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Abstract

In this paper we present an NPR post processing method for RGBZ cameras. Our stroke based NPR technique uses
geometry buffers to reconstruct geometric features that are used to calculate stroke properties like stroke direction
and bending. We mainly focus on improving the quality on human face areas with the help of facial tracking and
face geometry reconstruction techniques provided by the Kinect SDK. Our method is implemented on the GPU
and provides high quality, temporal coherent hatching strokes for faces at interactive frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

A wide range of computer graphics techniques deals with
non-photorealistic (NPR) or stylistic rendering. These tech-
niques try to reproduce the hand made feel of traditional
drawings and paintings. Some of these techniques address
3D animations, others postprocess traditional videos. Our
goal is to process a video but make stylization using a stroke
based NPR technique that was developed for rendering 3D
scenes. To reconstruct the 3D geometry seen on the video
we use the depth data of a Kinect One device. RGBZ cam-
eras were already used as a base for this NPR technique but
it had several limitations and could not reproduce the quality
of images based on 3D renderings.

In many cases the video to be processed contains a
closeup of a human face. An obvious example is a video
chat stream. As human faces play serious role in video pro-
cessing many method has been developed to identify facial
areas or even track the face motion and reconstruct its 3D ge-
ometry. These techniques can be used to help the NPR post
processing of videos, and in this paper we investigate such a
direction.

Though the Kinect is not a very wide spread device de-
spite its relatively low price, and its development has been
stopped, but RGBZ technology will likely become a stan-
dard in future handheld devices and probably in webcams
too. Depth sensing using depth sensors or stereo technolo-

gies is also an active research area in the film industry, so we
hope that our solution will have relevance in the near future.

2. Previous work

Geometry reconstruction based on depth images has a wide
literature. Fusion based techniques 5 continuously update
a volumetric representation of the scene by fusing the im-
ages taken from different viewpoints. It has been success-
fully used for Kinect data 10, but the reconstructed geometry
must be static, and the size of the object is also limited. Size
and resolution limitations were addressed by using hierar-
chical volumes 17 and dynamically caching large scenes 3.
However volume representation has high memory needs and
the volume should be converted to a triangle mesh for tra-
ditional rendering pipelines. Fusion techniques can only be
used for static scenes, so not applicable for our purposes.

Though reconstructing a point cloud from a depth map
is trivial, the noise and bad resolution of range cameras ne-
cessitate the enhancement of the depth map. Depth upsam-
pling has a wide literature 6. The most commonly used tech-
niques are bilateral filtering with region growing to fill the
holes of invalid pixels 4. Joint bilateral filtering upsamples
the depth map while reconstructs object boundaries based on
the high resolution color image 1. These techniques usually
also smooth the noise of depth maps.

With an upsampled and noise reduced depth map in our
hand, geometry reconstruction is much more precise which
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Figure 1: The main components of our algorithm.

enables video relighting. Many techniques were proposed
that used the Kinect sensor for relighting and placing a
recorded user in a virtual environment 12. Many of these can
reconstruct the surface color of the subject 14 or ever per-
form more precise BRDF reconstructions 19. Our approach
also uses the depth map to reconstruct the geometry of the
captured scene, and we also use a simple relighting tech-
nique.

Stylistic rendering also has a large literature. NPR meth-
ods can be grouped to object space and image space meth-
ods. Object space methods use stylistic texturing 13 or gener-
ates strokes on object surfaces 18. Screen space stroke based
methods directly work in image space, which ensures even
screen space stroke density, but temporal coherency is a
great issue. Latest solutions use examples drawn by artists
and try to transfer these styles to the final animations 2. Tem-
poral coherency is also a great issue here as well as the dis-
tortion or blurring of the transferred style. Neural network
based methods were successfully used for still images 9

and were specialized for stylization of human faces 15. Tex-
ture synthesis based techniques are more controllable and
faster than neural network based solutions 7 and were also
extended to specially handle human faces 8. Style transfer
and synthesis methods give great freedom for various styles,
but can not provide realtime performance and usually not
suitable for animations.

The NPR technique we use is a screen space stroke based
method that is suitable for displaying hatching or brush
based styles 11. Though it works in screen space it requires
buffers that samples the underlying geometry. These buffers
(normal, depth and flow buffers) are easy to generate with
a 3D renderer, but usually not present in case of real-life
video footage. In this paper we investigate the possibility
to use RGBZ data of the Kinect sensor as an input of this
technique. We also use human face tracking and face geom-
etry reconstruction to improve the quality at facial areas. We
should note that recently a similar idea, namely face detec-

tion based image segmentation, was used in style synthesis
for videos of animated human faces.

3. Overview

The main components of our method are shown on Figure 1.
We use two capture devices: a Kinect RGBZ camera and a
Canon entry level digital single lens reflex camera (DSLR).
We used the second camera because the Kinect has a fixed
field of view (horizontally 60 degree), which is large enough
to capture a full body from a two meter distance, but not
efficient for facial recording. Moving closer to the Kinect
doesn’t help, as depth sensing only works from a minimum
half meter distance, and moving close to a camera with large
view angle results distorted faces. On the other hand the
Canon is an interchangeable lens camera, so one can choose
a lens with proper focal distance. We used an 50mm lens,
and as our camera has a cropped format sensor it leads to 27
degree vertical field of view.

We recorded our input videos in front of a green screen,
which helped us removing unnecessary background ele-
ments. We used continuous studio lighting to properly ex-
pose the green background and the subject, which enables
smaller aperture and ISO values and higher shutter speed
which reduces sensor noise and blur. Our setup is shown on
Figure 3. Using two separate cameras requires proper cam-
era calibration as the depth values of the Kinect sensor will
be reprojected to the DSLR camera space. To reduce the
amount of shadowing the two camera’s nodal point should
be placed as near as possible. It is also beneficial to rotate
them to the same view direction.

Reprojection is based on point cloud generation from the
depth image and rendering it with the camera parameters of
the DSLR camera. The Kinect SDK has a face tracking and
face geometry extracting feature, which will be used to re-
place the noisy facial part of the point cloud. This face ge-
ometry is also rendered from the point of view of the DSLR
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Figure 2: Image from the color camera, its green screen mask, and the image after background removal.

camera and combined with the reprojected images. During
rendering we store not only color but depth and normal in-
formation too which will be the input of our NPR rendering
module. Additionally we can also perform relighting on our
face model, thus we can use a clear real world lighting but a
dramatic virtual lighting at the end.

Figure 2 shows our DSLR capture, its background mask
and the removed green background. This mask is saved as
it will be used later. The main steps of our workflow are
explained in details in the following sections.

Figure 3: Our camera setup using a Kinect One and a
DSLR.

4. Depth reprojection

To register the depth image from the Kinect and the color
image from the DSLR we need to reproject the depth image
to the image plane of our RGB camera. This can be done
with generating a point cloud from the depth image and ren-
dering it with the camera transformation and projection ma-
trices of the RGB camera. The depth map returned by the
Kinect, showed on Figure 5, stores Z coordinate values de-
fined in the camera space of the Kinect’s infra red camera.
If we know the projection matrix of this camera, we can find
the camera space position for each pixel using the pixel coor-
dinates and this depth value. The projection matrix is known,

as we know the view angle and the aspect ratio of the cam-
era. Near and far plane values does not affect the final camera
space positions, so we can choose basically any valid values
for them. The formulas are simple and have the following
form:

Cn = M−1
pro j · (H.xy,−1,1)

Cn =
Cn

Cn.w

C =
Cn ·Z

n

For each pixel of the depth image we construct homoge-
neous coordinates from the device space pixel coordinates
H.xy by setting the z coordinate to -1 (which stands for the
near plane in case of an OpenGL projection matrix) and the
w coordinate to 1. Then we multiply this with the inverse
of the projection matrix of the Kinect depth camera. This
will lead to a camera space point on the near plane (Cn) seen
from the given pixel. We should make a homogeneous di-
vision, and finally the camera space position C is the near
plane position multiplied by the ratio of the measured depth
Z and near plane distance n. The final camera space position
can be written to a new image called position buffer.

Using the position buffer we estimate geometry normals
with finite differences:

dx = Positionx+1,y−Positionx−1,y

dy = Positionx,y+1−Positionx,y−1

N =
dx×dy
|dx×dy| ,

where Positionx,y is the value stored in the position buffer
under pixel coordinates x,y. The resulting normal vector val-
ues can also be written to an image called normal buffer. The
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Figure 4: Position and normal buffers reconstructed from the depth image and the smoothed normals using edge preserve
filtering.

Figure 5: Depth output of the Kinect One.

position and normal buffer together is called geometry buffer
as it stores all necessary geometric information. The normal
buffer calculated this way is rather noisy due to the noise
of the depth map.To reduce this, we used a simple edge pre-
serving blur filter on the depth map to smooth out most of the
noise. This filter is similar to a bilateral filter, but uses im-
portance sampling thus no spatial weighting is needed, and
for the color difference weighting we used a triangle func-
tion instead of a Gaussian. Figure 4 shows the position and
normal buffer before and after depth smoothing.

Each pixel of the geometry buffer defines a point in cam-
era space with a camera space normal vector, thus the buffer
defines a point cloud. We can visualize this by rendering a
point primitive for each pixel. Figure 6 shows the point cloud
in the 3D virtual space using normal vectors as colors. If we
know the view and projection matrix of the DSLR camera,
we can render the point cloud from the DSLR point of view.
We calibrated the Kinect and the DSLR cameras together,
thus we know the transformation matrix that transforms from
the Kinect camera space to the DSLR camera space. We also
now the intrinsic parameters of the DSLR, thus its projection

matrix can be defined. For the near and far plane we should
choose values that enclose the point cloud.

Figure 6: Point cloud generated from the depth image using
its normals as color.

The first column of Figure 7 shows the reprojected depth
and normal vectors. A shadowing caused by the nodal point
difference of the two cameras can clearly be seen. This
shadow does not disturb us too much as we would like to re-
move the background, thus using the background mask cal-
culated from green screen keying the background depth and
normals can be removed as shown on the second column.
It can be seen that fine details are lost due to the low effec-
tive resolution of the projected depth map and the smoothing
filter used for noise reduction.

5. Replacing the face geometry

For our NPR effect to work correctly we need to reconstruct
the true geometric normals preferably with high details. This
cannot be done with enhancing the reprojected depth map as
it does not contain enough information. On the other hand
we know that a significant area of the image contains a hu-
man face. Modern face tracking methods usually work with
a three dimensional geometry of the tracked face, and this
geometry is constructed from an average face model by the
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Figure 7: Projected depth (first row) and normals (second) in the DSLR screen space. The first column shows the projected
values, the second column shows the result of background removal, while the third column shows the final buffer with the tracked
face geometry.

tracker itself. The user specific face model with the current
tracked expression can usually be acquired as an output of
the tracker.

The Kinect also has a face tracking module, and as it
works from an RGBZ data instead of color only, it can pro-
duce quite detailed results. The Kinect SDK has a low reso-
lution (LDFace) and a high resolution (HDFace) face mod-
ule. As the high resolution module is also realtime, we used
the HDFace interface of the SDK. Using the HDface module
requires a face calibration step. Without this step only the
face orientation can be retrieved stably, the geometry will
contain information about an average human face. The cali-
bration step is easy and fast: the user should look straight to
the camera, look to both sides and finally should slightly tilt
up its head. If the capture of these main viewpoints was suc-
cessful the module can reproduce the user’s facial geometry.
It is important to have a high frame rate during the calibra-
tion step, so it should be run as a separate process.

After the calibration is done the face tracking module can
give back the exact face geometry of the user for each frame.
The geometry is defined in the Kinect depth camera frame,
the same frame we defined our point cloud in. To replace
the face areas of the depth buffer we only have to render
the face geometry together with the point cloud and write
its depth values. We should note that a slight offset in the
camera z direction should be used to overcome z-fighting
artifacts. Normal vectors are not provided by the HDFace
interface, but as the geometry is given by an indexed triangle
list, adjacency information is present, so smooth normals can

be calculated efficiently. Figure 8 shows the face geometry of
one frame and combining it with the point cloud. The third
column of Figure 7 shows the projected depth and normal
values with the face area replaced by the HDFace geometry.

Figure 8: The geometry returned by the Kinect HDFace face
tracker and rendering it together with the point cloud.

6. NPR renderer

Our NPR renderer is a stroke based screen space method.
It places hatching strokes with even density in screen space
and reduces this density in areas where lighter tones needed
according to lighting. The input of the algorithm is a set
of buffers, namely: luminance buffer, depth buffer, normal
buffer, flow map. Luminance is used for toning, depth and
normals are used to orient and bend the lines according to the
underlying geometry. The algorithm orients the lines to the
principal curvature directions, which can be calculated from
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Figure 9: From left to right: a darkened version of the color image, the lit face geometry, the relighted color image, NPR
rendering the relighted image with a pencil style.

the second order derivatives of the depth map or the first or-
der derivatives of the normal map. By providing a smooth
normal map we can eliminate large constant eras in curva-
tures caused by linear depth interpolation.

Normal and depth maps can be passed to the NPR ren-
derer without modifications, but preparing the luminance
map needs attention. Hand drawn art usually uses contrast
dramatic lighting, but to record a movie in high quality and
to perform stable facial tracking we need a bright even light-
ing. Thus the RGB image from the DSLR should be post
processed. The simplest method is to use a brightness and
contrast filter to make the lighting more plastic. However we
tried a more complex solution that gives more freedom to the
user in final lighting.

Relighting an image is a common task in photography re-
touching and in movie visual effects. These methods add
lighting with a falloff within a ellipse to imitate positional
light sources. However as the underlying geometry is not
known the light bleeds through object borders. We can use
masks to reduce this artifact but drawing masks in each
frame automatically is yet an unsolved problem. Even with
mask the light reflectance is not realistic as the position and
normal of the pixels are not known. However as we know
the geometry of the face, so we can make a much realistic
relighting. We render the face geometry with a diffuse white
BRDF using one light source defined in Kinect camera space
and add the result to the luminance map. As our original
lighting was even and bright first we make it darker and in-
crease contrast to imitate ambient lighting before adding our
virtual lighting to it. Figure 9 shows the adjusted luminance
map, the face model rendered with a single light source il-
luminating from the side, and the combined luminance map.
The position, direction and color of the light source is de-
fined by the user, and more virtual light sources can be used.

Our NPR renderer uses a flow map as an input to move the
lines with the surfaces to avoid the so called shower door ef-
fect. With only a single RGB camera flow can be calculated
with an optical flow algorithm. Unfortunately the results of

such methods are not perfect: for large constant areas it fails
to calculate the flow, and even on characteristic areas of the
image the result can be noisy or inaccurate. These imper-
fections become obvious when using our NPR renderer as
strokes looks like sliding on the surface.

As the topology of the HDFace geometry does not change,
we can calculate camera space movement vectors for each
vertex using the position in the previous frame. This move-
ment can be transformed to screen space movement and
written to a flow buffer. Using the normal, depth and flow
buffers our strokes move with the surface and follow its ge-
ometry on face areas. On the remaining part of the image
our geometry data is imperfect which causes sudden line ro-
tations, flickering and sliding on the surface. As when we are
looking at such a video our eye is focusing on the face, these
artifacts are not as disturbing as they would be on the facial
areas. The rightmost image of Figure 9 shows a rendering
with a pencil drawing style using our technique.

Figure 10 shows renderings with (left) and without (right)
using the tracked face geometry. The orientation of lines can
follow the underlying geometry with the new technique quite
well, while using normals calculated from the depth map re-
sults in chaotic stroke directions. Figure 11 shows NPR ren-
dering of two different expressions.

7. Implementation

We integrated our method in a form of computing nodes
in an interactive, node based compositor software that uses
OpenGL for acceleration 16. All image operators are imple-
mented as full screen quad renderings where the fragment
shader does the processing. To create the point cloud we
render a point primitive for each pixel of the Kinect depth
buffer, and a geometry shader transforms it to its place or
discards invalid pixels. All host codes were written in C++,
we used the Kinect SDK and the CanonSDK to handle our
input devices.
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8. Conclusions and future work

We created a system that can process a video of a human face
and outputs a stylized version. We used a Kinect One and a
DSLR camera to reconstruct the geometry based on RGBZ
input. The Kinect FaceAPI was used to replace the facial ar-
eas with a tracked face geometry that is free of noise and can
produce accurate flow values. Our screen space NPR ren-
derer uses the depth, normal, illumination and flow buffers
and calculates a stylized stroke based output image with tem-
poral coherency. We also used the face geometry to relight
the face in post. All calculations were accelerated on the
GPU and the entire system runs at interactive frame rates:
around 10-15 frames per second.

Our system is still in experimental stage but the results are
pleasing. In the future we would like to achieve more pre-
cise camera calibration as some misalignment was notice-
able. We would like to use a smoother blending of the face
geometry to reduce the sharp edges around the face in the fi-
nal image. We also investigate methods to enhance the non-
facial parts of our geometry buffers, as they are still affected
by a large amount of spatial and temporal noise. This noise
ruins temporal coherency of stroke directions, and produces
false relighting on these areas. Optical flow calculation is
also a problem for the point cloud geometry. Our relighting
method assumes even lighting on the original video, which
we could approximately achieve within our controlled envi-
ronment. However surface albedo should be extracted using
inverse rendering techniques, which would make relighting
more accurate and gives more freedom in model lighting.
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7. Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli
Shechtman, Paul Asente, Jingwan Lu, and Daniel
Sýkora. StyLit: Illumination-guided example-based
stylization of 3d renderings. ACM Transactions on
Graphics, 35(4), 2016.
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