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ABSTRACT

Quasi-Monte Carlo integration is said to be better than Monte-Carlo integration since its error
bound can be in the order of O(N~(1=9)) instead of the O(N~9%) probabilistic bound of classical
Monte-Carlo integration if the integrand has finite variation. However, since in computer graphics
the integrand of the rendering equation is usually discontinuous and thus has infinite variation,
the superiority of quasi-Monte Carlo integration has not been theoretically justified. This paper
examines the integration of discontinuous functions using both theoretical arguments and sim-
ulations and explains what kind of improvements can be expected from the quasi-Monte Carlo

techniques in computer graphics.
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1 Introduction

The fundamental task of computer graphics
is to solve a Fredholm type integral equation
describing the light transport. This equation
is called the rendering equation and has the
following form:

L(#w) = L(%,w) + (TL)(#w) (1)

where (TL)(#,w) is

/L(h(f, —W), W) - cosl - fo(# 0, w) du,
QI

L(#,w) is the radiance of the surface in point
7 at direction w, h(Z,w") is the visibility func-
tion defining the point that is visible from
point Z at direction w’, 6’ is the angle be-
tween the surface normal and direction o',
and f,(Z,w',w) is the bi-directional reflec-
tion/refraction function.

In equation (1) the unknown function L ap-
pears on both sides. Recursively substituting

the right side’s L by L® + T L, which is ob-
viously L according to the equation, we get
the following Neumann series:

L=L+TL=L°+T(L°+TL) =

LC+TL+T°L=>Y T'L* (2)
=0

if integral operator 7T is contractive.

The terms of this infinite Neumann series
have intuitive meaning as well: 7°L¢ = L°
comes from the emission, 7'L¢ comes from
a single reflection, 72L¢ from two reflections,
etc.

In order to compute 7" L¢(#,w), the follow-
ing function should be integrated: A ray
is emanated recursively from Z at direction
—w], then from the found surface at —wp,
etc. until —w/,. The emission intensity at the
end of the walk is read and multiplied by the
BRDF's and the cosine terms of the stages of
the walk.



Figure 1: The integrand of T2L¢ is a
two-step walk

Since classical quadrature techniques based
on uniform grids, such as trapezodial
rule, may have integration error of order
O(1/N'/%) where N is the number of dot
points and s is the dimension of the domain,
in order to guarantee a predefined error, the
number of dot points should be in the or-
der of O(N?), which is prohibitive for high-
dimensional integrals. This phenomenon is
called as the dimensional explosion. The
dimensional explosion can be avoided by
Monte-Carlo or Quasi-Monte Carlo integra-
tion methods. Monte-Carlo methods trace
back the estimation of an integral to the cal-
culation of an expected value, which is esti-
mated by averaging random samples. Quasi-
Monte Carlo techniques, on the other hand,
use deterministic samples that are uniformly
distributed in the integration domain.

Monte-Carlo quadrature considers the inte-
gral as an expected value which can be esti-
mated by averaging random points:

[1@ ds=V - [ @)1 da=V-Elita)
|4 14
®)

since 1/V can be considered as the proba-
bility density of a random variable uniformly

distributed in V.

If N number of points are used to estimate
an integral of f in the domain of size V, the
Monte-Carlo quadrature will have the follow-
ing (stochastic) error bound:

v X o
V/f(z)dzzﬁ-;f(zi)iv-ﬁ. (4)

If f(z) is square-integrable function, then

variance o is finite, thus the stochastic error
bound will be in the order of O(N~%5).

Quasi-Monte Carlo integration, on the other
hand, uses deterministic point-sets that con-
tain very uniformly distributed points in the
integration domain. For the normalized, s-
dimensional integration domain [0, 1]°, the
quasi-Monte Carlo approximation is:

1 N
[ 100 dxm > fx) ()
0,1 =1

Sample points x1,X2,...,xy should be se-
lected to minimize the error of the integral
quadrature. Intuitively this error must de-
pend on two independent factors. On the
one hand, if the distribution of the sample
points is not uniform, then there are large
regions where there are no sample point at
all, which increases the error. From mathe-
matical point of view, the uniformity is char-
acterized by the discrepancy of a point set.
The star-discrepancy is defined by

m(A)

D*(x1,X2,...XN) = s11L1‘p|——V(A)| (6)

N

where A is an s-dimensional sub-cube par-
allel to the coordinate axes and originat-
ing at the center, V(A) is its volume, and
m(A) is the number of sample points inside
this subcube. For carefully selected sam-
ple points, called low-discrepancy sequences
[Niede92], the discrepancy can be in the or-
der of O(log®~! N/N).

On the other hand, the error of quadrature
also depends on how quickly the function
changes between the sample points. If the
function can change significantly in small do-
main, then the error can be quite large. How-
ever, if the slope of the function is small, then
nothing dramatic happens between the sam-
ple points, thus the error will be small.

Measures describing how rapidly a function
can change are called variations. For a
1-dimensional function, the wvariation in the
sense of Vitali is defined as:

Wy (f(x)) = limsup Y | (zis1) = f (i)l (7)

=1



For higher dimensions, the variation of Vitali
does not provide a good measure: if the func-
tion is constant in z, for instance, then the
variation is zero, regardless how the function
changes depending on y. Thus, it is worth us-
ing a somehow more stronger variation type,
called the Hardy-Krause variation. The vari-
ation in the sense of Hardy and Krause is the
sum of the variations of the function and its
restrictions to the end of the domain.

From these two factors — the discrepancy
of the sample locations and the variation of
the function — an upper-bound can be es-
tablished for the error of the quadrature. If
the integrand f has finite variation in the
sense of Hardy and Krause, then the error
of the quasi-Monte Carlo quadrature can be
bounded as stated by the Koksma-Hlawka in-
equality:

1 N
[ ) dx - LY sl <
0,1]s =1

VHK-D*(Xl,XQ,...XN), (8)

where Vyk is the variation in the sense of
Hardy and Krause and D*(x1,xg,...xy) iS
the star-discrepancy of the sample points
[Niede92]. As mentioned, for low-discrepancy
point sets the discrepancy can be in the order
of O(log*~! N/N), which can provide much
better error bounds than the O(1/N'/%)
bound of classical quadrature rules or the
O(1/+/N) probabilistic error bound of Monte
Carlo methods. Moreover, quasi-Monte
Carlo methods guarantee this accuracy in a
deterministic way, unlike Monte Carlo meth-
ods where the error bound is also probabilis-
tic.

2 Generation of Low-Discrepancy Se-
quences

As a conclusion of the error analysis we can
state that we need very uniform sequences
for quasi-Monte Carlo quadrature. The dis-
crepancy of the best sequences known is in
the order of O(log® N/N) or even in the or-
der of O(log®~! N/N) if N is known before
starting the sequence. There are many se-
quences published in the literature [Niede92,

Warno95, Dedk89, Knuth81]. The most fa-
mous one is probably the Halton sequence.

The element 4 of the one-dimensional Halton
sequence of base b is defined as the radical
inverse of the expansion of ¢ in base b. This
means that number 7 is expanded in radix b,
then the number is mirrored onto the “radix”
point.

Why is this sequence uniform? Note that the
construction algorithm generates as binary
form of ¢ all binary combinations of length
k before producing a combination of length
k + 1. This means that after the radical in-
verse the sequence H; will visit all intervals
of length 27% before putting a new point in
an interval already visited.

On the other hand, as k increases, the algo-
rithm produces a single point in each interval
of length 1/2, then in each interval of length
1/4, etc. thus the sequence is not only as-
symptotically uniform, but also the first NV
points are fairly uniformly distributed (this
is guaranteed by the property that the radi-
cal inverse makes the most significant bit the
most rapidly changing bit).

Note that the same construction can be used
for any base, thus in this way infinitely
many different Halton sequences can be con-
structed. For higher dimensional Halton se-
quences, the interdependence of different co-
ordinates should be as little as possible. Thus
an appropriate way of the construction is se-
lecting relative primes (say by, bo,...bs) as
bases for the different coordinates.

3 Integrating functions of unbounded
variation

As mentioned, the integrand of the original
form of the rendering equation is discontin-
uous where the discontinuity is not aligned
with the coordinate axes, thus its variation
is infinite. These discontinuities are usually
produced by the projected object boundaries.
This property makes the Koksma-Hlawka in-
equality not appropriate for the error analysis



Figure 2: The distribution of the first 10,100 and 1000 Halton points in 2 dimensions

of the solution of the rendering equation and
for the prediction of the convergence rates.

In this section the convergence speed is ex-
amined for functions which are generally
smooth but have general discontinuities of fi-
nite “length”. First the domain of the inte-
gration is assumed to be 2-dimensional, then
the results will be generalized to arbitrary di-
mension.
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Figure 3: A typical integrand of the
rendering equation

Suppose that N number of samples has
been generated to estimate the integral of
a function such as in figure 3 using a low-
discrepancy sequence. In order to overcome
the difficulty that the integrand f has infinite
variation, the function is decomposed into
two functions, one is smooth f having con-
tinuous mixed derivatives and the other f in-
herits the discontinuity of f (figure 4). Low-
discrepancy sequences generate points in a
cellular grid in a way that the difference of
the number of points in two cells is at most
1. If there are already N number of points,
the size of a cell on the finest, filled level is
approximately 1/v/N x 1/v/N. Let us define
the domain of f as the set of those cells that
are intersected by the discontinuity. This do-

main is called the domain of discontinu-
ity. The number of such cells is in the order
of the “digital length” of the discontinuity
curve, which is the product of the maximum
extent [ and the resolution of the grid V/N.
Since each cell has at least 1 (and at most 2)

points, the number of points in this domain
is at least [/ N.

The error of quadrature is as follows:

N

[ s a5y s <
[0,1]2 =1
N

[ @ e fel
0,1)2 =1

N
BN AN OYCEES Sy T
z€[0,1]2 =1

Since f has finite variation, the first term in
the error is bounded by

VHK(f) . D*(Zl,ZQ, . .ZN).

Concerning the second term, the integration
of f is estimated taking I[v/N samples and
averaging the result. Since the samples and
the discontinuity are not related in any way,
we can suppose that this is a normal Monte-
Carlo integration [Press92]. The uniform
property of low-discrepancy sequence guar-
antees that this pseudo-random set can be
assumed to have uniform distribution.

If Af is the difference between the maximum
and minimum values in the domain of dis-
continuity, then o2 < (Af)2. In our case
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Figure 4: Decomposition of f into a smooth (f) and a discontinuous (f) function

the number of sample points M is [v/N and
V =1/v/N, thus we obtain:

R v M. Af
[f@) da= 5> fla) V-5 =
v =1

1 Y.

¥ ST fz) £Af-VI-NTE O (10)

1

~.
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Taking into account that f is zero outside the
domain of discontinuity, equality (9) can be
expressed as:

1N
RO S WCIE
0,1 =

zn) + Af V- N34

(11)
For large N values the second term will be
dominant, which results in O(N~3/%) error
bound. This is poorer than the O(log? N/N)
bound suggested by the Koksma-Hlawka in-
equality. Note that the point from where the
second term dominates the first one depends
on “intensity” Af and size of the discontinu-
ity [.

VHK(f) . D*(Zl, Zy, ..

The same analysis can be carried out in
higher dimensions as well. In D dimensions
a discontinuity of size [ would intersect V =
- N~YP yolume of cells which would contain
M =1 NP=Y/D gample points. Thus the
general error bound is:

lN
[ r)da- 3 )l <
[0,1]2 =1

(D+1)

.ZN)—i-Af-\[l-N_ 2D .
(12)

Vux(f)-D* (21,22, .-

Thus, for quasi-Monte Carlo integration of
discontinuous functions, the order of the er-
ror bound will be in between the O(N~(1=9))

bound of finite variation functions and
O(N~%5) stochastic bound of Monte-Carlo
quadrature. The higher the dimension of the
integral, the closer the two methods get in
this order. However, the proportionality ra-
tio of the bounds may still be very different.
Thus it is still worth using quasi-Monte Carlo
quadrature if the size of the discontinuity [
is not very large, since in this case the er-
ror could be significantly less then for Monte-
Carlo quadrature.

When quasi-Monte Carlo quadrature is used
for the solution of the rendering equation, it
should be taken into account that the Neu-
mann series contains a series of integrals of
increasing dimension. If shooting type walks
are used, then the effect of higher dimensional
integrals gets lower due to the dissipation of
energy. Thus the degradation of the con-
vergence for higher dimensional integrals is
partly compensated by their reduced impor-
tance.

Unfortunately this does not happen for gath-
ering type walk, since here the final power
may result from any step.

4 Numerical evidence for simple func-
tions

In order to demonstrate the previous results,
the convergences of a 2-dimensional and a 3-
dimensional functions are examined, that are
simple enough to analytically compute their
integrals.

The 2-dimensional function is:

(z+y—2)-a+lifz+y>1,
(z 4+ y) - a otherwise ,

falz,y) = {
(13)



where a is a free parameter in the range of
[0,0.5]. Note that by setting a appropriately,
the intensity of the discontinuity can be con-
trolled without altering either the value of
the integral or the variation of the continu-
ous part. If a = 0.5, then the function has
finite variation, otherwise it has infinite vari-
ation.

The results of the simulation are shown in fig-
ure 5. This figure shows the maximum error
after a given number of samples.
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Figure 5: Error of integrating fo

The 3-dimensional function is:

(x+y+2z—18)-a+0.6
ifx+y+2>1,
f3 (*’I;a Y, Z) = Y
(x +y + 2) - a otherwise ,

(14)

where a is a free parameter in the range of

[0,1/3]. If a = 1/3, then f3 has finite varia-

tion, otherwise it has not. The error of inte-
gration of f3 is summarized in figure 6.
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Figure 6: Error of integrating f3

5 Numerical evidence for rendering

In order to obtain accurate error measure-
ments for rendering algorithms, we need
scenes for which the exact solution is known.
Generally, we have two opportunities. Fi-
ther, we use simple scenes for which analyti-
cal solution is possible, or numerical methods
are applied using so many samples that the
approximate solution can be accepted as a
reference.

One of the famous analytically solvable case
is the homogeneous environment, where the
geometry is arbitrary, but all surfaces have
the same diffuse reflection and emission
[Shirl91, Kelle95]. In this scene, however, the
emission distribution is very homogeneous,
thus quasi-Monte Carlo methods would be
given an unfair handicap.

Thus we shall use another reference scene
proposed by [Hyben98], which is an inner sur-
face of a sphere, where the reflection is diffuse
and homogeneous, but only a part of the sur-
face has non-zero emission. Due to the not
axis-aligned discontinuity of the lightsource
the integrand of the rendering equation has
infinite variation.

Here we derive the analytical solution some-
how differently than in [Hyben98], since we
also show that not only the complete solution
can be obtained but also the partial solutions
of different bounces. The knowledge of the
contribution of different bounces allows us to
use the reference solution to evaluate biased,
finite random walk algorithms.

5.1 Analytical solution of the refer-
ence scene

Let the scene be an inner surface S of a sphere
of radius R, the BRDF be constant f, = o/7
and the emission be diffuse and constant L¢
in a subset A, of the spherical surface and
zero otherwise.

Using the

_ cosfz-dy
|7 — &2



substitution for the solid angle, we obtain the
following form of the one bounce:

0
(TL) = [ gy costs- L) - oot di
15— |
S
(15)
Since L¢(%) is constant and non-zero only in-

side A, we get:

cos Oz - cos 07
————— dy. (16)

(71 =gy -1 |

e

15— ||?

Figure 7: Geometry of the reference scene

Looking at figure 7, we can see that inside a
sphere

cos btz = cos by = ————,

thus we can obtain the following final form
for the one-bounce:

e _fT"Le
(TL%) = 4R?

A, =p-L° (17)

where L¢ = L¢- A,/ S is the average emission
of the total spherical surface.

Summarizing, after the first bounce the ra-
diance distribution is constant. Substituting
this into L¢ and replacing A, by the total
spherical surface S, we can derive the two
bounce radiance transfer as well:

fr
4R?

(T2L%)(Z,w) = ( ) 8.0 L° = g*L°.

(18)
Similarly, the n bounce radiance distribution
is:

(T"LE)(Z,w) = o"L°. (19)

5.2 Error measurements

The efficiency of Monte-Carlo and quasi-
Monte Carlo quadratures have been tested
for the presented spherical scene assuming a
single pixel camera. The error has been mea-
sured separately for the different bounces.

Looking at the error measurements of fig-
ure 8, we can see that even for integrands of
infinite variation quasi-Monte Carlo methods
are still better but they lose their advantage
when computing higher bounces as predicted
by the theoretical results. The other impor-
tant problem in higher dimensions is that al-
though a low-discrepancy series has almost
linearly decreasing discrepancy in the asymp-
totic sense, this discrepancy can still be high
for not very many points (in the solution of
the rendering equation we rarely use more
than 1000 samples for the estimation of a sin-
gle pixel). In the case of the Halton series, for
example, the base of the series strongly af-
fects the initial behavior of the discrepancy.
These base numbers are different prime num-
bers for different dimensions, thus for high-
dimensional integrals the base numbers can
be quite high, which results in degraded per-
formance.

6 Conclusions

This paper reviewed the application of quasi-
Monte Carlo integration to solve the render-
ing equation. It showed that although the
integrand of the rendering equation is not
of finite variation, an error analysis is still
possible that combines the Koksma-Hlawka
inequality with the probabilistic bounds of
Monte-Carlo techniques. This error analysis
leads us to the conclusion that the conver-
gence rate of quasi-Monte Carlo integration
can be better than Monte-Carlo quadrature
even for the discontinuous rendering equa-
tion, especially when the required dimension
— that is the average reflectivity of the scene
— is not very high. The theoretical results
have also been demonstrated by simulation.
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