WAIT: Workshop on the Advances in Information Technology, Budapest, 2018

Finite volume blood flow simulation for highly deformable
boundaries

Agota Kacso, Laszl6 Szécsi, Marton Téth, Baldzs Benyé and Tamds Umenhoffer

Department of Control Engineering and Information Technology, Budapest University of Technology and Economics

Abstract

We present the theoretical background and implementation results of a finite volume flow simulation technique
that we have adapted to the GPU. The solution works on unstructured grids, and can be extended to moving grids
under large deformations. Thus, it is a suitable tool for the simulation of blood flow in heart valves, especially in
the context of evaluating strategies for heart valve leaflet alignment in aortic root replacement surgery.

Categories and Subject Descriptors (according to ACM CCS): J.2 [Phyiscal Sciences and Engineering]:

1. Introduction

Predictive simulation of blood flow in the human body can
be used to aid the planning of surgeries modifying elements
of the circulation organs. Heart surgery, in particular, creates
a new, complex dynamic system. The full simulation of this
system, while extremely challenging, can provide the means
for predicting the outcomes of surgical options, leading to
results closer to the ideal. Turbulent blood flow in the heart,
and around the heart valves in particular, is extremely dif-
ficult to predict, but it may influence the efficacy of these
systems. If heart valve leaflets do not fully unfold or there
remain gaps between them, blood may leak back, reducing
the efficiency of the circulation.

The simulation of cardiac operation would involve mod-
eling its musculature, its elastic tissues, and the blood flow.
In this paper, we focus on the blood flow simulation prob-
lem, but we keep in mind that elastic elements will also
contribute. At the very least, this means that the boundary
conditions of the flow simulation may vary wildly in time,
producing extremely strong distortions of the geometry. We
do not consider the simulation of the elastic elements in any
detail, as they are discussed elsewhere!?. Please note that, in
case of a dynamic simulation, the result of the flow computa-
tion must also act as an input to the elastic system, producing
a two-phase algorithm where the two sub-systems exchange
boundary conditions in every time step. While this is a wide-
spread approach, an integrated simulation of the elastic and
fluid components could probably reach higher levels of accu-

racy. Therefore, we keep the possibility of such an extension
open in our approach.

Blood itself is slightly compressible, because of the elastic
red blood cells suspended in it, and it is known to be a shear
thinning, non-Newtonian fluid'. However, these properties
are only significant at the scale of arteries in the microme-
ter range. Thus, for flow in the heart, incompressibility and
Newtonian behavior are solid assumptions.

2. Motivation for a finite volume approach

Eulerian and Lagrangian approaches to fluid simulation both
have advantages and drawbacks, especially in computations
concerning interactions with elastic materials’. We cannot
dispense with the ability of Lagrangian methods to handle
large deformations without issues. Eulerian methods, on the
other hand, may reach higher precision, and incompressibil-
ity is easier to ensure.

We considered Eulerian simulation on a regular grid, but
the geometry of heart valve leaflets (the thin membrane and
potentially very narrow gaps) would have required an ex-
tremely high resolution that would have not been acceptable
in terms of either memory consumption or computational
load. Therefore, the problem must be addressed using an un-
structured grid. This allows the use of high resolution near
narrow gaps. Furthermore, boundary surfaces on both sides
of heart valve leaflets can be handled easily, as spatial prox-
imity does not have to correspond to grid adjacency, as it is
the case with a regular grid.

Kacso et al. / Finite volume blood flow simulation for highly deformable boundaries

We narrowed down the set of flow simulation approaches
according to additional criteria. For one part, we needed a
method to simulate unstable, incompressible flow. On the
other part, we were looking for a method able to handle
boundary surfaces with large time-dependent translations.
These properties point to an ALE (Arbitrary Lagrangian Eu-
lerian) approach’. These essentialy carry out computations
on elements not strictly bound to either the spatial locations
or the simulated medium. In practice, this means finite ele-
ment methods where the grid itself is strongly moving, and
its topology may also change in time. A subgroup of finite
element methods are finite volume formulations, often em-
ployed in flow simulation. These are advantageous in that
they work well for unstructured grids, and that they are con-
servative, i.e. they ensure the conservation of mass as well
as incompressibility to a high degree. Among finite volume
methods, we regarded node-based solutions to be more fit-
ting. These store flow variables at nodes, not at elements
or sample points within elements. A different name for the
same approach is the control volume method. Such a for-
mulation makes it possible to rebuild the grid even after se-
vere deformations. Even though the computations are very
different, one can draw parallels to the Smoothed Particle
Hydrodynamics® method, the difference being that here we
construct a momentary grid to compute effects on the parti-
cles (i.e. the nodes of the grid). This obviously needs more
computing power, but allows adherence to more rigorous cri-
teria on accuracy. The commercial software package Ansys
Fluent’ is also using a solution for blood flow simulation that
falls in this category.

According to the above considerations, we based or solu-
tion on a node-based finite volume approach.

The theoretical background follows the works of Zhou
and Forhad!? in general. Spatial subdivision with GPU sup-
port is implemented using Gdel2.

3. The base equation

The Navier-Stokes equations are written for the incompress-
ible case in dimensionless form (normed to some character-
istic length and free velocity) as follows:

v
W+V'JC_V'JV7 (D

where U = L}] is flow velocity. Convective flux j¢ is a vector

. |(uU
Je = WUl
Viscous flux jy is also a vector of vectors:
. L Vu
Jv= Re | Vv’

where Re is the Reynolds number and Vu, Vv are the gradi-
ents of velocity components u and v, respectively.

of vectors

The method of artificial compressibility? extends the
above by adding pressure into the vector of flow variables.
The artificial compressibility and pseudo-time 7 are also
introduced. We allow compression of the fluid, but by ad-
vancing the pseudo-time the solution converges to the in-
compressible one. Thus stepping the pseudo-time means a
kind of iteration, and the artificial compressibility is a kind
of relaxation parameter.

The equations are modified as follows:

IW IW
W+KW+V.FC:V.FV7 (2)
where
p 0 0 0
W=]lu|l, K=|0 1 0
v 0 0 1

Convective flux is augmented with the artificial compress-
ibility, and also with the effect of pressure differences:

BU

p/p
F = “Uﬂo} . 3)

o Lv(/)p}

In the Navier-Stokes equation this flux appears behind the
divergence operator. Pressure appearing in the fluxes of ve-
locity components thus introduces the divergence of pressure
into the equation, as we would expect in the compressible
case.

Viscosity does not affect pressure, thus:

1 0
F, = Re Vu| . €]
S vy

4. Computational method

Equation 2 is discretized over an irregular triangle or tetra-
hedron grid. Control volumes are polygons (or polyhedra)
centered around grid nodes, with some of their vertices lo-
cated at the centroids of the triangles (or tetrahedra). Other
vertices are at the midpoints of the edges adjacent to the node
(Figure 1). In case of a central Voronoi grid the control vol-
umes coincide with Voronoi cells.

Equation 2, integrated over the control volumes, can be
written as:

OWpAS.y
ot

where Wp is the average value of flow variables in the con-
trol volume, AS.y is the volume of the control volume, and
the volumetric integrals of the divergences have been re-
placed by surface integrals. The surface normal at [is de-
noted by n.

A
LIV SCV+/ Fc~ndl:/ F,-ndl, (5)
Jt Lev Lev

Kacso et al. / Finite volume blood flow simulation for highly deformable boundaries

Midpoint of the edge
Centroid of the cell

Cell

Control volume

Figure 1: The control volume of a node.

When computing surface integrals over the control vol-
umes’ surface, sets of edges (or faces) in regions where the
integrand is assumed to be constant can be replaced by edges
(or faces) with different topology but identical endpoints (or
boundaries). In particular, when integrating a quantity which
is a per-cell constant, the centroids can be omitted (figure 2),
and integration can be performed over the segment (or face)
connecting the edge midpoints. Conversely, when integrat-
ing a quantity that is given as a constant along an edge,
the midpoints should be dropped, and the integration is per-
formed over the edges (or faces) of the dual grid (figure 3).

N
VA
X0

Figure 2: The surface of the control volume when integrat-
ing a per-cell constant quantity.

In order to compute the surface integral of viscous flux,
we sum up the fluxes computed in the cells (the triangles
or tetrahedra) for the faces of the control volume with the
centroids dropped.

ncell

[Fonai= Y Rl (©)
Ly i=1
where Fy; is the flux computed in the i-th cell adjoint to the
central node of the control volume, and Alg; is the normal of
control volume face in the same cell, weighted by the area
of the face.

Thus, we sum the flows through the faces. In order to

Figure 3: The surface of the control volume when integrat-
ing a quantity that is constant along an edge.

compute flux Fy;, we need to evaluate the gradients of the
velocity components according to equation 4, in every cell.
For any & flow variable (may that be the pressure, or, as in
equation 4, a component of velocity) we can use the Kelvin-
Stokes theorem to compute the gradient as follows:

C1xh el
4 v
where ®; is the value of the flow variable at the i-th node, I;

is the normal times area of the cell’s opposing face, and V is
the cell’s volume.

Vo = @)

We divide the surface of the control volumes differently
from the above to evaluate surface integral of the convec-
tive flux. The fluxes computed for the edges connecting grid
nodes are integrated over the surfaces spanned by centroids
of cells adjacent to the edge. Let us call these edge cross sec-
tions. Zhou and Forhad!2 proposed to first evaluate the fluxes
projected to the edges connecting the nodes, then re-project
these per-edge fluxes (scalar for each flow variable) onto the
edge cross sections. We find this is only appropriate for cen-
tral Voronoi grids. Otherwise, the quantity projected twice
is not identical to the one we would obtain by a single pro-
jection. Therefore, we compute the flow through edge cross
sections directly. Thus:

nedge

[Fena=Y (@0 ®)
Lev k=1

where (Qc)f-‘- is the flow through the edge cross section of
edge k, the endpoints of which are nodes i and j.

At nodes, the convective flux, and its derivative according
to W, can easily be computed using formula 3. Using fluxes
and flow variables at nodes the flow across an edge cross
section can be approximated as follows:

1
Qijzi[Fi'nijJer'nij*|/1ij|(Wi*Wj)]7 €

where n;; is the normal times the area of the edge cross sec-

Kacso et al. / Finite volume blood flow simulation for highly deformable boundaries

tion, and the spectral radius 4;; is computed as:

ﬂ,ij :U-n,-j—i— (U-l’lij)z-i-ﬁZ.

Later on, we also need the derivatives of the edge cross sec-
tion flows:

aQij JF;
= — Al - 10
o0 =3 g = | (10)
With the above, residuum R can be computed:
nedge ncell
RWp) =Y (Qc)i;— Y Fui-Alg;.
k=1 i=1

Discretization with respect to physical time is performed us-
ing a second order implicit scheme. Considering the change
of flow variables in physical time, residuum in time step
(n+1)is:
R(Wn-H) R(Wn-H)
LSWarlsadl —awps:
* dr

Discretization according to the pseudo-time is done with the
explicit fifth-order Runge-Kutta method. We do not repro-
duce the derivation!2 here, but the residuum is obtained as:

405w et

pm+1.n
fém-&-l,n _ K;
t At+1.5At _ JR; At
At IW; AS.yi

where derivatives 3W are obtained by formal derivation of
formula 8, and the derivatives in the summation are obtained

by evaluation of formula 10.

5. Implementation

We have implemented the method in C++. Computations
were implemented both using the CPU and the GPU (with
CUDA). For this, grid connectivity was encoded in data
buffers, computations were decomposed to parallel steps,
storing their inputs and outputs in data buffers (figure 4).
The method takes m steps (20 in our tests) of pseudo-time
iteration within every physical time step. All such iterations
are constituted by a fifth order Runge-Kutta calculation, re-
quiring evaluation of the residuum five times. Steps of this
evaluation are as follows:

e For each cell, compute velocity gradients.

e For each node, computed viscous fluxes.

e For each node, compute convective fluxes and their
derivatives.

e For each edge, compute flows across edge cross sections.

e Compute the residuum.

We observe boundary conditions directly. For sources, we
set the velocity and compute the pressure, for sinks, we set
the pressure and compute the velocity. At solid or elastic
boundaries we implement the no slip condition by zeroing

ompute\lelocityGradientsAtCentroids)

computeViscousFluxAtNodes)

computeViscousFluxAtCentroids)

(compljteConvectlveFluxAtNodes)

" e

computeFquOnEdges

computeResidualAtNodes)

Y

Figure 4: CUDA kernels and data buffers. Red, green, and
blue edges indicate per node, per cell, and per edge data,
respectively. Arrows in buffer labels indicate adjacency list
buffers that describe grid topology.

out velocities. We note that it is also possible to implement
boundary conditions indirectly, incorporating flow through
boundaries into the flux evaluation8. This, in theory, could
deliver better accuracy.

In order to create the finite volume grid, we implemented
algorithmic generation of structured test cases (see Figure
5), and integrated the Gdel? library for generic node distri-
butions. The Gdel library allows us to create Delaunay trian-
gulations and tetrahedralizations on the GPU, using CUDA
(see Figure 6). We used this to create our unstructured test
cases.

We have implemented a Direct3D-based visualisation sys-
tem to display the computed flow, and a Lua-based script
framework to define flow problems and configure the simu-
lation.

6. Preliminary validation

We examined the operation of our finite volume solution
without interaction from elastic components. For this, we

Kacso et al. / Finite volume blood flow simulation for highly deformable boundaries

Figure 5: Regular diamond grid.

Figure 6: Unstructured grid created using the Gdel library.

simulated flow in a tube using both structured and unstruc-
tured grids, with an obstacle and without it, with various
settings and flow parameters (e.g. Reynolds-number). While
this produced no new conclusions, we could verify that the
simulation provides the expected results (figure 7) and is
able to handle thin membranes as boundaries (figure 8).

Figure 7: A vortex forms behind the obstacle in the flow in
a tube.

In future research, we plan to validate our solution against
flow scenarios measured on a mock-up system with rubber
leaflets and water. The motion of the mock-up can be mea-
sured with depth field capturing devices even when occluded
by fluid* and depth resolution can be improved by filtering®.
Then, the quantitative comparison of measured and simu-
lated motion would be possible.

Figure 8: Flow passing through a small gap between thin
membranes.

7. Future use

The finite volume method can be used in connection with
the elastic finite element model!” to simulate leakage in the
closed state of the heart valve. For this, our implementation
would need to be able to exchange data with the elastic finite
element simulation. This, after sufficient validation, could
already solve the targeted medical problem of comparing
different strategies for heart valve leaflet alignment.

We opted for the control volume formulation of the finite
volume approach because of its ability to work with a mov-
ing, adaptive grid suffering large deformations. The above
formulas all hold for moving grids, when velocities are in-
terpreted as relative velocities over a moving grid. However,
interpolation between the different grids belonging to differ-
ent time steps has to be implemented. The algorithm for this
is known!3. This would enable the simulation to work with
dynamic boundary conditions, allowing a comparison with
other methods, and with an SPH implementation!! in partic-
ular. Considering that the finite volume solution has superior
theoretical accuracy (along with a higher computational bur-
den because of the need to continuously rebuild or update
the deformed grid), it can be used as a validator of the SPH
implementation.

Finally, the finite volume computation could be integrated
with elastic simulation to create a coupled system. Such a
solution would be a significant advancement, depending on
the accuracy achieved.

Acknowledgements

This work has been supported by VKSZ-14 SCOPIA and
OTKA K-124124.

References

1. HE Abdel Baieth. Physical parameters of blood as a
non-newtonian fluid. International journal of biomedi-
cal science: 1JBS, 4(4):323, 2008.

2. Thanh-Tung Cao, Ashwin Nanjappa, Mingcen Gao,

10.

11.

12.

Kacso et al. / Finite volume blood flow simulation for highly deformable boundaries

and Tiow-Seng Tan. A GPU accelerated algorithm for
3d delaunay triangulation. In Proceedings of the 18th
meeting of the ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games, pages 47-54. ACM,
2014.

Alexandre Joel Chorin. A numerical method for solv-
ing incompressible viscous flow problems. Journal of
computational physics, 135(2):118-125, 1997.

Sundara Tejaswi Digumarti, Gaurav Chaurasia, Aparna
Taneja, Roland Siegwart, Amber Thomas, and Paul
Beardsley. Underwater 3d capture using a low-cost
commercial depth camera. In Applications of Com-
puter Vision (WACV), 2016 IEEE Winter Conference
on, pages 1-9. IEEE, 2016.

Ansys Fluent. 12.0 Theory Guide. Ansys Inc, 5, 2009.

R. A. Gingold and J. J. Monaghan. Smoothed par-
ticle hydrodynamics: theory and application to non-
spherical stars. Monthly Notices of the Royal Astro-
nomical Society, 181(3):375-389, dec 1977.

CW Hirt, Anthony A Amsden, and JL Cook. An
arbitrary Lagrangian-Eulerian computing method for
all flow speeds. Journal of computational physics,
14(3):227-253, 1974.

Hiroaki Nishikawa. Accuracy-preserving boundary
flux quadrature for finite-volume discretization on un-
structured grids. Journal of Computational Physics,
281:518-555, 2015.

Laszl6 Szirmay-Kalos. Filtering and gradient estima-
tion for distance fields by quadratic regression. Period-
ica Polytechnica Electrical Engineering and Computer
Science, 59(4):175-180, 2015.

Taméds Umenhoffer, Mérton Téth, Ldszl6 Szécsi, Agota
Kacs6, and Baldzs Benyé. Aortic root simulation
framework for valve sparing aortic root replacement
surgery. In Proceedings of the Workshop on the Ad-
vances of Information Technology, 2018. BME, 2018.

Tamas Umenhoffer, Marton T6th, Laszlé Szécsi, /:\gota
Kacsd, and Baldzs Beny6. Aortic root simulation using
smoothed particle hydrodynamics. In Proceedings of
the Workshop on the Advances of Information Technol-
ogy, 2018. BME, 2018.

Yong Zhao and Ahmed Forhad. A general method for
simulation of fluid flows with moving and compliant
boundaries on unstructured grids. Computer methods
in applied mechanics and engineering, 192(39):4439—
4466, 2003.

Yong Zhao and Baili Zhang. A high-order character-
istics upwind FV method for incompressible flow and
heat transfer simulation on unstructured grids. Com-
puter methods in applied mechanics and engineering,
190(5):733-756, 2000.

