
Ninth Hungarian Conference on Computer Graphics and Geometry, Budapest, 2018

Using the Kinect body tracking in virtual reality applications

Tamás Umenhoffer1, Balázs Tóth1

1 Department of Control Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary

Abstract
In this paper we introduce a virtual reality room setup using commonly available, moderately expensive devices.
We implement head position tracking with a Microsoft Kinect V2 sensor, and use an Android device with gyroscope
to track user head rotation and to display the virtual world. Our workstation which handles the Kinect can also
insert the point cloud of the user in the virtual world and can inspect its interaction in real time.

1. Introduction

Virtual reality systems need special devices, which can be
rather expensive. Immersive environments need good head
position and orientation tracking, while interaction with the
environment can also require three dimensional tracking of
an input device, or the users hand. Recently virtual reality
devices has gone through a great evolution, several solutions
exists that makes virtual reality available for everyday users.
However the most robust solutions are usually still expen-
sive.

The most popular devices nowadays are HTC Vive 5, Ocu-
lus Rift 7, Sony Playstation VR 8, Samsung Gear VR 6,
Google Daydream 11 and Google Cardboard 10. These de-
vices provide different services in different platforms and
for different prices. The most expensive device is the HTC
Vive, which is a stereo headmounted display equipped with
rotational sensors and a camera in the headset. It also has
two controllers and two tracking cameras. The active in-
frared tracking system enables precise positional and rota-
tional tracking of the users head and the two controllers. The
tracking area the user can move in is around 5m x 5m. The
head mounted LED display has 2160x1200 resolution. The
VR application should be developed on a desktop, typically
on Windows platform, and the headset is connected directly
with wire to the graphics card. The Oculus Rift has simi-
lar features, however it only has a single infrared camera for
tracking, thus head movement is limited in a roughly 1 meter
diameter sphere, and the user should always face the track-
ing camera. It has a display with the same resolution as the
Vive, and the development is also similar: the VR application
is developed on desktop platform, and the headset is con-
nected to the graphics card. The two device have their own

programing API’s. The biggest advantage of the Vive over
Oculus is the free navigation it provides: the user can walk
and turn around within the tracked area freely. Sony Playsta-
tion VR must be connected to a Playstation console. It has
a lower resolution 1920x1080 display, it uses the Playsta-
tion stereo cameras with active LEDs for headtracking. The
Playstation uses the same method to track the position of two
controllers in the user’s hand. The rotation of the input de-
vices is also tracked with sensors. Just in case of the Oculus
Rift the tracked area is limited, and the user should face the
tracking cameras. Applications should be developed on the
Playstation platform, which is a popular gaming platform,
though limits to usage of the device to these consols.

The Google Cardboard is a cheap VR alternative. It is a
simple paper frame with two lenses that can project the two
half of a smartphone display to the two eyes. It is not lim-
ited to any particular device type or platform. In its pure
form it is only a stereo display. For tracking a gyroscope
should be present in the smartphone. Though this enables
rotational tracking only, this gives a great plus to immersion.
Head position tracking is not possible, unless the develop-
ers add some marker based tracking using the rear camera
of the smart phone. Typically the Android platform is used
for development, but as it is only a frame, other mobile plat-
forms can also be used. Google Daydream gives a more com-
fortable, plastic and fabric frame and two remote controllers
are also provided. Head position and controller position still
not tracked only rotations. The resolution and performance
is limited by the handheld device, however it gives a very
flexible and widely available solution. Samsung Gear VR
uses similar concepts as the Google alternatives, but it targets
Samsung Galaxy smartphones only, thus can assume that a

Umenhoffer, Tóth / Kinect tracking for VR

gyroscope and proper hardware is present in the device. It
also provides a bluetooth motion sensing controller with a
touchpad. Its software API is based on the Oculus platform.

From the above it follows that cheaper solutions have
limited tracking capabilities, and performance is also lim-
ited by the handheld devices. More advanced solutions can
have their own platform (like the Playstation), which can be
serious limitation for complex application systems, or they
need a high performance desktop computer, and their price
is high.

In this paper we would like to extend the capabilities of
simpler and cheaper solutions with head tracking using mod-
erate price tracking sensors. We target applications where a
desktop PC or notebook is also used as an inspecting ma-
chine, thus the user is also visualized in the virtual environ-
ment from a free perspective. As a desktop is present, we
can use it for tracking head and hand positions and use it
as a tracker server, while the handheld device is acting as
a tracker client. Head rotation tracking, running the VR ap-
plication and stereo rendering is performed on the handheld
device just as in case of the Google and GearVR solutions.

We use a Kinect V2 connected to the desktop PC for track-
ing. For head rotation tracking a gyroscope is a must, but
we did not have a smartphone with such capabilities. On
the other hand we had an Epson Moverio BT-200 9 smart
glasses, which can also be used as a VR headset. When used
as a VR headset this device does not provide any additional
capabilities over a smart phone with a VR frame and rotation
sensor, thus the setup and usability described in this paper
also holds for headmounted smartphones with gyroscope.

2. Hardware

Our system needs the following main components: a work-
station, that is connected to a Kinect V2 device and a render-
ing device connected to a head mounted stereo display. For
the workstation we need USB 3.0 and Windows 10 for the
Kinect sensor to operate on, so a PC or notebook should be
used. The head mounted device can be a mobile used with a
VR viewer like Google cardboard. However the mobile de-
vice should have a gyroscope to track head rotation. We used
a special head mounted device: the Epson Moverio BT-200
smart glasses.

The Epson Moverio BT-200 smart glasses is basically an
augmented reality device, but can also be used for virtual re-
ality applications too if the glasses are shaded. These glasses
has their own plastic shades for this purpose. The Move-
rio glasses has two main components: the glasses wire con-
nected to a handheld device. The device can be seen on Fig-
ure 1. This device is similar to a smartphone, but it does not
have an LCD screen, as it uses the glasses for display. In the
place of the LCD screen a touch pad was built in to provide
an easy to use input device. The device itself runs Android
operating system, and has similar capabilities as other smart

Figure 1: The Epson Moverio BT-200 smart glasses.

phones. It does not have cellular network interface, but sup-
ports WiFi, bluetooth, has acceleration and magnetic sensors
and a gyroscope and a GPS.

The glasses have two see-through display lenses, each
have 960x540 resolution. The accelerometer, magnetometer
and gyroscope was also built into the glasses too, and also
a VGA camera next to the right eye. The lenses are directly
connected to the handheld device. Each display lenses have
an approximate 23 degree field of view. This angle is suf-
ficient for augmented reality applications where the glasses
are used in a see through mode, but can be rather small in
case of virtual reality usage. A headphone can also be at-
tached to the device which we did not use.

The Kinect one sensor has a high resolution (1920x1080)
color camera and a lower resolution (512x424) depth cam-
era. The device is shown on Figure 2. Both cameras has
rather big filed of view: 84.1 degree horizontal for the RGB
and 70.6 degree for the depth camera. It also has a micro-
phone array which we did not use in our system. The depth
range of the depth sensor is between 0.5 and 8 meters, but
accuracy decreases drastically beyond 4 meters.

Figure 2: The Kinect V2 sensor.

We prepared a VR room in the following way: we cov-
ered a wall with green fabric to ease background removal.

Umenhoffer, Tóth / Kinect tracking for VR

Figure 3: Our VR system.

We placed the Kinect sensor at 2.5 meters from the wall.
The Kinect cameras were rotated to have a horizontal view
direction perpendicular to the wall. The user can explore the
virtual environment between the sensor and the wall using
the smart glasses. The head movement of the user will be
tracked by the Kinect, so the user can move in a trapezoid
shaped area limited by the Kinect’s nearest depth range and
field of view. Figure 4 shows our VR room setup.

Figure 4: Our VR studio setup.

3. System overview

Our system is shown in Figure 3. A Kinect V2 device is
connected to a workstation machine. The purpose of this
machine is to use the Kinect SDK to track the user’s head
and hand position. These position values are sent to the Ep-
son Moverio handheld device over a wireless network. The
handheld device acts as a client and receives the tracked data

in each frame. It also reads head rotation values from the gy-
roscope located in the glasses. The glasses are directly con-
nected with the device thus provide high speed rotation value
updates.

Knowing the head rotation and position, an application us-
ing 3D accelerated graphics can render the virtual world in
realtime form the current viewpoint of the user. This render-
ing uses a stereo camera setup to enable proper depth percep-
tion. Attaching interactive game elements to the hand posi-
tions also enables the user to interact with the virtual world.
The Epson Moverio can be replaced with any Android smart
phone that has a gyroscope and WiFi connection, and can be
placed in a VR headset. The simplest and cheapest solution
is using Google Cardboard.

To inspect the user interacting with the virtual world,
the workstation machine can display the same virtual vir-
tual world from a free perspective. This desktop application
also receives head and hand position data, and can visualize
these locations in space. Using the Kinect sensor’s depth and
color data, a three dimensional point cloud can also be built
and placed into the virtual world. The following sections de-
scribe these steps in more details.

4. Tracking using the Kinect V2

The Kinect V2 device can stream an RGB, an infrared and
a depth image to the PC it is connected to via a high speed
USB 3 port. These streams are accessible with the help of the
Kinect API available for multiple programming languages.
This API not only provides these streams to the programmer
but has several additional advanced features. V2 feature is
the tracking of the user’s body.

The body tracking in the Kinect is an image processing

Umenhoffer, Tóth / Kinect tracking for VR

Figure 5: The tracked joints and their names in the Kinect
V2 platform.

based approach, where the algorithm searches for a human-
like shape and identifies its main body parts. The API can
track multiple bodies at once and stores a skeleton for each
of them. A skeleton is a set of connected joint positions.
The Kinect V2 uses a skeleton with 25 joints and can track
at most 6 bodies. Figure 5 shows the joints tracked by the
Kinect V2 sensor. In our case we are only interested in the
position of three joints: head, left hand and right hand. These
positions are given in the coordinate system of the sensor,
where the origo is in the nodal point of the infrared camera,
the y axis points upward and the z axis points in the view
direction of the infrared camera.

As the tracking is image processing based, in a first step
the user’s body should be identified. The tracker can eas-
ily do this if the the user turns toward the sensor, its hands
are lifted aside from its body, and the ellipse of the head is
clearly seen. If the user turns sideways, or the hands are oc-
cluded, tracking can become unstable. The torso of the user
is usually well tracked, however the limbs can be uncertain
in many situations. The tracker also stores a reliability value
to each of the joints, which describes the estimated accuracy
of the tracking of the given joint in the current frame. If a
low reliability value is given we can neglect the tracked po-
sition for the joint as it can contain invalid values. The track-
ing does not searches for facial features so the user can turn
away from the camera, head position tracking will probably
not fail. However hand occlusion is more likely to happen in
this case.

We implemented the tracking in a standalone application
written in C++. This application will be responsible for point
cloud extraction too, which will be described in section 6.

We constantly read tracked joint positions from the Kinect
API and send it to the render devices over network. We used
a connectionless UDP stream to transfer data, as tracking
data loss is not a great problem unlike slow connection,
which results serious lags in the system. We should also
make sure that all packets are transferred immediately and
not buffered by the network driver of the operating system,
as buffering would result in periodical stalls on the client
side. As handheld devices usually provide wireless network-
ing capabilities we set up a local wireless network between
the workstation and the mobile device.

4.1. Improving the tracking accuracy

As the tracking of the user is a key part of our system we
applied postprocessing both on the tracker and the renderer
side to improve the user experience. In the tracker compo-
nent we apply two type of filtering. We identify when the
head and hand joint positions are unreliable based on the
tracking states reported by the sensor. The unreliable mea-
surements are excluded from further processing. The joint
positions returned by the sensor are accurate in the sense,
that when the user stands still the average of the measured
joints over time is close to the real position of the tracked
body parts. However, the distinct position samples are scat-
tered in a centimeter range. To eliminate this uncertainty in
the tracking position, which cause a small but noticeable
shaking in our VR environment, we apply a jitter removal
filter. This filter attempts to smooth out the sudden changes
of the joint positions by limiting the changes allowed in each
frame as

X̂n =

{
Xn, i f |Xn− X̂n−1|< d
αXn +(1−α)X̂n−1, otherwise

where X and X̂ are the measured and smoothed joint posi-
tions respectively, d is a threshold that should be less than
the typical jump distance of the input data and α should be
chosen to minimize the input lag. These filtered joint posi-
tions are transmitted to the renderers. As the communication
between the tracker and the renderers is inherently unreliable
we apply further processing of the received joint positions.

To improve the user experience we should produce a hand
position in every frame. However, the reliability of the track-
ing and the transmission between the components does not
meet this requirement. Therefore we could only predict the
frame by frame positions with additional filtering 2. The
standard approach would be a variation of Kalman filter, but
the resource constraints of our handheld device does not al-
low it. A feasible approach is a double moving averaging 3

(DMA) filter, which can be tuned to be responsive but also
predicts the lacking samples well enough for our purposes.
The DMA filter tracks the first and second order moving av-
erages of the input positions and produces locally smoothed

Umenhoffer, Tóth / Kinect tracking for VR

output positions:

MA
′

n =
1

N +1

N

∑
i=0

Xn−iMA
′′

n =
1

N +1

N

∑
i=0

MA
′

n

, where MA
′

and MA
′′

are the first and second order moving
averages, and

X̂n = MA
′

n +(MA
′

n−MA
′′

n)

is the smoothed position. To predict the lacking position we
adjust the trends according to the number of missing input
frames as

X̂n+k|n = X̂n +
2k

N−1
(MA

′

n−MA
′′

n).

This filtering approach is resource friendly and also success-
fully eliminates the small gaps in the tracking. Finally when
the tracked skeleton is completely lost we reset the filter.

5. Virtual world rendering

The rendering of the virtual world is performed on the hand-
held device. The VR application acts as a client and reads
tracking messages continuously over the wireless network.
The head rotation is defined by the rotation sensor of the de-
vice, which can be easily accessed through the device plat-
form API. We should give special attention of two things:
the coordinate space of the tracker and the basic rotation of
the device. In our case the device returned identity rotation
for the head if the glasses were looking straight downwards.
Thus when starting the application we orient the user accord-
ing to the coordinate system of the Kinect sensor, namely we
place the user right in front of the infrared camera and orient
its head to look horizontally in the direction of the camera
(in the camera z axis). This is the rotation sensor calibrat-
ing step, where the head orientation returned by the sensor
in the calibration pose is stored and rotation values are cor-
rected with this orientation in each frame.

In practice looking exactly horizontally is not a straight-
forward thing to ask from the user, but we found that only
two rotations are needed to correct orientations. The first is a
rotation that rotates the glasses from vertical view direction
to horizontal view direction, which is a 90 degree rotation
around its x axis. The second rotation is a rotation around
the up axis which can be determined by turning toward the
Kinect camera if the user is right in front of the Kinect sen-
sor. As we have head tracking data, the user can move until
head track data returns zero for head x position. This means
that the user stands right in front of the camera, and after that
we should rotate the head to look straight to the camera. We
also rendered a sphere in the position of the Kinect sensor
in the virtual world for a visual feedback of the quality of
calibration. When using the Moverio glasses in see through
mode we can see the real world sensor and the virtual sphere
at the same time, if their positions match, the calibration was
successful. This is basically the extrinsic calibration of the

headmounted display. We did not need to calibrate intrinsic
parameters, field of view in particular, as it is known for the
Moverio device.

Virtual cameras are set up using the tracked camera posi-
tion and rotation. As we need two separate rendering for the
two eyes, we need to create two cameras with a slight hor-
izontal offset. We referred to the average human interpupil-
lary distance (IPD), which has a 63 mm mean value (com-
parison of multiple databases about IPD can be found in the
work of Dodgson 4). The image of the two eyes should be
rendered side by side, this holds both for Google Cardboard
like devices and for the Moverio glasses too.

Beside head position data, tracked hand positions are also
read in each frame. We can use these positions to interact
with the environment. They can serve as a three dimensional
pointer, or we can attach virtual objects to them. Attaching a
virtual object two the two hands also shows calibration errors
as they should be located in the virtual world exactly where
the users palms would be located.

6. Inspecting the user in the virtual world

In many VR applications there is a need to inspect the user
interacting with the virtual world. In such systems the cam-
era view seen by the user is also displayed to an external
monitor, so others not interacting in the virtual world can
see what the user does at the moment. This gives only a first
person view perspective, in some cases the scene should be
investigated from an other viewpoint.

We can render the scene from arbitrary viewpoint, how-
ever, the user will not be visible in the virtual world. Some
high end application use full body motion capture and ap-
ply this motion to a virtual avatar. Other systems use cam-
era arrays and reconstruct a point cloud of the user in real
time, and mixes this point cloud with the virtual environ-
ment. These systems can be rather expensive.

We used the depth and color image of the Kinect sensor
to reconstruct a point cloud of the user in real time without
any additional hardware. The workstation that handles head
and hand tracking also processes depth data, reconstructs the
point cloud and renders the scene from an arbitrary view-
point. To do this, first we should separate the user from its
environment. The Kinect API provides us a special mask im-
age, that contains ID values for the bodies it tracks. Thus for
each body we have a binary mask. This mask is not neces-
sarily precise enough, thats why we covered the wall behind
the user with green fabric, which increases foreground mask
quality.

If we know the projection matrix of this camera, we can
find the camera space position for each pixel using the pixel
coordinates and its depth value. The projection matrix is
known, as we know the view angle and the aspect ratio of
the camera. Near and far plane values does not affect the fi-
nal camera space positions, so we can choose basically any

Umenhoffer, Tóth / Kinect tracking for VR

valid values for them. The formulas are simple and have the
following form:

Cn = M−1
pro j · (H.xy,−1,1)

Cn =
Cn

Cn.w

C =
Cn ·Z

n

For each pixel of the depth image we construct homoge-
neous coordinates from the device space pixel coordinates
H.xy by setting the z coordinate to -1 (which stands for the
near plane in case of an OpenGL projection matrix) and the
w coordinate to 1. Then we multiply this with the inverse
of the projection matrix of the Kinect depth camera. This
will lead to a camera space point on the near plane (Cn) seen
from the given pixel. We should make a homogeneous di-
vision, and finally the camera space position C is the near
plane position multiplied by the ratio of the measured depth
Z and near plane distance n. The final camera space position
can be written to a new image called geometry buffer. Each
pixel of the geometry buffer defines a point in camera space,
thus the buffer defines a point cloud. We can visualize this
by rendering a point primitive for each pixel. The color val-
ues of these points can be read from the RGB camera of the
Kinect sensor.

Rendering the point cloud in the virtual environment we
can see the user navigating in three dimensional space, we
can see its body motions and even facial expressions. Of
course this point cloud only samples the nearest surface
points from the depth sensor, but this is usually sufficient
for inspection.

7. Results

We prepared a virtual test scene: a room with pillars, a three
dimensional character, and some interactive elements. We
implemented our VR application in Unity 1, which provides
a comfortable multi-platform solution, thus our PC and An-
droid applications could use the same project. On the work-
station side we separated the virtual world rendering tasks
used for inspection and the Kinect handling tasks and im-
plemented them in separate applications. The tracking ap-
plication was implemented in C++, its purpose is to read the
tracked locations and broadcast them over the local network.
The broadcasting is needed as not only the handheld device,
but the inspecting application also uses these data. Kinect
color and depth stream processing, foreground extraction
and point cloud generation was also implemented in the
tracker server and the point cloud was also streamed through
the network to the inspecting application. In practice this
application was run on the same machine as the tracker, so
a fast loopback communication could be achieved. Though

this setup would enable rendering the point cloud on the
handheld device too, due to performace reasons we disabled
this function.

We attached two colored virtual cubes to the hand posi-
tions, they were rendered in both on handheld and on desk-
top side. Thus both the user and the inspectors had a visual
feedback of where the user’s virtual palms are. We placed
interactive elements like a ball attached to an invisible point
in space by a spring. When the user hits the ball with the
virtual cubes, physics simulation is used to swing the ball.
Figure 6 shows screen captures of our test scene from two
viewpoints: on the right the Kinect camera’s viewpoint was
used, while on the left an arbitrary viewpoint was used. Note
that the point cloud only approximates geometry from the
Kinect’s point of view, but still helps a lot to locate the user
in virtual space using other viewpoints too.

During our tests we found that head and hand tracking
can be achieved without disturbing lags. Point cloud can
not be streamed directly over the wireless network in real
time without simplification and some compression. That is
why we did not rendered the point cloud on the handheld
device, though it could have provided valuable feedback to
the user. Unfortunately reliable head tracking was limited in
a roughly two square meter area. On the other hand as the
Kinect has high field of view the user could crouch or jump
safely. The user can also walk around a virtual object, head
tracking is usually not lost even when the user back faces
the camera, but in these situations hand tracking is lost or
unreliable. These experiences show that our system provides
similar tracking range as the Oculus and even the Playstation
VR, but it is much smaller than the Vive’s tracking range.

The small field of view of the Moverio glasses is a seri-
ous limitation, which can be eased with using a larger sized
smart phone with VR headset. On the other hand even with
shading the Moverio glasses the real world environment is
still slightly visible, which is basically bad for immersion,
but also makes the process more safe. The user always have
a sense of the real world, and will not collide with real world
obstacles by accident. The resolution is comparable with
the Playstation VR’s resolution, it is restricted by the smart
phone being used, and is smaller that in case of Oculus and
Vive.

Our system can track hand positions, but no orientations,
while Oculus, Vive and Playstation VR can track both. Hand
position tracking has the same limitations as in case of Ocu-
lus and Playstation VR, namely, if the hands are occluded
(even by each other), they cannot be tracked. As all con-
sumer approaches use controllers for hand tracking, they
could place input buttons on these controllers too. In our
case, no buttons are available. On the other hand, our sys-
tem does not require any batteries and external tools. The
head mounted display also works wirelessly, unlike Ocu-
lus or Vive (though an extension can be purchased to Vive,
which replaces wired connection with wireless). The com-

Umenhoffer, Tóth / Kinect tracking for VR

plexity of applications developed for our system is limited
by the handheld device.

8. Future work

Our system can be extended in several aspects. Tracking
multiple users does not need significant changes in our sys-
tem, as the Kinect V2 can track up to six bodies. Introducing
several users in the same virtual world would definitely re-
quire the visualization of the users on the handheld devices
too. Point cloud rendering would need the real time simplifi-
cation and compression of the point cloud. An other solution
would be to use virtual avatars for the users, which need full
body tracking. As the Kinect sensor tracks all joint positions
for multiple bodies, these locations can also be streamed
through the network to the clients.

We also plan to modify the system to move all render-
ing to the desktop side, and send rendered image data to the
handheld device. This would make the rendering process in-
dependent of the limited performance of the handheld de-
vice, thus we could use more complex scenes, materials and
lighting. This would drastically improve user experience. In
this case the handheld device should operate as a head track-
ing server too.

Acknowledgements

The work was created in commission of the National Uni-
versity of Public Service under the priority project KÖFOP-
2.1.2-VEKOP-15-2016-00001 titled „Public Service Devel-
opment Establishing Good Governance” in the Ludovika
Workshop 2017/162 BME-VIK „Smart City – Smart Gov-
ernment”

References

1. Unity 3D. https://unity3d.com/.

2. Michael Adjeisah, Yi Yang, and Lian Li. Joint filtering:
Enhancing gesture and mouse movement in microsoft
kinect application. In 12th International Conference on
Fuzzy Systems and Knowledge Discovery, FSKD 2015,
Zhangjiajie, China, August 15-17, 2015, pages 2528–
2532, 2015.

3. R. G. Brown. Smoothing, forecasting and prediction
of discrete time series. Englewood Cliffs, New Jersey:
Prentice Hall, 1963.

4. Neil A. Dodgson. Variation and extrema of human in-
terpupillary distance. Proc.SPIE, 5291:5291 – 5291 –
11, 2004.

5. Dante D’Orazio and Vlad Savov. Valve’s vr
headset is called the vive and it’s made by htc.
https://www.theverge.com/2015/3/1/
8127445/htc-vive-valve-vr-headset,
March 2015.

6. Cameron Faulkner. Samsung gear vr review.
https://www.techradar.com/reviews/
samsung-gear-vr-2017, January 2018.

7. Nick Pino. Oculus rift review. https:
//www.techradar.com/reviews/
gaming/gaming-accessories/
oculus-rift-1123963/review, January
2018.

8. Nick Pino. Playstation vr review. https:
//www.techradar.com/reviews/gaming/
playstation-vr-1235379/review, January
2018.

9. Lily Prasuethsut. Epson move-
rio bt-200 review. https://www.
techradar.com/reviews/gadgets/
epson-moverio-bt-200-1212846/review,
April 2015.

10. Sean Riley. Google cardboard review: Better than
nothing. https://www.tomsguide.com/us/
google-cardboard,review-4207.html,
February 2017.

11. Matt Swider. Google daydream view review.
https://www.techradar.com/reviews/
google-daydream-view-review, October
2017.

Umenhoffer, Tóth / Kinect tracking for VR

Figure 6: Users using our system to interact with the virtual world.

