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Abstract

Quasi-Monte Carlo integration is said to be better than Monte-Carlo integration since its error bound can be in
the order of O(N~1~9) instead of theD(N ) probabilistic bound of classical Monte-Carlo integration if

the integrand has finite variation. However, since in computer graphics the integrand of the rendering equation
is usually discontinuous and thus has infinite variation, the superiority of quasi-Monte Carlo integration has not
been theoretically justified. This paper examines the integration of discontinuous functions using both theoretical
arguments and simulations and explains what kind of improvements can be expected from the quasi-Monte Carlo
techniques in computer graphics.
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1. Introduction

The fundamental task of computer graphics is to solve a
Fredholm type integral equation describing the light trans-
port. This equation is calleithe rendering equatioand has
the following form:

L(Z,w) = L°(Z,w)+ Figure 1: Geometry of the rendering equation

/L(h(f, —w"),w') cost - fr(E W, w)do' (1)

Q'

where L(Z#,w) is the radiance of the surface in poift the rendering equation is denoted by

at directionw, h(#,w") is the visibility function defining

the point that is visible from poinf at directionw’, 8’ is L(h(Z,~w'),w")-cos ¢ - fr(Z,0",w) dw’ = TL(Z,w).
the angle between the surface normal and directigrand Q
fr(Z,0',w) is the bi-directional reflection/refraction func- @
tion (figure 1). Thus the short form of the rendering equation is:

In order to simplify the notations, the integral operator of L=L°+TL. 3)
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Generally two methods exists that can solve this equation 2. Surface point, = h(h(Z, —w}), —w5) — that is the
without simplifying the transport laws: point visible fromi/; at direction—wj is identified. This
means the continuation of the ray tracing at direction
—wh.
3. The emission intensity of the surfacgjain the direction
of w} is obtained and is multiplied with the cosine terms
and the BRDFs of the two reflections.

o finite element methodswhich convert the integral equa-
tion into an approximating linear equation that can be
solved by straightforward techniques,

e random walk method® that expand the rendering equa-
tion into a Neumann series, and evaluate its terms by
multi-dimensional, Monte-Carlo quadrature.

This paper investigates the random-walk solution when
the walk is not governed by random decisions but determin-
istic selection from appropriate uniform sequences.

In equation 3 the unknown functioh appears on both
sides. Recursively substituting the right side’by L°+7 L,
which is obviouslyL according to the equation, we get the
following Neumann series:

L=L°+TL=L+T(L°+TL) =

n Figure 2: The integrand of 2L¢ is a two-step walk
L+ TL+T°L=Y TL+T""L (4

=0 This algorithm can easily be generalized for arbitrary
If integral operatorT is contractive, thatis if|TL|| < s - number of reflections. In order to compute the contribution
I|IL]], s < 1, thenlim, o 7" L = 0, thus of the nth reflection of the light taL(#, w), the following
oo function should be integrated: A ray is emanated recursively
L= ZTiLe. (5) from # at direction—w?}, then from the found surface at
P —wh, etc. until —w,,. The emission intensity at the end of

the walk is read and multiplied by the BRDFs and the cosine

The contractive property of comes from the fact that a terms of the stages of the walk.

reflection or refraction always decreases the energy.

These walks provide the value of the integrand at “point”
wi,wh, ..., wh. The integral is estimated from the values at
these points using some quadrature rule. The calculated in-
tegral has usually high dimension. The approximation error
of integrals may be different from pixel to pixel, resulting in

In order to study the structure @F L¢, let us consider the @ noisy image. In order to reduce noise, the number of walks
case ofi = 2: is increased and the image is generated as an average of the

o e . contributions of individual walks.
T°L*=T(TL) =

The terms of this infinite Neumann series have intuitive
meaning as wellT°L¢ = L° comes from the emission,
T'LE comes from a single reflectioff;>L¢ from two re-
flections, etc.

Due to the visibility termh(Z, —w') in the rendering

equation, an estimation afth bounce of the light requires
/(TLE)(h(fy —wh),w!) - cos O] - fr (& wi,w) dwi = the solution ofd number of visibility problems. The most
o obvious way for this is ray-shooting which emanates a ray
from point# at direction—w’ and finds the nearest intersec-
tion.

Le(h(h(f7 _w’1)7_w’2)7wl2) '0089’1 'C059’2' . . . .
Since classical quadrature techniques based on uniform

Q) grids, such as trapezodial rule, may have integration error
of orderO(1/N'/¢) where N is the number of dot points
fr(@ wi,w) - fr (WM&, —w)),ws,wi,) dwsdw).  (6) ands is the dimension of the domain, in order to guarantee
a predefined error, the number of dot points should be in the
To evaluate the integrand at poifit, w, w1, w5), the fol- order of O(N*), which is prohibitive for high-dimensional
lowing algorithm must be executed: integrals. This phenomenon is called as dimensional ex-
1. Surface poinf; = h(Z, —w}) — that is the point which plosion
is visible from: at direction—w| — must be determined. The dimensional explosion can be avoided by Monte-
This can be done by sending a ray frahinto direction Carlo or Quasi-Monte Carlo integration methods. Monte-

—w' and identifying the surface that is first intersected.  Carlo methods trace back the estimation of an integral to the
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calculation of an expected value, which is estimated by av- on how quickly the function changes between the sample
eraging random samples. Quasi-Monte Carlo techniques, onpoints. If the function can change significantly in small do-

the other hand, use deterministic samples that are uniformly main, then the error can be quite large. However, if the slope
distributed in the integration domain. of the function is small, then nothing dramatic happens be-

Monte-Carlo quadrature considers the integral as an ex- tween the sample points, thus the error will be small.

pected value which can be estimated by averaging random Measures describing how rapidly a function can change
points: are calledsariations. For a 1-dimensional function, tivari-
ation in the sense of Vitai$ defined as:
[tz [ s

<|

W(f(@) =limsup > |f(wits) = fl@i)l.  (12)
sincel/V can be considered as the probability density of a i=1
random variable uniformly distributed #A. For a 2-dimensional function, the definition is analogous:

If N number of points are used to estimate an integral of W (f(z,y) =
f in the domain of sizd”, the Monte-Carlo quadrature will
have the following (stochastic) error bound:

limsup » Y [f(@ir1, yy+1) = F@ir, y3) = F (@i, ygr0)+F (2, y5)|-

i=1 j=1
/f(Z)dsz-/f(z)-% ~ N Zf iV— ! (13)
v v Note that for higher dimensions, the variation of Vitali does
(8) not provide a good measure: if the function is constant,in
The variancer is defined by for instance, then the variation is zero, regardless how the
. . 1 function changes depending gn Thus, it is worth using
= E[(f(z)-E[f(2)]))%] = /(f(z)—E[f(z)])2-v dz. a somehow more stronger variation type, calledHiiagdy-
v Krause variation The variation in the sense of Hardy and
9) Krause is the sum of the variations of the function and its
If f(z) is square-integrable function, thenis finite, thus restrictions to the end of the domain. For dimension 2, the
the stochastic error bound will be in the ordeifN —°-%). new variation is:

Quasi-Monte Carlo integration, on the other hand, uses Vuk(f(z,y)) = Vwf(z,y) + Vvf(z,1) + W f(l,y).
deterministic point-sets that contain very uniformly dis- (14)
tributed points in the integration domain. For the normalized,
s-dimensional integration domai, 1]°, the quasi-Monte
Carlo approximation is:

If a function has bounded and continuous mixed deriva-
tives, then its variation is finite. For a 2-dimensional function
meeting this requirement, the variation can be given by the

1 N following formula:
xR Z £(x5). (10)
[01)° =t Vuk (f (u, v) //‘agg” du dv+
Sample point;, x2,...,xny should be selected to mini- “

mize the error of the integral quadrature. Intuitively this error
must depend on two independent factors. On the one hand, 1 1
if the distribution of the sample points is not uniform, then / of(w, 1)} o+ / of(1,v)
there are large regions where there are no sample point at all, Ou Ov
which increases the error. From mathematical point of view,
the uniformity is characterized by the discrepancy of a point
set. The star-discrepancy is defined by

dv.  (15)

The property that a function is not continuous does not
necessarily mean that the variation is infinite. If at most fi-
nite or countably infinite discontinuity occurs at hyperplanes
parallel to the coordinate axes, then the variation is still fi-
nite. An example of a discontinuous function that have finite
variation is

D*(xl,xz,...xN):sup|M—V(A)| (11)
A N

where A is ans-dimensional sub-cube parallel to the coor-
dinate axes and originating at the cenféfA) is its vol- _
ume, andm(A) is the number of sample points inside this Lif z > o,
subcube. For carefully selected sample points, cdted fz,y) (16)
discrepancy sequenc¥sthe discrepancy can be in the order

s—1
of O(log®™" N/N). However, when the discontinuity is not parallel to the co-
On the other hand, the error of quadrature also depends ordinate axes, then the variation is infinite. A simple function

0 otherwise.
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of infinite variation is®:

lif x >y,
f(z,y) = { 17)

0 otherwise.

Note that the same construction can be used for any base,
thus in this way infinitely many different Halton sequences
can be constructed.

For higher dimensional Halton sequences, the interdepen-

) dence of different coordinates should be as little as possible.
From these two factors — the discrepancy of the sam- Tys an appropriate way of the construction is selecting rel-
ple locations and the variation of the function — an upper- ative primes (say., bs, . . . bs) as bases for the different co-

bound can be established for the error of the quadrature. If

ordinates. A two-dimensional Halton sequence, for instance,

the integrand’ has finite variation in the sense of Hardy and  q1d visit all grid cells of Sizebl—kl b2—k2 before putting a
Krause, then the error of the quasi-Monte Carlo quadrature q, point into a cell ib, andb. are relative primes.

can be bounded as stated by the Koksma-Hlawka inequality:

N
/ f(x) dx—% Zf(xlﬂ < Vuk-D" (x1,%2,...Xn),

|
[0,1)¢

A C++ class that can be initialized to an arbitrary Halton
point and then it can generate incrementally all subsequent
points using a very fast algorith# is presented in the fol-
lowing:

(18) class Halton {

whereVyk is the variation in the sense of Hardy and Krause
and D" (x1, x2, ... xn) IS the star-discrepancy of the sam-
ple points!4. As mentioned, for low-discrepancy point sets
the discrepancy can be in the order @flog®~* N/N),
which can provide much better error bounds than the
O(1/N'/#) bound of classical quadrature rules or the
O(1/+v/N) probabilistic error bound of Monte Carlo meth-
ods. Moreover, quasi-Monte Carlo methods guarantee this
accuracy in a deterministic way, unlike Monte Carlo meth-
ods where the error bound is also probabilistic.

2. Generation of Low-Discrepancy Sequences

As a conclusion of the error analysis we can state that
we need very uniform sequences for quasi-Monte Carlo
quadrature. The discrepancy of the best sequences known
is in the order ofO(log® N/N) or even in the order of
O(log®~" N/N) if N is known before starting the sequence.

There are many sequences published in the literature
14,20,5,11 The most famous one is probably tHalton se-
guence

The element of the one-dimensional Halton sequence of g

baseb is defined as the radical inverse of the expansioh of
in baseb. This means that numbeiis expanded in radik,
then the number is mirrored onto the “radix” point.

double value, inv_base;

public:

Number( long i, int base ) {
double f = inv_base = 1.0/base;
value = 0.0;
while (i >0){
value += f * (double)(i % base);
i /= base;
f *= inv_base;

}

void Next( ) {
double r = 1.0 - value - 0.0000000001;
if (inv_base < r) value += inv_base;
else {
double h = inv_base, hh;
do {
hh = h;
h *= inv_base;
} while ( h >=r1);
value += hh + h - 1.0;
}

operator double( ) { return value; }

3. Integrating functions of unbounded variation

As mentioned, the integrand of the original form of the ren-

Why is this sequence uniform? Note that the construction dering equation is discontinuous where the discontinuity is

algorithm generates as binary formiadll binary combina-
tions of lengthk before producing a combination of length

not aligned with the coordinate axes, thus its variation is in-
finite. These discontinuities are usually produced by the pro-

k + 1. This means that after the radical inverse the sequence&cted object boundaries.

H; will visit all intervals of length2—* before putting a new
point in an interval already visited.

On the other hand, dsincreases, the algorithm produces
a single point in each interval of lengtly2, then in each
interval of lengthl /4, etc. thus the sequence is not only as-
symptotically uniform, but also the firgY points are fairly

This property makes the Koksma-Hlawka inequality not
appropriate for the error analysis of the solution of the ren-
dering equation and for the prediction of the convergence
rates.

In this section the convergence speed is examined for
functions which are generally smooth but have general dis-

uniformly distributed (this is guaranteed by the property that continuities of finite “length”. First the domain of the inte-
the radical inverse makes the most significant bit the most gration is assumed to be 2-dimensional, then the results will

rapidly changing bit).

be generalized to arbitrary dimension.

(© Institute of Computer Graphics 1998
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First 10 Halton points of base (2, 3) First 100 Halton points of base (2, 3)

s 1000 Halton points of base (2, 3)

N
- 1 ~
- seontiny | || -5 fe)l+
- | scontinui Ine P
rd =la 2€[0,1]2 =t
YN
\\ ’ N
R 1 .
N | / fl@)da— <> fa)] (19)
JEE \: domain of discontinuity 2€[0,1]2 i=1
\onemplepointinemh cell . ~ - .. . . .
N grid lines Since f has finite variation, the first term in the error is

bounded bWk (f) - D* (21,22, . .. zx).

Figure 4: A typical integrand of the rendering equation Concerning the second term, the integratiorfciﬁ esti-

mated takingv/N samples and averaging the result. Since

the samples and the discontinuity are not related in any way,
we can suppose that this is a normal Monte-Carlo integration
15, The uniform property of low-discrepancy sequence guar-

Suppose thatv number of samples has been generated antees that this pseudo-random set can be assumed to have
to estimate the integral of a function such as in figure 4 us- Uniform distribution.

ing a low-discrepancy sequence. In order to overcome the |f Af is the difference between the maximum and min-
difficulty that the integrand has infinite variation, the func-  jmum values in the domain of discontinuity, theri <

tion is decomposed into two functions, one is smaobttav- (Af)2. In our case the number of sample poiffsis [v/N
ing continuous mixed derivatives and the otlienherits the andV = I/v/N, thus we obtain:

discontinuity off (figure 5).

M . Af
'Zf(zi)iv'ﬁ =
grid in a way that the difference of the number of points
in two cells is at most 1. If there are alrea@ly number of
points, the size of a cell on the finest, filled level is approx- M
imately1/v/N x 1/v/N. Let us define the domain gfas Z Y+ Af VDN (20)
the set of those cells that are intersected by the discontinu- —
ity. This domain is called thdomain of discontinuity. The B .
number of such cells is in the order of the “digital length”  Taking into account thaf is zero outside the domain of dis-
of the discontinuity curve, which is the product of the maxi- continuity, equality 19 can be expressed as:
mum extent and the resolution of the grig'/N. Since each
cell has at least 1 (and at most 2) points, the number of points 1
T > | ) dz Z f(z
in this domain is at leagt/N.

i=1

Low-discrepancy sequences generate points in a cellular /f(z) dz =
14

zG[O,l]2
The error of quadrature is as follows:

Vux(f) - D™ (21,22, . ..2n) + Af - VI-N7¥* (21)

N
| f(z) dz — Z flzi)| < For largeNV values the second term will be dominant, which
z€[0,1]2 =1 results inO(N~3/%) error bound. This is poorer than the

(© Institute of Computer Graphics 1998
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7 f

-l _

Figure 5: Decomposition of into a smooth f) and a discontinuousfo function

O(log? N/N) bound suggested by the Koksma-Hlawka in- The 2-dimensional function is:
equality. Note that the point from where the second term

dominates the first one depends on “intensityf and size Folz,y) = { (z+y)-a+1-— 2 caifr4+y>1, (23)
of the discontinuityy/1. (z + y) - a otherwise,

The same analysis can be carried outin higher dimensions \yhereq is a free parameter in the range/f0.5]. Note that
as well. InD dimensions a discontinuity of sizevould in- by settinga appropriately, the intensity of the discontinu-

-1/D i i ) . o)
tersect” = (lb{\%/l; volume of cells which would contain ity can be controlled without altering either the value of the
M=1-N sample points. Thus the general error jniegral or the variation of the continuous partali= 0.5,
bound is: then the function has finite variation, otherwise it has infinite

1 N variation.
B OIS Sy HIE

N ; ' The results of the simulation are shown in figure 6. This
=€[0,1]P figure shows the maximum error after a given number of
(o4 samples.

Vik(f) - D (21,2, .. .an) + Af VI N~ 55 (22)

Errors of integrating function f2

Thus, for quasi-Monte Carlo integration of discontinu- 1 ‘ :
ous functions, the order of the error bound will be in be- \ QU 22D e Vrkton)
tween theO(N~(=9)) bound of finite variation functions 01 LA QUC: a=0. (e varaton)

andO (N ~°%) stochastic bound of Monte-Carlo quadrature.
The higher the dimension of the integral, the closer the two
methods get in this order. However, the proportionality ra-
tio of the bounds may still be very different. Thus it is still

worth using quasi-Monte Carlo quadrature if the size of the
discontinuity! is not very large, since in this case the error
could be significantly less then for Monte-Carlo quadrature.

0.001 -

0.0001 | T B

When quasi-Monte Carlo quadrature is used for the so-
lution of the rendering equation, it should be taken into ac-
count that the Neumann series contains a series of integrals
of increasing dimension. If shooting type walks are used, "o 000 10000 100000 10406
then the effect of higher dimensional integrals gets lower
due to the dissipation of energy. Thus the degradation of the
convergence for higher dimensional integrals is partly com-
pensated by their reduced importance.

1e-05 - b

Figure 6: Error of integrating f»

Unfortunately this does not happen for gathering type The 3-dimensional function is:

walk, since here the final power may result from any step. (t+y+2)-a+06—18-a

ifet+y+z>1
. . . . f3(m7y7z) = Y ’ (24)
4. Numerical evidence for simple functions )

. (x +y + 2) - a otherwise,
In order to demonstrate the previous results, the convergence
of a 2-dimensional and a 3-dimensional functions are exam- wherea is a free parameter in the range[0f1/3]. If a =
ined, that are simple enough to analytically compute their 1/3, then f3 has finite variation, otherwise it has not. The

integrals. error of integration offs is summarized in figure 7.

(© Institute of Computer Graphics 1998
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1 e e substitution for the solid angle, we obtain the following form
MC: a=1/3 (finite variation) —

QMC: a=0 (infinite variation) ---- of the one bounce:
QMC: a=0.1 (infinite variation) ----
QMC: a=1/3 (finite variation)

0.1

(TLE)(Z / fr-cosfz - LE(7) - HSOSQW i (25)

SinceL*(y) is constant and non-zero only inside we get:

0.001

/fr cos Bz - L°(7) - ||Sos€||2 dij =

0.0001 |- ST - 4

1e-05 Bl

. cos 0z - cos Oy
‘ ‘ ‘ v [ SEgE e
100 1000 10000 100000 1le+06

Ae

Figure 7: Error of integrating f

5. Numerical evidence for rendering

In order to obtain accurate error measurements for rendering
algorithms, we need scenes for which the exact solution is
known. Generally, we have two opportunities. Either, we use
simple scenes for which analytical solution is possible, or
numerical methods are applied using so many samples that
the approximate solution can be accepted as a reference.

One of the famous analytically solvable case is the ho-
mogeneous environment, where the geometry is arbitrary,
but all surfaces have the same diffuse reflection and emis-
sionl7. 8, |n this scene, however, the emission distribution is Figure 8: Geometry of the reference scene
very homogeneous, thus quasi-Monte Carlo methods would
be given an unfair handicap.

Thus we shall use another reference scene proposéd by
which is an inner surface of a sphere, where the reflection is
diffuse and homogeneous, but only a part of the surface has |7 — |
non-zero emission. Due to the not axis-aligned discontinuity cos Oz = cosbly = “oR
of the lightsource the integrand of the rendering equation has
infinite variation.

Looking at figure 8, we can see that inside a sphere

thus we can obtain the following final form for the one-

bounce:
Here we derive the analytical solution somehow differ-

ently than in?, since we also show that not only the com- fr-L¢ /

plete solution can be obtained but also the partial solutions

of different bounces. The knowledge of the contribution of

different bounces allows us to use the reference solution to \yperejc — 1.¢ - A./S is the average emission of the total

evaluate biased, finite random walk algorithms. spherical surface.

cos @z - cos Oz

yd?j .f - L*
g — |

W'Ae = Q'Le (27)

Ae

Summarizing, after the first bounce the radiance distri-
bution is constant. Substituting this infd® and replacing
Let the scene be an inner surfa§®f a sphere of radiug, A, by the total spherical surfacg, we can derive the two
the BRDF be constarft. = ¢/m and the emission be diffuse  bounce radiance transfer as well:
and constanL® in a subsetd. of the spherical surface and

5.1. Analytical solution of the reference scene

zero otherwise. (T?L°) (&, w) = (413%2) S0 -LF=9’L". (28)
Using the Similarly, then bounce radiance distribution is:
, _ cosfy-di e e
Sl (T"L)(@w) = o"L". 29)

(© Institute of Computer Graphics 1998
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Error of single-ray based random walk in the reference sphere (D=1, light=25%)
- T

Halton —
random -----

Error of single-ray based random walk in the reference sphere (D=5, light=25%)
T

samples

100

Halton —
random ----

samples

100

1000

L1 error

L1 error

0.1

01

Error of single-ray based random walk in the reference sphere (D=2, light=25%)
T

Halton —
random ----

samples

100

Error of single-ray based random walk in the reference sphere (D=10, light=25%)
T

Halton —
random ----

samples

100

1000

Figure 9: Error measurements for 1, 2, 5 and 10 bounces

5.2. Error measurements 6. Conclusions

The efficiency of Monte-Carlo and quasi-Monte Carlo  This paper reviewed the application of quasi-Monte Carlo
quadratures have been tested for the presented sphericalnegration to solve the rendering equation. It showed that al-
scene assuming a single pixel camera. The error has beeny,q,gh the integrand of the rendering equation is not of finite
measured separately for the different bounces. variation, an error analysis is still possible that combines the

Looking at the error measurements of figure 9, we can Koksma-Hlawka inequality with the probabilistic bounds of
see that even for integrands of infinite variation quasi-Monte Monte-Carlo techniques. This error analysis leads us to the
Carlo methods are siill better but they lose their advantage conclusion that the convergence rate of quasi-Monte Carlo
when computing higher bounces as predicted by the theoret- integration can be better than Monte-Carlo quadrature even
ical results. The other important problem in higher dimen- for the discontinuous rendering equation, especially when
sions is that although a low-discrepancy series has almost the required dimension — that is the average reflectivity of
linearly decreasing discrepancy in the asymptotic sense, thisthe scene — is not very high. The theoretical results have
discrepancy can still be high for not very many points (in also been demonstrated by simulation.
the solution of the rendering equation we rarely use more
than 1000 samples for the estimation of a single pixel). In
the case of the Halton series, for example, ltaseof the
series strongly affects the initial behavior of the discrepancy. 7. Acknowledgments
These base numbers are different prime numbers for differ-
ent dimensions, thus for high-dimensional integrals the base This work has been supported by the National Scientific Re-
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