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ABSTRACT

Quasi-Monte Carlo integration is said to be better than Monte-Carlo integration since its error

bound can be in the order of O(N�(1��)) instead of the O(N�0:5) probabilistic bound of classical

Monte-Carlo integration if the integrand has �nite variation. However, since in computer graphics

the integrand of the rendering equation is usually discontinuous and thus has in�nite variation,

the superiority of quasi-Monte Carlo integration has not been theoretically justi�ed. This paper

examines the integration of discontinuous functions using both theoretical arguments and sim-

ulations and explains what kind of improvements can be expected from the quasi-Monte Carlo

techniques in computer graphics.
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1 Introduction

The fundamental task of computer graphics

is to solve a Fredholm type integral equation

describing the light transport. This equation

is called the rendering equation and has the

following form:

L(~x; !) = Le(~x; !) + (T L)(~x; !) (1)

where (T L)(~x; !) is
Z

0

L(h(~x;�!0); !0) � cos �0 � fr(~x; !0; !) d!0;

L(~x; !) is the radiance of the surface in point

~x at direction !, h(~x; !0) is the visibility func-

tion de�ning the point that is visible from

point ~x at direction !0, �0 is the angle be-

tween the surface normal and direction !0,

and fr(~x; !
0; !) is the bi-directional re
ec-

tion/refraction function.

In equation (1) the unknown function L ap-

pears on both sides. Recursively substituting

the right side's L by Le + T L, which is ob-

viously L according to the equation, we get

the following Neumann series:

L = Le + T L = Le + T (Le + T L) =

Le + T Le + T 2L =
1X
i=0

T iLe (2)

if integral operator T is contractive.

The terms of this in�nite Neumann series

have intuitive meaning as well: T 0Le = Le

comes from the emission, T 1Le comes from

a single re
ection, T 2Le from two re
ections,

etc.

In order to compute T nLe(~x; !), the follow-

ing function should be integrated: A ray

is emanated recursively from ~x at direction

�!01, then from the found surface at �!02,
etc. until �!0n. The emission intensity at the
end of the walk is read and multiplied by the

BRDFs and the cosine terms of the stages of

the walk.
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Figure 1: The integrand of T 2Le is a

two-step walk

Since classical quadrature techniques based

on uniform grids, such as trapezodial

rule, may have integration error of order

O(1=N1=s) where N is the number of dot

points and s is the dimension of the domain,

in order to guarantee a prede�ned error, the

number of dot points should be in the or-

der of O(N s), which is prohibitive for high-

dimensional integrals. This phenomenon is

called as the dimensional explosion. The

dimensional explosion can be avoided by

Monte-Carlo or Quasi-Monte Carlo integra-

tion methods. Monte-Carlo methods trace

back the estimation of an integral to the cal-

culation of an expected value, which is esti-

mated by averaging random samples. Quasi-

Monte Carlo techniques, on the other hand,

use deterministic samples that are uniformly

distributed in the integration domain.

Monte-Carlo quadrature considers the inte-

gral as an expected value which can be esti-

mated by averaging random points:
Z
V

f(z) dz = V �
Z
V

f(z) � 1
V

dz = V �E[f(z)]

(3)

since 1=V can be considered as the proba-

bility density of a random variable uniformly

distributed in V .

If N number of points are used to estimate

an integral of f in the domain of size V , the

Monte-Carlo quadrature will have the follow-

ing (stochastic) error bound:

Z
V

f(z) dz � V

N
�
NX
i=1

f(zi)� V � �p
N
: (4)

If f(z) is square-integrable function, then

variance � is �nite, thus the stochastic error

bound will be in the order of O(N�0:5).

Quasi-Monte Carlo integration, on the other

hand, uses deterministic point-sets that con-

tain very uniformly distributed points in the

integration domain. For the normalized, s-

dimensional integration domain [0; 1]s, the

quasi-Monte Carlo approximation is:

Z

[0;1]s

f(x) dx � 1

N

NX
i=1

f(xi): (5)

Sample points x1;x2; : : : ;xN should be se-

lected to minimize the error of the integral

quadrature. Intuitively this error must de-

pend on two independent factors. On the

one hand, if the distribution of the sample

points is not uniform, then there are large

regions where there are no sample point at

all, which increases the error. From mathe-

matical point of view, the uniformity is char-

acterized by the discrepancy of a point set.

The star-discrepancy is de�ned by

D�(x1;x2; : : : xN ) = sup
A
jm(A)

N
�V (A)j (6)

where A is an s-dimensional sub-cube par-

allel to the coordinate axes and originat-

ing at the center, V (A) is its volume, and

m(A) is the number of sample points inside

this subcube. For carefully selected sam-

ple points, called low-discrepancy sequences

[Niede92], the discrepancy can be in the or-

der of O(logs�1N=N).

On the other hand, the error of quadrature

also depends on how quickly the function

changes between the sample points. If the

function can change signi�cantly in small do-

main, then the error can be quite large. How-

ever, if the slope of the function is small, then

nothing dramatic happens between the sam-

ple points, thus the error will be small.

Measures describing how rapidly a function

can change are called variations. For a

1-dimensional function, the variation in the

sense of Vitali is de�ned as:

VV(f(x)) = lim sup
nX
i=1

jf(xi+1)�f(xi)j: (7)



For higher dimensions, the variation of Vitali

does not provide a good measure: if the func-

tion is constant in x, for instance, then the

variation is zero, regardless how the function

changes depending on y. Thus, it is worth us-

ing a somehow more stronger variation type,

called the Hardy-Krause variation. The vari-

ation in the sense of Hardy and Krause is the

sum of the variations of the function and its

restrictions to the end of the domain.

From these two factors | the discrepancy

of the sample locations and the variation of

the function | an upper-bound can be es-

tablished for the error of the quadrature. If

the integrand f has �nite variation in the

sense of Hardy and Krause, then the error

of the quasi-Monte Carlo quadrature can be

bounded as stated by the Koksma-Hlawka in-

equality:

j
Z

[0;1]s

f(x) dx� 1

N

NX
i=1

f(xi)j �

VHK �D�(x1;x2; : : :xN ); (8)

where VHK is the variation in the sense of

Hardy and Krause and D�(x1;x2; : : :xN ) is

the star-discrepancy of the sample points

[Niede92]. As mentioned, for low-discrepancy

point sets the discrepancy can be in the order

of O(logs�1N=N), which can provide much

better error bounds than the O(1=N1=s)

bound of classical quadrature rules or the

O(1=
p
N) probabilistic error bound of Monte

Carlo methods. Moreover, quasi-Monte

Carlo methods guarantee this accuracy in a

deterministic way, unlike Monte Carlo meth-

ods where the error bound is also probabilis-

tic.

2 Generation of Low-Discrepancy Se-

quences

As a conclusion of the error analysis we can

state that we need very uniform sequences

for quasi-Monte Carlo quadrature. The dis-

crepancy of the best sequences known is in

the order of O(logsN=N) or even in the or-

der of O(logs�1N=N) if N is known before

starting the sequence. There are many se-

quences published in the literature [Niede92,

Warno95, De�ak89, Knuth81]. The most fa-

mous one is probably the Halton sequence.

The element i of the one-dimensional Halton

sequence of base b is de�ned as the radical

inverse of the expansion of i in base b. This

means that number i is expanded in radix b,

then the number is mirrored onto the \radix"

point.

Why is this sequence uniform? Note that the

construction algorithm generates as binary

form of i all binary combinations of length

k before producing a combination of length

k + 1. This means that after the radical in-

verse the sequence Hi will visit all intervals

of length 2�k before putting a new point in

an interval already visited.

On the other hand, as k increases, the algo-

rithm produces a single point in each interval

of length 1=2, then in each interval of length

1=4, etc. thus the sequence is not only as-

symptotically uniform, but also the �rst N

points are fairly uniformly distributed (this

is guaranteed by the property that the radi-

cal inverse makes the most signi�cant bit the

most rapidly changing bit).

Note that the same construction can be used

for any base, thus in this way in�nitely

many di�erent Halton sequences can be con-

structed. For higher dimensional Halton se-

quences, the interdependence of di�erent co-

ordinates should be as little as possible. Thus

an appropriate way of the construction is se-

lecting relative primes (say b1; b2; : : : bs) as

bases for the di�erent coordinates.

3 Integrating functions of unbounded

variation

As mentioned, the integrand of the original

form of the rendering equation is discontin-

uous where the discontinuity is not aligned

with the coordinate axes, thus its variation

is in�nite. These discontinuities are usually

produced by the projected object boundaries.

This property makes the Koksma-Hlawka in-

equality not appropriate for the error analysis
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Figure 2: The distribution of the �rst 10,100 and 1000 Halton points in 2 dimensions

of the solution of the rendering equation and

for the prediction of the convergence rates.

In this section the convergence speed is ex-

amined for functions which are generally

smooth but have general discontinuities of �-

nite \length". First the domain of the inte-

gration is assumed to be 2-dimensional, then

the results will be generalized to arbitrary di-

mension.

discontinuity line

domain of discontinuity

1/  N

1/  N

grid lines

one sample point in each cell

Figure 3: A typical integrand of the

rendering equation

Suppose that N number of samples has

been generated to estimate the integral of

a function such as in �gure 3 using a low-

discrepancy sequence. In order to overcome

the di�culty that the integrand f has in�nite

variation, the function is decomposed into

two functions, one is smooth ~f having con-

tinuous mixed derivatives and the other f̂ in-

herits the discontinuity of f (�gure 4). Low-

discrepancy sequences generate points in a

cellular grid in a way that the di�erence of

the number of points in two cells is at most

1. If there are already N number of points,

the size of a cell on the �nest, �lled level is

approximately 1=
p
N � 1=

p
N . Let us de�ne

the domain of f̂ as the set of those cells that

are intersected by the discontinuity. This do-

main is called the domain of discontinu-

ity. The number of such cells is in the order

of the \digital length" of the discontinuity

curve, which is the product of the maximum

extent l and the resolution of the grid
p
N .

Since each cell has at least 1 (and at most 2)

points, the number of points in this domain

is at least l
p
N .

The error of quadrature is as follows:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j �

j
Z

z2[0;1]2

~f(z) dz� 1

N

NX
i=1

~f(zi)j+

j
Z

z2[0;1]2

f̂(z) dz� 1

N

NX
i=1

f̂(zi)j: (9)

Since ~f has �nite variation, the �rst term in

the error is bounded by

VHK( ~f) �D�(z1; z2; : : : zN ):

Concerning the second term, the integration

of f̂ is estimated taking l
p
N samples and

averaging the result. Since the samples and

the discontinuity are not related in any way,

we can suppose that this is a normal Monte-

Carlo integration [Press92]. The uniform

property of low-discrepancy sequence guar-

antees that this pseudo-random set can be

assumed to have uniform distribution.

If �f is the di�erence between the maximum

and minimum values in the domain of dis-

continuity, then �2 � (�f)2. In our case
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Figure 4: Decomposition of f into a smooth ( ~f) and a discontinuous (f̂) function

the number of sample points M is l
p
N and

V = l=
p
N , thus we obtain:

Z
V

f̂(z) dz =
V

M
�
MX
i=1

f̂(zi)� V � �f
M

=

1

N
�
MX
i=1

f̂(zi)��f �
p
l �N�3=4: (10)

Taking into account that f̂ is zero outside the

domain of discontinuity, equality (9) can be

expressed as:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j �

VHK( ~f) �D�(z1; z2; : : : zN ) +�f �
p
l �N�3=4:

(11)

For large N values the second term will be

dominant, which results in O(N�3=4) error

bound. This is poorer than the O(log2N=N)

bound suggested by the Koksma-Hlawka in-

equality. Note that the point from where the

second term dominates the �rst one depends

on \intensity" �f and size of the discontinu-

ity l.

The same analysis can be carried out in

higher dimensions as well. In D dimensions

a discontinuity of size l would intersect V =

l �N�1=D volume of cells which would contain

M = l � N (D�1)=D sample points. Thus the

general error bound is:

j
Z

z2[0;1]D

f(z) dz� 1

N

NX
i=1

f(zi)j �

VHK( ~f)�D�(z1; z2; : : : zN )+�f �
p
l �N�

(D+1)

2D :

(12)

Thus, for quasi-Monte Carlo integration of

discontinuous functions, the order of the er-

ror bound will be in between the O(N�(1��))

bound of �nite variation functions and

O(N�0:5) stochastic bound of Monte-Carlo

quadrature. The higher the dimension of the

integral, the closer the two methods get in

this order. However, the proportionality ra-

tio of the bounds may still be very di�erent.

Thus it is still worth using quasi-Monte Carlo

quadrature if the size of the discontinuity l

is not very large, since in this case the er-

ror could be signi�cantly less then for Monte-

Carlo quadrature.

When quasi-Monte Carlo quadrature is used

for the solution of the rendering equation, it

should be taken into account that the Neu-

mann series contains a series of integrals of

increasing dimension. If shooting type walks

are used, then the e�ect of higher dimensional

integrals gets lower due to the dissipation of

energy. Thus the degradation of the con-

vergence for higher dimensional integrals is

partly compensated by their reduced impor-

tance.

Unfortunately this does not happen for gath-

ering type walk, since here the �nal power

may result from any step.

4 Numerical evidence for simple func-

tions

In order to demonstrate the previous results,

the convergences of a 2-dimensional and a 3-

dimensional functions are examined, that are

simple enough to analytically compute their

integrals.

The 2-dimensional function is:

f2(x; y) =

�
(x+ y � 2) � a+ 1 if x+ y > 1;

(x+ y) � a otherwise ;
(13)



where a is a free parameter in the range of

[0; 0:5]. Note that by setting a appropriately,

the intensity of the discontinuity can be con-

trolled without altering either the value of

the integral or the variation of the continu-

ous part. If a = 0:5, then the function has

�nite variation, otherwise it has in�nite vari-

ation.

The results of the simulation are shown in �g-

ure 5. This �gure shows the maximum error

after a given number of samples.
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Figure 5: Error of integrating f2

The 3-dimensional function is:

f3(x; y; z) =

8>><
>>:

(x+ y + z � 1:8) � a+ 0:6

if x+ y + z > 1;

(x+ y + z) � a otherwise ;
(14)

where a is a free parameter in the range of

[0; 1=3]. If a = 1=3, then f3 has �nite varia-

tion, otherwise it has not. The error of inte-

gration of f3 is summarized in �gure 6.
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5 Numerical evidence for rendering

In order to obtain accurate error measure-

ments for rendering algorithms, we need

scenes for which the exact solution is known.

Generally, we have two opportunities. Ei-

ther, we use simple scenes for which analyti-

cal solution is possible, or numerical methods

are applied using so many samples that the

approximate solution can be accepted as a

reference.

One of the famous analytically solvable case

is the homogeneous environment, where the

geometry is arbitrary, but all surfaces have

the same di�use re
ection and emission

[Shirl91, Kelle95]. In this scene, however, the

emission distribution is very homogeneous,

thus quasi-Monte Carlo methods would be

given an unfair handicap.

Thus we shall use another reference scene

proposed by [Hyben98], which is an inner sur-

face of a sphere, where the re
ection is di�use

and homogeneous, but only a part of the sur-

face has non-zero emission. Due to the not

axis-aligned discontinuity of the lightsource

the integrand of the rendering equation has

in�nite variation.

Here we derive the analytical solution some-

how di�erently than in [Hyben98], since we

also show that not only the complete solution

can be obtained but also the partial solutions

of di�erent bounces. The knowledge of the

contribution of di�erent bounces allows us to

use the reference solution to evaluate biased,

�nite random walk algorithms.

5.1 Analytical solution of the refer-

ence scene

Let the scene be an inner surface S of a sphere

of radius R, the BRDF be constant fr = %=�

and the emission be di�use and constant Le

in a subset Ae of the spherical surface and

zero otherwise.

Using the

d!0 =
cos �~y � d~y
jj~y � ~xjj2



substitution for the solid angle, we obtain the

following form of the one bounce:

(T Le) =

Z
S

fr � cos �~x � Le(~y) � cos �~y
jj~y � ~xjj2 d~y

(15)

Since Le(~y) is constant and non-zero only in-

side Ae we get:

(T Le) = fr � Le �
Z
Ae

cos �~x � cos �~y
jj~y � ~xjj2 d~y: (16)

R
R

x

x

y
yθ θ

Figure 7: Geometry of the reference scene

Looking at �gure 7, we can see that inside a

sphere

cos �~x = cos �~y =
jj~y � ~xjj
2R

;

thus we can obtain the following �nal form

for the one-bounce:

(T Le) =
fr � Le

4R2
� Ae = % � ~Le (17)

where ~Le = Le �Ae=S is the average emission

of the total spherical surface.

Summarizing, after the �rst bounce the ra-

diance distribution is constant. Substituting

this into Le and replacing Ae by the total

spherical surface S, we can derive the two

bounce radiance transfer as well:

(T 2Le)(~x; !) =

�
fr

4R2

�
� S � % � ~Le = %2 ~Le:

(18)

Similarly, the n bounce radiance distribution

is:

(T nLe)(~x; !) = %n ~Le: (19)

5.2 Error measurements

The e�ciency of Monte-Carlo and quasi-

Monte Carlo quadratures have been tested

for the presented spherical scene assuming a

single pixel camera. The error has been mea-

sured separately for the di�erent bounces.

Looking at the error measurements of �g-

ure 8, we can see that even for integrands of

in�nite variation quasi-Monte Carlo methods

are still better but they lose their advantage

when computing higher bounces as predicted

by the theoretical results. The other impor-

tant problem in higher dimensions is that al-

though a low-discrepancy series has almost

linearly decreasing discrepancy in the asymp-

totic sense, this discrepancy can still be high

for not very many points (in the solution of

the rendering equation we rarely use more

than 1000 samples for the estimation of a sin-

gle pixel). In the case of the Halton series, for

example, the base of the series strongly af-

fects the initial behavior of the discrepancy.

These base numbers are di�erent prime num-

bers for di�erent dimensions, thus for high-

dimensional integrals the base numbers can

be quite high, which results in degraded per-

formance.

6 Conclusions

This paper reviewed the application of quasi-

Monte Carlo integration to solve the render-

ing equation. It showed that although the

integrand of the rendering equation is not

of �nite variation, an error analysis is still

possible that combines the Koksma-Hlawka

inequality with the probabilistic bounds of

Monte-Carlo techniques. This error analysis

leads us to the conclusion that the conver-

gence rate of quasi-Monte Carlo integration

can be better than Monte-Carlo quadrature

even for the discontinuous rendering equa-

tion, especially when the required dimension

| that is the average re
ectivity of the scene

| is not very high. The theoretical results

have also been demonstrated by simulation.
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