw,,; should be determined. sampling[29, 68] and thg VEGAS mfethpd[28, 52]. In this
Due to the fact that; represents density (probability PaPer only the Metropolis sampling is discussed.

density for Monte-Carlo methods), its integral is 1. Thus

for gathering walks, the ratio of proportionality in equa- 4.2.4 Metropolis sampling

tion (35) is

ti X w; = fp(Win, &, Wout) - cOs f (35)

The Metropolis algorithm[29] converges to the optimal
probability density that is proportional to the importance,
/w dwin = /fr(win,f, Wout )*€08 Oin dwin = a(T,wout)  thatis in the limiting casé&(z) = b - p(z).
However, this probability density cannot be stored, thus

wherea(Z, woy) is thealbedoof the surface at poini in in the Monte-Carlo formula the importance should be used
the outgoing direction. Similarly, the proportionality ratio instead, in the following way:
for shooting walks is 7(z) 7(z)
I:/I(z) -I(z) dz:b~/I(Z) -p(z) dz =
/w dwous = /fr(win: f: Wout)'cos Oout dwous = a(fa win)~ 4 4

Thus the weightsu;/t; are the albedos at the visited (36)

] b i f(z:)

. T M~ I(z;)

points. i=1
When combining this with Russian roulette of type In order to generate samples accordingt®) = 1/b -

W = 1,L¢ = L¢, the probability of continuing the walk  Z(z), a Markovian process is constructed whose station-

will be equal to the albedo. This can also be interpretedary distribution is jusp(z). Informally, the next state;, |

in the following way. When the next direction is sampled, of this process is found by letting an almost arbitreamy-

we use a subcritical density; which does not integrate tative transition functiorf'(z; — z;) generate gentative

ke



samplez; which is either accepted as the real next state orA element of theF™-L¢ term can be expressed as a multi-
rejected making the next state equal to the actual state ustimensional integral, where the integrand in a single point
ing an “acceptance probabilitya(z; — z;) that expresses can be obtained by executing the following walk:
the increase of the importance (if this “acceptance proba- A point Z; is selected on patch Then a ray has to
bility” is greater that 1, then the sample is accepted de-be traced from#; in direction—w/| and the visible patch
terministically). The formal definition of this Markovian should be identified. Following this, another point on the
processzi, zs, .. .Z;. ..} is as follows: identified patchj should be selected, which is denoted
) by #,, and a ray is traced in directionw),. We keep
for Ezsleéloo]r\?tr?g actual state doing thisn times, and finally the emission of the last

. . patch is propagated back on the walk. During propaga-
choose another random, tentative paint tion, the emission is multiplied by the BRDFg;(f;, . ..

a(zi = z;) = % ) and the cosinecps 8, cosd", ...) factors of the visited

. 7 7 t i, j, PR

if a(z; — z;) > 1thenaccept(z;i1 = z) patches (figure 4).

else Il accept with probability:(z; — z) Note that this is basically the same walking scheme, as
Generate random numbein [0, 1]. used to solve the original integral equation. The funda-
if r <a(z; —»z) thenz, =z mental difference is that when a patch is hit by the ray,
else Zit1 = 2 the walk is not continued from the found point but from

endif another point of the patch.

endfor In the section on comparing finite-element and discrete

- techniques, we conlcuded that discretization makes the in-

Note that “acceptance probabilityi(x — y) has the  tegrand smoother, which improves the speed of the con-
following property:a(x — y) = 1/a(y — x). verges, especially for quasi-Monte Carlo techniques. Thus
The transition probability of this Markovian process is: for such walks the quasi-Monte Carlo method should be

T(x—>y) ifax—oy)>1, selected [4].

Px—y)=
T(x = y) a(x —y) otherwise
(37)
In equilibrium state, the transitions between two states
andy are balanced, that is

p(x)-P(x = y)=p(y) Py = x).

Using this and equation (37), and assuming without the
loss of generality thai(x — y) > 1, we can prove that
the stationary probability distribution is really proportional

to the importance: Figure 4: Random walk solution of linear equation
5 R e on- B
Py Y Y “()’38) 4.4 Gathering-type random walk algo-
When we use Metropolis sampling in the solution of the rithms

global illumination problem, the “state# corresponds to

a complete walk. Mutation strategies are responsible for>athering type random walks correspond to the Monte-
changing the walk a “little”, by perturbing one or more Carlo solution of the rendering equations. They start at the

directions or surface points, adding or deleting steps in th&Y€ Position and gather the emission of the visited points.
path, etc. This approach is quite ineffective if the lightsources are

g small, since it has rather low probability that a walk visits

The first use of Metropolis sampling in rendering aime !
a lightsource.

at speeding up bi-directional path tracing[68]. The perfor-
mance of the Metropolis sampling has been theoretically
investigated in [58]. 4.4.1 Distributed ray-tracing

. Distributed ray tracingsuggested by Cook[9] extends the
4.3 _Rando_m walk SOIUt'_on of the pro- classical ray-tracing method to model all the possible
jected integral equation paths. In this method the ray tracing is not terminated
Expansion expands the solution into a discrete Neumant/nen reaching a diffuse surface. After a ray has hit a dif-
series fuse surface, child rays are generated randomly according
to the BRDF characterizing the surface. For the appropri-
L=L‘4+F -L°+F? L +F3.L°+... (39) ate estimation of the diffuse interreflection, child rays have



Light Source In the directions of ideal reflection or refraction, the trac-
NS ing is continued by starting new child rays. The effect of
N O incoherent interactions, on the other hand, is stored in a
Image Plane map or is projected to the eye by tracing a ray towards the

camera position.
Eye

4.5.2 Light Tracing

In light tracing[12] photons perform random walk through
the scene starting at the lightsources. Whenever a surface
is hit, a ray is traced from the intersection point to the eye
and the contribution is added to the selected pixel (if any).
Light Source

Figure 5: Distributed ray-tracing — . paticlepath

- contribution path N AL

to be traced and the average of their contributions have to Image Plane
be computed. =

4.4.2 Path-tracing

Light Source

Figure 7: Light tracing

When the next direction is determined, the BRDF based
importance sampling can be applied and combined with
the random termination according to the albedo.

4.5.3 Bi-directional Path Tracing

Bi-directional path tracin§5, 67] is based on the combi-
Figure 6: Path tracing nation of shooting and gathering walks thus it can combine
the advantages of both techniques. Namely, it can effec-
Path tracing that was proposed by Kajiya, simply cre- tively handle small lightsources and small aperture cam-
ates a path history for a single particle interacting with theeras.
environment until absorption. That s, instead of spawning  Walks are initiated at the same time from a selected light
new rays at an intersection, it simply chooses a random disource and from the viewpoint. After some steps, either a
rection according to the BRDF for the ray to follow. The single deterministic shadow ray is used to connect the two
walk is continued with a probability equal to the albedo.  types of walks[67], or all points of the gathering walk are
connected to all points of the shooting walk using deter-
4.5 Shooting-type walks methods ministic rays[25]. If the deterministic shadow ray detects

that the two points are occluded from each other, then the
Shooting walks are based on the Monte-Carlo solution ofcontribution of this path is zero.

the potential equation. Note that gathering and shooting walks use different in-
tegration variables, namely a gathering walk is specified
4.5.1 Photon tracing by a point on the pixel area and a sequence of incoming

) ) ) ] ) directions, while a shooting walk is defined by a point on
Photon tracing(forward ray-tracing) is the inverse of vis- 4 |ightsource and a sequence of the outgoing directions.

ibility ray-tracing and uses similar simplifying assump- s when the two walks are connected, appropriate trans-
tions, thus they also stop tracing when hitting a surface thatomations should take place, which requires a multiplica-
does not have coherent reflection or refraction. In photonn, of the radiance by

tracing the rays are emitted from the light sources, and at
each hit it is examined whether the surface has ideal re- cos B}, - cosb,_pi1
flection, refraction and incoherent reflection or refraction. r2 )




whered), andf, ;1 are the angles between the surface
normals and the direction of the connection at the last point
of the gathering and shooting walks respectively, gnid

the length of the connection.

light path

Figure 10: The information stored in the photon map

deterministic step l mation of the transport operator:

> - n. = . ' r_
Figure 8: Bi-directional path tracing with a single deter- Z(%:#) = /L(h(ﬁr’ w'),w) fr(W', &, w)-cos dw' =
ministic step Q@

d®(w' o
/W ' fr(w',x,w) ' COSel dw' ~
Q

n i

2 Aii(:’) - fr(wl, 7,w), (40)
where A®(w}) is the power of a photon landing at the
surfaceA A from directionw]. TheA® andA A quantities
are approximated from the photons in the neighborhood
of # in the following way. A sphere centered aroufids
extended until it containg photons. If at this point the
radius of the sphere is then the intersected surface area
isAA = 7r2.

Figure 9: Bi-directional path tracing with multiple deter-
ministic steps
4.5.5 Instant radiosity

In Lafortune’s version of the bi-directional path Instant radiosity23] elegantly subdivides the shooting
tracing[25] not only the endpoints of the shooting and walks into a view-independent walk and into the projec-
gathering walks are connected, but all intersection pointsion of the contribution to the eye. Let us call this last step
are linked by shadow rays. with eye projection thesye-step The view-independent

walk is quite similar to the light-tracing algorithm, but the
new directions are sampled from the Halton sequence in-
4.5.4 Photon-map stead of a random distribution.

o _ _ _ When a surface hit is found, the eye-step is calculated
Bi-directional path tracing connects a single gatheringiaking advantage of the rendering hardware of advanced
walk to a single shooting walk. However, if the effects yqorkstations. The reflection of this hit is assumed to be
of a shooting walk, for instance, could be stored, theny point lightsource (in the radiosity setting the emission
when a new gathering walk is computed, it could be con-of the lightsource is also diffuse), and the rendering hard-
nected to all of them simultaneously. This is exactly what,y5re is used to render the effect of this lightsource on the
Jensen([19, 18, 20] proposed, also giving the definition of &cene and also to compute shadows. The final image is the
data structure, called tignoton-mapvhich can efficiently  gyerage of such estimates, which are computed using the
store the effects of many shooting walks. hardware accumulation buffer.

A photon map is a collection of photon hits generated |nstant radiosity is quite similar to photon-map based
in the shooting phase of the algorithm. The photon-maptechniques. However, instead of using ray-tracing for fi-
is organized in &d-treeto support efficient retrieval. A nal gather, the photons in the photon map are used as
photon hit is stored with the power of the photon on dif- |ightsources and fast and hardware supported visibility and
ferent wavelengths, position, direction of arrival and with shadow algorithms are applied. The other fundamental
the surface normal. difference is that instant radiosity allows just a relatively

The gathering phase is based on the following approxidow number of photons which therefore should be very



well distributed. The optimal distribution is provided by
guasi-Monte Carlo light walks. _ projection of A;

4.5.6 Global ray-bundle tracing ool A
projection of A

Realizing that an accurate solution requires great many
samplesglobal ray-bundle tracinff1, 62, 52] uses a bun-
dle of very many (e.g. 1 million or even infinite) global
parallel rays, which can be traced simultaneously using Figure 11: Interpretation oA (i, j, w')

image coherence techniques. In order to represent the radi-

ance that is transferred by a ray, finite-element techniques

are applied that approximate the positional (but not the di-  This projected area can be efficiently calculated simulta-
rectional) dependence of the radiance by piece-wise conteously for all patch pairs using global discrete or continu-

-

— — — —\projection of Ay

tinuous or piece-wise linear functions[60]. ous visibility algorithms[52] and also exploiting the hard-
ware z-buffer[62]. These algorithms can also have random
. n . nature, that is, they can resulti(s, j,w') - L;(w’) justas
L(#w)~ Y bj(#) Ljw) =b"-Lw).  (41)  anthe expected value[64, 53].
j=1 Using equation (45) the rendering equation can be ob-
tained as:

Note that this is a mixed finite-element and continuous
method, since the positional dependence of the radiance , , n o
is approximated by finite-elements, while the directional L(w) =L (w) + /F(“’ ,w) - AW - L) dw'’, (46)
dependence is not. Q

Substituting this into the rendering equation and pro-

e X g i whereL(w) is the vector of radiance valueB(w', w) is a
jecting that into an adjoint base we obtain

diagonal matrix of BRDFs, andeometry matrixA. con-
tains the relative visible aread:(w')|;; = A(4, j,w')/ A;.

Note that equation (46) is highly intuitive as well. The
radiance of a patch is the sum of the emission and the re-
flection of all incoming radiance. The role of the patch-
direction-patch “form-factors”is played by(i, j,w’) /A;.

TrL(w) = (Tb" - L(w),b). (43) This is also an integral equation but unlike the original

rendering equation it provides the radiance of not only a

Let us use again piece-wise constant basis functions. Thefingle point but for all points at once. This integral equa-
the result of the application of the transport operator ontion is solved by random or quasi-random shooting type

L(w) = L*(w) + TrL(w), (42)

whereTr is a composition of the original transport opera-
tor and its projection to the adjoint base

patchi is walks.
direction 2
TrL(w)]; = %-//L(h(:if, —w),w')-cos b fi(w',w) di dw'. direction3 —
' QA ' \ direction 1
w 7 / \'\
Taking into account that the integrand of the inner surface —-H -
integral is piece-wise constant, it can also be presented in /g
closed form:
image plane
/L(h(:&’, _),w') - cost - fi(w!w) dif = -
A;
Figure 12: A path of ray-bundles
n
£ . s N LT
z; filw',w) - A g, w) - L (W), (45) A single walk starts by selecting a direction either ran-
]:

domly or quasi-randomly, and the emission transfer of all
where A(i, j,w') expresses the projected area of pagtch patches is calculated into this direction (figure 12). Then a
that is visible from patch in directionw’. In the unoc-  new direction is found, and the emission is transferred and
cluded case this is the intersection of the projections ofthe incoming radiance generated by the previous transfer
patchi and patchj onto a plane perpendicular td. If is reflected from all patches into this new direction. The
occlusion occurs, the projected areas of other patches thatgorithm keeps doing this for a few times depending on
are in between patchand patchj should be subtracted as how many bounces should be considered, then the emis-
shown in figure 11. sion is sent and the incoming radiance caused by the last



transfer is reflected towards the eye. Averaging these con- Formally the sequence of the iteration is the following:
tributions results in the final image.

P = MLy = M(L+ T LF)
o Py = MLy = M(L+ T L + T3 T L)
5 Stochastic iteration
The basic idea of stochastic iteration is that instead of apf» = MLy = M(L + Ty L + Ty Typ— LS +...)

proximating operatof/” in a deterministic way, a much

simpler random operator is used during the iteration which Averaging the first/ steps, we obtain:

“behaves” as the real operator just in the “average” case. LM
The concept of stochastic iteration was proposed for the pP= i Z ML; =
diffuse radiosity problem in [31], that is for the solution of i=1

finite-dimensional linear equations.

In this section we present a generalized formulation M(L® + 1
that is somewhat different from the original concepts M P
to allow to attack also non-diffuse global illumination v
problems[53]. Suppose that we have a random linear opM(LeJFL ZTi*LejLM
erator7* so that M

T T Lo+ ).

(50)

E[T*LI=TL 47) ~
The expected value of the averaged solutfbis [55]:

for any integrable functiod. .

In the case of finite-element representations, equa- E[P] =
tion (47) should be true for th@rL operator that also . . 1. M—2_, . 1 agoe
involves the projection to the finite function space. ML ATL A =T L == T 'L+ .+ T L),
During stochastic iteration a random sequence of op- (51)

erators7;*, 75, ... 7;* ... is generated, which are instan- Which converges to the real solution
tiations of 7*, and this sequence is used in the iteration
formula: | ML+ TL +T?LE+ T°L° +...)

if M goes to infinity.
L,=L°+T L,_;. (48)

Since in computer implementations the calculation of5'1 Definition of random transport op-
a random operator may invoke finite number of random erators

pumber generator calls, we are partlc?ularly mteregtedln order to use this general stochastic iteration scheme in

in random operators having the following construction practice, the key problem is the definition of the random

scheme: transport operator. This operator should meet the require-
ment of equation (47) and should be easy to compute.

1. Random “pOint'bi is found from a finite dimensional For the continuous case, a Single app”cation of the
setll using probability densitprob(p). This prob-  transport operator contains a directional integral. For the
ability density may or may not depend on function fjnjte element case, the transport operator also includes the
L. projection to the adjoint basis which requires additional in-

tegration in the domain of basis functions. This additional

2. Usingp; a “deterministic” operato¥ " (p;) is applied  jntegration means a surface integral for the diffuse radios-
to L. ity setting and also for the ray-bundle tracing. For other

non-diffuse finite-element methods a surface and a direc-
Point p; is called therandomization poinsince it is re-  tional integrals need to be evaluated (note that directional

sponsible for the random nature of operdfdt integrals are sometimes “hidden” by integrals on the sur-

Using a sequence of random transport operators, thdéaces visible at different directions).
measured power Following the general concepts of Monte-Carlo meth-
P, = ML, (49) ods, we usually do not intend to compute the integrals

explicitly, but want to get them as an expected value.
will also be a random variable which does not convergeThus different random transport operators can be classi-
but fluctuates around the real solution. Thus the solutiorfied according to which integrals are evaluated explicitly
can be found by averaging the estimates of the subsequensing some deterministic quadrature and which integrals
iteration steps. are computedmplicitly as an expectation value.



5.2 Transport operator for the continu- 1. Both integrals are explicitly computed but only for a
ous, non-diffuse setting randomly selected subset of the patches.

The continuous formulation has just a single directional 2. The surface integral explicitly computed but the di-
integral, thus a random transport operator can evaluate this  rectional integral implicitly.
single integral implicitly. This results in a method that uses 3
a “single” random walk to obtain the solution.

An example of such single walk techniques is the fol-
lowing modification of the light tracing algorithm[53]:

In each step a ray is obtained that has random origin
7; and directionv; with a probability that is proportional
to the cosine weighted radiance of this point at the given 4. Both integrals are computed implicitly.
direction. This ray is traced and the whole power

b= //L(y’,w')cos% dw' dif
5 Q

. Compute the surface integral implicitly but the direc-
tional integral explicitly. This method can, for exam-
ple, use hemicubes for the directional integration but
selects the center of the hemicube randomly on the
patch.

5.3.1 Stochastic radiosity

In stochastic radiosityd2], the randomized operator is
simplified in a sense that it first selects a single (or a few)
is transported to that poiat which is hit by the ray. For-  patches with probability proportional to their power and
mally the random transport operator is then calculates the transfer only from this important patch
o . . . as if it had all the powe® = ", _, P;. Thus here both
(T*L)(@,w) = @ - 6(Z — (g, wi)) - fr(wi, @,w)- (532)  integrals are explicitly computed but only for a subset of
Interestingly this iteration is a sequence of variable Patches. _ .
length random walks, since at each step the point that is_ 10 Prove that it meets requirement stated by equa-
last hit by the ray is only selected with a given probabil- iOn (54), let us examine the new power of paicand
ity as the starting point of the next ray. This probability SUPPOSe that patchhas been selected.
depends on the albedg, (w;) of the found point. T
The algorithm selects initially a point from a lightsource (7Pl = Hy; - @ (55)
and then starts a random walk. The walk finishes afterSince the probability of selecting patgtis P; /@, the ex-
each step with probability/(1 + az, (w;)) and also when  pectation of the new power is
the ray hits no object. If a walk finishes, another walk is . .
initiated from the lightsource. When the walk is continued 'k P;
O E[(TFP)il =) Hy-®-=2 = H;; P; (56
the transferred power is weighted biy+ az, (w;)), which (T P)L] Z J ) Z i Py (56)
provides unbiased estimate even if less number of samples
are used to simulate higher order bounces. This techniqu&hich we wanted to prove.
is called theRussian roulettR, 47].

j=1 j=1

5.3.2 Transillumination radiosity

5.3 Random transport operators for the Thetransillumination radiosity methdd1, 59] has also a

diffuse radiosity stochastic iteration version. It defines the random trans-
port operator by uniformly selectinty transillumination
directionswi, . . .}, and allowing patches to interact only
in these transillumination directions. In order to calculate
TrL=F L. these interactions, a large discretized window is placed
perpendicularly to each transillumination direction and the
Alternatively, shooting radiosity algorithms are based onygdiance transfer to a patch is approximated by elementary

In the gathering type radiosity algorithms the projected
transport operator has the following form

the projected potential equatigit P = H - P. ~ transfers going through the pixels covering the projection
According to the basic requirement of stochastic iter- of the patch.
ation we need to find random operatdfs or 7, that Let us consider a single transillumination direction.
behave as the real operator in average, that is Projecting patchd; onto a plane that is perpendicular to
* the transillumination direction and then approximating the
E[7TzL]=F-L 53 . . ) . .
[7rL] ’ (53) integral of the incoming radiance here by a discrete sum,
E[T,*P]=H-P. (54)  Weget
The evaluation of F - L); or alternatively(H - P)|; /L(h(f, —wg)) - cosbly dFf =
requires a surface and a directional integration (or in other A;

formulations two surface integrations). ., . .,
The possible alternatives for a random transport opera- /L(h(éb“ ,—wh) - dE & Y Luufterap) - 04, (57)
tor are ar pea?



wherebuffery[P] stores the index of that patch which is 5.4 Transport operators for the non-

visible in pixel P in the transillumination direction, diffuse finite-element case
from patchi, andd A is the size of a pixel of the buffer
(figure 13). When moving towards the non-diffuse case, another re-

quirement must be imposed upon the random transport
operator. It must not only meet the requirement of equa-
tion (47), be easy to compute, but it must also allow the

transillumination -
direction <

/ - butrertr compact representation of tffgf L functions. This extra
pixel P requirementis evident if we take into account that unlike in
—3A the diffuse case, the domain 6bfis a 4-dimensional con-
transillumination tinuous space, so is the domainff L (for ray-bundle
e plane tracing only 2-dimensional continuous space). From the

point of view of compact representation, what we have to
Figure 13: Integration on the transillumination plane avoid is the representation of these functions over the com-
plete domain.
Thus the random transfer operator is Thus those transport operators are preferred, which re-
f oA " quire the value of_ just in a few “domain points” (e.g. in
" Am - fi- a single “domain point”). Note that the evaluation/of L
(TEL)li = =7 > D Louserstr- (58) now consists of the following steps: first a randon?ifzation
pointp; is found to define random operat®y*, which in
If the transillumination directions are uniformly dis- turn determines at which domain point the valuelofs
tributed and the buffer is uniformly jittered, then the ex- required. Up to now, we have had complete freedom to
pected value of this operator is equal to the real operatoglefine the set of randomization points. One straightfor-

d=1 PeA?

[54]. ward way is defining this set to be the same as the domain
of the radiance function and using random transport op-
5.3.3 Stochastic ray-radiosity erators that require the value of the radiance function at

their randomization points. Although this equivalence is

Stochastic ray-radiosif4] approximates the transport not obligatory, it can significantly simplify the computa-
operator byM random rays that are sampled proportion- tions, since when the randomization point is generated, the
ally to the power of the patches. On a patch the startingrequired domain point is also known.
point of the ray is sampled using a uniform distribution,  Using random operators that evaluate the radiance in a
while the direction follows a cosine distribution. A single single point is not enough in itself, since even a single
ray carriest /M power. Thus this method approximates “point” can result in a continuoug;* L function, which
both integrals implicitly. must be stored and re-sampled in the subsequent itera-

Let us examine the case when a single ray is selecteion step and also by the measurement. The solution is
(since different rays are sampled from the same distributhe postponing of the complete calculationGfL until
tion, the effect of} rays will be M/ times the effect of it is known where its value is needed in the next iteration
a single ray in the expected value). Suppose that patcltep and by the measuring device. In this way, the random
j is selected as a shooting patch. The probability of thegperator should be evaluated twice but just for two points.
selection event i¥;/®. Thus the probability density of Once for the actual and the previous “points” resulting in

selecting a poinf of a patch and a directianis [T*(p:) L(p:)](pis1), and once fompey. which is needed
P, 1 by the measuring device and for previous point providing
E . A_] - COS 0 [T* (pi)L(pi)](peye)-

The complete iteration goes as follows:
This transfer® /M power to the patch that is hit by the ray
where the reflected power is computed. Thus the random P =0

transport operator for a single ray is Find p; randomly
» L(p1) = L*(p1)
E[(TF"P)|i] = for i = 1to M do
. . > 1 . P P = L (peye) + [T (pi) L(pi)](Deye)
M- fi- Z//bi(h(y,w)) o, cost dide 3= P = MP"v ~y1/i—+— (1-1/i)-P ’
i=la; @ Find p;;1 randomly
" n L(pi+1) = L¢(pi+1) + [T*(pi) L(pi)](pit1)
T //bi(h(?f,W)) -cosf dyjdw - P; = ZHU -Pj. endfor

= 4 g j=1 Display final image

(59)



5.4.1 Global ray-bundle based iteration 6 Handling point lightsources

Recall that the finite-element approximation applied by Monte-Carlo integration is efficient if the integrand is rel-

ray-bgndle tracing gonverts the rendering equation to theatively smooth and does not exhibit high variations. For
following form (section 4.5.6): gathering walks and for global methods, point lightsources
_Te may pose problems. Fortunately, these lightsources can be
L(w) = L*(w) + TrL(w), (60) easily handled separately by deterministic techniques.
whereT is a composition of the original transport opera-  This algorithm can be applied either in a preprocessing
tor and its projection to the adjoint base step wheniitis called thigst-shotor during the calculation
of the random walks. For the diffuse radiosity problem,
TrL(w) = /F(w',w) AW LW du'. (61) the preprocessing type first-shot algorithm has been first
presented in [40], extended to multiple interreflections in
[6] and has been generalized to non-diffuse environments
Let the random approximation of the transport opera-in [62].
tor be the transfer of the radiance of all surface points of
the scene in a single uniformly distributed random direc- S AT
tion. This transfer can be effectively realized by sending a L ‘N
ray-bundle into this direction. Thus the random transport ’
operator isv’ ;

Q

(T*L)(w) =47 - F(w',w) - A(W') - L(w"). (62)

If the directions are sampled from a uniform distribu-
tion, then this obviously gives back the integral operator
as an expected value:

Figure 14: First shot technique

Formally, the unknown radiande is decomposed into
two terms:

E[(T L)(w)] = /477-F(w',w)~A(w')~L(w') Cf;’r = TrL(w). L=L%+L" (64)

Q 6 where L¢P is the emission of the small, point-like light-
(63) sources L™ is the emission of the area lightsources and

In the deélr&[uon .Of th(ra]&qndcr)]m ope'ratzor||s the aCtua:j“)é. the reflected radiance. Substituting this into the rendering
generated direction and is the previously generated di- equation we have:

rection. Thus a “randomization point” is a global direction

in this methOd - - . . LeP + L — [¢ + T(Lep + an) (65)
The resulting algorithm is quite simple. In a step of the

stochastic iteration a new direction is found and this direc-|ntroducing the new lightsource term

tion together with the previous direction are used to evalu-

ate the random transport operator. Then an image estimate L** = L° — L? + TL® (66)

is computed by reflecting the previously computed radi-

ance estimate towards the eye. The complete algorithm igvhich just replaces the point lightsourcésy) by their ef-

summarized in the following: fect (T L°P), the equation fol.”? is similar to the original

rendering equation:

Generate the first random global direction

for each patcti do L[] = L¢ (w1) L"P = [&* 4+ TL"P. (67)
form =1to M do /I iteration cycles
Calculate the image estimate relfecting It means that first the direct illumination caused by the
the incoming radiancé[1], L[2], ... L[n] point lightsources must be computed, then they can be re-
from w,, towards the eye moved from the scene and added again at the end of the
Average the estimate with the Image computation.
Generate random global directian, 1 | This idea can be combined with gathering type walks.
for each patcli do In this caseLe* is computed on the fly when needed. To
Lr%i] = Lf (wm1) + 4 obtainLc*, shadow rays are traced from each visited point
Z;’Zl filwm,wmy1) - A(iy j,wm)/ Ai - L[j] of the walk towards every point lightsource and the direct
endfor lighting is deterministically computed. For finite-element-
endfor type methods, the computation &f* can be moved to
Display Image a preprocessing phase. In diffuse environments the stor-

age of the direction independeiift* function requires just
one extra variable per patch. In non-diffuse environments,



however,L¢* can be a non-constant function, which is dif-
ficult to represent and store. Instead, the incoming radi-
ance received by the patches from each point lightsource
should be stored (this requirésadditional variables per
patch, wheré is the number of point lightsources). When
Le* is needed for a given direction, then it is computed on
the fly from these incoming radiances.

8]
(0]
(10]

. [11]
7 Conclusions

This paper presented a review of stochastic global illumi-[12]
nation algorithms. We concluded that stochastic methods
are indispensible since they present the only reasonablﬁ3]
alternative to compute the very high-dimensional integrals
that emerge in global illumination methods.

Monte-Carlo algorithms take random or quasi-random
samples and approximate the solution as an average. In
order to make these methods fast, we either reduce thgs]
number of samples or reduce the cost of the samples. The
number of samples depend on the variation of the inte-
grand, that is how heterogeneous the light is in the space?®]
Techniques, including importance sampling or the special
treatment of point lightsources aim at the smoothing the[l7]
integrand. The number of samples can also be reduced
by distributing them very uniformly, which leads to the [18]
application of low-discrepancy series instead of random
points. However, care should be taken, since these methg
ods can be less efficient in higher dimensions, and can
even provide wrong results in iteration. The other main di-
rection, which aims at reducing the computational costs 0f(20]
the samples, includes global methods. This paper focused
on ray-bundle tracing, which reduces the cost of tracing
ray by tracing it with many other parallel rays and exploit- [21]
ing coherence properties.

(14]

[22]
References

[1] J. Arvo. Stratified sampling of spherical triangles. Gomputer
Graphics (SIGGRAPH '95 Preedings)pages 437-438, 1995.

[2] J. Arvo and D. Kirk. Particle transport and image synthesis. In [24]
Computer Graphics (SIGGRAPH '90 Reedings)pages 63—-66,
1990.

(23]

[25]
L. Aupperle and P. Hanrahan. A hierarchical illumination algo-
rithms for surfaces with glossy reflectionComputer Graphics
(SIGGRAPH '93 Proeedings)pages 155-162, 1993.

(3]

[26]
[4] P. Bekaert, R. Cools, and D. Willems. An empirical comparison
of monte carlo radiosity algorithms. Winter School of Computer

Graphics '99 pages 9-16, Plzen, Czech Republic, 1999. [27]

[5] C. Buckalew and D. Fussell. lllumination networks: Fast realistic
rendering with general reflectance functioi@omputer Graphics

28
(SIGGRAPH '89 Proeedings)23(3):89-98, July 1989. [28]

[6] F. Castro, R. Martinez, and M. Sbert. Quasi Monte-Carlo and ex- [29]
tended first-shot improvements to the multi-path metho&pring
Conference on Computer Graphics ;9fges 91-102, 1998.

P. H. Christensen, D. Lischinski, E. J. Stollnitz, and D. H. Salesin. [30]
Clustering for glossy global illuminationACM Transactions on
Graphics 16(1):3-33, 1997.

(7]

P. H. Christensen, E. J. Stollnitz, D. H. Salesin, and T. D. DeRose.
Global illumination of glossy environments using wavelets and im-
portance ACM Transactions on Graphic45(1):37-71, 1996.

R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In
Computer Graphics (SIGGRAPH '84 Reedings) pages 137-
145, 1984.

B. Csebfalvi. A review of Monte-Carlo ray tracing algorithms. In
CESCG '97, Central European Seminar on Computer Graphics
pages 87-103, 1997.

D. P. Dobkin, D. Eppstein, and D. P. Mitchell. Computing the dis-
crepancy with applications to supersampling patted@M Trans-
actions on Graphicsl5(4):354-376, 1996.

P. Dutre, E. Lafortune, and Y. D. Willems. Monte Carlo light trac-
ing with direct computation of pixel intensities. Gompugraphics
'93, pages 128-137, Alvor, 1993.

A. Glassner.Principles of Digital Image SynthesiMorgan Kauf-
mann Publishers, Inc., San Francisco, 1995.

P. Hanrahan, D. Salzman, and L. Aupperle. Rapid hierachical ra-
diosity algorithm. Computer Graphics (SIGGRAPH '91 Reed-
ings), 1991.

M. Hyben, |. Martisovits, and A. Ferko. Scene complexity for ren-
dering in flatland. In L. Szirmay-Kalos, edit@®pring Conference
on Computer Graphi¢pages 112-120, 1998.

D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method
for non-diffuse environments. i@omputer Graphics (SIGGRAPH
'86 Proceedings)pages 133-142, 1986.

H. W. Jensen. Importance driven path tracing using the photon
maps. InRendering Techniques '9pages 326—335, 1995.

H. W. Jensen. Global illumination using photon mapsRénder-
ing Techniques '9fpages 21-30, 1996.

H. W. Jensen and N. J. Christensen. Photon maps in bidirec-
tional Monte Carlo ray tracing of complex objec&mputers and
Graphics 19(2):215-224, 1995.

H. W. Jensen and P. H. Christensen. Efficient simulation of light
transport in scenes with participating media using photon maps.
Computers and Graphics (SIGGRAPH '98 Beedings) pages
311-320, 1998.

J. T. Kajiya. The rendering equation. @omputer Graphics (SIG-
GRAPH '86 Pr@eedings)pages 143-150, 1986.

A. Keller. A quasi-Monte Carlo algorithm for the global illumina-
tion in the radiosity setting. In H. Niederreiter and P. Shiue, editors,
Monte-Carlo and Quasi-Monte Carlo Methods in Scientific Com-
puting pages 239-251. Springer, 1995.

A. Keller. Instant radiosity.Computer Graphics (SIGGRAPH '97
Proceedings)pages 49-55, 1997.

D.E. Knuth.The art of computer programming. Volume 2 (Seminu-
merical algorithms) Addison-Wesley, Reading, Mass. USA, 1981.

E. Lafortune and Y. D. Willems. Bi-directional path-tracing. In
Compugraphics '93pages 145-153, Alvor, 1993.

E. Lafortune and Y. D. Willems. A 5D tree to reduce the variance
of Monte Carlo ray tracing. IfRendering Techniques '9pages
11-19, 1996.

B. Lange and B. Beyer. Rayvolution: An evolutionary ray tracing
algorithm. InPhotorealistic Rendering Techniquesges 136-144,
1994.

G. P. Lepage. An adaptive multidimensional integration program.
Technical Report CLNS-80/447, Cornell University, 1980.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equations of state calculations by fast computing ma-
chines.Journal of Chemical Physic21:1087-1091, 1953.

D. P. Mitchell. Consequences of stratified sampling in graphics.
Computer Graphics (SIGGRAPH '96 Reedings) pages 277-
280, 1996.



[31]
[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

L. Neumann. Monte Carlo radiositComputing 55:23-42, 1995.

L. Neumann, M. Feda, M. Kopp, and W. Purgathofer. A new
stochastic radiosity method for highly complex scenes.Proc.
of the 5th. EG Workshop on Renderii§94.

L. Neumann, A. Neumann, and L. Szirmay-Kalos. Compact metal- (58]
lic reflectance models.Computer Graphics Forum (Eurograph-
ics'99), 18(3), 1999.

L. Neumann, W. Purgathofer, R. F. Tobler, A. Neumann, P. Elias,
M. Feda, and X. Pueyo. The stochastic ray method for radiosity. In
Rendering Techniques '9pages 206-218, 1995.

H. Niederreiter. Random number generation and quasi-Monte
Carlo methods SIAM, Pennsilvania, 1992.

S. N. Pattanik and S. P. Mudur. Adjoint equations and random
walks for illumination computationACM Transactions on Graph-

(54]

[56]

(57]

ics, 14(1):77-102, 1995. (58]
M. Pellegrini. Monte Carlo approximation of form factors with er-

ror bounded a prioriDiscrete and Computational Geomethp97.

(to appear). [59]

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C (Second Edition)
Cambridge University Press, Cambridge, USA, 1992.

M. Sbert.The Use of Global Directions to Compute RadiadiiD
thesis, Catalan Technical University, Barcelona, 1996.

(60]

M. Sbert, X. Pueyo, L. Neumann, and W. Purgathofer. Global [61]
multipath Monte Carlo algorithms for radiosityisual Computer
pages 47-61, 1996.

P. Schoder, S.J. Gortler, M.F. Cohen, and P. Hanrahan. Wavelet
projections for radiosity.Computer Graphics Forupil3(2):141-

(62]
151, 1994.
P. Shirley. A ray-tracing method for illumination calculation in
diffuse-specular scenes. Rroc. Graphics Interfacepages 205— 63]

212,1990.

P. Shirley. Discrepancy as a quality measure for sampling distribu-
tions. InEurographics '91 pages 183-194. Elsevier Science Pub-
lishers, 1991.

P. Shirley. Time complexity of Monte-Carlo radiosity. EHuro-
graphics '91 pages 459-466. Elsevier Science Publishers, 1991.

P. Shirley. Monte Carlo simulation and integratio8IGGRAPH
'93 Global lllumination Course Notes (42)993.

P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques [66]
for direct lighting calculations.ACM Transactions on Graphics
15(1):1-36, 1996.

(64]

(65]

F. Sillion and Puech (Radiosity and Global llluminatianMorgan [67]
Kaufmann Publishers, Inc., San Francisco, 1994.

F. Sillion, G. Drettakis, and C. Soler. Clustering algorithm for radi-
ance calculation in general environmentsRkndering Techniques  [68]

‘95, pages 197-205, 1995.

F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A [69]
global illumination solution for general reflectance distributions.
Computer Graphics (SIGGRAPH '91 Reedings) 25(4):187—

198, 1991.

I. Sobol. Die Monte-Carlo Methode Deutscher Verlag der Wis-
senschaften, 1991.

M. Stamminger, Slussalek P., and H-P. Seidel. Three point cluster-{71]
ing for radiance computations. Rendering Techniques '9pages
211-222, 1998.

L. Szirmay-Kalos. Global ray-bundle tracing. Technical Report
TR-186-2-98-18, Institute of Computer Graphics, Vienna Univer- [72]
sity of Technology, 1998. www.cg.tuwien.ac.at/.

[70]

L. Szirmay-Kalos. Stochastic iteration for non-diffuse global
illumination.  Technical Report TR-186-2-98-21, Institute of
Computer Graphics, Vienna University of Technology, 1998.
www.cg.tuwien.ac.at/.

L. Szirmay-Kalos. Stochastic methods in global illumination —
state of the art report. Technical Report TR-186-2-98-23, Institute
of Computer Graphics, Vienna University of Technology, 1998.
www.cg.tuwien.ac.at/.

L. Szirmay-Kalos. Stochastic iteration for non-diffuse global il-
lumination. Computer Graphics Forum (Eurographics’99)8(3),
1999.

L. Szirmay-Kalos, B. Gabfalvi, and W. Purgathofer. Importance-
driven quasi-Monte Carlo solution of the rendering equation. In
Winter School of Computer Graphics ‘9ages 377-386, Plzen,
Czech Republic, 1998.

L. Szirmay-Kalos, B. Gabfalvi, and W. Purgathofer. Importance
driben quasi-random walk solution of the rendering equatiom-
puters and Graphics23(2):203-211, 1999.

L. Szirmay-Kalos, P. Dornbach, and W. Purgathofer. On the start-
up bias problem of metropolis sampling. Winter School of Com-
puter Graphics '99pages 273-280, Plzen, Czech Republic, 1999.

L. Szirmay-Kalos, T. Bfis, L. Neumann, and B. @bfalvi. An
analysis to quasi-Monte Carlo integration applied to the transil-
lumination radiosity method.Computer Graphics Forum (Euro-
graphics'97) 16(3):271-281, 1997.

L. Szirmay-Kalos, T. Bfis, and W. Purgathofer. Non-diffuse,
random-walk radiosity algorithm with linear basis functiofa-
chine Graphics and Visigry(1):475-484, 1998.

L. Szirmay-Kalos, T. Bfis, and W. Purgathofer. Quasi-Monte
Carlo global ray-bundle tracing with infinite number of rays. In
Winter School of Computer Graphics ‘98ages 386-393, Plzen,
Czech Republic, 1998.

L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle tracing
with hardware acceleration. IRendering Techniques '9®ages
247-258, 1998.

L. Szirmay-Kalos and W. Purgathofer. Analysis of the quasi-monte
carlo integration of the rendering equation. Winter School of
Computer Graphics '99pages 281-288, Plzen, Czech Republic,
1999.

L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle tracing
with infinite number of raysComputers and Graphic23(2), 1999.

E. Veach. Robust Monte Carlo Methods for Light
Transport Simulation PhD thesis, Stanford University,
http://graphics.stanford.edu/papers/vediossis, 1997.

E. Veach and L. Guibas. Optimally combining sampling techniques
for Monte Carlo rendering. liRendering Techniques '9¢ages
147-162, 1994.

E. Veach and L. Guibas. Bidirectional estimators for light transport.
In Computer Graphics (SIGGRAPH '95 Reedings)pages 419—
428, 1995.

E. Veach and L. Guibas. Metropolis light transpo&omputer
Graphics (SIGGRAPH '97 Preedings)pages 65-76, 1997.

J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass so-
lution to the rendering equation: A synthesis of ray tracing and
radiosity methods. Ii€omputer Graphics (SIGGRAPH '87 Pro-
ceedings)pages 311-324, 1987.

G. J. Ward. The RADIANCE lighting simulation and rendering
system.Computer Graphics28(4):459-472, 1994.

T. Warnock. Computational investigations of low-discrepancy
point sets. In H. Niederreiter and P. Shiue, editdisnte-Carlo
and Quasi-Monte Carlo Methods in Scientific Computipgges
354-361. Springer, 1995.

K. Zimmerman and P. Shirley. A two-pass solution to the rendering
equation with a source visibility preprocess. Rendering Tech-
niques '95 pages 284—-295, 1995.



