
WAIT: Workshop on the Advances in Information Technology, Budapest, 2015

Simulating snow with the material point method

Tamás Umenhoffer1

1 Department of Control Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary

Abstract

In this paper we describe a full pipeline for physically accurate dense snow simulation. Our system uses the mate-
rial point method to simulate packs of snow as an elasto-plastic material. We focused on efficient implementation
that fits into an animation and rendering pipeline typically used in motion picture production. We describe the
material point method in details and list the tools that can help us to integrate the simulation into a rendering
pipeline.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Reproducing snow dynamics is a complex problem, as snow
has various behaviour depending on whether we are talking
about falling snowball, packing snow, footsteps in snow, or
powder snow. We can notice that snow sometimes behaves
as a fluid, but sometimes behave as an elastic solid. Unfortu-
nately snow changes this behaviour continuously, so we can
not choose only a fluid or a solid simulator for a given effect.

Figure 1: Frames of an animation of a dropped snowball
simulated with the material point method.

Snow can be thought as a granular material, whose be-
haviour is mostly directed by inter-granular friction. Some
graphics papers use simplified particle or rigid body systems
5, 2. However it is hard to keep efficiency when increasing

the detail, thus increasing the number of grains. This lead re-
searchers to apply continuum models 11, 3, 6, 1. One effective
method is the fluid implicit particles (FLIP) 11, which was
even used for human hair collision modelling4. FLIP is basi-
cally a fluid simulation method dealing with incompressible
fluids. Fluid based methods model granular friction with vis-
cosity. For some materials, and snow as well, compressibil-
ity should be modelled. The material point method (MPM)9,
was designed to extend FLIP to solid mechanics problems
that require compressibility.

During the creation of the Disney movie titled Frozen, an
MPM based method was introduced to simulate snow dy-
namics for computer animation8. This work inspired us to
recreate the technique and integrate it to our preferred ren-
dering pipeline. We did not change the original algorithm,
but reimplement it and developed the components that could
provide the necessary input and output to and from the an-
imation software, the simulation software and the renderer.
We used Autodesk Maya as the animation package as it is
the most commonly used animation software in the movie
industry.

The MPM simulator tracks material properties at parti-
cles, but uses an Eulerian background grid for computation,
so we have to options to render out the simulation: using a
volume renderer, or using a particle renderer. In contrast to
the original paper we used a particle renderer, as increas-
ing quality is more effective with increasing particle count
than with increasing grid resolution. Increased 3D grid reso-



Umenhoffer / MPM Snow

Figure 2: Overview of our simulation pipeline.

lutions have too high memory and rendering computational
power needs. Maya also can not handle high particle counts
effectively, but a renderer plugin exists, that is developed es-
pecially for this purpose. The Krakatoa renderer can handle
millions of particles, can be used inside Maya (which is im-
portant for an instant visual feedback in Maya’s 3D view),
or as an external renderer.

This paper continues with the overview of our system, de-
scribing all the tools that are needed for a complete snow
simulation and rendering. Then the main steps of the mate-
rial point method are presented to demonstrate the operation
of our simulator application. Finally our experiences are dis-
cussed.

2. System Overview

As we mentioned before our framework is based on Maya
and the Krakatoa particle renderer. Figure 2 shows an
overview of our simulation and rendering pipeline. For a
complete simulation, taking into account the geometry of the
virtual scene, the following problems should be solved.

First the initial snow particle positions should be given.
For simple tests these positions can be filled procedurally,
but for real scenes they are given by the artist. The easiest
way is to model the volume of the snow and fill this volume
with particles. The Krakatoa plugin for Maya has a feature
to fill a closed polygonal geometry with particles using a
user defined particle density. These particles can be exported
into Krakatoa’s particle file format and read by our simulator
application.

The second task is to export the scene geometry with ani-
mations. This can be rather complicated as there are numer-
ous different tools for animation in Maya. We can not pre-
pare for all of them. However for such situations where only
the final geometry is important and the concrete animation
tools are not, we can cache the geometry in each frame and
read it in the simulator. The computer animation community
already created such a caching format and an open source
library for reading and writing. It is called Alembic, and this
format is becoming a standard in animation industry.

Our simulator performs collision detection not on a tri-
angular mesh but on a volume grid, so we have to voxelize

the exported geometry in each frame, and the simulator will
read these voxel files instead of the geometry cache files.
The problem with this voxelization is that we not only need
to tell if a voxel is in the interior of a scene object, but we
also need to tell its normal vector and velocity. If we have
a binary volume storing empty and filled voxels the normals
can be calculated relatively easily with central differences or
higher order gradient methods 7.

Calculating voxel velocities is not straightforward. 3D op-
tical flow could not be used efficiently here as the voxelized
frames are binary, so most of the voxels will show no move-
ment, and the rest will likely have aperture problem. How-
ever during reading the geometry cache and assuming that
the topology does not change (which is true for most of the
cases), we can pair the vertices of two adjacent frames and
calculate their velocities with a simple subtraction. For each
inner voxel we find the nearest triangle, calculate the pro-
jected barycentric coordinates of the voxel center and inter-
polate a the velocity from the vertex velocities.

Fortunately an open source library exists for voxelizing
geometries and storing this sparse volumetric data in a hi-
erarchical data structure. This library is called OpenVDB.
OpenVDB also stores the nearest triangle index in each
voxel, so we only have to implement the barycentric coor-
dinate calculation and interpolation, and of course the nor-
mal vector calculation. Normals can also be calculated with
interpolation, however if the geometry is complex compared
to the grid resolution, significant noise can appear. Our nor-
mal calculation method is similar as in Thürmer et. all 10.
For each voxel we define its 26 neighbouring directions (dk)
and define the normal vector as:

N = ∑
k

σkdk

where σk is minus one if the neighbouring voxel is an
inner voxel and zero otherwise. We separated the voxelizer
from the simulator, thus the voxelizer stores the voxel grids
in each frame in OpenVDB format, and the simulator takes
these files as input.

The simulator calculates updated particle positions in
each frame and stores these as Krakatoa particle files. These
file sequences are loaded back into Maya as a particle ani-
mation and rendered with the Krakatoa renderer.



Umenhoffer / MPM Snow

Figure 3: Overview of the material point method (figure from 8).

3. MPM method

This section briefly describes the steps of the material point
method used in our simulation. For a detailed description
please refer to 8. Figure 3 shows the main components of the
simulation. The algorithm can be described briefly as fol-
lows. We track the material properties at particle positions.
However some quantities are easier to compute on a grid, so
our first step is to rasterize the particles onto a 3D grid. Next
compute forces based on deformation gradients at each grid
voxel, and update grid velocities. Using these velocities we
perform collision detection on the grid. The final velocities
are transferred back to the particles. Then calculate a new
deformation gradient for each particle using refreshed voxel
velocities. Table 1 list the notations of parameters used in our
expressions and gives their typical values where available.
This table also serves as a useful guide for implementing
the MPM method, as all important particle and grid proper-
ties are listed. The next subsections describe the steps of the
MPM simulation in more detail.

3.1. Rasterize particles

Each simulation frame starts with transferring particle veloc-
ities and mass to grid voxels, and ends with transferring up-
dated velocities back to the particles. The grid can be thrown
away at the end of each simulation step, so it can be rede-
fined at the beginning of the simulation step, and can be fit
to the actual particle positions. However for implementation
reasons we used fixed grid position and resolution.

The connection between particles and the grid is achieved
with an interpolation function. We used the same function
as in 8, which use dyadic products of one-dimensional cubic
B-splines. When transferring particle data, we compute the
weights in a 5x5x5 voxel neighbourhood of each particle,
and add the scaled particle quantity to the voxel value:

mn
i = ∑

p
mpwn

ip

Name Notation Typical values

Global parameters

Young modulus E0 1.4×105

Poisson ratio ν 0.2
Critical compression θc 2.5×10−2

Critical stretch θs 7.5×10−3
Hardening coefficient ξ 10

Particle data

Initial density ρp0 400
Initial volume Vp0

Elastic force FEp

Plastic force FPp

Rotational force REp

Elastic determinant JEp

Cell data

Mass mi
Velocity vi

Force fi
Collider flag coi

Collider velocity vcoi

Collider normal ncoi

Table 1: Notation of parameters used in our simulation
framework. Default values are also listed where possible.

vn
i = ∑

p
vn

pmpwn
ip/mn

i

When transferring voxel data back to particles, we again
sample the 5x5x5 voxel neighbourhood of each particle, and
sum their weighted average:

vn
p = ∑

i
vn

i wn
ip



Umenhoffer / MPM Snow

Because of the additivity, if we are interested in the deriva-
tive of one quantity we can simply transfer with the deriva-
tive of the weight function.

3.2. Particle volume and density

As an initial step particle density and volume should also be
calculated. After rasterizing particle mass, density is given
with the following expression:

ρ0
p = ∑

i
m0

i w0
ip/h3

Particle volume can be calculated from particle mass and
density:

V 0
p = mp/ρ0

p

These values are initial values, they are not going to
change during simulation.

3.3. Compute forces

Calculating stress-based forces needs derivatives, which are
easier to evaluate on the grid rather on the particles. Stress-
based forces are defined by the deformation gradient, the fi-
nal expression of these forces is:

fi(x) =−∑
p

V 0
p · (2µTco−rot +λTcontour) · (Fn

Ep
)T ·∇wn

ip,

Tco−rot = Fn
Ep

−Rn
Ep
,Tcontour = (Jn

Ep
−1)Jn

Ep
Fn

Ep

−T ,

where µ = µ(FP) = µ0 · eξ(1−JPp ),

and λ = λ(FP) = λ0eξ(1−JPp )

Here Pp and Ep are the plastic and elastic deformations
of a particle, JPp and JEp are their determinants. λ and µ are
the Lamè coefficients and can be computed from the Poisson
ratio and Young modulus in an initial step:

λ = E0
(1+γ)(1−2γ) and µ = E0

2(1+γ)

3.4. Update velocities

If the stress based forces are calculated, voxel velocities can
be updated:

v∗i = vn
i +△t/mi · f n

i

Here we can also add the effect of any additional external
forces like gravity.

3.5. Grid based collision

Collision handling is performed on the voxelized scene ge-
ometry after adding forces. An inelastic sliding collision is
used. If the voxel is a collider cell and its velocity is not
zero, the relative velocity is calculated: vreli = vi − vcoi . If
the relative velocity has opposing direction with the collider
normal (thus the particle and the collider are not separating),

only the tangential component of the velocity vector is kept.
After this collision handling step we can finalize our voxel
velocities vn+1

i .

Here we should note that 8 used a semi-implicit inte-
gration scheme here, which had much better accuracy, so
smaller time steps could be used. Due to its high implemen-
tation complexity and additional memory needs we did not
implement it. This results about five times longer simulation
times in our system.

3.6. Update deform gradient

From the updated velocities the deformation gradient of each
particle should be calculated. This gradient is divided into a
plastic and an elastic part FEp and FPp . First we assume that
all changes are attributed to the elastic part:

F̂n+1
EP

= (I +△t∇vn+1
p )Fn

EP
,

F̂n+1
Pp

= Fn
Pp

,

where ∇vn+1
p = ∑

i
vn+1

i (∇wn
ip)

T .

The next step is to extract the stretching part of this gra-
dient, and identify the amount of deformation the material
could not hold, thus it breaks. This is done with a singular
value decomposition and clamping the singular values:

SV D(Fn+1
Ep

) =UpΣ̂pV T
p ,

Σp = clamp(Σ̂p, [1−θc,1+θc])

From the clamped singular values we can recalculate the
elastic and plastic deformation gradients:

Fn+1
Ep

=UpΣpV T
p ,

Fn+1
Pp

= Fn+1
Ep

−1
F̂n+1

Ep
F̂n+1

Pp
=VpΣ−1

p UT
p F̂n+1

Ep
Fn

Pp

These gradients will be used in the next simulation step to
calculate stress-based forces.

3.7. Update particle velocities

Now that each voxel stores an updated velocity, these ve-
locities should be written back to the particles. We use the
same interpolation functions as for voxelizing particle data.
Basically two methods can be used to update velocities: in-
terpolate new velocities or interpolate the velocity change.
The former is the classical particle in cell (PIC) method, the
later is used in the fluid implicit particles (FLIP) method. For
best results these two solutions should be mixed:

V n+1
p = (1−α)(∑

i
vn+1

i wn
ip)+α(vn

p +∑
i
(vn+1

i − vn
i )w

n
ip)

We used α = 0.9.



Umenhoffer / MPM Snow

3.8. Particle based collision

An additional collision handling step is needed as interpola-
tion can bring back collision errors. We do the same calcula-
tions as in grid collision handling, but use particle velocities
instead of voxel velocities, and address the grid cell the par-
ticle is in for collider information.

3.9. Update particle positions

Particles can be advected using their new velocities:

xn+1
p = xn

p +△tvn+1
p

4. Conclusions

We introduced a reimplementation of the material point
method for snow simulation. We also showed what tools can
be used to efficiently integrate the simulation into an anima-
tion pipeline. The final framework is effective and easy to
use. It supports any kind of animation on the scene objects.

Figure 1 shows frames from an animation when a snow-
ball is dropped to the ground. The simulation used 600000
particles and 128x128x128 grid resolution. Figure 4 shows a
snowball dropped onto a cube. Here we used 600 particles in
a 40x40x40 grid. Figure 5 demonstrates animated scene ge-
ometry, where a flat layer of snow is pushed. This animation
was simulated with 250000 particles in a 80x36x60 grid.

Our negative experience with the material point method
was is that only high resolution grids and high particle count
gives satisfying results. Low grid resolution causes a more
elastic material. This sounds normal as the support of one
particle is measured in voxels and not in world coordinates.
Using lower grid resolution means that a particle will effect
a larger surrounding, so elastic parameters should be retuned
to achieve similar effects. This has a drawback that running
draft simulations are circuitous. The other disadvantage is
the high memory and computational cost. Simulation time
steps should be kept very low, around 10−5 if high veloci-
ties occur (which is often true in case of scene-snow inter-
action). The computational cost can be reduced if we use
semi-implicit integration. Unfortunately this would increase
memory needs even higher.

As a future work we plan to implement semi-implicit in-
tegration. Beside this we examine the parameter settings that
should be used at different resolutions, to make draft simu-
lations easier. In our implementation we have an option to
duplicate a particle after simulation, thus we can increase
particle count as a post processing step. Yet we place parti-
cles randomly around the original particle in a sphere. This
is of course not equivalent to simulating with higher particle
count, as fine detail movement is lost. We plan to extend this
feature with taking into account the elastic deformation gra-
dient calculated during simulation and deform random par-
ticle positions according to this tensor.

Figure 5: A layer of snow pushed.

Acknowledgements

This work has been supported by OTKA K-104476.

References

1. Iván Alduán and Miguel A. Otaduy. Sph granular flow
with friction and cohesion. In Adam W. Bargteil and
Michiel van de Panne, editors, Symposium on Com-
puter Animation, pages 25–32. Eurographics Associa-
tion, 2011.

2. Nathan Bell, Yizhou Yu, and Peter J. Mucha. Particle-
based simulation of granular materials. In Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’05, pages 77–
86, New York, NY, USA, 2005. ACM.

3. Toon Lenaerts and Philip Dutré. Mixing fluids and
granular materials. Comput. Graph. Forum, 28(2):213–
218, 2009.

4. Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios
Sifakis, and Joseph Teran. Detail preserving continuum



Umenhoffer / MPM Snow

Figure 4: A snowball dropped onto the edge of a cube.

simulation of straight hair. ACM Trans. Graph., 28(3),
2009.

5. Victor J. Milenkovic. Position-based physics: Simulat-
ing the motion of many highly interacting spheres and
polyhedra. In Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’96, pages 129–136, New York,
NY, USA, 1996. ACM.

6. Rahul Narain, Abhinav Golas, and Ming C. Lin. Free-
flowing granular materials with two-way solid cou-
pling. ACM Trans. Graph., 29(6):173, 2010.

7. László Neumann, Balázs Csébfalvi, Andreas König,
and Eduard Gröller. Gradient estimation in volume data
using 4d linear regression, 2000.

8. Alexey Stomakhin, Craig Schroeder, Lawrence Chai,
Joseph Teran, and Andrew Selle. A material point
method for snow simulation. ACM Trans. Graph.,
32(4):102:1–102:10, July 2013.

9. D. Sulsky, S.-J. Zhou, and H. L. Schreyer. Application
of particle-in-cell method to solid mechanics. Comp.
Phys. Comm., 87:236–252, 1995.

10. G. Thürmer and C. A. Wüthrich. Normal computation
for discrete surfaces in 3d space. Computer Graphics
Forum (Proceedings of EUROGRAPHICS 97), pages
15–26, 1997.

11. Yongning Zhu and Robert Bridson. Animating sand as
a fluid. ACM Trans. Graph., 24(3):965–972, 2005.


