
Table of Contents

Thick Line Integration with Filtered Sampling . 1
Dóra Varnyú and László Szirmay-Kalos

II

Thick Line Integration with Filtered Sampling

Dóra Varnyú and László Szirmay-Kalos

Budapest University of Technology and Economics, Student Research Group of
Balatonfüred and Dept. of Control Eng. and Inf. Tech.

szirmay@iit.bme.hu

Abstract. In particle tracing, motion blur calculation, participating
media rendering, or tomography reconstruction, we often need to evalu-
ate the integral of a scalar function in a thick line, i.e. a pipe like domain.
Monte Carlo methods would sample the surfaces at the two ends of the
pipe and evaluate a line integral between the two sample points, which
is approximated by discrete point samples. Although this method pro-
duces unbiased estimates, an accurate estimation would require a high
number of samples. A more efficient approach would sample the domain
not with points or lines but with 3D volumetric structures. In this pa-
per, we examine and compare such sampling schemes, point out their
similarity to filtered sampling and the 3D generalization of anti-aliased
line drawing algorithms. The proposed methods are used in forward pro-
jection of tomography reconstruction and also in model based motion
compensation.

1 Introduction

In iterative positron emission tomography (PET) forward and back projections
alternate [8]. Forward projection models the physics of the system by computing
the expected number of simultaneous γ-photon hits in detector pairs (a.k.a.
Line Of Responses or LORs), ỹL, from the current estimation of the radiotracer
density x(v), while back projection corrects the current estimation based on the
ratio of the measured yL and computed LOR-hits ỹL. The tracer density function
x(v) is approximated assuming that the tracer density is xV in voxel V . The
expected hits for a given LOR L is:

ỹL =

∫
V

x(v)T (v → L)dv (1)

where V is the volume of interest and T (v → L) is the system sensitivity denoting
the probability that a positron born in v causes a γ-photon pair hit in LOR L.

Considering only the geometry, a LOR can be affected only if its detectors are
seen at directions ω and −ω from emission point v. It also means that emission
point v and direction ω unambiguously identify detector hit points z1 and z2,
or alternatively, from detector hit points z1 and z2, we can determine those
emission points v and direction ω, which can contribute.

2 Varnyú and Szirmay-Kalos

To establish a LOR-driven approach, we modify our view point from the
emission points and directions to detector points, and using the correspondence
between them, the detector response is expressed as an integral over the detector
surfaces. The Jacobian of the change of integration variables is:

dωdv =
cos θz1

cos θz2

|z1 − z2|2
dldz1dz2

where θz1 and θz2 are the angles between the surface normals and the line
connecting points z1 and z2 on the two detectors, respectively. With this, the
LOR integral can be expressed as a triple integral over the two detector surfaces
D1 and D2 of the given LOR and over the line connecting two points z1 and z2

belonging to the two detectors:

ỹL =

∫
D1

∫
D2

cos θz1
cos θz2

2π|z1 − z2|2

 z2∫
z1

x(l)dl

 dz2dz1. (2)

LOR driven methods are also called ray based since they identify voxels that
may contribute to a LOR by casting one or more rays between two points on the
LOR detectors. Equation (2) can be estimated by taking Ndetline uniformly dis-

tributed point pairs, (z
(i)
1 , z

(i)
2) on the two detectors, and selecting Nstep points

lij of distance ∆lij along each line segment (z
(i)
1 , z

(i)
2):

ỹL ≈
D1D2

2πNdetline

Ndetline∑
i=1

cos θ
z
(i)
1

cos θ
z
(i)
2

|z(i)
1 − z

(i)
2 |2

Nstep∑
j=1

x(lij)∆lij

 .

This formula is the Monte Carlo estimator of the expected LOR hits taking
discrete point samples lij in the voxel domain. In order to get a high accuracy
estimate, the domain of each basis function that is relevant for this LOR should
be sufficiently densely sampled, which would lead to very high sample numbers.

For the approximation of the line integral along a ray, we may use ray march-
ing or Siddon’s algorithm [7]. Siddon’s algorithm gives exact integral values in
case homogeneous voxels, but the number steps Ndetline varies for LORs, which
is a significant disadvantage in GPU implementation, since it makes parallel
threads responsible for different LORs incoherent. Ray marching always take
the same number of steps, thus the threads are coherent, but due to the point
sampling, it can have high variance estimates. For example, if the line crosses
a high activity voxel in a very short line segment, this LOR may have a large
value with low probability. Line drawing algorithms of computer graphics, like
the Bresenham’s algorithm [1], take the same steps if the maximal coordinate
change is the same, and select those pixels in 2D where the line-pixel intersection
is long enough.

Joseph’s method [3] extended the Bresenham’s method with filtering oper-
ation, by computing the weighted average of two pixels in between the line is
passing through. Distance driven techniques [5] mapped both the detector and

Thick Line Integration with Filtered Sampling 3

voxel onto the same plane, and used the intersections of the projected areas for
weighting. Unlike other methods, this technique takes into account where the de-
tector boundaries are, but works only for fan-beam or cone-beam architecture.

Executing filtering before projections [4, 6] is very efficient since then the
simplest line integration produces already filtered results, but such approaches
also ignore the locations of LOR boundaries.

In this paper, we revisit filtered line integration for PET forward projection.
We provide a technique to guarantee unbiasedness and prove that such filtering
always reduces the variance of the applied Monte Carlo integration.

2 Filtered sampling

Filtered sampling replaces the integrand by another function that has a similar
integral but smaller variation, then its integral can be estimated more precisely
from discrete samples. Reducing the variation means the filtering of high fre-
quency fluctuations by a low-pass filter. This filter should eliminate frequencies
beyond the limit corresponding to the density of the sample points. On the other
hand, it should only minimally modify the integral.

In order to examine the properties of filtered sampling, let us consider the
integral If of function f(x) in [a, b] by taking M s-independent uniformly dis-

tributed random samples x1, . . . , xM . The Monte Carlo estimator Îf is

If =

b∫
a

f(x)dx ≈ b− a
M

M∑
i=1

f(xi) = Îf .

The expected value of this random estimator Îf is equal to the original integrand,
i.e. it is unbiased, and its variance is

V
[
Îf

]
=
b− a
M

 1∫
0

f2(x)dx− I2f

 .

Now let us consider a filtered version F (x) of the integrand with smoothing
filter kernel s(x):

F (x) =

∞∫
−∞

s(y)f(x− y)dy.

where the filter kernel is non-negative, normalized and its support is [−∆x,∆x].
We also suppose s(y) to be symmetric, i.e. s(y) = s(−y). Non-negative, normal-
ized filter kernels can also be considered as probability densities, and the filtering
operation as the computation of the expected value:

F (x) = Es(y) [f(x− y)]

4 Varnyú and Szirmay-Kalos

The integral of the filtered integrand is

IF =

b∫
x=a

F (x)dx =

b∫
x=a

Es(y) [f(x− y)] dx = Es(y)

 b∫
x=a

f(x− y)dx

= Es(y)

 b−y∫
x′=a−y

f(x′)dx′

 = If + Es(y)

 a∫
x=a−y

f(x)dx−
b∫

x=b−y

f(x)dx

 .
The integral of F is generally not equal to that of f because filtering steps over

the two boundaries of the domain, thus evaluating a Monte Carlo quadrature
for F results in a biased estimate for the integral of f . The bias caused by the
boundary is

B = Es(y)

 a∫
x=a−y

f(x)dx−
b∫

x=b−y

f(x)dx

 . (3)

This bias can be eliminated by defining integrand f appropriately outside of
the original integration domain [a, b]. Let f(x) = f(2a−x) when a−∆x < x < a
and f(x) = f(2b − x) when b < x < b + ∆x, i.e. let us mirror the integrand
onto the two boundaries in the domain of the filter kernel. Let us reconsider the
integral of F for this case

IF = Es(y)

 b−y∫
x=a−y

f(x)dx

 .
Variable y is a translation for the domain of the integral of f . When y is positive,
the domain is translated to the left, modifying the integrand by adding a new
area in [a−y, a] and subtracting an area in [b−y, b]. As integrand f is symmetric
inside [a −∆x, a + ∆x] and also in [b −∆x, b + ∆x], the total modified area is
the same when y is multiplied by -1, just addition becomes subtraction and vice
versa. As the filter kernel, i.e. the probability density s(y) is also symmetric,
these two cases cancel each other. As any y has a corresponding −y, the total
modification caused by filtering over the boundary is zero.

Let us now compare the variances of ÎF and Îf . As their expectations are

similar and we take the same number of samples, V[ÎF] is smaller than V[Îf] if

b∫
a

F 2(x)dx ≤
b∫

a

f2(x)dx.

Let us use the definition of F (x):

b∫
a

F 2(x)dx =

b∫
x=a

(
Es(y) [f(x− y)]

)2
dx. (4)

Thick Line Integration with Filtered Sampling 5

The integrand is the square of expected value Eb(y) [f(x− y)]. As squaring
is a convex function, using Jensen’s inequality, we can write(

Es(y) [f(x− y)]
)2 ≤ Es(y)

[
f2(x− y)

]
.

Substituting into Eq. 4, we get

b∫
a

F 2(x)dx ≤
b∫

x=a

Es(y)

[
f2(x− y)

]
dx = Es(y)

 b∫
x=a

f2(x− y)dx

= Es(y)

 b∫
x=a

f2(x)dx

 =

b∫
a

f2(x)dx. (5)

3 Anti-aliased line drawing in 3D

3.1 Ray marching

Ray marching divides the line into Nmarch segments of equal length, i.e. the
sample points are located at a predetermined distance of ∆l from each other.
Each sampled voxel contributes to the number of detector hits in the LOR with
the same weight.

3.2 Filtered ray marching

With the filtered ray marching algorithm the voxel array is pre-filtered before
sampling. We used the symmetric 3D filter kernel that gives weight w = 0.9 to
the center voxel and (1− w)/6 to its face neighbors.

3.3 Siddon

The Siddon algorithm is based on the observation that the intersection points
of an arbitrary straight line and a parallel set of the voxel bounding planes are
always located at the same distance.

The coordinates of the current voxel are stored in the X, Y and Z integer
variables. The tx, ty and tz ray parameters keep track of the distance until the
next intersection in their direction. The smallest of the three variables mark the
direction where the line will intersect a voxel boundary next. In every step we
move on to the next voxel along the axis belonging to the smallest parametric
variable (i.e. increment X, Y or Z) and increase the affected parametric variable
by a predetermined step value. The contribution of every visited voxel is weighted
proportionally to the length of the line segment that falls in the voxel, i.e. the
difference of the smallest parametric variables when the line stepped out of and
stepped into the voxel.

6 Varnyú and Szirmay-Kalos

3.4 Bresenham

The Bresenham algorithm iterates through the direction in which the line changes
the most rapidly in unit steps. In every iteration the algorithm chooses whether
the two coordinates belonging to the two other directions should be incremented
or not based on which is the closest to the line. This is decided with the help of
an error variable, which keeps track of the slope error of line sampling caused
by the previous decisions.

3.5 Antialiased Bresenham

The Antialiased Bresenham complements the Bresenham algorithm with on-
the-fly box filtering. For this purpose, the intersection of the one-voxel wide line
segment and the voxel concerned has to be calculated. Considering first only the
2D case, we can conclude that a maximum of three voxels may intersect the line
segment in each column if the slant is between 0 and 45 degrees (Fig. 1). Let
the vertical distance of the three closest voxels to the center of the line be r, s
and t respectively, and suppose s < t ≤ r.

猀

琀

爀
漀渀攀 瘀

漀砀攀氀 
眀椀搀攀

氀椀渀攀 猀
攀最洀攀

渀琀

Fig. 1. Left: Box filtering of a line segment. Right: Linear interpolation in the An-
tialiased Bresenham algorithm reduces the number of memory accesses from 4 to 1 per
iteration.

The areas of intersection, Is, It and Ir depend not only on r, s and t, but
also on the slant of the line segment. This dependence, however, can be rendered
unimportant by using the following approximation:

Is ≈ (1− s), It ≈ (1− t) = s, Ir ≈ 0.

These formulae can be evaluated incrementally beside the Bresenham’s in-
cremental coordinate calculation. In every column, the contributions of the two
sampled voxels are weighted with the area of their intersection with the line
segment, i.e. Is and It.

Thick Line Integration with Filtered Sampling 7

The 3D generalization of the Antialiased Bresenham algorithm samples 4
voxels in every iteration, 2-2 both horizontally and vertically. Each voxel gets
two independent weights (one horizontal and one vertical weight), which are
computed by two simultaneous 2D Antialiased Bresenham algorithms. These
weights are then multiplied to form the final weight of the voxel’s contribution.

On GPU, the built-in linear interpolation of the texture memory can be
utilized in order to reduce the number of memory accesses from 4 to 1 per
iteration. Fig. 1 shows how the horizontal and vertical weights are used in the
interpolation of the four voxels.

3.6 Gupta–Sproull

Instead of box filtering, the Gupta-Sproull algorithm [2, 9] executes cone filtering.
For this purpose, the volume of the intersection between the one-voxel wide line
segment and the one-voxel radius cone centered around the voxel concerned has
to be calculated. The height of the cone must be 3/π to guarantee that the
volume of the cone is 1. Considering first only the 2D case, we can conclude that
a maximum of three voxels may have intersection with a base circle of the cone
in each column if the slant is between 0 and 45 degrees (Fig. 2).

Fig. 2. Left: Cone filtering of a line segment. Right: Linear interpolation in the Gupta-
Sproull algorithm reduces the number of memory accesses from 9 to 4 per iteration.

Let the distance between the voxel center and the center of the line be D.
For possible intersection, D must be in the range of [−1.5; +1.5]. For each voxel
the convolution integral - that is the volume of the cone segment above the voxel
- depends only on the value of D, thus it can be computed for discrete D values
and stored in a lookup table V (D) during the design of the algorithm.

The 3D generalization of the Gupta-Sproull algorithm samples 9 voxels in
every iteration, 3-3 both horizontally and vertically. Each voxel gets two inde-
pendent weights (one horizontal and one vertical weight), which - like in the
3D Antialiased Bresenham - are computed by two simultaneous 2D algorithms.

8 Varnyú and Szirmay-Kalos

These weights are then multiplied to form the final weight of the voxel’s con-
tribution, with the addition of a normalization factor to ensure that the sum of
weights in the nine voxels equals to 1.

On GPU, the built-in linear interpolation of the texture memory can be
utilized in order to reduce the number of memory accesses from 9 to 4 per
iteration. Fig. 2 shows how the horizontal and vertical weights are used in the
interpolation of the nine voxels.

3.7 Cylindrical Gupta–Sproull

Another variation of the Gupta–Sproull algorithm uses cylindrical filtering where
the volume of the intersection between the one-voxel wide line segment and
the one-voxel radius cylinder centered around the voxel concerned has to be
calculated. This variation differs only in the values of the V (D) lookup table
from the original Gupta-Sproull algorithm.

Fig. 3. Cylindrical filtering of a line segment.

4 Results

In our measurements, we compare the efficiency of the previously discussed line
drawing algorithms to approximate the line integral of a given LOR during for-
ward projection. The evaluation is performed by two programs written in C++.
The first one runs on the CPU and was later transposed to the CUDA platform,
which thus runs on the GPU and utilizes its massively parallel architecture and
built-in services to accelerate the computations.

The measured volume is represented by a 3D voxel array. During the simu-
lation, the number of hits of one single LOR is calculated separately with the
different algorithms. This simplified model consists only of the two opposite
detector crystals and the voxel array between them. The LOR is sampled by
selecting 128 random (z1, z2) point pairs following uniform distribution on the
detector surfaces.

Thick Line Integration with Filtered Sampling 9

In our model, detector crystals have a 8× 8 voxel wide surface. The distance
of the two crystals were 128, 256 and 512 voxels respectively. In the voxel array
a predetermined number of random voxels following uniform distribution were
selected to have positive activity, while all others had zero activity. The examined
parameter in this regard was the proportion of active voxels in the whole array
(12.5%, 25%, 50% or 75%).

Our research included the measurement of the accuracy and the execution
time of the implemented line drawing algorithms, which were then combined to
form an efficiency index.

4.1 Accuracy

In Fig. 4 the relative L1 error of the examined algorithms are plotted as a function
of the number of samples on the detector surfaces. The reference value was
computed with high precision (107 samples) using ray marching. To minimize
the sampling error, each method is executed 20 000 times and an average of
their result is calculated. On GPU, this is done by launching 20 000 threads
(gathering type computation). Since relative error is a logarithmic function of
the sample number, axes of the graphs are logarithmically scaled to make easier
the differentiation of the error curves.

Table 1 summarizes the average error of each algorithm from the five mea-
surements and sets up a ranking among them. It can be concluded that while
the execution time on the CPU increases linearly with the size of the voxel array,
the GPU implementation shows much better scaling.

Rank Algorithm Average error

1 Antialiased Bresenham 0.004695

2 Cylindrical Gupta-Sproull 0.005867

3 Gupta-Sproull 0.005982

4 Siddon 0.006760

5 Ray marching 0.006765

6 Bresenham 0.006784

7 Filtered ray marching 0.006845
Table 1. Average errors from the five measurements.

In terms of accuracy, the Antialiased Bresenham algorithm achieves the best
results, while the Cylindrical Gupta-Sproull comes out second best. For the fil-
tered ray marching, filtering at the borders introduces significant error as the
outside of the voxel array is not defined appropriately.

4.2 Speed

Execution times were measured both on CPU and GPU, and on the latter the
impact of the built-in linear interpolation was also examined. Measurements

10 Varnyú and Szirmay-Kalos

 0.01

 0.1

 1 10 100

R
el

at
iv

e
er

ro
r

Number of samples

Ray marching
Filtered ray marching

Siddon
Bresenham

Antialiased Bresenham
Gupta-Sproull

Cylindrical Gupta-Sproull

 0.01

 0.1

 1 10 100

R
el

at
iv

e
er

ro
r

Number of samples

Ray marching
Filtered ray marching

Siddon
Bresenham

Antialiased Bresenham
Gupta-Sproull

Cylindrical Gupta-Sproull

8 × 128 × 8 voxels,25% active 8 × 128 × 8 voxels,50% active

 0.01

 0.1

 1 10 100

R
el

at
iv

e
er

ro
r

Number of samples

Ray marching
Filtered ray marching

Siddon
Bresenham

Antialiased Bresenham
Gupta-Sproull

Cylindrical Gupta-Sproull

 0.01

 1 10 100

R
el

at
iv

e
er

ro
r

Number of samples

Ray marching
Filtered ray marching

Siddon
Bresenham

Antialiased Bresenham
Gupta-Sproull

Cylindrical Gupta-Sproull

8 × 256 × 8 voxels, 12.5% active 8 × 256 × 8 voxels,75% active

 0.01

 1 10 100

R
el

at
iv

e
er

ro
r

Number of samples

Ray marching
Filtered ray marching

Siddon
Bresenham

Antialiased Bresenham
Gupta-Sproull

Cylindrical Gupta-Sproull

8 × 512 × 8 voxels, 50% active

Fig. 4. Error curves obtained at different number of voxels and ratios of non-zero
voxels. The most accurate algorithm is the Antialiased Bresenham in all cases.

Thick Line Integration with Filtered Sampling 11

lasted until all 20000× 128 samples were calculated, and times were rounded to
millisecond accuracy. Tables 2 -4 summarize the results on the three different
voxel array sizes.

Algorithm CPU
GPU without
interpolation

GPU with
interpolation

Ray marching 2831 49 63

Filtered ray marching 2837 49 63

Siddon 2241 113 116

Bresenham 1890 35 29

Antialiased Bresenham 3694 314 30

Gupta-Sproull 10699 791 500

Cylindrical Gupta-Sproull 10667 791 501
Table 2. Runtimes in milliseconds on an array of 8 × 128 × 8 voxels.

Algorithm CPU
GPU without
interpolation

GPU with
interpolation

Ray marching 5278 98 125

Filtered ray marching 5280 98 125

Siddon 3760 185 177

Bresenham 3292 64 58

Antialiased Bresenham 6982 602 59

Gupta-Sproull 20911 1628 998

Cylindrical Gupta-Sproull 20944 1628 998
Table 3. Runtimes in milliseconds on an array of 8 × 256 × 8 voxels.

Among the examined algorithms, Bresenham is the fastest. By utilizing the
texture memory and the built-in linear interpolation of the GPU, the Antialiased
Breenham falls behind by just one millisecond. This represents a 10-fold increase
in speed compared to the solution without interpolation and as a result, the
Antialiased Bresenham has become the fastest antialiased algorithm.

The two versions of ray marching also achieve high speed. In filtered ray
marching, filtering is executed only once at the beginning of the procedure, thus
does not slow down the algorithm in the later phases.

Siddon is one of the fastest algorithms on CPU, however on GPU the frequent
switching of voxels and the resulting intensive memory use cause a significant
slowdown.

The two variations of the Gupta-Sproull algorithm rank last in terms of
execution time as these methods run more than one order of magnitude longer
than the other algorithms. This is due to the presence of complex operations
(divisions, normalization) and the fact that they sample nine voxels in every

12 Varnyú and Szirmay-Kalos

Algorithm CPU
GPU without
interpolation

GPU with
interpolation

Ray marching 10214 117 228

Filtered ray marching 10222 177 228

Siddon 6671 304 317

Bresenham 6167 128 114

Antialiased Bresenham 13344 1204 115

Gupta-Sproull 41184 3161 1993

Cylindrical Gupta-Sproull 41334 3257 1994
Table 4. Runtimes in milliseconds on an array of 8 × 512 × 8 voxels.

iteration, which, in addition to the calculation overhead, also involves a high
number of memory accesses.

4.3 Efficiency

The results of accuracy and speed measurements were combined to determine the
efficiency of the algorithms. For each algorithm in each of the five measurements
an efficiency index was calculated as the reciprocal of the product of the squared
error and the runtime. Table 5 summarizes the results.

Algorithm Measurement

1 2 3 4 5

Ray marching 145 437 60 1191 417

Filtered ray marching 152 411 64 1197 266

Siddon 79 238 43 847 299

Bresenham 308 931 131 2576 828

Antialiased Bresenham 632 1879 265 5472 1599

Gupta-Sproull 24 66 10 200 60

Cylindrical Gupta-Sproull 25 67 10 211 63
Table 5. Efficiency indices calculated from five measurements.

Based on these results we came to the conclusion that the Antialiased Bre-
senham is the most effective algorithm among the examined seven algorithms.

5 Conclusion

This paper proposed a filtering method to decrease the variance of the integrand
of the high dimensional integrals in the forward projection step of an iterative
ML-EM algorithm. We proposed the application of low-pass filtering before the
forward projections, while back projection still corrects the original unfiltered
voxel array. We have proven that this approach does not compromise the re-
construction and preserves the stability even if high resolution voxel arrays are

Thick Line Integration with Filtered Sampling 13

reconstructed with a low number of Monte Carlo sampling. All steps are imple-
mented on the GPU where the added computational cost of filtering is negligible
with respect to forward and back projection calculations.

Acknowledgements

This work has been supported by OTKA K-124124, EFOP 4.2.1-16-2017-00021,
and EFOP-3.6.2-16-2017-00013.

References

1. J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4(1):25–30, 1965.

2. S. Gupta, R. Sproull, and I. Sutherland. Filtering edges for gray-scale displays. In
Computer Graphics (SIGGRAPH ’81 Proceedings), pages 1–5, 1981.

3. Peter M. Joseph. An improved algorithm for reprojecting rays through pixel images.
IEEE Transactions on Medical Imaging, 1(3):192–196, nov. 1982.

4. M. Magdics, L. Szirmay-Kalos, B. Tóth, and T. Umenhoffer. Filtered sampling for
pet. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference
Record (NSS/MIC), pages 2509–2514, Oct 2012.

5. Bruno De Man and Samit Basu. Distance-driven projection and backprojection in
three dimensions. Physics in Medicine and Biology, 49:2463–2475, 2004.

6. László Papp, Gábor Jakab, Balázs Tóth, and László Szirmay-Kalos. Adaptive bi-
lateral filtering for PET. In IEEE Nuclear science symposium and medical imaging
conference, MIC’14, pages M18–104, 2014.

7. R. L. Siddon. Fast calculation of the exact radiological path for a three-dimensional
ct array. Medical Physics, 12(2):252–257, 1985.

8. L. Szirmay-Kalos, M. Magdics, and B. Tóth. Multiple importance sampling for
PET. IEEE Trans Med Imaging, 33(4):970–978, 2014.

9. L. Szirmay-Kalos (editor). Theory of Three Dimensional Computer Graphics.
Akadémia Kiadó, Budapest, 1995. http://www.iit.bme.hu/˜szirmay.

