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Abstract
The paper presents a single-pass, view-dependent method to solve the general rendering equation, using a com-
bined finite element and random walk approach. Applying finite element techniques, the surfaces are decomposed
into planar patches on which the radiance is assumed to be combined from finite number of unknown directional
radiance functions by predefined positional basis functions. The directional radiance functions are then computed
by random walk or by stochastic iteration using bundles of parallel rays. To compute the radiance transfer in a
single direction, several global visibility methods are considered, including the global versions of the painter’s,
z-buffer, Weiler-Atherton’s and planar graph based algorithms. The method requires no preprocessing except for
handling point lightsources, for which a first-shot technique is proposed. The proposed method is particularly
efficient for scenes including not very specular materials illuminated by large area lightsources or sky-light. In
order to increase the speed for difficult lighting situations, walks can be selected according to their importance.
The importance can be explored adaptively by the Metropolis and VEGAS sampling techniques.

Keywords: Rendering equation, global radiance, Monte-Carlo and
quasi-Monte Carlo integration, Importance sampling, Metropolis
method, z-buffer.

1. Introduction

The fundamental task of computer graphics is to solve a
Fredholm type integral equation describing the light trans-
port. This equation is called therendering equationand has
the following form:

L(~x; !) =

L
e(~x; !)+

Z



L(h(~x;�!0); !0) � fr(!0; ~x; !) � cos� �0 d!0

(1)
whereL(~x; !) andLe(~x; !) are the radiance and emission
of the surface in point~x at direction!, 
 is the directional
sphere,h(~x; !0) is the visibility function defining the point
that is visible from point~x at direction!0, fr(!0; ~x; !)
is the bi-directional reflection/refraction function,�0 is the
angle between the surface normal and direction�!0, and
cos� �0 = cos �0 if cos �0 � 0 and zero otherwise (figure 1).

Since the rendering equation contains the unknown radi-
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Figure 1: Geometry of the rendering equation

ance function both inside and outside the integral, in order to
express the solution, this coupling should be resolved. Gen-
erally, two methods can be applied for this: finite element
methods or random walk methods.

Finite element methodsproject the problem into a finite
function base and approximate the solution here. The pro-
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jection transforms the integral equation to a system of linear
equations for which straightforward solution techniques are
available. Finite element techniques that aim at the solution
of the non-diffuse case can be traced back to the finite ele-
ment approximation of the directional functions usingpar-
titioned sphere11 or spherical harmonics34, and to the appli-
cation ofextended form factors33. Since the radiance func-
tion is not smooth and is of 4-variate if non-diffuse reflec-
tion should also be considered, finite element methods re-
quire a great number of basis functions, and thus the system
of linear equations will be very large. Although, hierarchi-
cal ormultiresolution methods5 and clustering4; 36 can help,
the memory requirements are still prohibitive for complex
scenes.

Random walk methods, on the other hand, resolve the cou-
pling by expanding the integral equation into a Neumann
series, and calculate the resulting high-dimensional integrals
by numerical quadrature from discrete samples. A single dis-
crete sample corresponds to a complete photon-path (called
thewalk) from a lightsource to the eye, which is usually built
by d ray-shooting steps if the photon is reflectedd times.
Since classical quadrature rules are useless for the calcula-
tion of very high dimensional integrals due to their dimen-
sional exploision, Monte-Carlo or quasi-Monte Carlo tech-
niques must be applied.

In computer graphics the first Monte-Carlo random walk
algorithm — calleddistributed ray-tracing— was proposed
by Cook et al.6, which spawned to a set of variations, in-
cludingpath tracing12, light-tracing10, Monte-Carlo radios-
ity 31; 20; 24, and two-pass methods which combine radiosity
and ray-tracing47.

The problem of naive generation of walks is that the prob-
ability that a shooting path finds the eye is zero for a pin-hole
camera or very small if a non-zero aperture camera model
is used, while the probability that a gathering random path
ends in a lightsource may be very little if the lightsources are
small, thus the majority of the paths do not contribute to the
image at all, and their computation is simply waste of time.

Thus, on the one hand, random walk must be combined
with a deterministic step that forces the walk to go to the
eye and to find a lightsource.Light tracing10 connects each
bounce position to the eye deterministically.Bi-directional
path-tracing15; 45 methods start a walk from the eye and a
walk from a lightsource and connect the bounce positions of
the two walks.

On the other hand, importance sampling35 should be in-
corporated to prefer useful paths along which significant
radiance is transferred. Note that although the contribution
on the image is a function of the complete path, computer
graphics applications usually assign estimated importance
to individual steps of this path, which might be quite inac-
curate. In a single step the importance is usually selected
according to the BRDF10; 15, or according to the direction
of the direct lightsources32. Combined methods that find

the important directions using both the BRDF and the inci-
dent illumination have been proposed in44; 16. Just recently,
Veach and Guibas46 proposed the Metropolis method to be
used in the solution of the rendering equation. Unlike other
approaches, Metropolis sampling19 can assign importance to
a complete walk not just to the steps of this walk, and it ex-
plores important regions of the domain adaptively while run-
ning the algorithm. Thus no a-priori knowledge is required
about the important rays to construct a probability density
function in advance. Instead, the algorithm converges to this
probability density automatically.

In order to reduce the noise of these methods, very many
samples are required, especially when importance sampling
cannot help significantly — that is when the lightsources are
large and the surfaces are not very specular. One way of re-
ducing the ray-object intersection calculation cost is storing
this information in the form ofillumination networks2, but it
has large memory requirements, and representing the light-
transport of small number of predefined rays might introduce
artifacts.

The proposed new method combines the advantages of
finite-element and random-walk approaches and can solve
the general non-diffuse case. The method needs no prepro-
cessing, the memory requirements are modest, and it is par-
ticularly efficient for scenes containing larger area light-
sources and moderately specular surfaces — that is where
other importance-sampling walk methods become ineffi-
cient.

2. Informal discussion of the algorithm

Walk methods proposed so far use individual ray-paths as
samples of the integrand of the rendering equation.

However, ray-shooting may waste a lot of computation
by ignoring all the intersection objects but the one clos-
est to the eye. Thus it seems worth using a set ofglobal
directions27; 20; 29; 28 for the complete scene instead of solv-
ing the visibility problem independently for different points
~x. Moreover, ray-shooting is a simple but by no means
the most effective visibility algorithm since it is unable to
take advantage of image or object coherence. Other methods
based on the exploitation of image coherence, such as the
z-buffer, painter’s, Warnock’s, etc. algorithms can be con-
sidered as handling a bundle of parallel rays and solving the
visibility problem for all of them simultaneously. Continu-
ous (also called object-precision) methods can even deter-
mine the visibility problem independently of the resolution,
which corresponds to tracing infinitely many parallel rays
simultaneously.

The set of parallel global rays is called theray-bundle.

These visibility algorithms assume that the surfaces are
decomposed into planar patches, thus the proposed method
also uses this assumption. On the other hand the patch de-
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composition also serves as the construction of the finite-
element structure.

Using ray-bundles, we have to realize that even single-
ray techniques use recursive ray-tracing to simulate multi-
ple interreflections. Thus ray-bundles should also be traced
several times in different directions to model multiple inter-
reflections. This tracing composes a walk using ray-bundles
in each step.

2.1. Computation of global ray-bundle walks

image plane

direction 1

direction 2

direction 3

Figure 2: A path of ray-bundles

The algorithm takes samples of these global walks and
uses them in the quadrature. A single walk starts by selecting
a direction either randomly or quasi-randomly, and the emis-
sion transfer of all patches is calculated into this direction
(figure 2). Then a new direction is found, and the emission
is transferred and the irradiance generated by the previous
transfer is reflected from all patches into this new direction.
The algorithm keeps doing this for a few times depending
on how many bounces should be considered, then the emis-
sion is sent and the irradiance caused by the last transfer is
reflected towards the eye. Averaging these contributions re-
sults in the final image. When the radiance reflection is cal-
culated from the previous direction to the current direction
or to the direction of the eye, the radiance is attenuated by
the BRDF of the corresponding surface element.

Concerning the memory requirements of the method, each
patch holds the irradiance of the last step of the walk and the
accumulated radiance towards the eye. Since the selected di-
rections are the same for all surfaces, they must be stored
only once. Consequently the memory requirement is com-
parable to that of the diffuse radiosity algorithms although it
is also capable to handle specular reflections.

In order to make this method work two problems must be
solved. The directions should be selected in a way that all
the possible light-paths are covered and the integral quadra-
ture should be accurately approximated. The application of
random or low-discrepancy series on the directional sphere
is proposed to solve this problem.

Secondly, efficient algorithms are needed that can com-
pute the radiance transfer of all patches in a single direction,
for which the generalization of discrete and continuous visi-
bility algorithms are applied.

3. Reformulation of the rendering equation using
finite-elements

Using finite element concepts, the radiance function is
searched in the following form:

L(~x; !) � L
(n)(~x; !) =

nX
j=1

Lj(!) � bj(~x) (2)

whereL(n)(~x; !) is the approximating radiance andbj(~x)
is a complete function system. In this function space, the
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Figure 3: Finite element approximation

scalar product of two functionsf; g is defined as the integral
of their products on the total surfaceS:

hf; gi =
Z
S

f(~x) � g(~x) d~x: (3)
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Figure 4: Projection to the adjoint base

Since the radiance is approximated in a subspace, we can-
not expect the radiance approximation to satisfy the original
rendering equation everywhere. Instead, equality is required
in an appropriate subspace defined byadjoint basisfunctions
~b1(~x);~b2(~x); : : :~bn(~x) (figure 4). This set is called adjoint
of b1(~x); b2(~x); : : : bn(~x) since we require that

hbi(~x);~bj(~x)i =
(

1 if i = j;

0 otherwise,
(4)
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Projecting the rendering equation into the subspace of
~b1(~x);~b2(~x); : : :~bn(~x) we obtain

hLn(~x; !);~bi(~x)i = hLe(~x; !);~bi(~x)i+

h
Z



L
n(h(~x;�!0); !0) � fr(!0; ~x; !) � cos� �0 d!0;~bi(~x)i:

(5)

Using the orthogonal property stated by equation (4), we
get

Li(!) = L
e
i (!)+

nX
j=1

Z



Lj(!
0)�hbj(h(~x;�!0))�fr(!0; ~x; !)�cos� �0;~bi(~x)i d!0:

(6)

The same equation can also be presented in a matrix form:

L(!) = L
e(!) +

Z



T(!0; !) � L(!0) d!0; (7)

whereL(!)ji = Li(!) is the vector of radiance values, and

T(!0; !)jij = hfr(!0; ~x; !)�bj(h(~x;�!0))�cos� �0;~bi(~x)i

is thebi-directional transport matrix.

Assume that the BRDF functionfr(!0; ~x; !) can be well
approximated by~fi(!0; !) inside the support of~bi (if the
support of these basis functions is small, this is always pos-
sible). This allows for the separation of the transport matrix
to a diagonal matrixF(!0; !) of BRDF functions

F(!0; !)jii = ~fi(!
0
; !);

and to ageometry matrixA(!0) that is independent of di-
rection!:

A(!0)jij = hbj(h(~x;�!0)) � cos� �0;~bi(~x)i (8)

The geometry matrix contains a scalar product of basis
functions at points that are visible from each-other in direc-
tion!0. Thus it expresses the strength of coupling as the de-
gree of visibility.

Using the geometry matrix, equation (7) can also be writ-
ten as

L(!) = L
e(!) +

Z



F(!0; !) �A(!0) � L(!0) d!0; (9)

Note that equation (9) is highly intuitive as well. The ra-
diance of a patch is the sum of the emission and the reflec-
tion of all irradiances. The role of the patch-direction-patch
“form-factor matrix” is played byA(!0).

4. Numerical solution of the directional integrals

In order to simplify the notations, the integral operator of the
rendering equation is denoted byT :Z




T(!0; !) � L(!0) d!0 = T L(!): (10)

Thus the short form of the rendering equation is:

L(!) = L
e(!) + T L(!): (11)

In equation (11) the unknown radiance functionL(!) ap-
pears on both sides. Substituting the right side’sL(!) by the
complete right side, which is obviouslyL(!) according to
the equation, we get:

L(!) = L
e(!) + T (Le(!) + T L(!)) =

L
e(!) + T Le(!) + T 2

L(!): (12)

Repeating this stepm times, the original equation can be
expanded into a Neumann series:

L(!) =

mX
i=0

T i
L
e(!) + T m+1

L(!): (13)

If integral operatorT is a contraction, that is if

jjT L(!)jj � � � jjL(!)jj; � < 1; (14)

thenlimm!1 T m+1L = 0, thus

L(!) =

1X
i=0

T i
L
e(!): (15)

The contractive property ofT comes from the fact that a
reflection or refraction always decreases the energy. Using,
for example, the infinite norm, we obtain

jjT L(!)jj1 � max
~x

Z



fr(!
0
; ~x; !)�cos� �0 d!0�jjL(!)jj1

= max
~x

a~x(!) � jjL(!)jj1;

wherea~x(!) is thealbedo18 of the material at point~x. For
physically plausible material models the albedo must be less
than 1.

The terms of this infinite Neumann series have intuitive
meaning as well:T 0Le(!) = Le(!) comes from the emis-
sion, T 1Le(!) comes from a single reflection (called 1-
bounce),T 2Le(!) from two reflections (called 2-bounces),
etc.

Using the definition of integral operatorT , the full form
of the Neumann series is:

L(!) = L
e(!) +

Z



T(!01; !) � Le(!01) d!01
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+

Z



Z



T(!01; !) �T(!02; !
0
1) � Le(!02) d!02d!01

+ : : : (16)

In practice the infinite sum of the Neumann series is al-
ways approximated by a finite sum. The number of required
terms is determined by the contractivity� of operatorT —
that is the overall reflectivity of the scene. Let us denote the
maximum number of calculated bounces byD. The trunca-
tion of the Neumann series introduces a bias in the estima-
tion, which can be tolerated ifD is high enough.

In order to simplify the notations, we introduce thed-
bounce irradianceJd for d = 1; 2; : : : as follows:

J0 = A(!0D) � Le(!0D);
Jd = 4� �A(!0D�d) � F(!0D�d+1; !

0
D�d) � Jd�1

whereJd is a d + 1 dimensional function of directions
(!0D�d; !

0
D�d+1 : : : ; !

0
D).

Thed-bounce irradiance represents the irradiance arriving
at each patch, that is emitted from a patch and is bounced
exactlyd times.

Similarly, we can define themaxd-bounce irradianceId
for d = 1; 2; : : : as follows:

I0 = A(!0D) � Le(!0D);
Id = A(!0D�d) �

�
�
L
e(!0D�d) + 4� � F(!0D�d+1; !

0
D�d) � Id�1

�
where Id is a d + 1 dimensional function of directions
(!0D�d; !

0
D�d+1 : : : ; !

0
D).

The maxd-bounce irradiance represents the irradiance ar-
riving at each patch after completing a path of lengthd fol-
lowing the given directions, and gathering and then reflect-
ing the emission of the patches visited during the path.

Limiting the analysis to at mostD + 1 bounces, the so-
lution of the rendering equation can be obtained as a2D-
dimensional integral:

L(!) =

�
1

4�

�D
�

Z



: : :

Z



�
L
e(!) + 4� �F(!01; !) � ID

�
d!
0
D : : : d!

0
1:

(17)

This high-dimensional integral (2D is 10 to 20 in practi-
cal cases) can be evaluated by numerical quadrature. Since
classical quadrature rules, such as the trapezoidal rule or
Gaussian quadrature, are not appropriate for the evaluation
of high-dimensional integrals due to their dimensional ex-
plosion, Monte-Carlo techniques are proposed.

A single walk can be characterized by the vector of the

transillumination directions of individual steps, that is by
(!01; !

0
2; : : : ; !

0
D): Monte Carlo methods generate the sam-

ples randomly using an appropriate probability distribution
and setting the weight function as the inverse of the probabil-
ity density. The concept of importance sampling suggest us
to select a probability distribution that concentrates on points
that are responsible for great contribution to the final image
and neglect those walks that have no or negligible contribu-
tions. However, usually no a-priory information is available
about the important walks, thus the required probability den-
sity cannot be constructed. Note that when tracing individual
rays, we can approximate the contribution as the product of
the BRDFs (as usually done in Monte-Carlo ray-tracing al-
gorithms) or as the contribution of 1-bounces (direct-lighting
computation). However, when a bundle of rays is traced si-
multaneously, different patches would prefer different con-
tinuation directions since their normals and BRDFs can be
different.

Thus either we use uniformly distributed random or quasi-
random samples, or the importance information is built up
during the simulation in an adaptive manner.

In the next sections, the application of uniformly dis-
tributed random and quasi-random sequences is investi-
gated, then the incorporation of the importance using the
Metropolis19 and VEGAS17 methods are discussed.

4.1. Simple Monte-Carlo, or quasi-Monte Carlo
integration

In order to evaluate formula (17),M random or quasi-
random13 walks should be generated (the difference is that
in Monte-Carlo walks the directions are sampled randomly
while in quasi-random walks they are sampled from a2D-
dimensional low-discrepancy sequence, such as the2D-
dimensionalHalton or Hammersleysequence23). When the
D-bounce irradiance is available, it is multiplied by the
BRDF defined by the last direction!1 and the viewing di-
rection! to find a Monte-Carlo estimate of the radiance that
is visible from the eye position. Note that this step makes the
algorithm view-dependent.

There are basically two different methods to calculate the
image estimate. On the one hand, evaluating the BRDF once
for each patch, a radiance value is assigned to them, then in
order to avoid “blocky” appearance, bi-linear smoothing can
be applied.

Using Phong interpolation, on the other hand, the radi-
ance is evaluated at each point visible through a given pixel
using the irradiance field, the surface normal and the BRDF
of the found point. In order to speed up this procedure, the
surface visible at each pixel, the visibility direction and the
surface normal can be determined in a preprocessing phase
and stored in a map. Phong interpolation is more time con-
suming but the generated image is not only numerically pre-
cise, but is also visually pleasing.
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The final image is the average of these estimates. The
complete algorithm — which requires just one variable for
each patchi, the maxd-bounce irradianceI[i] — is summa-
rized in the following:

for m = 1 to M do // samples of global walks

Generate(!(m)
1 ; !

(m)
2 ; : : : ; !

(m)

D
)

I = 0
for d = 0 to D � 1 do // a walk

I =A(!0
D�d

)��
Le(!0

D�d
) + 4� �F(!0

D�d+1
; !0

D�d
) � I
�

endfor
Calculate the image estimate from the irradianceI

Divide the estimate byM and add to the Image
endfor
Display Image

4.2. Combined and bi-directional walking techniques

The algorithm that has been derived directly from the
quadrature formulae uses direction!1 to evaluate the contri-
bution of 1-bounces, directions(!1; !2) for the 2-bounces,
(!1; !2; !3) for the 3-bounces, etc. This is just a little frac-
tion of the information that can be gathered during the
complete walk. We could also use the samples of!1, !2,
!3, etc. to calculate the 1-bounce contribution,(!1; !2),
(!1; !3), : : :, (!2; !3), etc. combinations of directions for
2-bounces, etc. This is obviously possible, since if the sam-
ples of(!1; !2; : : : !D) are taken from a uniform sequence,
then all combinations of its elements also form uniform se-
quences in lower dimensional spaces.

If all possible combinations are used, then each random
walk generates

�
D

d

�
samples for thed-bounces, which can

be used to increase the accuracy of the method. Note that the
increased accuracy of this “combined” method is for free in
terms of additional visibility computation.

However, due to the dependence of the BRDF functions
on two directions and due to the fact that different bounces
will be estimated by different numbers of samples, the re-
quired storage per patch is increased toD(D + 1)=2 vari-
ables. SinceD is 5 to 8 in practical cases, this storage over-
head is affordable.

Now each patch is represented by a triangle matrixI,
where the(i; j) element stores the sum of thosei-bounce
irradiances where the last direction is!j . Table 1 shows an
example forD = 3.

The complete combined algorithm is shown below:

for m = 1 to M do

Generate(!(m)
1 ; !

(m)
2 ; : : : ; !

(m)

D
)

for d = 0 to D � 1 do // quasi-random walk
I[1][D� d] = A(!0

D�d
) � Le(!0

D�d
)

for b = 2 to d+ 1 do
I[b][D� d] = 0
for pd = b� 1 to d� 1 do

I[b][D� d] += 4� �A(!
(m)

D�d
)�

F(!
(m)

D�pd
; !

(m)

D�d
)�

I[b� 1][D � pd]
endfor

endfor
endfor
Divide theb-bounce estimates (I[b][d]) by

�
D
b

�
Calculate the image estimate from theI[b][d] estimates
Divide the estimate byM and add to the Image

endfor
Display Image

Furthermore, when the radiance is transferred to a direc-
tion, the required information to transfer the radiance to the
opposite direction is also available, that is when computing
geometry matrixA(!0) for some direction, the matrix for
the reverse directionA(�!0) is usually also known paying
very little or no additional effort.

The improvement that takes advantage of this is called the
bi-directionalalgorithm.

Due to the cos� function only one of the elements
A(!0)ij andA(�!0)ij can be non zero. It means that bi-
directional techniques do not even require additional storage
and a single geometry matrix can be used to store the values
for both!0 and�!0. It can be decided whether a matrix ele-
ment is valid for!0 or�!0 by inspecting the angle between
its normal vector and the given directions.

Formally, in the bi-directional technique!1, �!1, !2,
�!2, etc. are used to calculate the 1-bounce contribution,
(!1; !2), (!1;�!2), (�!1; !2), (�!1;�!2), (!1; !3),
(!1;�!3), etc. combinations of directions for 2-bounces,
etc. This multiplies the number of samples used for the com-
putation of 1-bounces by 2, for the 2-bounces by 4 and gen-
erally for thed bounces by2d, which can be quite signifi-
cant.
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Error of bundle tracing in a homogeneous room (D=5).
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Figure 6: Combined and bi-directional walking techniques
versus normal walk

The additional samples of the “combined” and particu-
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last direction 1-bounce 2-bounce 3-bounce

3 J0(!3)

2 J0(!2) J1(!3; !2)

1 J0(!1) J1(!3; !1) + J1(!2; !1) J2(!3; !2; !1)

Table 1: Irradiance matrix of a patch forD = 3
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ωω

ω

1 2

3

normal combined bi-directional

Figure 5: Normal, combined and bi-directional walking technique

larly the “bi-directional” walking techniques increase the ac-
curacy as shown by figure 6. The test scene was the homo-
geneous Cornell-box where all surfaces have constant 0.5
diffuse reflectance and emission, which allowed to solve the
rendering equation analytically13 (the solution isL = 1 �
2�(D+1)) to find a reference for the error analysis. Note that
although quasi-Monte Carlo sampling is generally better, the
improvement provided by the combined and bi-directional
methods is less for the quasi-Monte Carlo walk than for the
Monte-Carlo walk. This can be explained by the fact that the
low-discrepancy points are so “well-designed” that mixing
different sets of them does not improve the quadrature much
further.

4.3. Making the global walk estimates unbiased

The methods introduced so far fall into the category of ran-
dom walk techniques which calculate only the firstD terms
of the infinite Neumann series and simply ignore the rest.
Consequently, the estimate will be biased.

However, the bias can be easily eliminated using a sim-
ple correction of the emission functionLe when calculating
higher order interreflections.

Note that the a global walk provides random estimates for
the following terms:

L
e + T Le + : : :+ T D

L
e
:

Thus having computed the first walk, we also have an es-

timate forT DLe represented byD-bounce irradianceJD.
Let us use this estimate to correct the emission function in
the higher order terms when the second global walk is com-
puted:

L
e + T (Le + T D

L
e) + : : :+ T D(Le + T D

L
e) =

L
e+T Le+ : : :+T D

L
e+T D+1

L
e+ : : :+T 2D

L
e
: (18)

This gives us estimates not only for the bounces from 0 toD

but also for the bounces fromD + 1 to 2D. TheD bounce
irradiance will store an estimate forT DLe+T 2DLe, which
can again be used to compensate the emission. Thus after
the second step we have estimates for the 0 to3D bounces.
Assymptotically, this method will generate estimates for all
bounces. However, ifM global walks are generated, then the
number of estimates for bounces of 0 toD isM , for bounces
ofD+1 to2D isM�1, for bounces2D+1 to3D isM�2
etc., which still results in some small energy defect.

In the following section, this unbiased method using 1-
step walks is investigated formally. The formal treatment is
based on the concept of stochastic iteration.

4.4. Stochastic iteration

Let us recall again the short form of the projected rendering
equation (formula (11)):

L(!) = L
e(!) + T L(!):
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Iterational techniques realize that the solution of this in-
tegral equation is thefixed pointof the following iterational
scheme

Ln = L
e + T Ln�1 (19)

thus if operatorT is a contraction, then this scheme will
converge to the solution from any initial function.

A possible way of storing the approximating functions
Ln, is the application of finite-element techniques also in
the directional domain. However, this suffers from two crit-
ical problems. On the one hand, an accurate finite-element
approximation usually requires very many basis functions,
which in turn need a lot of storage space.

On the other hand, when finite element techniques are ap-
plied, operatorT is only approximated, which introduces
some non-negligible error in each step38. If the contraction
ratio of the operator is�, then the total accumulated error
will be approximately1=(1 � �) times the error of a single
step, which can be unacceptable for highly reflective scenes.

Both problems can be successfully attacked bystochastic
iteration14.

The basic idea of stochastic iteration is that instead of ap-
proximating operatorT in a deterministic way, a much sim-
pler random operator is used during the iteration which “be-
haves” as the real operator just in the “average” case.

Suppose that we have a random operatorT � so that

E[T �L] = T L (20)

for any functionL.

During stochastic iteration a random sequence of opera-
tors T �1 ; T �2 ; : : : T �i : : : is generated, which consists of in-
stantiations ofT �.

We are particularly interested in random operators having
the following construction scheme:

1. A random “direction”!i is generated using probability
densityprob(!).

2. Using the generated!i a “deterministic” operator
T �(!i) is applied toL.

Using this sequence of random transport operators, the it-
erational scheme will not converge, but it will generate sam-
ples that fluctuate around the real solution. Thus the solution
can be found by averaging the estimates of the subsequent
iterational steps.

Formally the sequence of the iteration is the following:

L1 = L
e + T �1 Le

L2 = L
e + T �2 Le + T �2 T �1 Le

:::

LM = L
e + T �MLe + T �MT �M�1Le + : : : (21)

Averaging theM steps, we obtain:

~L =
1

M

MX
i=1

Li =

L
e +

1

M

MX
i=1

T �i Le +
1

M

M�1X
i=1

T �i+1T �i Le + : : :

L
e+

1

M

MX
i=1

T �i Le+M � 1

M
� 1

M � 1

M�1X
i=1

T �i+1T �i Le+: : :

(22)

In order to prove that~L really converges — in the sense
of stochastic convergence — to the solution of the integral
equation, first it is shown that the expectation value of

T �i+kT �i+k�1 : : : T �i+1T �i Le

is T k+1Le. For k = 0, it comes directly from the require-
ment of equation (20). Fork = 1, the total expectation value
theorem can be applied:

E[T �i+1T �i Le] =
Z



E[T �i+1T �i Lej!i+1 = !] � prob(!) d!:

Since for a fixed!i+1 = !, operatorT �i+1 becomes a de-
terministic linear operator, thus its order can be exchanged
with that of the expected value operator:Z




E[T �i+1T �i Lej!i+1 = !] � prob(!) d! =

Z



T �(!) (E[T �i Le]) � prob(!) d!: (23)

Using requirement (20) for the expected value inside
the integral, then for the expectation of the resulting
T �(!) (T Le) function, we obtain:Z




T �(!) (E[T �i Le]) � prob(!) d! =

Z



T �(!) (T Le) � prob(!) d! = E[T �(!) (T Le)] =

T (T Le) = T 2
L
e
; (24)

which concludes our proof for thek = 1 case. The very
same idea can be used recursively for more than two terms
(k � 2 case).
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Returning to the averaged solution~L, its expected value
is then

E[~L] = L
e + T Le + M � 1

M
T 2
L
e +

M � 2

M
T 3
L
e + : : :

(25)
which converges to the real solution ifM goes to infinity.
Note also that there is some energy “defect” for higher order
terms for finiteM values. This can be neglected for high
number of iterations, or can even be reduced by ignoring the
first few iterations in the averaged result20.

Finally, it must be explained why random variable~L
stochastically converges to its expected value. Looking at
formula (22) we can realize that it consists of sums of the
following form:

1

M � k
�
M�kX
i=1

T �i+kT �i+k�1 : : : T �i+1T �i Le:

According to the theorems of large numbers, and particu-
larly to the Bernstein26 theorem, these averages really con-
verge to the expected value if the terms in the average
are not highly correlated. It means that random variables
T �i+kT �i+k�1 : : : T �i Le and T �j+kT �j+k�1 : : : T �j Le should
not have strong correlation ifi 6= j (for the precise defi-
nition what strong correlation means here, refer to26) This is
always true if the sequence of operators are generated from
independent random variables, which will be the case in the
proposed algorithm.

4.4.1. Definition of the random transport operator

In order to use this general stochastic iterational scheme in
practice, the key problem is the definition of the random
transport operator. This operator should meet the require-
ment of equation (20), should be easy to compute and it
should allow the compact representation of theT �i L func-
tions.

Generally the domain ofL is a 2-dimensional continuous
space, so is the domain ofT L. From the point of view of
compact representation, what we have to avoid is the repre-
sentation of these functions over the complete domain. Thus
those random transport operators are preferred, which re-
quire the value ofL just in a single direction (or to be more
general, just in a few directions).

In itself, this is not enough, since even a single direc-
tion can result in a continuousTiL function, which must be
stored and re-sampled for the subsequent iteration. The so-
lution of this problem is the postponing of the complete cal-
culation ofTiL until it is known where its value is needed in
the next iteration step. It means that the random transport op-
erator is decomposed into two phases, where the first phase
depends on the current and the second on both the current
and the next directions. An appropriate point for the decom-
position is when the irradiance is already generated, but its
effect is not yet computed on the surfaces.

A straightforward selection of the random transport op-
erator is the bi-directional transport matrixT(!0; !) multi-
plied by4�. The required phases are established by decom-
posing the bi-directional transport matrix into the geometry
matrixA(!0) and the BRDF matrixF(!0; !).

If the global directions are sampled from a uniform distri-
bution, this selection satisfies equation (20) since

E[4� �T(!0; !) � L(!0)] =Z



F(!0; !) �A(!0) � L(!0) d!0 = T L(!):

The complete algorithm — which requires just one vari-
able for each patchi, the irradianceI[i] — is summarized in
the following:

I = 0
for m = 1 to M do // iterational cycles

Generate random global direction!(m)

I =A(!(m)) �
�
Le(!(m)) + 4� � F(!(m�1); !(m)) � I

�
Calculate the image estimate from the irradianceI

Divide the estimate byM and add to the Image
endfor
Display Image

Note that this algorithm is quite similar to the global walk
algorithm, but it does not reinitialize the irradiance vector af-
ter eachDth step. In fact, it generates a single infinite walk,
and adds the effect of the lightsources to the reflected light
field and computes the image accumulation after each step.

0.001

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

global steps (iterations)

Error of bundle tracing in homogeneous room

stochastic iteration
bi-directional QMC (D=5)

bi-directional QMC (D=10)

Figure 7: Stochastic iteration versus bi-directional walking
techniques of length 5 and of length 10

Figure 7 compares the convergence of the stochastic it-
eration to that of the bi-directional global walks for the ho-
mogeneous Cornell box scene. Note that unlike in figure 6
here the axis shows the number of steps instead of the num-
ber of walks (a walk consists of 5 or 10 steps respectively).
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Since global walks provide estimates after a complete walk,
their error curves has 5 or 10 times lower horizontal resolu-
tion. In contrast to how figure 6 has been generated, in these
measurements the bias errors (2�6 for D = 5 and2�11 for
D = 10) have not been compensated to demonstrate that the
global walks are biased while the stochastic iteration is not.

We can conclude that stochastic iteration is significantly
better than the best of the global walk techniques.

5. Calculation of the radiance transport in a single
direction

The key of the calculation of the radiance transport is the
determination of geometry matrixA.

Examining the elements of the geometry matrix

A(!0)jij = hbj(h(~x;�!0)) � cos� �0;~bi(~x)i =Z
S

bj(h(~x;�!0)) � ~bi(~x) � cos� �0 d~x

we can realize that its computation requires the determina-
tion of whether a point of the support of basis functioni is
visible from a point of the support of basis functionj in a
given direction�!0 (note thatbj(h(~x;�!0)) � ~bi(~x) is non
zero only if~x is in the support of~bi and the pointh(~x;�!0)
is in the support ofbj). For the algorithms to be introduced,
the support of a basis function is a planar triangle, while the
support of an adjoint basis function is either a planar triangle
or a single vertex.

Because of the apparent analogies to the transillumination
radiosity method20; 38, the direction!0 is called thetransil-
lumination direction.

Note that an element of the geometry matrix is non zero
only if cos� �0 � 0, that is if patchi is facing towards the
transillumination direction. Faces meeting this requirement
are calledfront faces, while those faces which cannot meet
this are calledback faces. Obviously, only front faces can
get radiance contribution from a transillumination direction
(this can be lifted easily to allow transparent materials).

transillumination direction

transillumination
plane

5

4

3

2

1

Figure 8: Global visibility algorithms

Note that the determination of the geometry matrix is a

global visibility problem, since only the viewing direction
is fixed but the eye position is not. In fact, the eye position
should visit all surface points or all vertices depending on
the selected adjoint base.

4 54 5

3

Image seen from patch 3 Image seen from patch 2

Figure 9: Scene as seen from two subsequent patches

Looking at figure 8, it is easy to see that the global vis-
ibility problem can be solved in an incremental way if the
patches are visited in the order of their position in the transil-
lumination direction. In fact what is visible from a patch dif-
fers just in a single patch from what is visible from the next
patch. This single patch may appear as a new and may hide
other patches (figure 9). The required sorting is not obvi-
ous if the patches overlap in the transillumination direction,
but this can be solved in a way as proposed in the painter’s
algorithm22. On the other hand, in our case the patches are
usually small, thus simply sorting them by their center intro-
duces just a negligible error.

Although sorting seems worthwhile, it is not the only al-
ternative. Thus the proposed visibility algorithms will be
classified according to whether or not an initial sorting is
required.

At a given point of all global visibility algorithms the ob-
jects visible from the points of a patch must be known. This
information is stored in a data structure called thevisibil-
ity map. The visibility map can also be regarded as an image
on the plane perpendicular to the transillumination direction.
This plane is called thetransillumination plane(figure 8).

The algorithms that generate the visibility map can be ei-
ther discrete or continuous.

For discrete algorithmsthat decompose the transillumi-
nation plane to small pixels of size�P , the visibility map is
simply a rasterized image where each pixel can store either
the index of the visible patch or the radiance of the visible
point.

For continuous algorithms, the visibility map identifies
those regions in which the visibility information is homo-
geneous (either the same patch is seen or no patch is seen).

Discrete algorithms are faster and the rendering hardware
and the z-buffer of workstations can also be exploited43; 41

but in order to handle all patches simultaneously, the “win-
dow” of the algorithm should include all patches. The large
window, however, should be decomposed into sufficiently
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small pixels to provide the required precision, which might
result in high resolution requirements for sparse scenes.
Continuous algorithms are free from these resolution prob-
lems, but are usually more difficult to implement and are
much slower.

The computation of the geometry matrix also depends on
the selected basis functions and the finite-element algorithm
(adjoint basis). We consider two different sets of basis func-
tions and two finite element approaches. In the first case
the Galjerkin method is applied for piece-wise constant ba-
sis functions. Secondly, piece-wise linear basis functions are
used in a point-collocation algorithm.

5.1. Galerkin’s method with piece-wise constant basis
functions

Let us use the following basis functions

bj(~x) =

(
1 if ~x 2 Aj ;

0 otherwise.
(26)

In Galerkin’s method, the unknown directional functions
Li(!) are found to ensure that approximation (2) is the real
solution of the radiance equation in the subspace induced by
the basis functionsbi. To satisfy normalization criteria, the
adjoint base is selected as follows:

~bj(~x) =

(
1=Aj if ~x 2 Aj ;

0 otherwise.
(27)

Since

hbj(~x);~bi(~x)i =
Z
S

bj(~x) � ~bi(~x) d~x =

(
1 if i = j;

0 otherwise.
(28)

the elementi; j of the geometry matrix is

A(!0)jij = hbj(h(~x;�!0)) � cos� �0;~bi(~x)i =

1

Ai

�
Z
Ai

bj(h(~x;�!0)) � cos� �0 d~x: (29)

Since the integrand of this equation is piece-wise con-
stant, the integral can also be evaluated analytically:

1

Ai

�
Z
Ai

bj(h(~x;�!0)) � cos� �0 d~x =
A(i; j; !0)

Ai

; (30)

whereA(i; j; !0) expresses the projected area of patchj that
is visible from patchi at direction�!0. In the unoccluded
case this is the intersection of the projections of patchi and
patchj onto the transillumination plane. If occlusion occurs,
the projected areas of other patches that are in between patch
i and patchj should be subtracted as shown in figure 10.

Having the visibility map of patches visible fromAi, the

A

A

’

j

i
A(i,j,    )

projection of

projection of

Akprojection of

ω

’ω

Ak

Ai

A j

’ω

projection plane

Figure 10: Interpretation ofA(i; j; !0)

computation ofA(i; j; !0) requires to determine which re-
gions are inside the projection ofAi and to sum the areas.

In the following sections different continuous and discrete
visibility algorithms are presented to determine the neces-
sary visibility information.

5.1.1. Continuous algorithm with initial sorting: Local
visibility map

This algorithm process the patches in the order defined by
the transillumination direction and maintain the visibility
graph dynamically38.

visibility map 1

1

2

3

4

visibility map 2visibility map 3visibility map 4

44

3

4

2

1
3

0

0

0

000

0 0

4

2

3

transillumination direction

Figure 11: Local visibility maps

When the processing of patchi is started, the visibility
map shows which patches are visible from patchi. To calcu-
late theA(i; j; !0) values, those patches which have projec-
tions either entirely or partly in the projection of patchi are
selected from the visibility map, and are clipped onto patch
i to clearly separate inner regions. The process of clipping
of the patches onto each other is quite similar to the Weiler-
Atherthon visibility algorithm48. Then the projected areas of
those patch parts which are inside the projection of patchi

are summed to find theA(i; j; !0) values.

When we step onto the patch next to patchi, a new visi-
bility map is created by replacing those region parts that are
inside the projection ofAi by the projection ofAi. Then, if
patchi can reflect energy onto the next patch (it is a back
facing patch with respect to the transillumination direction),
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then patchi should be added to the visibility map, otherwise,
the place of the projection of patchi will be empty.

The algorithm, that maintains a listL for the sorted
patches,V for the projected patches that are currently in
the visibility map,O for those clipped, not-hidden patches
whose projections are outside patchi, and I for those
clipped, not-hidden patches whose projections are inside
patchi, is as follows:

list L = Sort patches in direction!0

visibility mapV = f g
for each patchi in L do

Clip patches inV onto patchi and
generate:O = outside list,I = inside list
if patchi is front facingthen
A(i; j; !0) =

P
j2I

A(j)

V = O
else
V = O + patchi

endif
endfor

If the number of patches isn, then the size of the visibil-
ity map isO(n) in the average case butO(n2) in the worst-
case. Thus the resulting algorithm that compares each patch
with the actual visibility map will haveO(n2) average case
andO(n3) worst case time-complexity. This is not accept-
able when complex scenes are processed. In order to reduce
the complexity, we can use the wide selection of computa-
tional geometry methods that usually apply spatial decom-
position on the plane to reduce the number of unnecessary
comparisons40.

5.1.2. Continuous algorithm without initial sorting:
Global visibility map

This algorithm first projects all the polygon vertices and
edges onto the transillumination plane, then determine all the
intersection points between the projected edges, and form a
planar graph that is a superset of the set of projected edges
of the polygons40; 38.

In the resulting planar graph, each territory represents a
list of patches that can be projected onto the territory. Fur-
thermore, if the patches do not intersect, the order of patches
is also unique in each territory.

Thus, to computeA(i; j; !0) for somei, the lists of the
territories should be visited to check whetheri is included. If
patchi is found, then the patch next to it on the list should be
retained to find indexj, and the area of the territory should
be added toA(i; j; !0).

The draft of the algorithm to generate the data structure is
the following:

visibility map

1

2

3

4{4}

{2,4}
{2}

{2,3}

{1,2,3}

{1,3}

{3}

{}

{}

transillumination direction

Figure 12: Global visibility map

project vertices and edges onto the transillumination plane
calculate all intersection points between projected edges
compute the graph of the induced planar subdivision
for each region of this graphdo

Sort patches visible in this region
endfor

The speed of the algorithm is considerably affected by
how well its steps are implemented. A simplistic implemen-
tation of the intersection calculation, for example, would test
each pair of edges for possible intersection. If the total num-
ber of edges isn, then the time complexity of this calcu-
lation would beO(n2). Having calculated the intersection
points, the structure of the subdivision graph has to be built,
that is, incident nodes and arcs have to be assigned to each
other somehow. The number of intersection points isO(n2),
hence both the number of nodes and the number of arcs
fall into this order. A simplistic implementation of the graph
computation would search for the possible incident arcs for
each node, giving a time complexity ofO(n4). This itself
is inadmissible in practice, not to mention the possible time
complexity of the further steps.

However, applying the results of computational geometry,
we can do it much better. Algorithms are available that can
do it inO((n+ i) log n) 9; 43 time wheren is the number of
patches (or edges) andi is the number of edge intersections,
or even inO(n1+"

p
k) time7 wherek is the number of edges

in the visibility map. The number of intersectionsi and the
number of edgesk are inO(n2) in the worst-case, but are in
O(n) in practical scenes.

5.1.3. Discrete algorithm with initial sorting: Global
painter’s algorithm

Discrete algorithms determine the visible patches for each
front facing patch through a discretized window. This is
a visibility problem, and the result is an “image” of the
patches, assuming the eye to be on patchi, the window to
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be on the transillumination plane and the color of patchj to
bej if the patch is facing to patchi and to be0 otherwise.
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Figure 13: Application of painter’s algorithm

If the patches are sorted in the transillumination direction
and processed in this order, the computation ofA(i; j; !0)

requires the determination of the pixel values inside the pro-
jection of patchi. Then, to proceed with the next patch in the
given order, the pixels covered by patchi are filled withi if
patchi is not front facing and 0 otherwise. The two steps can
be done simultaneously by a modified scan-conversion algo-
rithm that reads the value of the image buffer before modi-
fying it.

This is summarized in the following algorithm37:

Sort patches in direction!0 (painter’s algorithm)
Clear image
for each patchi in the sorted orderdo

if patchi is front facingthen
for each pixel of patchi

j = Read pixel
A(i; j; !0) += �P
Write 0 to the pixel

endfor
elseRender patchi with color i

endfor

Sorting a data set is known to haveO(n log n) time com-
plexity, so does the painter’s algorithm in the average case.
A single cycle of the secondfor loop contains only instruc-
tions that work with a single patch and an “image”, thus the
time required for a single cycle is independent of the number
of patches. Since thefor loop executedn number of times,
the time complexity of thefor loop isO(n). Consequently
the algorithm requiresO(n log n) time.

5.1.4. Discrete algorithm without initial sorting:
exploitation of the hardware z-buffer

In this section another method is proposed that traces back
the visibility problem to a series of z-buffer steps to allow
the utilization of the z-buffer hardware of workstations42.

1
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5

6

7

A(4,2)

A(4,1)

A(4,3)

A(5,3)

selected direction

emitter patches receiver patchesreceiver
image

emitter
image

Figure 14: Calculating the power transfer

The radiance is transferred by dynamically maintaining
two groups of patches, anemitter groupand a receiver
group, in a way that no patch in the receiver group is al-
lowed to hide a patch in the emitter group looking from the
given transillumination direction.

Let the two classes of patches be rendered into two image
buffers — called the emitter and receiver images, respec-
tively — setting the color of patchj to j and letting the se-
lected direction be the viewing direction for the receiver set
and its inverse for the emitter set.

Looking at figure 14, it is obvious that a pair of such im-
ages can be used to calculate the radiance transfer of all those
patches which are fully visible in the receiver image. The
two images must be scanned parallely and wheni (that is
the index of patchi) is found in the receiver image, the cor-
responding pixel in the emitter image is read and its value
(j) is used to decide whichA(i; j; !0) should be increased
by the area of the pixel.

In order to find out which patches are fully visible in the
receiver image, the number of pixels they cover is also com-
puted during scanning and then compared to the size of their
projected area. For those patches whose projected area is ap-
proximately equal to the total size of the covered pixels, we
can assume that they are not hidden and their accumulated ir-
radiances are valid, thus these patches can be removed from
the receiver set and rendered into the emitter image to calcu-
late the radiance transfer for other patches (this is the strat-
egy to maintain the emitter and receiver sets automatically).

This leads to an incremental algorithm that initially places
all patches in the receiver set. Having calculated the receiver
image by the z-buffer algorithm, the radiance transfer for the
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Figure 15: Steps of the evolution of receiver images

Figure 16: Steps of the evolution of emitter images
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fully visible patches are evaluated, and then they are moved
from the receiver set to the emitter set. The algorithm keeps
doing this until no patch remains in the receiver set (cyclic
overlapping would not allow the algorithm to stop, but this
can be handled by a clipping as in the painter’s algorithm22).
The number of z-buffer steps required by the algorithm is
quite small even for complex practical scenes27. Exploiting
the built-in z-buffer hardware of advanced workstations, the
computation can be fast.

In the following algorithmR denotes the collection of the
receiver patches.

R = all patches
Clear emitterimage
while R is not empty

Clear receiverimage
Render patches inR into receiverimage via z-buffer
for each pixelP

r = receiverimage[P ]
e = emitter image[P ]
patch[r].visible size +=�P
A(r; e; !0) += �P

endfor
// Move patches to the emitter set

for each patchp
if patch[p].visible size� projected size of patchp

Remove patchp fromR

and render it to emitterimage
endif

endfor
endwhile

When checking whether or not the visible size is approx-
imately equal to the projected patch size, the allowed toler-
ance is the total area of the pixels belonging to the edge of
the patch, which in turn equals to the sum of the horizontal
and vertical sizes of a triangular patch.

This algorithm “peels” the scene by removing the layers
one by one. The sequences of evolving receiver and emitter
images are shown in figure 15 and in figure 16, respectively.
Note that the first receiver image contains all patches, thus
its pair is an empty image that is not included. The pair of the
second receiver image is the first shown emitter image, etc.
The last emitter image includes all patches thus its receiver
pair is empty, and therefore is not shown.

5.1.5. Discrete algorithm without initial sorting:
software z-buffer

For the sake of completeness, we mention that the global z-
buffer algorithm20 can also be used for our purposes. This
method stores not just the closest patch index and itsz value
in the buffer, but the whole list of those patches which can be
projected onto this pixel. The patches are scan-converted by
the z-buffer algorithm, and are inserted into the lists associ-
ated with the covered pixels. The lists of pixels can be used

to computeA(i; j; !0) similarly to the continuous global vis-
ibility map algorithm.

5.2. Analysis of the finite resolution problem of discrete
methods

In order to find out how important the resolution of the vis-
ibility map, a Cornell box scene (figure 17) consisting of
3705 triangular patches has been rendered with the global
painter’s algorithm having set the resolution to different val-
ues. Since the resolution can only be interpreted when com-
pared to the size of the patches, table 2 summarizes the av-
erage projected patch sizes in pixels and also the residual
errors of the iteration.

resolution pixel-per-patch residual error

50� 50 0.5 0.25

100 � 100 2 0.05

200 � 200 8 0:02

500 � 500 55 � 0:01

1000 � 1000 220 � 0:01

Table 2: Average pixel per patch and the discretization er-
rors

Note that the resolution plays negligible role until the av-
erage patch per pixel ratio is significantly greater than one
(left of figure 18). For instance, the error curves of resolu-
tions1000�1000 and500�500 can hardly be distiquished.
This can be explained by the stochastic nature of the algo-
rithm. Each radiance transfer uses a different direction, thus
a different discrete approximation of the size of the patch.
Although this approximation can be quite inaccurate in a
single step, the expected value of these approximations will
still be correct. As the algorithm generates the result as the
average of the estimates, these approximation errors will be
eliminated. The effect of the low resolution is just an “addi-
tional noise”.

However, when the pixel size becomes comparable to the
projected size of the patches, then some of the patches may
be omitted in each radiance transfer, which generates energy
defect. The iteration will deteriorate from the real solution
as we can clearly see it in figure 18 when the resolution is
lower than200� 200.

The computation time is roughly proportional to the num-
ber of pixels in the visibility map thus it is desireable to keep
the resolution low (right of figure 18). For example, the 500
stochastic iterations that generated the left and the right of
figure 17 needed 3 and 8 minutes respectively. The opti-
mal selection of the resolution is the minimal number which
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Figure 17: A Cornell box as rendered using100 � 100 (left) and1000 � 1000 (right) pixels for the visibility map
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Figure 18: Comparison of the error curves using visibility maps of different resolutions as a function of iterations (left) and of
computation time (right)

guarantees that even the smallest patches are projected onto
a few pixels.

5.3. Point collocation method with piece-wise linear
basis functions

In this method39 the radiance variation is assumed to be lin-
ear on the triangles. Thus, each vertexi of the triangle mesh
will correspond to a “tent shaped” basis functionbi that is
1 at this vertex and linearly decreases to 0 on the triangles
incident to this vertex (figure 19). Assume that the shading
normals are available at the vertices.

In the point-collocation method, the unknown directional
functionsLj(!) are determined to ensure that the residual of

1

b (p) basis functioni

Figure 19: Linear basis function in 3-dimension
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the approximation is zero at the vertices of the triangle mesh.
This corresponds to Dirac-delta type adjoint basis functions,
where~bj(~x) is non-zero at vertexi only.

Thus the geometry matrix is

A(!0)jij = hbj(h(~x;�!0)) � cos� �0; �(~x� ~xi)i =

bj(h(~xi;�!0)) � cos� �0(~xi): (31)

5.3.1. Calculation of the irradiance at vertices

Since now the irradiance is not piece-wise constant but
piece-wise linear, it is better to evaluateA(!0) � I directly
than evaluating the geometry matrix and the irradiance sep-
arately. Thus we have to find

(A(!0) � I)[i] =
nX
j=1

bj(h(~xi;�!0)) � cos� �0(~xi) � I[j]:

(32)

In this formula thebj(h(~xi;�!0)) factor is non-zero for
thosej indices which represent a vertex of the patch visi-
ble from~xi at direction!0. The exact value can be derived
from the calculation of the height of the linear “tent” func-
tion at pointh(~xi;�!0). This means that having identified
the patch visible from~xi at direction!0, the required value
is calculated as a linear interpolation of the irrandiances of
the vertices of this patch.

I

I

I

I
f   . I     . cos

f   . I     . cos

f   . I     . cos

d-1

d-1

d

d-1

d-1

d-1

d-1

(1)

(1)

(2)

(2)

(3)

(1)

(2)

(3)

direction

direction

d-1

d

θ

θ

θ

(1)

(2)

(3) (3)

Figure 20: Global visibility algorithm for the vertices

To solve it for all patches, the triangular patches are sorted
in direction!0, then painted one after the other into an image
buffer. For vertexi of each triangle, the “color” is set to

L
e
i (!

0
D�d) + 4� � Fii(!

0
D�d+1; !D�d) � I[i]

at stepd and the linear interpolation hardware (Gouraud
shading) is used to generate the color (or irradiance) in-
side the triangle. For back-facing patches this step clears the
place of the triangle in the “image”.

If the triangles that are in front of the given triangle in di-
rection!0 are rendered into the image buffer, then the radi-
ance illuminating the vertices of the given triangle is readily
available in the current image buffer. Assuming that patches

are processed in the order of the transillumination direction,
every patch should be rendered only once into the image
buffer.

Thus the calculation of the irradiances at a given transil-
lumination direction is:

Sort patches in direction!0 (painter’s algorithm)
Clear image-buffer
for each patchi in sorted orderdo

if patchi is front facingthen
for each vertexv[i] of the patchi

color[v[i]] = Le
v[i]

(!0
D�d

) + 4��

Fv[i];v[i](!
0
D�d+1

; !0
D�d

) � I[v[i]]

endfor
Render patchi into the image-buffer

else
for each vertexv[i] of the patchi

I[v[i]] = (image buffer at projection ofv[i])�
cos� �0[v[i]]

endfor
Render patchi with color 0

endif
endfor

The processing of a single direction for all patches require
a sorting step and the rendering of each triangle into a tem-
porary buffer. This can be done inO(n log n) time.

6. Handling sky-light illumination

The visibility methods introduced so far can easily be ex-
tended for sky-light illumination by initializing the image on
the transillumination plane by a special value if the direction
points downwards (sky is usually above the horizon). When
the radiance is transferred and this value is found in a given
pixel, then the irradiance of the receiver is updated according
to the intensity of the sky-light.

7. Application of importance sampling

The global illumination method proposed so far is particu-
larly efficient if the lighting distribution in the scene does not
exhibit high variations. For difficult lighting conditions im-
portance sampling can help, which prefers those sequences
of directions that transport significant radiance towards the
eye.

Importance sampling is a general variance reduction
method that can improve Monte-Carlo and quasi-Monte
Carlo quadrature35.

Suppose that integralI =
R
V
f(z) dz needs to be evalu-

ated. For our case,I represents the image andf is responsi-
ble for determining the contribution of a global path denoted
by z, thus bothI and f are vectors. In order to rank the
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domain points according to the size off(z), a scalar impor-
tance functionI(z) must be defined that can show where the
elements in vectorf are large.

A straightforward definition of this importance function is
lettingI be the sum of luminances of all pixels of the image.
This importance function really concentrates on those walks
that have a significant influence on the image. Using the lu-
minance information is justified by the fact that the human
eye is more sensitive to luminance variations than to color
variations.

Importance sampling requires the generation of samples
fz1; z2; : : : zMg according to a probability densityp(z) —
which is at least approximately proportional toI(z) — and
using the following formula:

I =

Z
V

f(z)

p(z)
� p(z) dz = E

�
f(z)

p(z)

�
� 1

M
�
MX
i=1

f(zi)

p(zi)
:

(33)

Since no a-priori information is available which these im-
portant directions are, some kind of adaptive technique must
be used. In this section the application of the VEGAS and
Metropolis sampling methods are considered.

7.1. VEGAS sampling

The VEGAS algorithm17 is an adaptive Monte-Carlo method
that generates a probability density automatically and in a
separable form. The reason of the requirement of separabil-
ity is thatD number ofk-dimensional tables need much less
space than a singleD � k-dimensional table. Formally, let
us assume that the probability density can be defined in the
following product form:

p(!1; !2; : : : ; !D) / g1(!1) � g2(!2) : : : � gD(!D): (34)

It can be shown17 that the optimal selection ofg1 is

g1(!1) =

rZ
I2(!1; : : : ; !D)
g2(!2) : : : gD(!D)

d!2 : : : d!D; (35)

and similar formulae apply tog2; : : : ; gD.

These g1; : : : gD functions can be tabulated as 2-
dimensional arrays (note that a single direction is defined
by 2 scalars� and�). The(i; j) element of this matrix rep-
resents the importance of the directional region where

� 2 [(
2i�

N
;
2(i+ 1)�

N
]; � 2 [

j�

N
;
(j + 1)�

N
)]:

This immediately presents a recursive importance sam-
pling strategy. The algorithm is decomposed into phases
consisting of a number of samples. At the end of each phase
weightsg1; : : : gD are refined, to provide a better probability
density for the subsequent phase. Assuming thatg1; : : : gD

are initially constant, a standard Monte-Carlo method is ini-
tiated, but in addition to accumulating to compute the inte-
gral, g1; : : : gD are also estimated using equation (35). The
Monte-Carlo estimate of the newg1(!1) is

g
(new)
1 (!1) =

vuut MX
i=1

I2(!1; : : : ; !D)
g22(!2) : : : g

2
D(!D)

: (36)

Then for the following phase, the samples are selected ac-
cording to theg functions. In order to calculate a sample for
!i, for instance, a single random value is generated in the
range of 0 and the sum of all elements in the array defining
gi. Then the elements of the array is retained one by one and
summed to a running variable. When this running variable
exceeds the random sample, then the searched directional
region is found. The direction in this region is then found by
uniformly selecting a single point from the region.

VEGAS method is not optimal in the sense that the prob-
ability density can only be approximately proportional to the
importance even in the limiting case since only product form
densities are considered.

We have to mention that the original VEGAS method used
1-dimensionalg functions, but in our case, the 2 scalars
defining a single direction are so strongly correlated, thus
it is better not to separate them.

In theory, higher dimensional tables could also be used,
but this would pose unacceptable memory requirements.

8. Metropolis sampling

The Metropolis algorithm19 is a Monte-Carlo quadrature
method that incorporates adaptive importance sampling by
exploring the properties of the integrand automatically. Un-
like the VEGAS method, it converges to the optimal proba-
bility density that is proportional to the importance, that is in
the limiting case:

I(z) = b � p(z):

However, this probability density cannot be stored, thus
in the Monte-Carlo formula the importance should be used
instead, in the following way:

I =

Z
V

f(z)

I(z) � I(z) dz = b �
Z
V

f(z)

I(z) � p(z) dz =

b � E
�
f(z)

I(z)

�
� b

M
�
MX
i=1

f(zi)

I(zi) (37)

In order to generate samples according top(z) = 1=b �
I(z) a Markovian process is constructed whose stationary
distribution is justp(z). The definition of this Markovian
processfz1; z2; : : : zi : : :g is as follows:
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for i = 1 to M do
Based on the actual statezi,

choose another random, tentative pointzt

if (I(zt) � I(zi)) then accept(zi+1 = zt)
else // accept with the importance degradation

Generate random numberr in [0; 1].
if r < I(zt)=I(zi) then zi+1 = zt

else zi+1 = zi

endif
endfor

The generation of the next tentative sample is governed
by a tentative transition functionT (x ! y). In the algo-
rithm we use symmetric a tentative transition function, that
is T (x ! y) = T (y ! x). The transition probability of
this Markovian process is:

P (x! y) =

(
T (x! y) if I(y) > I(x) ;

T (x! y) � I(y)=I(x) otherwise:
(38)

In equilibrium state, the transitions between two statesx and
y are balanced, that is

p(x) � P (x! y) = p(y) � P (y! x):

Using this and equation (38), and then taking into account
that the tentative transition function is symmetric, we can
prove that the stationary probability distribution is really
proportional to the importance:

p(x)

p(y)
=

P (y! x)

P (x! y)
=

T (y! x)

T (x! y)
� I(x)I(y) =

I(x)
I(y) : (39)

If we select initial points according to the stationary distri-
bution — that is proportionally to the importance — then the
points visited in the walks originated at these starting points
can be readily used in equation (37).

8.1. Metropolis solution of the directional integrals

The Metropolis approximation of the radiance vector is:

L(!) =

(
1

4�
)D
Z



: : :

Z



�
L
e(!) + 4� �F(!01; !) � ID

�
d!
0
D : : : d!

0
1 �

(
b

M
)

MX
m=1

Le(!) + 4� �F(!01; !) � ID(m)

I(!
(m)
1 ; !

(m)
2 ; : : : ; !

(m)

D
)

: (40)

whereM is the number of samples (also calledmutations)
and b is the integral of the importance function over the
whole space.

8.1.1. Definition of the tentative transition function

The statespace of the Markovian process consists ofD-
dimensional vectors of directions that define the sequence
of directions in the global walks. Thus the tentative transi-
tion function is allowed to modify one or more directions in
these sequences.
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Figure 21: Mutation strategy

The set of possible sequences of directions can be rep-
resented by a2D-dimensional unit cube (each direction is
defined by two angles).

In the actual implementation random mutations that are
uniformly distributed in a2D dimensional cube of edge-size
s are used. In order to find the extent of the random perturba-
tion, several, contradicting requirements must be taken into
consideration.

First of all, in order to cover the whole statespace of unit
size, the number of mutations should be much greater than
s
�2D. From a different point of view this states that the mu-

tations cannot be very small. Small mutations also empha-
size the start-up bias problem which is a consequence of the
fact that the Markovian process only converges to the de-
sired probability density (this phenomenon will be examined
in detail later).

On the other hand, if the mutations are large, then the
Markovian process “forgets” which regions are important,
thus the quality of importance sampling will decrease.

Finally, another argument against small mutations is that
it makes the subsequent samples strongly correlated. Note
that Monte-Carlo quadrature rules usually assume that the
random samples are statistically independent, which guar-
antees that if the variance of random variablef(z) is�, then
the variance of the Monte-Carlo quadrature will be�=

p
M

after evaluatingM samples. Since Metropolis method uses
statistically correlated samples, the variance of the quadra-
ture can be determined using the Bernstein theorem26, which
states that the variance of the quadrature is

� �
r

1 + 2
PM

k=1
R(k)

M
(41)

whereR(k) is an upperbund of the correlation between
f(zi) andf(zi+k). It means that strong correlation also in-
creases the variance of the integral estimate.
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8.1.2. Generating an initial distribution

The Metropolis method promises to generate samples with
probabilities proportional to their importance in the station-
ary state.

Although the process converges to this probability from
any initial distribution as shown in figure 22, the samples
generated until the process is in the stationary state should
be ignored.

To ensure that the process is already in the stationary case
from the beginning, initial samples are also selected accord-
ing to the stationary distribution, i.e. proportionally to the
importance function. Selecting samples with probabilities
proportional to the importance can be approximated in the
following way. A given number of seed points are found in
the set of sequences of global directions. The importances of
these seed points are evaluated, then, to simulate the distri-
bution following this importance, the given number of initial
points are selected randomly from these seed points using
the discrete distribution determined by their importance.

8.1.3. Automatic exposure

Equation (40) also contains an unknownb constant that ex-
presses the luminance of the whole image. The initial seed
generation can also be used to determine this constant. Then
at a given point of the algorithm the total luminance of the
current image — that is the sum of the importances of the
previous samples — is calculated and an effective scaling
factor is found that maps this luminance to the expected one.

8.2. Variance reduction

Metropolis method may ignore calculated function values
if their importance is low. However, these values can be
used to reduce variance. Suppose that the importance de-
grades at stepi. Thus the the process is inzt with prob-
ability (1 � I(zt))=I(zi) and in zi+1 with probability
I(zt)=I(zi). In order to compute the integral quadrature,
random variablef(zi)=I(zi) is needed. A common vari-
ance reduction technique is to replace a random variable by
its mean, thus we can use�

1� I(zt)
I(zi)

�
� f(zi)I(zi) +

I(zt)
I(zi) �

f(zt)

I(zt) :

instead off(zi)=I(zi).

8.3. Evaluation of the performance of the Metropolis
method

To evaluate the new algorithm, and particularly the effi-
ciency of the Metropolis sampling the scene of figure 23 has
been selected. The surfaces have both diffuse and specular
reflection and the lightsource is well hidden from the cam-
era (figure 23).

The error measurements of the Metropolis method with

Figure 23: A test scene

different perturbation size, and for quasi-Monte Carlo sam-
ples are shown by figure 24.
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Figure 24: Error measurements for the “difficult scene”

The image generated using Metropolis walks are shown
infigure 25.

Figure 25: The image of the scene with difficult lighting ren-
dered Metropolis walks

Considering the performance of the Metropolis method
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Figure 22: Convergence of the first-bounce as computed by 100, 500, 1000 and 5000 Metropolis samples

for our algorithms, we have to conclude that for homo-
geneous scenes, it cannot provide significant noise reduc-
tion compared to quasi-Monte Carlo walks. This is due to
the fact that the integrand of equation (7) is continuous
and is of finite variation unlike the integrand of the origi-
nal rendering equation, thus if its variation is modest then
quasi-Monte quadrature is almost unbeatable. The combined
and bi-directional walking techniques cause even further
smoothing which is good for the quasi-Monte Carlo but bad
for the Metropolis sampling.

On the other hand the number of samples was quite low
(we used a few thousand samples, while in46 the number of
samples was 50 million). For so few samples the Metropolis
method suffers from the problems of initial bias and corre-
lated samples. Due to the smooth integrand, the drawbacks
are not compensated by the importance sampling.

8.4. Evaluation of the start-up bias

In order to theoretically evaluate the start-up bias, let us ex-
amine a simplified, 1-dimensional case when the importance

is constant, thus the transition proposed by the tentative tran-
sition function is always accepted.

In this case, the probability density in the equilibrium
is constant. The question is how quickly the Metropolis
method approaches to this constant density (figure 26).

p p pp
210

Figure 26: Evaluation of the uniform distribution

Metropolis method can generate samples following a
given probability density in a closed interval. Since random
mutations may result in points that are outside the closed in-
terval, the boundaries should be handled in a special way.

c Institute of Computer Graphics 1998



22 Szirmay-Kalos / Global Ray-bundle Tracing

If the variable of an integrand denotes “angle of direc-
tion”, then the interval can be assumed to be “circular”, that
is, the external points close to one boundary are equivalent
to the internal points of the other boundary. Using this as-
sumption, let us suppose that the domain of the integration
is [��; �] and the integrand is periodic with2�.

Let the probability distribution at stepn be pn. The
Metropolis method is initiated from a single seed at0, thus
p0 = �(x). Assume that transition probabilityP (y ! x),
which is equal to the tentative transition probability for con-
stant importance, is homogeneous, that isP (y ! x) =

P (x�y). Using the total probability theorem, the following
recursion can be established for the sequence ofpn:

pn+1(x) =

1Z
�1

pn(y) � P (x! y) dy =

1Z
�1

pn(y) � P (x� y) dy = pn � P; (42)

where� denotes the convolution operation.

Applying Fourier transformation to this iteration formula,
we can obtain:

p
�
n+1 = p

�
n � P �; (43)

wherep�n+1 = Fpn+1, p�n = Fpn andP � = FP .

Since the domain is “circular”, i.e.x denotes the sample
point asx+2k� for any integerk, the probability density is
periodic, thus it can be obtained as a Fourier series:

pn(x) =

1X
k=�1

a
(n)

k e
|kx

; (44)

where| =
p�1. The Fourier transform is thus a discrete

spectrum:

p
�
n(f) =

1X
k=�1

a
(n)

k
� �(f � k) (45)

Substituting this into equation (43), we get

p
�
n+1(f) =

 
1X

k=�1

a
(n)

k � �(f � k)

!
� P �(f) =

1X
k=�1

a
(n)

k � P �(k) � �(f � k); (46)

thusa(n+1)

k = a
(n)

k � P �(k).
Using the same conceptn times, and taking into account

that the initial distribution is�(x), we can obtain:

p
�
n(f) =

1X
k=�1

(P �(k))
n � �(f � k) (47)

thus in the original domain

pn(x) =

k=1X
k=�1

(P �(k))
n � e|kx (48)

TheL2 error betweenpn and the stationary distribution is
then

jjpn � p1jj2 =

vuuut
1Z

0

jpn(x)� a
(1)
0 j2 dx (49)

Note that according to the definition of the Fourier series

a
(n)
0 =

1

2�
�

�Z
��

pn(x) dx = 1 (50)

independently ofn, thusa(1)
0 is also 1. Using this and sub-

stituting equation (48) in equation (49), we get the following
error for the distribution:

jjpn � p1jj2 =

vuut k=1X
k=�1;k 6=0

jP �(k)j2n (51)

8.4.1. Starting from multiple seeds

So far we have assumed that the integrand is estimated from
a single random walk governed by the Markovian process.
One way of reducing the startup bias is to use several walks
initiated from different starting points, called seeds, and
combine their results.

If the initial point is generated from seedpoints
x1; x2; : : : ; xN randomly selectingxi with probability �i
(
PN

i=1
�i = 1), then the initial probability distribution is

the following

p0(x) =

NX
i=1

�i � �(x� xi) (52)

Using the same concept as before, the probability density
aftern steps can be obtained in the following form

pn(x) =

k=1X
k=�1

NX
i=1

�i � (P �(k))n � e|k(x�xi) (53)

The error of the probability distribution after stepn is then

jjpn�p1jj2 =

vuut k=1X
k=�1;k 6=0

�����P �(k) �
NX
i=1

�i � e|k(x�xi)

�����
2n

:

(54)
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8.4.2. Analysis of uniform random perturbations

Let the perturbation be the selection of a point following uni-
form distribution from an interval of size� centered by the
current point. Formally the transition probability is

P (x! y) =

(
1=� if jx� yj < �;

0 otherwise:
(55)

The Fourier transform of this function is

P
�(k) =

sin k��

k��
(56)

which can be rather big even for largek values. This for-
mula, together with equation (51) allows to generate the
graph of the startup errors for different sample numbers and
for different perturbation size (figure 27).
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Figure 27: Startup error for different perturbation size�

Note that the probability density is not accurate for many
iterations if the perturbation size is small compared to the
size of the domain. This situation gets just worse for higher
dimensions.

9. Preprocessing the point lightsources

As other global radiosity methods, this method is efficient
for large area lightsources but loses its advantages if the
lightsources are small30. This problem can be solved by a
“first-shot” that shoots the power of the point lightsources
onto other surfaces, then removes them from the scene3.
Since the surfaces can also be non-diffuse, the irradiance re-
ceived by the patches from each point lightsource should be
stored (this requiresl additional variables per patch, where
l is the number of point lightsources). The secondary, non-
diffuse emission to a direction is computed from these irra-
diances.

Formally, the unknown radianceL is decomposed into
two terms:

L = L
ep + L

np (57)

+=

Figure 28: First shot technique

whereLep is the emission of the small, point-like light-
sources,Lnp is the emission of the area lightsources and the
reflected radiance. Substituting this into the rendering equa-
tion we have:

L
ep + L

np = L
e + T (Lep + L

np): (58)

ExpressingLnp we obtain:

L
np = (Le � L

ep + T Lep) + T Lnp: (59)

Introducing the new lightsource term

L
e� = L

e � L
ep + T Lep (60)

which just replaces the point lightsources (L
ep) by their ef-

fect (T Lep), the equation forLnp is similar to the original
rendering equation:

L
np = L

e� + T Lnp: (61)

It means that first the direct illumination caused by the
point lightsources must be computed, then they can be re-
moved from the scene and added again at the end of the
computation.

9.1. Diffuse shot

Getting rid of the point lightsources may reduce the variation
of integrand, but medium sized lightsources still pose prob-
lems. One way of handling these is decomposing them into
finite number of small lightsources and preprocess the scene
in a way proposed by the previous section. However, due to
the fact that the first-shot ofl point lightsources requiresl
additional variables per patch, this approach becomes very
memory demanding. Thus a different approach is needed,
which decomposes the transport operator instead of subdi-
viding the lightsources.

Let us express the BRDF of the surfaces as a sum of the
diffuse and non-diffuse (specular) terms (note that the avail-
able BRDF representations do exactly this),

fr(!
0
; ~x; !) = fd(~x) + fnd(!

0
; ~x; !)

and let us express the transport operator as the sum of diffuse
and non-diffuse reflections:

T = Td + Tnd;
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TdL =

Z



L(h(~x;�!0); !0) � cos� �0 � fr(~x) d!0;

TndL =

Z



L(h(~x;�!0); !0) � cos� �0 � fnd(!0; ~x; !) d!0:

The basic idea of the “diffuse shot” technique is thatTdLe
can be calculated in a preprocessing phase by known tech-
niques, for example, by a gathering-type radiosity algorithm.
The storage of the foundTdLe requires just one variable per
patch (this is why we handled the diffuse reflection sepa-
rately).

+=

only specular 
reflection

diffuse+specular
reflection

"emission"

Figure 29: First step of the diffuse shot technique

Then, during the global walks, the first step should only be
responsible for the non-diffuse reflection. The diffuse part is
added to the result of this first step. Note that this method
handles the first step in a special way, thus it requires the
different bounces to be stored separately, as it is done by the
combined and bi-directional methods.

In order to formally present the idea, let us denote the re-
sult of the diffuse shot byLdif . The calculation of thed-
bounce irradianceJd for d = 1; 2; : : : is modified as fol-
lows:

J0 = A(!0D) � Le(!0D);
J1 = 4� �A(!0D�d) �

�
Fnd(!

0
D�d+1; !

0
D�d) � J1 + Ldif ;

�
Jd = 4� �A(!0D�d) � F(!0D�d+1; !

0
D�d) � Jd�1;

whereFnd is the non-diffuse reflectance function.

The method can also be explained as a restructuring of the
Neumann-series expansion of the solution of the rendering
equation in the following way:

L = L
e + T Le + T 2

L
e + T 3

L
e + : : : =

(Le + TdLe) + TndLe + T (TdLe + TndLe) + : : : (62)

whereTdLe is known after the preprocessing phase.

10. Simulation results

Figure 30 shows a scene as rendered after the first shot and
after 500 walks of length 5. The scene contains specular,

metallic objects tessellated to 9605 patches, and is illumi-
nated by both area (ceiling) and point (right-bottom corner)
lightsources. The specular reflection has been modeled by a
physically plausible modification of the Phong model, that is
particularly suitable for metals21. A global radiance transfer
took about 0.7 second on a Silicon Graphics O2 computer.
Since the radiance information of a single patch is stored
in 18 float variables (1 for the emission, 1 for the irradiance
generated by the point lightsource,D(D+1)=2 = 15 for the
irradiances and 1 for the accumulating radiance perceived
from the eye), the extra memory used in addition to storing
the scene is only 0.7 Mbytes.

A similar scene consisting of 9519 patches has been ren-
dered by stochastic iteration (figure 31). The left image has
been calculated by 500 steps which took 9 minutes.

Figure 32 shows a fractal terrain containing 14712 patches
after 500 global walks which provide an accuracy within
2 percents. The illumination comes from both a sperical
lightsource placed close to the mountain and from the ho-
mogenous sky-light. A global radiance transfer took approx-
imately 1.1 seconds and the radiance information required 1
Mbytes.

In figure 33 the fractal surface has been tessellated further
and waves are added to the water. This scene contains 59614
patches and has been rendered by the stochastic iteration (45
minutes computation time).

11. Conclusions

This paper presented a combined finite-element and random-
walk algorithm to solve the rendering problem of complex
scenes including also glossy surfaces. The basic idea of the
method is to form bundles of parallel rays that can be traced
efficiently, taking advantage of the z-buffer hardware. Un-
like other random walk methods using importance sampling
10; 15; 46, this approach cannot emphasize the locally impor-
tant directions, but handles a large number (1 million) paral-
lel rays simultaneously instead, thus it is more efficient than
those methods when the surfaces are not very specular.

The time complexity of the algorithm depends on the used
global visibility algorithm. For example, the global painter’s
algorithm hasO(n log n) complexity (n is the number of
patches), which is superior to theO(n2) complexity of clas-
sical, non-hierarchical radiosity algorithms.

The memory requirement is comparable to that of the
diffuse radiosity algorithms although the new algorithm is
also capable to handle non-diffuse reflections or refractions.
Since global ray-bundle walks are computed independently,
the algorithm is very well suited for parallelization.

In order to incorporate importance sampling, the
Metropolis and VEGAS methods have been considered, but
only the Metropolis method was examined in details. For
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Figure 30: A scene after the “first-shot”(left) and after 500 global walks (right)

Figure 31: A scene of a Beethoven and a teapot rendered by stochastic iteration after 500 iterations (left) and when fully
converged (right)
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Figure 32: A smooth mountain with a nearby “moon” and a flat lake

Figure 33: A rocky mountain with a nearby “moon” and a “wavy” lake
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homogeneous scenes, Metropolis sampling could not pro-
vide significant noise reduction compared to quasi-Monte
Carlo walks. This is due to the fact that the integrand of
equation (7) is continuous and is of finite variation unlike
the integrand of the original rendering equation, thus if its
variation is modest then quasi-Monte quadrature is almost
unbeatable. If the radiance distribution has high variation
(difficult lighting conditions), then the Metropolis method
becomes more and more superior. On the other hand, the
Metropolis method is sensitive to its parameters such as the
extent of perturbation. Future research should concentrate on
the automatic and “optimal” determination of these control
parameters.

The paper also presented an unbiased algorithm that was
based on stochastic iteration. This algorithm seems to be sig-
nificantly better than the finite-length approaches, in terms of
both speed and storage space.
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26. Alfréd Rényi. Wahrscheinlichkeitsrechnung. VEB
Deutscher Verlag der Wissenschaften, Berlin, 1962.

27. M. Sbert. The Use of Global Directions to Compute
Radiosity. PhD thesis, Catalan Technical University,
Barcelona, 1996.

28. M. Sbert. Error and complexity of random walk Monte-
Carlo radiosity. IEEE Transactions on Visualization
and Computer Graphics, 3(1), 1997.

29. M. Sbert, R. Martinez, and X. Pueyo. Gathering multi-
path: a new Monte-Carlo algorithm for radiosity. In
Winter School of Computer Graphics ’98, pages 331–
338, Plzen, Czech Republic, 1998.

30. M. Sbert, X. Pueyo, L. Neumann, and W. Purgathofer.
Global multipath Monte Carlo algorithms for radiosity.
Visual Computer, pages 47–61, 1996.

31. P. Shirley. Discrepancy as a quality measure for sam-
pling distributions. InEurographics ’91, pages 183–
194. Elsevier Science Publishers, 1991.

32. P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo
techniques for direct lighting calculations.ACM Trans-
actions on Graphics, 15(1):1–36, 1996.

33. F. Sillion and C. Puech. A general two-pass method
integrating specular and diffuse reflection. InComputer
Graphics (SIGGRAPH ’89 Proceedings), pages 335–
344, 1989.

34. F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P.
Greenberg. A global illumination solution for gen-
eral reflectance distributions.Computer Graphics (SIG-
GRAPH ’89 Proceedings), 25(4):187–198, 1991.

35. I. Sobol.Die Monte-Carlo Methode. Deutscher Verlag
der Wissenschaften, 1991.

36. M. Stamminger, Slussalek P., and H-P. Seidel. Three
point clustering for radiance computations. InRender-
ing Techniques ’98, pages 211–222, 1998.

37. L. Szirmay-Kalos and T. F´oris. Sub-quadratic radiosity
algorithms. InWinter School of Computer Graphics
’97, pages 562–571, Plzen, Czech Republic, 1997.

38. L. Szirmay-Kalos, T. F´oris, L. Neumann, and
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