
Eighth Hungarian Conference on Computer Graphics and Geometry, Budapest, 2016

GPU based particle rendering system for isotropic
participating media

Bálint Remes, Tamás Umenhoffer and László Szécsi

Budapest University of Technology and Economics, Budapest, Hungary

Abstract
Realistic rendering of participating media is a complex and time-consuming task, thus visualization softwares
usually make considerable simplifications in the process. We present a physically-based algorithm for simulating
absorption, forward-scattering and isotropic multiple scattering of light in such media. The radiometric simulation
utilizes the capabilities of graphics hardware in order to achieve interactive frame rates.

1. Introduction

Participating media such as smoke, clouds, fog, fire, explo-
sion and snow plays an important role in games and movies.
Although approximating methods exists for rendering these
phenomena, the problem itself is a challenging task due to
its complexity.

The light transport in participating media can be described
as 10

Lout = (1−α) ·Lin +α ·ω ·
∫

4π

P(ω,ω′) ·L(ω′)dω
′+ ε

where the material is defined with the following properties:
ω single scattering albedo, K extinction coefficient, η den-
sity, P phase function and Ke emission coefficient. Instead
of the first two attributes, sometimes the Ks scattering coef-
ficient and the Ka absorption coefficient is used. The equa-
tion’s second term is a recursive integral which is used for
computing the in-scattering inside the media. Here the phase
function determines the material’s scattering property based
on the angle between the incident and outgoing direction.
With the help of these properties we have all the required
input for the equation above, since the opacity is defined as
α= 1−e−τ, the optical depth as τ= ds ·K and ω= Ks

K where
K = Ks +Ka.

The optically thin model can be used for media which are
either very thin or transparent. Examples for such media are
hot steam or clean air. For these materials simulating sin-
gle scattering provides sufficient results. In contrast to these,
the correct simulation of optically thick media must take the
photon collision with more than one of the particles into ac-

count. These kinds of media have an albedo close to 1, such
as snow or clouds.

In this paper we propose a particle rendering system for
rendering optically thick participating media by utilizing the
graphics hardware. The advance capabilities of latest graph-
ics harware made it possible to simulate traditionally offline
computed lighting effects in real time9. Section 2 presents
previous works on the topic of this paper. In Section 3 we
give a description of our method for rendering isotropic me-
dia. Section 4 addresses the performance problems with par-
ticle based solutions in general and also specific to our case.
Section 5 discusses the implementation performance and re-
sults. Finally, Section 6 concludes and describes possible ex-
tensions for the future.

2. Previous Work

Numerous visualization methods for participating media
have been proposed, yet alone methods for rendering clouds
specifically. Due to its simplicity, particle systems are a pop-
ular choice for representing and rendering clouds. One of
the earliest widely used real-time method is described by
Wang3. The algorithm starts with an offline preprocessing
step, where the artists create the cloud shapes and their parti-
cles’ attributes and billboards. During the rendering part, the
particle billboards are shaded by both a predefined gradient
as well as a phenomenon based directional color. Finally,
it uses 8 impostors around the camera to ensure the appli-
cation runs in interactive framerates. This solution was fur-
ther enhanced by Wenzel4 by implementing soft clipping and

Remes, Umenhoffer and Szécsi / GPU based particle rendering system for isotropic participating media

adding backlighting to achieve glowing edges when clouds
are partially covering the sun.

In his dissertation Harris2 presents a more physically
based approach. This method uses a preprocessing step for
calculating the illumination of clouds after which the ren-
dering with illuminated data is done in real-time. The illu-
mination step here uses anisotropic multiple forward scat-
tering, which instead of sampling only in the single dedi-
cated path uses samples in a cone along the dominant scat-
tering direction. More recently Hillaire5 proposed a method
based on Wronski’s work6 which emphasizes the importance
of physically based rendering. Their method heavily utilizes
the graphics hardware to provide both participating media
illumination and rendering at interactive framerates. The ap-
proximation here also enables the fine-tuning the anisotropy
parameter of the Heyney-Greenstein phase function, how-
ever the model limits scattering to the first order. The illumi-
nated data are voxelized to clip space aligned 3D textures.

3. Our rendering algorithm

Our method is capable of simulating the illumination of par-
ticipating media with directional lights. It can handle multi-
ple dynamic light sources in a single scene, thus their posi-
tion and their properties can be altered during run-time. The
media rendered with the method is self shadowed and the
isotropic scattering in the media is also accounted for. This
method has 4 main steps and during these it uses voxeliza-
tion of the media as a volume rendering technique.

Algorithm 1 Illumination and rendering
1: procedure ILLUM_AND_RENDER

2: for each lightSource l[i] do
3: s[i]← shade(l[i])
4: g[0]← gather(s)
5: for j in 0..mScatter do
6: g[j%2+1]← multi_scatter(g[j%2])
7: sort particles w.r.t. cam pos
8: render(g, particles)

Algorithm 1 gives an overview of the whole rendering
process. During lines 2-3 a shading step is performed based
on each illuminating light source. Each illuminated data then
collected to a single gather buffer. On lines 5-6, the multiple
scattering is accounted in a filtering pass. Here during each
iteration, the previous result is reused. Finally, in order to
render the media as a particle system, the particles are first
sorted by their distance from the camera, then they splatted
on screen using the previously calculated buffer as seen on
lines 8 and 9. We further discuss each substep in the follow-
ing subsections.

3.1. Shading pass

The first step simulates the direct contribution to the media
by a single directional light. Here we produce voxelized data
containing the attenuation of light due the travel through the
participating media. Due to its simplicity, we account for the
forward scattering in this pass too.

Figure 1: Voxels of a shaded cloud.

An oriented bounding volume is used for sampling dur-
ing voxelization as can be seen in Figure 1. By choosing the
orientation of the volume to match the corresponding light
source’s direction, the shading process can be performed
incrementally. In practical applications, voxels are usually
stored in 3D textures. Choosing the texture’s z (depth) axis
to be parallel with the light direction means that the shading
process will go through each layer of such texture. Creation
of such volume is trivial from the particles’ position and di-
mension data. The goal during this step is to determine the
radiance passing through the media, i.e.:

dL
ds

=−(1− e−K)+
Ks

4π
P(0◦)

In practice this can be accomplished using rendering to
the layers of the aforementioned texture. Although the par-
ticles should be rendered in ascending order based on their
distance from the light source, however the equation used
for blending is multiplicative, thus the order of draw is not
relevant and the sorting of particles can be omitted here.

3.2. Gather pass

In case of multiple light sources, performing each shading
pass alone is inadequate. Although it would be sufficient to
perform the gathering of shaded volumes at the last moment
before the final rendering, running the simulation of mul-
tiple scattering on a single volume has reduced the overall
computation needed. In practical applications, this also has
the benefit of working on a single 3D texture thus requires
fewer look-ups during the upcoming pass. This step’s goal is
to collect the shaded data based on distinct lights to a single
volume, as it can be seen on Figure 2.

Remes, Umenhoffer and Szécsi / GPU based particle rendering system for isotropic participating media

Figure 2: Shaded media with blue (left) and red (middle)
light sources and the gathered result (right).

3.3. Multiple scattering

The illumination steps so far only considered the attenua-
tion of radiance and single forward scattering. The last step
concerning the propagation of light in media aims to simu-
late multiple scattering. The scattering equation introduced
in Section 1 is a recursive integral, which complexity - espe-
cially during real-time rendering - is too high for exact com-
putation. Our method assumes the following relaxations: the
scattering is only simulated up to a predefined number of
steps, only isotropic scattering is considered, and the inte-
gral is computed with a finite-element method. In reality, the
approximation with a fix number is not that big of an issue
as it first seems: the scattered result is dominated by the first
and second order scattering only2. The FEM samples each
voxel’s 26 direct neighbors in the following way:

Ls ≈ Ks ·
26

∑
i=0

L(i) ·P(ωi,ω)

As we previously discussed in section 3, this is an itera-
tive process. In each iteration one step of light scattering is
simulated. The input of the function presented in Algorithm
2 is the result voxels produced by the nth step and the output
is produced to a different volume with the same amount of
voxels containg the (n+ 1)th step’s scattering volume. The
input of the zeroth step is the gathered data described in the
previous subsection. The probability of scattering is based
on the material’s albedo and opacity which is then multi-
plied with the sampled color during the evaluation of sum
(lines 4-6). Since only the result of the iteration is relevant
from the next iteration’s viewpoint, we write the scattering
data into a distinct texture. However for the final render we
need an accumulated result which contains all scattered data
in addition to the gathered result. This accumulated buffer is
updated after each iteration on line 8.

3.4. Final rendering

The final step in the process of displaying an illuminated
media is the actual render to the screen buffer. This step uses
the illumination data created previously. Important to note
here that the particles should be rendered in descending or-
der based on their distance from camera. This sort only need
to be performed after each movement of camera or media,

Algorithm 2 Simulation of multiple scattering
1: function MULTI_SCATTER(gTexIn)
2: for each voxel v in gTexOut do
3: v← 0
4: msCoe f f ← v.opacity·albedo

26
5: for i in 0..25 do
6: v.color ← v.color + msCoe f f ·

sampleNeighbor(gTexIn, i)
7: v.al pha← sampleAl pha(gTexIn,v.pos)
8: gTexAccum← gTexAccum+gTexOut
9: return gTexOut

before the first render. Moreover, as it is common with trans-
parent objects, the drawing of transparent media must occur
after the rendering of opaque objects is finished. As with par-
ticles, the transparent objects themselves must be rendered in
descending order too.

Algorithm 3 Final rendering
1: procedure FINAL_RENDER(gTex)
2: if camera OR media moved then
3: sort particles w.r.t. cam pos
4: depth bu f f er← read only
5: blendingSrc← SRC_ALPHA
6: blendingDst← 1−SRC_ALPHA
7: camToLight ← (camMv−1 · cloudMv−1 ·

boundMv−1 ·minToOrigo · scaleToIdentity)
8: for each particle pi do
9: color← sample(gTex,camToLight · pi.pos)

10: al pha← 1− e−opbb·density·pi.size

11: render(color,al pha)

The algorithm of particle system rendering is described in
Algorithm 3. The procedure’s input texture contains the ac-
cumulated illumination data. If we neglect the multiple scat-
tering this is equivalent with the gathered data (see Section
3.2), otherwise it contains the previous subsection’s result.
In practice, to sample from the texture, we need to prepare
a matrix (line 7), which transforms vectors given by cam-
era coordinate system to the light texture’s sampling coordi-
nates. The output’s color is determined by the sample from
the input texture at the particle’s position. The alpha is set
according to line 10, where opbb is the sample from the par-
ticle’s opacity billboard.

4. Optimization

Although particle system based rendering is popular in real
time applications, the results usually suffer from perfor-
mance problems. The main issue with such system is the fill
rate bottleneck: for each final pixel of a single frame, hun-
dreds or even thousands of particles rendered on top of each
other using blending methods, thus the number of writes
could easily exceed the hardware capabilities.

Remes, Umenhoffer and Szécsi / GPU based particle rendering system for isotropic participating media

This problem usually addressed by reducing the size of
the rendering buffer and thereby the number of writes7: first
we render the particles to a smalerl buffer, then in a post pro-
cessing step enlarge the result onto the normal screen-sized
buffer. Efficient use the texture cache also plays an important
part here. Using either compressed textures (e.g.: DXT1) or
textures with reduced channel count and overall small par-
ticle texture sizes can result in good speedup. The perfor-
mance problem is usually further addressed by implement-
ing an impostor-based system, where the result is rendered
to a single texture buffer which is then displayed instead.
The impostor is only refreshed when a delta metric (e.g.: the
view angle difference) is reached its threshold.

The shading phase in our algorithm plays a crucial part in
the application’s performance. As it was presented in sub-
section 3.1, the process is required to be executed for each
light source separately. Furthermore in each iteration, the
voxelization - which is implemented using rendering to 3D
textures - requires the rendering of particles multiple times:
although the rendering viewport is smaller, the overdraw is
more significant. Thus we also optimized the shading pass
to reduce the fill rate requirement of the solution. This al-
gorithm which is used by our implementation is presented in
Algorithm 4. The key point here is copying the previous vox-
els’ results instead of re-rendering all the particles up to the
current voxel (line 4), thus the only drawing required is the
particles inside the current voxels (line 5). This incremental
pass renders the particles only once while in comparison the
brute-force method renders n · n+1

2 slices.

Algorithm 4 Optimized shading pass
1: procedure SHADING_OPT

2: slice[0]← lightSource.color
3: for i in 1..numDepth do
4: slice[i]← slice[i−1]
5: render_particles_inside(i)

5. Results

We have implemented the presented algorithm using the
OpenGL/GLSL APIs. During testing, we measured the im-
plemented application’s performance on the following hard-
ware: Intel Core i5-4690 3.5GHz, 8 GB RAM, Nvidia
GeForce GTX 690. Throughout the two set of runs, all of
the light sources were dynamic in order to simulate a pos-
sible worst-case scenario for the real time rendering. The
screen resolution was 640x480 and all 3D textures used were
128x128x128 during testing. Each run measured the average
frame rate, and during both we also tested the effect on per-
formance of increasing the steps for the multiple scattering
process.

The cloud used for the first tests contained 38000 parti-
cles. During the 5 runs with the parameters above, only the
number of light sources were incremented. The average FPS

with one light source was 49, with 5 lights the same value
was 16.5. The results are shown in Figure 3.

During the second batch of runs, we used a cloud object
more commonly appears in real time scenarios: this time the
cloud contained 3100 particles. Again, between the two runs
only the number of light sources were modified. Similar to
the first set of tests, the light sources had a negative impact
on performance, but here having only one light source and
omitting multiple scattering at all dramatically improved the
performance compared to the rest. These results can be also
viewed in Figure 3.

In both cases, the increment of the step count during mul-
tiple scattering caused a proportional drop in the perfor-
mance. It is worth noting that while the decrease in per-
formance is there, it is only linear in the number of steps
used for the scattering. Finally, the optimization of shading
phase described in section 4 resulted in more than 50% per-
formance increase with few scattering steps.

mScatter

FPS

mScatter

FPS

Figure 3: Results of performance tests with 38000 particles
(top) and 3100 particles (bottom).

6. Conclusions

We have presented a method for illuminating and render-
ing realistic participating media with multiple dynamic light
sources at real-time frame rates. The implemented applica-
tion supports multiple isotropic scattering as well as gives
option to use animated particle-based media. Beside real-
time rendering our method can also be used to render media

Remes, Umenhoffer and Szécsi / GPU based particle rendering system for isotropic participating media

with massive particle count, which could be used in feature
film production (see Figure5).

The topic provides numerous options for possible exten-
sions. A direction aiming to further improve performance
could be the transition of particle sorting from CPU to GPU.
This would help reducing the performance bottleneck which
occurs when rendering objects with huge number (few mil-
lion) of particles. An other aspect of extension could be
the elimination of clipping artifacts during the composition
transparent and opaque objects. Such problem can be ad-
dressed with the use of depth impostors8.

Figure 4: Clouds with multiple environmental light sources
(top and middle). Correct self shadowing of concave shapes
(bottom).

Figure 5: Snow bunny rendered with 1.2 million particles
using two light sources and 5 scattering steps.

Acknowledgements

This work has been supported by OTKA PD-104710.

References

1. L. Szirmay-Kalos, M. Sbert, T. Umenhoffer. Real-Time
Multiple Scattering in Participating Media with Illumi-
nation Networks. Eurographics Symposium on Render-
ing, 2005.

2. M. J. Harris. Real-Time Cloud Simulation and Render-
ing, 2003. 2, 3

3. N. Wang. Realistic and Fast Cloud Rendering., 2003.
1

4. C. Wenzel. Real-Time Atmospheric Effects in Games.
SIGGRAPH Course 26, 2006. 1

5. S. Hillaire. Physically Based and Unified Volumetric
Rendering in Frostbite. SIGGRAPH, 2015. 2

6. B. Wronski. Volumetric Fog: Unified compute shader
based solution to atmospheric scattering. SIGGRAPH,
2014. 2

7. H. Nguyen. Fire in the "Vulcan" Demo. GPU Gems:
Programming Techniques, Tips and Tricks for Real-
Time Graphics, Chapter 6, 2004. 4

8. T. Umenhoffer, L. Szirmay-Kalos. Real-Time Render-
ing of Cloudy Natural Phenomena with Hierarchical
Depth Impostors. Eurographics Symposium on Ren-
dering, 2005. 5

9. Szirmay-Kalos, L. and Szécsi, L. and Sbert, M. GPU-
Based Techniques for Global Illumination Effects. Mor-
gan and Claypool Publishers, San Rafael, USA, 2008 1

10. Szirmay-Kalos, László and Antal, György. and Csonka,
Ferenc Háromdimenziós grafika, animáció és játékfe-
jlesztés ComputerBooks, Budapest, 2003 1

