
Eighth Hungarian Conference on Computer Graphics and Geometry, Budapest, 2016

Simulation methods for elastic and fluid materials

Tamás Umenhoffer, Artúr M. Marschal, Péter Suti

Department of Control Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary

Abstract
In this paper we present techniques for physical simulation of deformable objects. We investigate three problems
namely: incompressible fluid flow, elastic body simulation, and elasto-plastic material simulation. For high detail
fluid simulation we discuss the particle in cell method. For an intuitive elastic material simulation we present the
position based dynamics method. Finally we show how to use the material point method for the simulation of the
most complex, elastic plastic materials.

1. Introduction

A wide range of real world materials are not rigid but de-
formable. These materials include fluids and materials with
fluid like motion (e.g. smoke or clouds), elastic materials like
rubber or plastic materials like plasticine. Some materials
have both plastic and elastic properties like snow.

Physical simulation of such materials is a hard problem,
but necessary for realistic behaviour. Specially this is true
for medical simulations. The human body is not rigid, it has
elastic and plastic properties, and even handling the motion
of fluids inside our body is crucial. What makes the simu-
lation even harder is that materials with different properties
are in close interaction.

In our recent project we investigate the blood flow around
the aortic and pulmonary valves in a beating heart. Such a
simulation requires the simulation of the blood flow as the
motion of an incompressible fluid, but taking into account
that the valves are elastic-plastic materials which are both
moved by the flow, and they also hinder the blood flow.

In this paper we summarize our experiences with the
physical simulation techniques we tried for fluid, elastic and
plastic material simulation. As modern GPU-s can be used
to spped up general purpose calculations19, we used GPU
acceleration where we could to enhance performance. In the
following section we list the most important papers about
deformable material simulation. Section 3 describes the par-
ticle in cell method for fluid simulation, Section 4 shows how
to use the position based dynamics to simulate elastic mate-

rials, and Section 5 describes the material point method for
simulating elastic-plastic materials like snow.

2. Previous Work

What makes deformable material modeling hard is that we
have to model the whole volume of the objects, taking into
account the internal friction of material elements. From this
aspect fluid simulation and elastic material simulation is
similar: the shape of the object deforms, material particles
can roll away from each other, but their internal friction tries
to keep the volume together.

Fluid motion can be modelled with particle systems15,
however it is not physically driven and demand a huge an-
imating time. Solving the equations of motion has a much
natural result. Foster and Metaxas used the full three di-
mensional Navier-Stokes equations to simulate smoke mo-
tion on a coarse grid4. Because of the explicit integration
scheme, their algorithm was only stable for small time steps.
This problem was solved by Stam16, who introduced a semi-
Lagrangian advection method and implicit solvers in his sta-
ble fluid simulation. Harris7 built his simulation algorithm
on Stam’s stable fluid and redesigned the algorithm to run
entirely on GPU. He also gave an excellent survey on fluid
simulation on graphics hardware6. The smoothed particle
hydrodinamics9 method works on particles instead of a grid,
Müller12 introduced an implementation for interactive appli-
cations. Hybrid methods like particle in cell5 and fluid im-
plicit particles3 combine the strength of both representations.

Elastic materials can be easily modelled with mass spring

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

systems, however setting spring parameters to achieve realis-
tic result is not a trivial problem. The most widely used tech-
niques in computational sciences are finite element meth-
ods. However these solvers are rathed slow. Position based
integration13 is an intuitive stable method, but (like mass
spring systems) also hard make physically correct.

Some graphics papers use simplified particle or rigid body
systems 10, 2 to model granular material, whose behaviour is
mostly directed by inter-granular friction. However it is hard
to keep efficiency when increasing the detail, thus increasing
the number of grains. This lead researchers to apply con-
tinuum models 20, 8, 14, 1. Incompressible fluid based meth-
ods model granular friction with viscosity. For some materi-
als compressibility should be modelled. The material point
method (MPM)18, was designed to extend FLIP to solid me-
chanics problems that require compressibility.

3. Fluid simulation with the particle in cell method

A fluid with constant density and temperature can be de-
scribed by its velocity ~u and pressure p fields. These values
both vary in space and in time:

~u =~u(~x, t), p = p(~x, t).

The motion of a fluid is described by the Navier–Stokes
equations:

∂~u
∂t

=−(~u ·∇)~u− 1
ρ
∇p+ν∇2~u+~F , (1)

∇·~u = 0, (2)

where ρ is the density, ν is the viscosity of the fluid, and in a
Cartesian coordinate system ∇ = (∂/∂x,∂/∂y,∂/∂z). Equa-
tion 1 describes the conservation of momentum while equa-
tion 2 states the conservation of mass (i.e. that the velocity
field is divergence free). These equations should also be as-
sociated with the definition of the boundary conditions. The
first term on the right side of equation 1 expresses the advec-
tion of the velocity field itself. This term makes the Navier–
Stokes equation non-linear. The second term shows the ac-
celeration caused by the pressure gradient. The third term
describes diffusion that is scaled by the viscosity, which a
measure of how resistive the fluid is to flow. Finally ~F de-
notes the influence of external forces.

Basically two approaches exist for solving these equations
according how they represent the continuum. Euler based
approaches use a grid mesh for storage. Sample points thus
does not move in time, neighbourhood information is obvi-
ous, and sample space does not deform. On the other hand
material quantities should be transfered between gridpoints
as the medium evolves, and because of interpolation a sig-
nificant amount of smoothing can occur. Lagrangian meth-
ods sample the medium at individual moving fluid parcells.
In the Lagrangian approach boundary sample points remain
on boundary, collisions are easier to handle, and as material

properties are fixed to the particles, time dependent proper-
ties are easier to manage.

In case of fluid dynamics Eulerian approaches are better in
preserving volume, but small scale movements are smoothed
out. Lagrangian approaches are better in handling collisons
and particle advection. The Eulerian grids also have high
storage needs. As volume preserving is an important feature
for us, we should consider the grid based approach.

Particle in cell (PIC) methods combine the strength of
both techniques. It samples the medium on two meshes:
an Eulerian and a Lagrangian mesh. Using both represen-
tations we can choose the appropriate coordinate system for
each simulation substep. Thus particle advection and colli-
sion handling should be performed on the Lagrangian par-
ticle representation, while computing pressure and making
the flow field divergence free should be done on an Eulerian
grid. Between these steps quantities should be transfered be-
tween the two meshes.

Our system is a classic grid based fluid simulation algo-
rithm, but the advection part is replaced with a particle based
advection. Before advection, particle velocities are trans-
fered to the particles: for each particle we visit nearby vox-
els and collect velocities with a B-spline based interpolation
function. Advection with an explicit Euler integration is triv-
ial on particles. After advection we transfer velocities back
to the Eulerian grid using the same interpolation function.
All other simulation steps work the same as in a classical
grid based approach.

On initialization we fill in our volume evenly with parti-
cles, placing four particles randomly in each voxel. During
simulation, paricles move and can accumulate in certain vox-
els, while other voxels will be emptied. This behaviour is un-
wanted as it causes instability. Empty areas should be filled
with new particles, while in dense areas particles should be
removed. In practice we keep particle count between 2 and
6 in each cell.

3.1. Implementation

We implemented our algorithm on the OpenGL framework.
From the first time our goal was to use GPU acceleration
for simulation, so our simulation steps were implemented in
GLSL shaders. There are numerous shader based Eulerian
fluid simulation implementations that are publicly available.
Our implementation basically does not differ from them, so
now we focus only on the changes that should be made for
the PIC method.

The classic semi-implicit advection step was removed and
replaced with a particle based advection. To transfer veloc-
ities from the grid to the particles we send point primitives
to the graphics pipeline, each point representing a particle.
For each particle we sample the neighbourhood from the ve-
locity texture and interpolate velocity data using our interpo-
lation function. This interpolated velocity can be stored for

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

Figure 1: Grid based (upper row) and PIC based fluid simulations. Notice the fine features present in the PIC result.

the particle using vertex transform feedback. We should note
that advection was also computed in this shader and new
position values were also feed back to vertexbuffers. Using
these vertex buffers we again send all particle point down
the pipeline as point primitives, and use a geometry shader
to extend them to quads covering the neccessary voxel area.
The pixel shader calculates velocity value for each underly-
ing voxel using the same interpolation function, and use ad-
ditive blending to accumulate data from different particles.
This last rendering is directed to a render texture, which can
be used by forthcoming simulation steps.

Using alpha blending for particle data accumulation is ef-
fective as it does not require atomic operations, as it would if
we would use a GPGPU framework. Handling particle inser-
tion and deletion can also be implemented effectively with
the 3D pipeline. We rasterize each particle to the underly-
ing voxel of a special buffer, and write a color value of one.
Again using additive blending we get the number of particles
for a given cell. Using this texture we send all particles down
the pipeline and a geometry shader removes some particles

from a cell if the cell contains too much particles. The parti-
cles discarded by the geometry shader won’t be fed back to
the vertexbuffer. Similarly we can send new particles down
the pipeline (we used the same buffer as for initializing par-
ticles), and the geometry shader keeps some of them if their
cell contains too much particles. Here the feedback buffer is
directed to the end of our previous vertex buffer. Thus our
particle count changes continuosly during simulation.

One question still remains, namely: how does a geom-
etry shader instance know which particle to remove or to
add without communicating with other geometry shader in-
stances. We need a strategy to know exactly for a given
particle count in a cell which particles should be removed,
and which new particles should be added. We use rejec-
tion sampling for this purpose. For each particle a priority
value is assigned, which is a random number between 0 and
1. When removing particles only those particles will be re-
moved whose priority is above the ratio of desired particle
count and current particle count in the cell. After removal the
distribution of priorities will change, higher priorities will

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

be removed, thus priorities should be scaled back to the unit
interval. When adding new particles we use a similar tech-
nique: we add new particles with priorities above the ratio
of current particle count and desired particle count. Again
priorities should be scaled back to the unit interval.

Figure 1 compares the classic Eulerian simulation with
the particle in cell method. Note that the two technique dif-
fers only in the advection step. The particle in cell method
has fine details that were smoothed out by the semi implicit
intergration of the purely grid based approach.

4. Elastic material simulation with position based
dynamics

4.1. The position based dynamics method

The most popular approaches for the simulation of dynamic
systems in computer graphics are force based. Internal and
external forces are accumulated from which accelerations
are computed based on Newton’s second law of motion. A
time integration method is then used to update the veloci-
ties and finally the positions of the object. One typical force
based solution for elastic materials is mass a spring systems.

The position based dynamics (PBD) is an approach which
omits the velocity layer and immediately works on the po-
sitions. The main advantage of a position based approach
is its controllability. Overshooting problems of explicit in-
tegration schemes in force based systems can be avoided. In
addition, collision constraints can be handled easily and pen-
etrations can be resolved completely by projecting points to
valid locations.

The objects to be simulated are represented by a set of
N particles and a set of M constraints. Each particle i has
three attributes, namely mass (mi), position (xi) and velocity
(vi). Constraints C j : R3n j → R, that limit particle motion
are defined on a set of particles with indices {i1n , ..., in j},
ik ∈ [1, ...,N]. Constraints are satisfied if C j(xi1 , ...,xin j

) > 0
or C j(xi1 , ...,xin j

) ≥ 0 depending on the type of the given
constraint. Constraints also have a stiffness parameter k j :
[0, ...1] that defines their strength.

The basic steps of the algorithm are listed in Algorithm 1.
Before the main simulation loop begins, initial positions and
velocities of the particles should be set. The first step of the
simulation loop is an explicit Euler integration step, where
particle velocities and positions are updated. These temporal
positions will be projected by the constraints. Non perma-
nent constraints, like collision constraints should be recalcu-
lated in each simulation loop. In the iteration loop all con-
straints are evaulated one after an other, and predicted po-
sitions will be corrected. Corrected positions will be stored
as final positions and can also be used to compute the actual
particle velocities.

The position based dynamics approach uses a non-linear
Gauss-Seidel solver, which means that each constraint will

Algorithm 1 Position Based Dynamics Method
1: for all particles i do
2: initialize xi = x0

i ;vi = v0
i ;wi = 1/mi

3: end for
4: loop:
5: for all particles i do vi← vi +4twi fext(xi)
6: for all particles i do pi← xi +4tvi
7: for all particles i do createCollisionConstraints(xi→ pi)
8: for all iterations do
9: pro jectConstraints(C1, ...,CM+Mcoll , p1, ..., pN)

10: end for
11: for all particles i do
12: vi← (pi− xi)/4t
13: xi← pi
14: end for
15: endloop

be solved separately, but each constraint works on the re-
sult of the previously solved constraint. The PBD approach
linearizes the constraints, and searches the correction value
4pi in the direction of the constraint gradient OpiC(p).
The general formula for solving a constraint is: 4pi =
−swiOpiC(p) where,

s =
C(p)

∑ j w j|Op jC(p)|2
,wi =

1
mi

The following subsections cover the constraints we have im-
plemented in our simulation system.

4.2. Distance constraint

The goal of this constraint is to maintain a fixed distance
between two particles. The constraint can be given with

C(p1, p2) = |p1− p2|−d

. The derivatives are Op1C(p1, p2) = n,Op2C(p1, p2) = −n

where n =
p1− p2
|p1p2| . The final correction formulas are:

4p1 =−
w1

w1 +w2
(|p1− p2|−d)

p1− p2
|p1− p2|

4p2 =+
w1

w1 +w2
(|p1− p2|−d)

p1− p2
|p1− p2|

This states that, based on the difference between the desired
distance d and current distace, particles will move towards
or away each other, and their movement ratio are defined by
their mass ratio. This constraint keeps the material together,
preventing the simulated object from streching and tearing.

4.3. Bending constraint

Bending constraint defines the bending resistance of the ma-
terial, giving it an extra stiffness. Its goal is to keep an initial
angle between adjacent triangles formed by particles. The

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

constraint is given by C(p1, p2, p3, p4) = arccos(n1 · n2)−
ϕ0, where n1 and n2 are the normal vectors of the triangles,
which can be calculated from particle positions using trian-
gle edge cross product. The derivation of the constraint for-
mulas are given in11.

4.4. Collision constraint

Collision constraints can appear and dissapear in each sim-
ulation step. For a moving particle q and particles p1, p2, p3
forming a triangle with normal n, the collision constraint is

C(q, p1, p2, p3) = (q− p1) ·n≥ 0

. The final formula for solving the triangle collision con-
straint is:

4p =−((q− p1) ·n)n

What the above formula does is moving the particle along
the triangle normal until it gets in front of the triangle sur-
face.

4.5. Implementation

We implemented the position based dynamics algorithm on
the OpenCL framework with OpenGL visualization. We re-
serve particle data arrays for particle positions, predicted po-
sitions, velocities and inverse mass. We also reserve arrays
for each constraint types. The constraint arrays store con-
straint specific infromation, for example for distance con-
straints we should store the two particle id this constraint
works on and an initial distance. For each type of constraint a
proper OpenCL kernel was written, that can handle the given
constraint. These kernels read and write data from the parti-
cle data arrays, and one kernel thread works on one specific
constraint instance. Thus the constraints are evaluated par-
allel and independently. Because no synchronization is used
between working threads, it can happen that two parallelly
ran thread work on joint particles.

This is unfortunatelly agains the principles of a Gauss-
Seidel solver, where constraints use the result of previously
solved constraints. Particulary, in our system constraints can
override the result of other constraints without any concern.
We overcome this problem by rearranging the order con-
straints are evaluated. We suffle constraint orders to decrease
the chance of buffer read-write collisions. This ordering can
even be changed in each iteration step to make the simula-
tion more stable.

Collision constraints need special handling as their num-
ber change continuosly. We store scene triangle data in
buffers. Before starting solving constraint iterations, for each
particle we check collision with each scene triangle using
ray-triangle intersection. As collision constraint count is not
known in advance we reserve a fixed size array for them,
preparing for worst case (thus with size particleCount ·

triangleCount). We plan to use dynamically growing buffers
in the future.

We tested our implementation on a thin layer draperie ob-
ject and on solid objects too. Figure 2 shows frames from an
animation where a cloth is dropped onto a cube. For cloth
like materials we used distance, bending and collision con-
straints too. For solid objects we fill in the interiour of the
objects with randomly placed particles and create distance
constraints between closely placed particles.

We found that position based dynamics is a fast, stable
and intuitive algorithm that can be well parallelized. How-
ever reconciling it with real physical quantities like elastic
modulus is hard.

Figure 2: Frames of an animation of a dropped draperie
onto a cube.

5. Elastic-plastic material simulation with the material
point method

We have seen that elastic materials can be simulatied with
the position based dynamics method, but that method is not
based on real physical quantities. Material point method uses
a different strategy. The method is based on the conservation
equations for mass and momentum:

dρ

dt
+ρO · v = 0,ρ

dv
dt

= O ·σ+ρg

Figure 3 shows the main components of the simula-
tion. The algorithm can be described briefly as follows. We
track material properties at particle positions. However some
quantities are easier to compute on a grid, so our first step is
to rasterize the particles onto a 3D grid. Note that this is
the same strategy as was used in the particle in cell method.
More precisely the material point method is an extension of
the particle in cell method to computational solid dynamics.

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

Figure 3: Overview of the material point method (figure from 17).

The next step is to compute forces based on deformation
gradients at each grid voxel, and update grid velocities. Us-
ing these velocities we perform collision detection on the
grid. The final velocities are transferred back to the particles.
Then calculate a new deformation gradient for each particle
using refreshed voxel velocities. Table 1 list the notations
of parameters used in our expressions and gives their typi-
cal values where available. This table also serves as a useful
guide for implementing the MPM method, as all important
particle and grid properties are listed. The next subsections
describe the steps of the MPM simulation in more detail.

5.1. Rasterize particles

Each simulation frame starts with transferring particle veloc-
ities and mass to grid voxels, and ends with transferring up-
dated velocities back to the particles. The grid can be thrown
away at the end of each simulation step, so it can be rede-
fined at the beginning of the simulation step, and can be fit
to the actual particle positions. However for implementation
reasons we used fixed grid position and resolution.

The connection between particles and the grid is achieved
with an interpolation function. We used the same function as
in 17, which use dyadic products of one-dimensional cubic
B-splines. When transferring particle data, we compute the
weights in a 5x5x5 voxel neighbourhood of each particle,
and add the scaled particle quantity to the voxel value:

mn
i = ∑

p
mpwn

ip

vn
i = ∑

p
vn

pmpwn
ip/mn

i

When transferring voxel data back to particles, we again
sample the 5x5x5 voxel neighbourhood of each particle, and
sum their weighted average:

vn
p = ∑

i
vn

i wn
ip

Name Notation Typical values

Global parameters

Young modulus E0 1.4×105

Poisson ratio ν 0.2
Critical compression θc 2.5×10−2

Critical stretch θs 7.5×10−3
Hardening coefficient ξ 10

Particle data

Initial density ρp0 400
Initial volume Vp0

Elastic force FEp

Plastic force FPp

Rotational force REp

Elastic determinant JEp

Cell data

Mass mi
Velocity vi

Force fi
Collider flag coi

Collider velocity vcoi

Collider normal ncoi

Table 1: Notation of parameters used in our simulation
framework. Default values are also listed where possible.

Because of the additivity, if we are interested in the deriva-
tive of one quantity we can simply transfer with the deriva-
tive of the weight function.

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

5.2. Particle volume and density

As an initial step particle density and volume should also be
calculated. After rasterizing particle mass, density is given
with the following expression:

ρ
0
p = ∑

i
m0

i w0
ip/h3

Particle volume can be calculated from particle mass and
density:

V 0
p = mp/ρ

0
p

These values are initial values, they are not going to
change during simulation.

5.3. Compute forces

Calculating stress-based forces needs derivatives, which are
easier to evaluate on the grid rather on the particles. Stress-
based forces are defined by the deformation gradient, the fi-
nal expression of these forces is:

fi(x) =−∑
p

V 0
p · (2µTco−rot +λTcontour) · (Fn

Ep
)T ·∇wn

ip,

Tco−rot = Fn
Ep
−Rn

Ep
,Tcontour = (Jn

Ep
−1)Jn

Ep
Fn

Ep

−T ,

where µ = µ(FP) = µ0 · eξ(1−JPp),

and λ = λ(FP) = λ0eξ(1−JPp)

Here Pp and Ep are the plastic and elastic deformations
of a particle, JPp and JEp are their determinants. λ and µ are
the Lamè coefficients and can be computed from the Poisson
ratio and Young modulus in an initial step:

λ = E0
(1+γ)(1−2γ)

and µ = E0
2(1+γ)

5.4. Update velocities

If the stress based forces are calculated, voxel velocities can
be updated:

v∗i = vn
i +4t/mi · f n

i

Here we can also add the effect of any additional external
forces like gravity.

5.5. Grid based collision

Collision handling is performed on the voxelized scene ge-
ometry after adding forces. An inelastic sliding collision is
used. If the voxel is a collider cell and its velocity is not
zero, the relative velocity is calculated: vreli = vi− vcoi . If
the relative velocity has opposing direction with the collider
normal (thus the particle and the collider are not separating),
only the tangential component of the velocity vector is kept.
After this collision handling step we can finalize our voxel
velocities vn+1

i .

Here we should note that 17 used a semi-implicit inte-
gration scheme here, which had much better accuracy, so

smaller time steps could be used. Due to its high implemen-
tation complexity and additional memory needs we did not
implement it. This results about five times longer simulation
times in our system.

5.6. Update deform gradient

From the updated velocities the deformation gradient of each
particle should be calculated. This gradient is divided into a
plastic and an elastic part FEp and FPp . First we assume that
all changes are attributed to the elastic part:

F̂n+1
EP

= (I +4t∇vn+1
p)Fn

EP
,

F̂n+1
Pp

= Fn
Pp

,

where∇vn+1
p = ∑

i
vn+1

i (∇wn
ip)

T .

The next step is to extract the stretching part of this gra-
dient, and identify the amount of deformation the material
could not hold, thus it breaks. This is done with a singular
value decomposition and clamping the singular values:

SV D(Fn+1
Ep

) =UpΣ̂pV T
p ,

Σp = clamp(Σ̂p, [1−θc,1+θc])

From the clamped singular values we can recalculate the
elastic and plastic deformation gradients:

Fn+1
Ep

=UpΣpV T
p ,

Fn+1
Pp

= Fn+1
Ep

−1
F̂n+1

Ep
F̂n+1

Pp
=VpΣ

−1
p UT

p F̂n+1
Ep

Fn
Pp

These gradients will be used in the next simulation step to
calculate stress-based forces.

5.7. Update particle velocities

Now that each voxel stores an updated velocity, these ve-
locities should be written back to the particles. We use the
same interpolation functions as for voxelizing particle data.
Basically two methods can be used to update velocities: in-
terpolate new velocities or interpolate the velocity change.
The former is the classical particle in cell (PIC) method, the
later is used in the fluid implicit particles (FLIP) method. For
best results these two solutions should be mixed:

V n+1
p = (1−α)(∑

i
vn+1

i wn
ip)+α(vn

p +∑
i
(vn+1

i − vn
i)w

n
ip)

We used α = 0.9.

5.8. Particle based collision

An additional collision handling step is needed as interpola-
tion can bring back collision errors. We do the same calcula-
tions as in grid collision handling, but use particle velocities
instead of voxel velocities, and address the grid cell the par-
ticle is in for collider information.

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

5.9. Update particle positions

Particles can be advected using their new velocities:

xn+1
p = xn

p +4tvn+1
p

Figure 4: Frames of an animation of a dropped snowball
simulated with the material point method.

5.10. Implementation

We created a parallel CPU implementation of the material
point metod. For statisfying results we have to keep particle
count and grid resolution relatively high, which has notable
memory needs. This can make GPU implementation diffi-
cult, as GPU memory size is much more limited.

We used OpenMP for parallelization. Most of the steps are
easy to make parallel, but particle rasterization and elastic
force calculation is a scattering operation, which is hard to
rewrite as a gathering operation efficiently. Thus these steps
were run on a single thread. In our tests we took into account
rigid body interaction with an arbitrary shaped moving rigid
body. Thus we created a framework to store animated geom-
etry in a general format and voxelize it storing normal and
velocity values in voxels. We used the Alembic API for an-
imated scene storage and the OpenVDB API for hierechical
voxelized scene storage.

Figure 4 shows frames from a simulation where a snow-
ball was dropped to the ground. We used 600000 particles
and 128x128x128 grid resolution. One frame of the ani-
mation took 10-15 minutes to calculate. Figure 5 demon-
strates animated scene geometry, where a flat layer of snow
is pushed. This animation was simulated with 250000 parti-
cles in a 80x36x60 grid.

6. Conclusions

We presented three methods for deformable body simula-
tion: particle in cell for incompressible fluid flow, position
based dynamics for elastic materials, and material point
method for elastic-plastic materials. The results of the par-
ticle in cell method was pleasing, and introducing particles
in the grid based method allows us to handle fluid and rigid
body interaction much easier in the future. In our specific

Figure 5: A layer of snow pushed.

heart valve simulation project the wall of the atrium will be-
haves as an infinitely strong rigid boundary, that pushes the
fluid particles. On the other hand the valves are thin elas-
tic layer that are deformed by the fluid flow. Using fluid
particles this interaction is easier to implement as particle-
triangle collisions. We could also provide an efficient GPU
implementation of the PIC method.

The two methods for handling elastic and plastic mate-
rials differ in principles. Position based dynamics use in-
tuitive constraint definitions, even plastic properties can be
described with proper constraint setup. The resulting algo-
rithm is easier to handle and it can be kept more stable. One
drawback of this method is that it is not based on real world
quantities, so there is no guaranty that the resulting simula-
tion will behave physically correctly though we can tweak it
to look correct.

Material pont method on the other hand is based on ex-
act physical equations, physically correct results can be
achieved giving real world quantities. On the other hand this
technique has very high computational and memory costs. It

Umenhoffer, Marschal and Suti / Simulation methods for elastic and fluid materials

requires a lot of parameter tweaking to make the simulation
stable and behave real.

Acknowledgements

This work has been supported by OTKA K–104476 and
SCOPIA projects.

References

1. Iván Alduán and Miguel A. Otaduy. Sph granular flow
with friction and cohesion. In Adam W. Bargteil and
Michiel van de Panne, editors, Symposium on Com-
puter Animation, pages 25–32. Eurographics Associa-
tion, 2011. 2

2. Nathan Bell, Yizhou Yu, and Peter J. Mucha. Particle-
based simulation of granular materials. In Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’05, pages 77–
86, New York, NY, USA, 2005. ACM. 2

3. J. U. Brackbill and H. M. Ruppel. FLIP - A method for
adaptively zoned, particle-in-cell calculations of fluid
flows in two dimensions. Journal of Computational
Physics, 65:314–343, August 1986. 1

4. Nick Foster and Dimitris Metaxas. Modeling the mo-
tion of a hot, turbulent gas. In Proceedings of the
24th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’97, pages 181–
188, New York, NY, USA, 1997. ACM Press/Addison-
Wesley Publishing Co. 1

5. F. H. Harlow. The particle-in-cell method for numerical
solution of problems in fluid dynamics. In Experimen-
tal Arithmetic, High-Speed Computations and Mathe-
matics, pages 319–343. RI: American Math. Society,
1964. 1

6. Mark Harris. Fast fluid dynamics simulation on the gpu.
In ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05,
New York, NY, USA, 2005. ACM. 1

7. Mark J. Harris, William V. Baxter, Thorsten Scheuer-
mann, and Anselmo Lastra. Simulation of cloud dy-
namics on graphics hardware. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, HWWS ’03, pages 92–101,
Aire-la-Ville, Switzerland, Switzerland, 2003. Euro-
graphics Association. 1

8. Toon Lenaerts and Philip Dutré. Mixing fluids and
granular materials. Comput. Graph. Forum, 28(2):213–
218, 2009. 2

9. L. B. Lucy. A numerical approach to the testing
of the fission hypothesis. The Astronomical Journal,
82:1013–1024, December 1977. 1

10. Victor J. Milenkovic. Position-based physics: Simulat-
ing the motion of many highly interacting spheres and
polyhedra. In Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’96, pages 129–136, New York,
NY, USA, 1996. ACM. 2

11. Matthias Müller, Bruno Heidelberger, Marcus Hennix,
and John Ratcliff. Position based dynamics. In César
Mendoza and Isabel Navazo, editors, VRIPHYS, pages
71–80. Eurographics Association, 2006. 5

12. Matthias Müller, David Charypar, and Markus Gross.
Particle-based fluid simulation for interactive appli-
cations. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation, SCA ’03, pages 154–159, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Associ-
ation. 1

13. Matthias Müller, Bruno Heidelberger, Marcus Hennix,
and John Ratcliff. Position based dynamics. Journal
of Visual Communication and Image Representation,
18(2):109–118, 2007. 2

14. Rahul Narain, Abhinav Golas, and Ming C. Lin. Free-
flowing granular materials with two-way solid cou-
pling. ACM Trans. Graph., 29(6):173, 2010. 2

15. W. T. Reeves. Particle systems—a technique for
modeling a class of fuzzy objects. ACM Trans. Graph.,
2(2):91–108, April 1983. 1

16. Jos Stam. Stable fluids. In Proceedings of the 26th An-
nual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’99, pages 121–128, New
York, NY, USA, 1999. ACM Press/Addison-Wesley
Publishing Co. 1

17. Alexey Stomakhin, Craig Schroeder, Lawrence Chai,
Joseph Teran, and Andrew Selle. A material point
method for snow simulation. ACM Trans. Graph.,
32(4):102:1–102:10, July 2013. 6, 7

18. D. Sulsky, S.-J. Zhou, and H. L. Schreyer. Application
of particle-in-cell method to solid mechanics. Comp.
Phys. Comm., 87:236–252, 1995. 2

19. L. Szirmay-Kalos and L. Szécsi. General pur-
pose computing on graphics processing units.
In A. Iványi, editor, Algorithms of Informatics,
pages 1451–1495. MondArt Kiadó, Budapest, 2010.
http://sirkan.iit.bme.hu/s̃zirmay/gpgpu.pdf. 1

20. Yongning Zhu and Robert Bridson. Animating sand as
a fluid. ACM Trans. Graph., 24(3):965–972, 2005. 2

