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Abstract
Quasi-Monte Carlo integration is said to be better than Monte-Carlo integration since its error bound can be in
the order ofO(N�(1��)) instead of theO(N�0:5) probabilistic bound of classical Monte-Carlo integration if
the integrand has finite variation. However, since in computer graphics the integrand of the rendering equation
is usually discontinuous and thus has infinite variation, the superiority of quasi-Monte Carlo integration has not
been theoretically justified. This paper examines the integration of discontinuous functions using both theoretical
arguments and simulations and explains what kind of improvements can be expected from the quasi-Monte Carlo
techniques in computer graphics.
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1. Introduction

The fundamental task of computer graphics is to solve a
Fredholm type integral equation describing the light trans-
port. This equation is calledthe rendering equationand has
the following form:

L(~x; !) = Le(~x; !)+

Z

0

L(h(~x;�!0); !0) � cos �0 � fr(~x; !0; !) d!0 (1)

whereL(~x; !) is the radiance of the surface in point~x
at direction!, h(~x; !0) is the visibility function defining
the point that is visible from point~x at direction!0, �0 is
the angle between the surface normal and direction!0, and
fr(~x; !

0; !) is the bi-directional reflection/refraction func-
tion (figure 1).

In order to simplify the notations, the integral operator of
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Figure 1: Geometry of the rendering equation

the rendering equation is denoted byT :Z

0

L(h(~x;�!0); !0)�cos �0 �fr(~x; !0; !) d!0 = T L(~x; !):

(2)
Thus the short form of the rendering equation is:

L = L
e + T L: (3)
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Generally two methods exists that can solve this equation
without simplifying the transport laws:

� finite element methods4 which convert the integral equa-
tion into an approximating linear equation that can be
solved by straightforward techniques,

� random walk methods18 that expand the rendering equa-
tion into a Neumann series, and evaluate its terms by
multi-dimensional, Monte-Carlo quadrature.

This paper investigates the random-walk solution when
the walk is not governed by random decisions but determin-
istic selection from appropriate uniform sequences.

In equation 3 the unknown functionL appears on both
sides. Recursively substituting the right side’sL byLe+T L,
which is obviouslyL according to the equation, we get the
following Neumann series:

L = L
e + T L = L

e + T (Le + T L) =

L
e + T Le + T 2

L =

nX
i=0

T i
L
e + T n+1

L: (4)

If integral operatorT is contractive, that is ifjjT Ljj � s �
jjLjj; s < 1; thenlimn!1 T n+1L = 0, thus

L =

1X
i=0

T i
L
e
: (5)

The contractive property ofT comes from the fact that a
reflection or refraction always decreases the energy.

The terms of this infinite Neumann series have intuitive
meaning as well:T 0Le = Le comes from the emission,
T 1Le comes from a single reflection,T 2Le from two re-
flections, etc.

In order to study the structure ofT iLe, let us consider the
case ofi = 2:

T 2
L
e = T (T Le) =Z


1

(T Le)(h(~x;�!01); !01) � cos �01 � fr(~x; !01; !) d!01 =

Z

0

1

Z

0

2

L
e(h(h(~x;�!01);�!02); !02) � cos �01 � cos �02�

fr(~x; !
0
1; !) � fr(h(~x;�!01); !02; !01; ) d!02d!01: (6)

To evaluate the integrand at point(~x; !; !01; !
0
2), the fol-

lowing algorithm must be executed:

1. Surface point~y1 = h(~x;�!01) — that is the point which
is visible from~x at direction�!01 — must be determined.
This can be done by sending a ray from~x into direction
�!01 and identifying the surface that is first intersected.

2. Surface point~y2 = h(h(~x;�!01);�!02) — that is the
point visible from~y1 at direction�!02 is identified. This
means the continuation of the ray tracing at direction
�!02.

3. The emission intensity of the surface at~y2 in the direction
of !02 is obtained and is multiplied with the cosine terms
and the BRDFs of the two reflections.
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Figure 2: The integrand ofT 2Le is a two-step walk

This algorithm can easily be generalized for arbitrary
number of reflections. In order to compute the contribution
of thenth reflection of the light toL(~x; !), the following
function should be integrated: A ray is emanated recursively
from ~x at direction�!01, then from the found surface at
�!02, etc. until�!0n. The emission intensity at the end of
the walk is read and multiplied by the BRDFs and the cosine
terms of the stages of the walk.

These walks provide the value of the integrand at “point”
!01; !

0
2; : : : ; !

0
n. The integral is estimated from the values at

these points using some quadrature rule. The calculated in-
tegral has usually high dimension. The approximation error
of integrals may be different from pixel to pixel, resulting in
a noisy image. In order to reduce noise, the number of walks
is increased and the image is generated as an average of the
contributions of individual walks.

Due to the visibility termh(~x;�!0) in the rendering
equation, an estimation ofdth bounce of the light requires
the solution ofd number of visibility problems. The most
obvious way for this is ray-shooting which emanates a ray
from point~x at direction�!0 and finds the nearest intersec-
tion.

Since classical quadrature techniques based on uniform
grids, such as trapezodial rule, may have integration error
of orderO(1=N1=s) whereN is the number of dot points
ands is the dimension of the domain, in order to guarantee
a predefined error, the number of dot points should be in the
order ofO(Ns), which is prohibitive for high-dimensional
integrals. This phenomenon is called as thedimensional ex-
plosion.

The dimensional explosion can be avoided by Monte-
Carlo or Quasi-Monte Carlo integration methods. Monte-
Carlo methods trace back the estimation of an integral to the
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calculation of an expected value, which is estimated by av-
eraging random samples. Quasi-Monte Carlo techniques, on
the other hand, use deterministic samples that are uniformly
distributed in the integration domain.

Monte-Carlo quadrature considers the integral as an ex-
pected value which can be estimated by averaging random
points:Z

V

f(z) dz = V �
Z
V

f(z) � 1
V

dz = V �E[f(z)] (7)

since1=V can be considered as the probability density of a
random variable uniformly distributed inV .

If N number of points are used to estimate an integral of
f in the domain of sizeV , the Monte-Carlo quadrature will
have the following (stochastic) error bound:Z
V

f(z) dz = V �
Z
V

f(z)� 1
V
dz � V

N
�
NX
i=1

f(zi)�V � �p
N
:

(8)
The variance� is defined by

�
2 = E[(f̂(z)�E[f(z)])2] =

Z
V

(f̂(z)�E[f(z)])2� 1
V
dz:

(9)
If f(z) is square-integrable function, then� is finite, thus
the stochastic error bound will be in the order ofO(N�0:5).

Quasi-Monte Carlo integration, on the other hand, uses
deterministic point-sets that contain very uniformly dis-
tributed points in the integration domain. For the normalized,
s-dimensional integration domain[0; 1]s, the quasi-Monte
Carlo approximation is:Z

[0;1]s

f(x) dx � 1

N

NX
i=1

f(xi): (10)

Sample pointsx1;x2; : : : ;xN should be selected to mini-
mize the error of the integral quadrature. Intuitively this error
must depend on two independent factors. On the one hand,
if the distribution of the sample points is not uniform, then
there are large regions where there are no sample point at all,
which increases the error. From mathematical point of view,
the uniformity is characterized by the discrepancy of a point
set. The star-discrepancy is defined by

D
�(x1;x2; : : :xN) = sup

A

jm(A)

N
� V (A)j (11)

whereA is ans-dimensional sub-cube parallel to the coor-
dinate axes and originating at the center,V (A) is its vol-
ume, andm(A) is the number of sample points inside this
subcube. For carefully selected sample points, calledlow-
discrepancy sequences14, the discrepancy can be in the order
of O(logs�1N=N).

On the other hand, the error of quadrature also depends

on how quickly the function changes between the sample
points. If the function can change significantly in small do-
main, then the error can be quite large. However, if the slope
of the function is small, then nothing dramatic happens be-
tween the sample points, thus the error will be small.

Measures describing how rapidly a function can change
are calledvariations. For a 1-dimensional function, thevari-
ation in the sense of Vitaliis defined as:

VV(f(x)) = lim sup

nX
i=1

jf(xi+1)� f(xi)j: (12)

For a 2-dimensional function, the definition is analogous:

VV(f(x; y)) =

lim sup

nX
i=1

mX
j=1

jf(xi+1; yj+1)�f(xi+1; yj)�f(xi; yj+1)+f(xi; yj)j:

(13)
Note that for higher dimensions, the variation of Vitali does
not provide a good measure: if the function is constant inx,
for instance, then the variation is zero, regardless how the
function changes depending ony. Thus, it is worth using
a somehow more stronger variation type, called theHardy-
Krause variation. The variation in the sense of Hardy and
Krause is the sum of the variations of the function and its
restrictions to the end of the domain. For dimension 2, the
new variation is:

VHK(f(x; y)) = VVf(x; y) + VVf(x; 1) + VVf(1; y):
(14)

If a function has bounded and continuous mixed deriva-
tives, then its variation is finite. For a 2-dimensional function
meeting this requirement, the variation can be given by the
following formula:

VHK(f(u; v)) =
1Z

0

1Z
0

����@2f(u; v)@u@v

���� du dv+
1Z

0

����@f(u; 1)@u

���� du+

1Z
0

����@f(1; v)@v

���� dv: (15)

The property that a function is not continuous does not
necessarily mean that the variation is infinite. If at most fi-
nite or countably infinite discontinuity occurs at hyperplanes
parallel to the coordinate axes, then the variation is still fi-
nite. An example of a discontinuous function that have finite
variation is

f(x; y) =

(
1 if x > x0;

0 otherwise.
(16)

However, when the discontinuity is not parallel to the co-
ordinate axes, then the variation is infinite. A simple function
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of infinite variation is5:

f(x; y) =

(
1 if x > y;

0 otherwise.
(17)

From these two factors — the discrepancy of the sam-
ple locations and the variation of the function — an upper-
bound can be established for the error of the quadrature. If
the integrandf has finite variation in the sense of Hardy and
Krause, then the error of the quasi-Monte Carlo quadrature
can be bounded as stated by the Koksma-Hlawka inequality:

j
Z

[0;1]s

f(x) dx� 1

N

NX
i=1

f(xi)j � VHK�D�(x1;x2; : : :xN);

(18)
whereVHK is the variation in the sense of Hardy and Krause
andD�(x1;x2; : : :xN ) is the star-discrepancy of the sam-
ple points14. As mentioned, for low-discrepancy point sets
the discrepancy can be in the order ofO(logs�1N=N),
which can provide much better error bounds than the
O(1=N1=s) bound of classical quadrature rules or the
O(1=

p
N) probabilistic error bound of Monte Carlo meth-

ods. Moreover, quasi-Monte Carlo methods guarantee this
accuracy in a deterministic way, unlike Monte Carlo meth-
ods where the error bound is also probabilistic.

2. Generation of Low-Discrepancy Sequences

As a conclusion of the error analysis we can state that
we need very uniform sequences for quasi-Monte Carlo
quadrature. The discrepancy of the best sequences known
is in the order ofO(logsN=N) or even in the order of
O(logs�1N=N) if N is known before starting the sequence.

There are many sequences published in the literature
14; 20; 5; 11. The most famous one is probably theHalton se-
quence.

The elementi of the one-dimensional Halton sequence of
baseb is defined as the radical inverse of the expansion ofi

in baseb. This means that numberi is expanded in radixb,
then the number is mirrored onto the “radix” point.

Why is this sequence uniform? Note that the construction
algorithm generates as binary form ofi all binary combina-
tions of lengthk before producing a combination of length
k+1. This means that after the radical inverse the sequence
Hi will visit all intervals of length2�k before putting a new
point in an interval already visited.

On the other hand, ask increases, the algorithm produces
a single point in each interval of length1=2, then in each
interval of length1=4, etc. thus the sequence is not only as-
symptotically uniform, but also the firstN points are fairly
uniformly distributed (this is guaranteed by the property that
the radical inverse makes the most significant bit the most
rapidly changing bit).

Note that the same construction can be used for any base,
thus in this way infinitely many different Halton sequences
can be constructed.

For higher dimensional Halton sequences, the interdepen-
dence of different coordinates should be as little as possible.
Thus an appropriate way of the construction is selecting rel-
ative primes (sayb1; b2; : : : bs) as bases for the different co-
ordinates. A two-dimensional Halton sequence, for instance,
would visit all grid cells of sizeb�k11 ; b

�k2
2 before putting a

new point into a cell ifb1 andb2 are relative primes.

A C++ class that can be initialized to an arbitrary Halton
point and then it can generate incrementally all subsequent
points using a very fast algorithm10 is presented in the fol-
lowing:

class Halton {
double value, inv_base;

public:
Number( long i, int base ) {

double f = inv_base = 1.0/base;
value = 0.0;
while ( i > 0 ) {

value += f * (double)(i % base);
i /= base;
f *= inv_base;

}
}
void Next( ) {

double r = 1.0 - value - 0.0000000001;
if (inv_base < r) value += inv_base;
else {

double h = inv_base, hh;
do {

hh = h;
h *= inv_base;

} while ( h >= r );
value += hh + h - 1.0;

}
}
operator double( ) { return value; }

};

3. Integrating functions of unbounded variation

As mentioned, the integrand of the original form of the ren-
dering equation is discontinuous where the discontinuity is
not aligned with the coordinate axes, thus its variation is in-
finite. These discontinuities are usually produced by the pro-
jected object boundaries.

This property makes the Koksma-Hlawka inequality not
appropriate for the error analysis of the solution of the ren-
dering equation and for the prediction of the convergence
rates.

In this section the convergence speed is examined for
functions which are generally smooth but have general dis-
continuities of finite “length”. First the domain of the inte-
gration is assumed to be 2-dimensional, then the results will
be generalized to arbitrary dimension.
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Figure 3: The distribution of the first 10,100 and 1000 Halton points in 2 dimensions
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Figure 4: A typical integrand of the rendering equation

Suppose thatN number of samples has been generated
to estimate the integral of a function such as in figure 4 us-
ing a low-discrepancy sequence. In order to overcome the
difficulty that the integrandf has infinite variation, the func-
tion is decomposed into two functions, one is smooth~f hav-
ing continuous mixed derivatives and the otherf̂ inherits the
discontinuity off (figure 5).

Low-discrepancy sequences generate points in a cellular
grid in a way that the difference of the number of points
in two cells is at most 1. If there are alreadyN number of
points, the size of a cell on the finest, filled level is approx-
imately1=

p
N � 1=

p
N . Let us define the domain of̂f as

the set of those cells that are intersected by the discontinu-
ity. This domain is called thedomain of discontinuity. The
number of such cells is in the order of the “digital length”
of the discontinuity curve, which is the product of the maxi-
mum extentl and the resolution of the grid

p
N . Since each

cell has at least 1 (and at most 2) points, the number of points
in this domain is at leastl

p
N .

The error of quadrature is as follows:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j �

j
Z

z2[0;1]2

~f(z) dz� 1

N

NX
i=1

~f(zi)j+

j
Z

z2[0;1]2

f̂(z) dz� 1

N

NX
i=1

f̂(zi)j: (19)

Since ~f has finite variation, the first term in the error is
bounded byVHK( ~f) �D�(z1; z2; : : : zN ).

Concerning the second term, the integration off̂ is esti-
mated takingl

p
N samples and averaging the result. Since

the samples and the discontinuity are not related in any way,
we can suppose that this is a normal Monte-Carlo integration
15. The uniform property of low-discrepancy sequence guar-
antees that this pseudo-random set can be assumed to have
uniform distribution.

If �f is the difference between the maximum and min-
imum values in the domain of discontinuity, then�2 �
(�f)2. In our case the number of sample pointsM is l

p
N

andV = l=
p
N , thus we obtain:Z

V

f̂(z) dz =
V

M
�
MX
i=1

f̂(zi)� V � �f
M

=

1

N
�
MX
i=1

f̂(zi)��f �
p
l �N�3=4

: (20)

Taking into account that̂f is zero outside the domain of dis-
continuity, equality 19 can be expressed as:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j �

VHK( ~f) �D�(z1; z2; : : : zN ) + �f �
p
l �N�3=4

: (21)

For largeN values the second term will be dominant, which
results inO(N�3=4) error bound. This is poorer than the
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f f f~ ^

= +

Figure 5: Decomposition off into a smooth (~f ) and a discontinuous (̂f ) function

O(log2N=N) bound suggested by the Koksma-Hlawka in-
equality. Note that the point from where the second term
dominates the first one depends on “intensity”�f and size
of the discontinuity

p
l.

The same analysis can be carried out in higher dimensions
as well. InD dimensions a discontinuity of sizel would in-
tersectV = l �N�1=D volume of cells which would contain
M = l � N (D�1)=D sample points. Thus the general error
bound is:

j
Z

z2[0;1]D

f(z) dz� 1

N

NX
i=1

f(zi)j �

VHK( ~f) �D�(z1; z2; : : : zN ) +�f �
p
l �N�

(D+1)

2D : (22)

Thus, for quasi-Monte Carlo integration of discontinu-
ous functions, the order of the error bound will be in be-
tween theO(N�(1��)) bound of finite variation functions
andO(N�0:5) stochastic bound of Monte-Carlo quadrature.
The higher the dimension of the integral, the closer the two
methods get in this order. However, the proportionality ra-
tio of the bounds may still be very different. Thus it is still
worth using quasi-Monte Carlo quadrature if the size of the
discontinuityl is not very large, since in this case the error
could be significantly less then for Monte-Carlo quadrature.

When quasi-Monte Carlo quadrature is used for the so-
lution of the rendering equation, it should be taken into ac-
count that the Neumann series contains a series of integrals
of increasing dimension. If shooting type walks are used,
then the effect of higher dimensional integrals gets lower
due to the dissipation of energy. Thus the degradation of the
convergence for higher dimensional integrals is partly com-
pensated by their reduced importance.

Unfortunately this does not happen for gathering type
walk, since here the final power may result from any step.

4. Numerical evidence for simple functions

In order to demonstrate the previous results, the convergence
of a 2-dimensional and a 3-dimensional functions are exam-
ined, that are simple enough to analytically compute their
integrals.

The 2-dimensional function is:

f2(x; y) =

�
(x+ y) � a+ 1� 2 � a if x+ y > 1;

(x+ y) � a otherwise;
(23)

wherea is a free parameter in the range of[0; 0:5]. Note that
by settinga appropriately, the intensity of the discontinu-
ity can be controlled without altering either the value of the
integral or the variation of the continuous part. Ifa = 0:5,
then the function has finite variation, otherwise it has infinite
variation.

The results of the simulation are shown in figure 6. This
figure shows the maximum error after a given number of
samples.
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Errors of integrating function f2

MC: a=0 (infinite variation)
QMC: a=0 (infinite variation)

QMC: a=0.2 (infinite variation)
QMC: a=0.5 (finite variation)

Figure 6: Error of integratingf2

The 3-dimensional function is:

f3(x; y; z) =

8><
>:

(x+ y + z) � a+ 0:6� 1:8 � a
if x+ y + z > 1;

(x+ y + z) � a otherwise;

(24)

wherea is a free parameter in the range of[0; 1=3]. If a =
1=3, thenf3 has finite variation, otherwise it has not. The
error of integration off3 is summarized in figure 7.
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Figure 7: Error of integratingf3

5. Numerical evidence for rendering

In order to obtain accurate error measurements for rendering
algorithms, we need scenes for which the exact solution is
known. Generally, we have two opportunities. Either, we use
simple scenes for which analytical solution is possible, or
numerical methods are applied using so many samples that
the approximate solution can be accepted as a reference.

One of the famous analytically solvable case is the ho-
mogeneous environment, where the geometry is arbitrary,
but all surfaces have the same diffuse reflection and emis-
sion17; 8. In this scene, however, the emission distribution is
very homogeneous, thus quasi-Monte Carlo methods would
be given an unfair handicap.

Thus we shall use another reference scene proposed by7,
which is an inner surface of a sphere, where the reflection is
diffuse and homogeneous, but only a part of the surface has
non-zero emission. Due to the not axis-aligned discontinuity
of the lightsource the integrand of the rendering equation has
infinite variation.

Here we derive the analytical solution somehow differ-
ently than in7, since we also show that not only the com-
plete solution can be obtained but also the partial solutions
of different bounces. The knowledge of the contribution of
different bounces allows us to use the reference solution to
evaluate biased, finite random walk algorithms.

5.1. Analytical solution of the reference scene

Let the scene be an inner surfaceS of a sphere of radiusR,
the BRDF be constantfr = %=� and the emission be diffuse
and constantLe in a subsetAe of the spherical surface and
zero otherwise.

Using the

d!
0 =

cos �~y � d~y
jj~y � ~xjj2

substitution for the solid angle, we obtain the following form
of the one bounce:

(T Le)(~x; !) =
Z
S

fr � cos �~x �Le(~y) � cos �~y
jj~y � ~xjj2 d~y (25)

SinceLe(~y) is constant and non-zero only insideAe we get:Z
S

fr � cos �~x � Le(~y) � cos �~y
jj~y � ~xjj2 d~y =

fr � Le �
Z
Ae

cos �~x � cos �~y
jj~y � ~xjj2 d~y: (26)

R
R

x

x

y
yθ θ

Figure 8: Geometry of the reference scene

Looking at figure 8, we can see that inside a sphere

cos �~x = cos �~y =
jj~y � ~xjj

2R
;

thus we can obtain the following final form for the one-
bounce:

fr �Le �
Z
Ae

cos �~x � cos �~y
jj~y � ~xjj d~y =

fr � Le
4R2

�Ae = %� ~Le (27)

where~Le = Le � Ae=S is the average emission of the total
spherical surface.

Summarizing, after the first bounce the radiance distri-
bution is constant. Substituting this intoLe and replacing
Ae by the total spherical surfaceS, we can derive the two
bounce radiance transfer as well:

(T 2
L
e)(~x; !) =

�
fr

4R2

�
� S � % � ~Le = %

2 ~Le: (28)

Similarly, then bounce radiance distribution is:

(T n
L
e)(~x; !) = %

n ~Le: (29)
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Figure 9: Error measurements for 1, 2, 5 and 10 bounces

5.2. Error measurements

The efficiency of Monte-Carlo and quasi-Monte Carlo
quadratures have been tested for the presented spherical
scene assuming a single pixel camera. The error has been
measured separately for the different bounces.

Looking at the error measurements of figure 9, we can
see that even for integrands of infinite variation quasi-Monte
Carlo methods are still better but they lose their advantage
when computing higher bounces as predicted by the theoret-
ical results. The other important problem in higher dimen-
sions is that although a low-discrepancy series has almost
linearly decreasing discrepancy in the asymptotic sense, this
discrepancy can still be high for not very many points (in
the solution of the rendering equation we rarely use more
than 1000 samples for the estimation of a single pixel). In
the case of the Halton series, for example, thebaseof the
series strongly affects the initial behavior of the discrepancy.
These base numbers are different prime numbers for differ-
ent dimensions, thus for high-dimensional integrals the base
numbers can be quite high, which results in degraded perfor-
mance.

6. Conclusions

This paper reviewed the application of quasi-Monte Carlo
integration to solve the rendering equation. It showed that al-
though the integrand of the rendering equation is not of finite
variation, an error analysis is still possible that combines the
Koksma-Hlawka inequality with the probabilistic bounds of
Monte-Carlo techniques. This error analysis leads us to the
conclusion that the convergence rate of quasi-Monte Carlo
integration can be better than Monte-Carlo quadrature even
for the discontinuous rendering equation, especially when
the required dimension — that is the average reflectivity of
the scene — is not very high. The theoretical results have
also been demonstrated by simulation.
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