
Chapter 8

z-BUFFER,

GOURAUD-SHADING

WORKSTATIONS

As di�erent shading methods and visibility calculations have diversi�ed the
image generation, many di�erent alternatives have come into existence for
their implementation. This chapter will focus on a very popular solution us-
ing the z-bu�er technique for hidden surface removal, and Gouraud shading

for color computation.
The main requirements of an advanced workstation of this category are:

� The workstation has to generate both 2D and 3D graphics at the speed

required for interactive manipulation and real-time animation.

� At least wire-frame, hidden-line and solid | Gouraud and constant

shaded | display of 3D objects broken down into polygon lists must
be supported. Some technique has to be applied to ease interpretation
of wire frame images.

� Both parallel and perspective projections are to be supported.

� Methods reducing the artifacts of sampling and quantization are needed.

� The required resolution is over 1000 � 1000 pixels, the frame bu�er

must have at least 12, but preferably 24 bits/pixel to allow for true

215

216 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

color mode and double bu�ering for animation. The z-bu�er must

have at least 16 bits/pixel.

8.1 Survey of wire frame image generation

The dataow model of the wire frame image generation in a system applying

z-bu�er and Gouraud shading is described in �gure 8.1. The decompo-

sition reads the internal model and converts it to a wire-frame represen-

tation providing a list of edges de�ned by the two endpoints in the local

modeling coordinate system for each object. The points are transformed

�rst by the modeling transformation TM to generate the points in the

common world coordinate system. The modeling transformation is set be-

fore processing each object. From the world coordinate system the points
are transformed again to the screen coordinate system for parallel projec-

tion and to the 4D homogeneous coordinate system for perspective projec-
tion by a viewing transformation TV. Since the matrix multiplications
needed by the modeling and viewing transformations can be concatenated,
the transformation from the local modeling coordinates to the screen or to
the 4D homogeneous coordinate system can be realized by a single matrix

multiplication by a composite transformation matrix TC = TM �TV.
For parallel projection, the complete clipping is to be done in the screen

coordinate system by, for example, the 3D version of the Cohen{Sutherland
clipping algorithm. For perspective projection, however, at least the depth
clipping phase must be carried out before the homogeneous division, that

is in the 4D homogeneous coordinate system, then the real 3D coordinates
have to be generated by the homogeneous division, and clipping against

the side faces should be accomplished if this was not done in the 4D
homogeneous space.
The structure of the screen coordinate system is independent of the type

of projection, the X;Y coordinates of a point refer to the projected coor-
dinates in pixel space, and Z is a monotonously increasing function of the

distance from the camera. Thus the projection is trivial, only the X;Y

coordinates have to be extracted.
The next phase of the image generation is scan conversion, meaning the

selection of those pixels which approximate the given line segment and also

the color calculation of those pixels. Since pixels correspond to the integer

8.1. SURVEY OF WIRE FRAME IMAGE GENERATION 217

frame bu�er write

pixel operations

Pixel series: (X;Y; i)j1;2;:::n

scan conversion / depth cueuing

side face clipping

homogenous division

X = Xh=h; Y = Yh=h; Z = Zh=h

depth clipping

Line segment: (Xh; Yh; Zh; h)1;2 in 4D homogenous system

�TVIEW= T�1

uvw �Teye �Tshear �Tnorm

?

�TM
TC =

pixel data in frame bu�er

?

?

?

?

?

?

?

?

?

?

Line segments (xL; yL; zL; 1)1;2 in local coordinates
?

model decomposition

internal model

?

Figure 8.1: Data ow of wire frame image synthesis (perspective projection)

218 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

grid of pixel space, and scan conversion algorithms usually rely on the in-

teger representation of endpoint coordinates, the coordinates are truncated

or rounded to integers.

Concerning color calculation, or shading, it is not worth working with

sophisticated shading and illumination models when the �nal image is wire-

frame. The simple assumption that all pixels of the vectors have the same

color, however, is often not satisfactory, because many lines crossing each

other may confuse the observer, inhibiting reconstruction of the 3D shape

in his mind. The understandability of wire-frame images, however, can be

improved by a useful trick, called depth cueing, which uses more intense

colors for points closer to the camera, while the color decays into the back-

ground as the distance of the line segments increases, corresponding to a

simpli�ed shading model de�ning a single lightsource in the camera position.

The outcome of scan-conversion is a series of pixels de�ned by the integer

coordinatesXp; Yp and the pixel color i. Before writing the color information
of the addressed pixel into the raster memory various operations can be
applied to the individual pixels. These pixel level operationsmay include
the reduction of the quantization e�ects by the means of dithering, or
arithmetic and logic operations with the pixel data already stored at the
Xp; Yp location. This latter procedure is called the raster operation.

Anti-aliasing techniques, for example, require the weighted addition of the
new and the already stored colors. A simple exclusive OR (XOR) operation,
on the other hand, allows the later erasure of a part of the wire-frame image
without a�ecting the other part, based on the identity (A� B) � B = A.
Raster operations need not only the generated color information, but also

the color stored in the frame bu�er at the given pixel location, thus an extra
frame bu�er read cycle is required by them.
The result of pixel level operations is �nally written into the frame bu�er

memory which is periodically scanned by the video display circuits which
generate the color distribution of the display according to the stored frame

bu�er data.

8.2 Survey of shaded image generation

The dataow model of the shaded image generation in a z-bu�er,Gouraud

shading system is described in �gure 8.2.

8.2. SURVEY OF SHADED IMAGE GENERATION 219

scan converter

vertices of triangular facets
(xl; yl; zl; 1)1;2;3 +

normals
~n1; ~n2; ~n3

?
�TM

�TVIEW

?
4D homogenous coord:

(Xh; Yh; Zh; h)1;2;3
?

depth clipping

?

?
side face clipping

?
screen coordinates

(X; Y; Z)

?
�TM

?
Illumination model

?
i(R;G;B)1;2;3

?

? ?

i

i

linear interpolation
of the color in
the new vertices

linear interpolation
of the color in
the new vertices

x; y counters Z R G B
interpolator interpolator interpolator interpolator

?
Z-bu�er n n nR G B

? ? ?

? ? ?
dither / pixel operations

? ? ???
address enable data

Frame bu�er

? ? ? ? ?

homogenous division

-

-

?

internal model

model decomposition

? ?

Figure 8.2: Data ow of shaded image synthesis

220 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

Now the decomposition reads the internal model and converts it to

a polygon list representation de�ning each polygon by its vertices in the

local modeling coordinate system for each object. To provide the neces-

sary information for shading, the real normals of the surfaces approximated

by polygon meshes are also computed at polygon vertices. The vertices

are transformed �rst by the modeling transformation then by the viewing

transformation by a single matrix multiplication with the composite trans-

formation matrix. Normal vectors, however, are transformed to the world

coordinate system, because that is a proper place for illumination calcula-

tion. Coordinate systems after shearing and perspective transformation are

not suitable, since they do not preserve angles, causing incorrect calcula-

tion of dot products. According to the concept of Gouraud shading, the

illumination equation is evaluated for each vertex of the polygon mesh

approximating the real surfaces, using the real surface normals at these

points. Depth cueing can also be applied to shaded image generation if
the illumination equation is modi�ed to attenuate the intensity proportion-
ally to the distance from the camera. The linear decay of the color at the
internal pixels will be guaranteed by linear interpolation of the Gouraud
shading.
Similarly to wire frame image generation, the complete clipping is to be

done in the screen coordinate system for parallel projection. An applicable
clipping algorithm is the 3D version of the Sutherland-Hodgman polygon
clipping algorithm. For perspective projection, however, at least the depth
clipping phase must be done before homogeneous division, that is in the
4D homogeneous coordinate system, then the real 3D coordinates have to be

generated by homogeneous division, and clipping against the side faces
should be accomplished if this was not done in 4D homogeneous space.
After the trivial projection in the screen coordinate system, the next

phase of image generation is scan conversion meaning the selection of
those pixels which approximate the given polygon and also the interpolation

of pixel colors from the vertex colors coming from the illumination formulae

evaluated in the world coordinate system. Since pixels correspond to the
integer grid of the pixel space, and scan conversion algorithms usually rely
on the integer representation of endpoint coordinates, the coordinates are

truncated or rounded to integers. The z-bu�er visibility calculation method

resolves the hidden surface problem during the scan conversion comparing
the Z-coordinate of each pixel and the value already stored in the z-bu�er

8.3. GENERAL SYSTEM ARCHITECTURE 221

memory. Since the transformation to the screen coordinate system has

been carefully selected to preserve planes, the Z-coordinate of an inner

point can be determined by linear interpolation of the Z-coordinates of the

vertices. This Z-interpolation and the color interpolation for the R;G and

B components are usually executed by a digital network. Since in hardware

implementations the number of variables is not exible, polygons must be

decomposed into triangles de�ned by three vertices before the interpolation.

The pixel series resulting from the polygon or facet scan conversion can

also go through pixel level operations before being written into the frame

bu�er. In addition to dithering and arithmetic and logic raster operations,

the illusion of transparency can also be generated by an appropriate pixel

level method which is regarded as the application of translucency pat-

terns. The �nal colors are eventually written into the frame bu�er memory.

8.3 General system architecture

Examining the tasks to be executed during image generation from the point
of view of data types, operations, speed requirements and the allocated
hardware resources, the complete pipeline can be broken down into the
following main stages:

1. Internal model access and primitive decomposition. This stage should
be as exible as possible to incorporate a wide range of models. The
algorithms are also general, thus some general purpose processor must
be used to run the executing programs. This processor will be called

the model access processor which is a sort of interface between
the graphics subsystem and the rest of the system. The model access
and primitive decomposition step needs to be executed once for an
interactive manipulation sequence and for animation which are the
most time critical applications. Thus, if there is a temporary mem-

ory to store the primitives generated from the internal model, then
the speed requirement of this stage is relatively modest. This bu�er

memory storing graphics primitives is usually called the display list

memory. The display list is the low level representation of the model
to be rendered on the computer screen in conjunction with the camera

and display parameters. Display lists are interpreted and processed
by a so-called display list processor which controls the functional

222 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

elements taking part in the image synthesis. Thus, the records of dis-

play lists can often be regarded as operation codes or instructions to a

special purpose processor, and the content of the display list memory

as an executable program which generates the desired image.

2. Geometric manipulations including transformation, clipping, projec-

tion and illumination calculation. This stage deals with geometric

primitives de�ned by points represented by coordinate triples. The

coordinates are usually oating point numbers to allow exibility and

to avoid rounding errors. At this stage fast, but simple oating point

arithmetic is needed, including addition, multiplication, division and

also square roots for shading calculations, but the control ow is very

simple and there is no need for accessing large data structures. A cost

e�ective realization of this stage may contain oating point signal pro-
cessors, bit-slice ALUs or oating point co-processors. The hardware
unit responsible for these tasks is usually called the geometry en-

gine, although one of its tasks, the illumination calculation, is not a
geometric problem. The geometry engines of advanced workstations

can process about 1 million points per second.

3. Scan-conversion, z-bu�ering and pixel level operations. These tasks

process individual pixels whose number can exceed 1 million for a
single image. This means that the time available for a single pixel is
very small, usually several tens of nanoseconds. Up to now commercial
programmable devices have not been capable of coping with such a
speed, thus the only alternatives were special purpose digital networks,
or high degree parallelization. However, recently very fast RISC pro-

cessors optimized for graphics have appeared, implementing internal
parallelization and using large cache memories to decrease signi�cantly
the number of memory cycles to fetch instructions. A successful rep-
resentative of this class of processors is the intel 860 microprocessor

[Int89] [DRSK92] which can be used not only for scan conversion,

but also as a geometry engine because of its appealing oating point
performance. At the level of scan-conversion, z-bu�ering and pixel

operations, four sub-stages can be identi�ed. Scan conversion is re-
sponsible for the change of the representation from geometric to pixel.

The hardware unit executing this task is called the scan converter.

8.3. GENERAL SYSTEM ARCHITECTURE 223

The z-bu�ering hardware includes both the comparator logic and

the z-bu�er memory, and generates an enabling signal to overwrite

the color stored in the frame bu�er while it is updating the z-value for

the actual pixel. Thus, to process a single pixel, the z-bu�er memory

needs to be accessed for a read and an optional write cycle. Compar-

ing the speed requirements | several tens of nanosecond for a single

pixel |, and the cycle time of the memories which are suitable to

realize several megabytes of storage | about a hundred nanoseconds

|, it becomes obvious that some special architecture is needed to

allow the read and write cycles to be accomplished in time. The so-

lutions applicable are similar to those used for frame bu�er memory

design. Pixel level operations can be classi�ed according to their need

of color information already stored in the frame bu�er. Units carry-

ing out dithering and generating translucency patterns do not use

the colors already stored at all. Raster operations, on the other
hand, produce a new color value as a result of an operation on the
calculated and the already stored colors, thus they need to access the
frame bu�er.

4. Frame bu�er storage. Writing the generated pixels into the frame

bu�er memory also poses di�cult problems, since the cycle time
of commercial memories are several times greater than the expected
few tens of nanoseconds, but the size of the frame bu�er | several

megabytes | does not allow for the usage of very high speed mem-
ories. Fortunately, we can take advantage of the fact that pixels are
generated in a coherent way by image synthesis algorithms; that is
if a pixel is written into the memory the next one will probably be
that one which is adjacent to it. The frame bu�er memory must be

separated into channels, allocating a separate bus for each of them
in such a way that on a scan line adjacent pixels correspond to dif-
ferent channels. Since this organization allows for the parallel access
of those pixels that correspond to di�erent channels, this architecture

approximately decreases the access time by a factor of the number of

channels for coherent accesses.

5. The display of the content of the frame bu�er needs video display

hardware which scans the frame bu�er 50, 60 or 70 times each second

224 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

and produces the analog R, G and B signals for the color monitor.

Since the frame bu�er contains about 106 number of pixels, the time

available for a single pixel is about 10 nanoseconds. This speed re-

quirement can only be met by special hardware solutions. A further

problem arises from the fact that the frame bu�er is a double access

memory, since the image synthesis is continuously writing new val-

ues into it while the video hardware is reading it to send its content

to the color monitor. Both directions have critical timing require-

ments | ten nanoseconds and several tens of nanoseconds | higher

than would be provided by a conventional memory architecture. For-

tunately, the display hardware needs the pixel data very coherently,

that is, pixels are accessed one after the other from left to right, and

from top to bottom. Using this property, the frame bu�er row being

displayed can be loaded into a shift register which in turn rolls out

the pixels one-by-one at the required speed and without accessing the
frame bu�er until the end of the current row. The series of consecu-
tive pixels may be regarded as addresses of a color lookup table to
allow a last transformation before digital-analog conversion. For
indexed color mode, this lookup table converts the color indices (also
called pseudo-colors) into R;G;B values. For true color mode,

on the other hand, the R;G;B values stored in the frame bu�er are
used as three separate addresses in three lookup tables which are re-
sponsible for -correction. The size of these lookup tables is usually
modest | typically 3 � 256 � 8 bits | thus very high speed memo-
ries having access times less than 10 nanoseconds can be used. The

outputs of the lookup tables are converted to analog signals by three
digital-to-analog converters.

Summarizing, the following hardware units can be identi�ed in the graph-
ics subsystem of an advanced workstation of the discussed category: model
access processor, display list memory, display list processor, geometry en-
gine, scan converter, z-bu�er comparator and controller, z-bu�er memory,

dithering and translucency unit, raster operation ALUs, frame bu�er

memory, video display hardware, lookup tables, D/A converters. Since each

of these units is responsible for a speci�c stage of the process of the image

generation, they should form a pipe-line structure. Graphics subsystems
generating the images are thus called as the output or image generation

8.3. GENERAL SYSTEM ARCHITECTURE 225

modeling
processor

display list
memory

display list
processor

geometry
 engine

 scan
converter z-buffer

controller
z-buffer
memory

translucency+
scissoringdithering

 pixel
operations

 pixel
operations

 pixel
operations

internal
model
of virtual
world

enable

comparison: <

pixel data X,Y,Z

write_enable

pixel address

pixel data
pixel bus

frame
buffer
channel

frame
buffer
channel

frame
buffer
channel

 shift
register

 shift
register

 shift
register

lookup table

D/A D/A D/A

R G B

X,Y

z

Figure 8.3: Architecture of z-bu�er, Gouraud-shading graphics systems

226 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

pipelines. Interaction devices usually form a similar structure, which is

called the input pipeline.

In the output pipeline the units can be grouped into two main subsystems:

a high-level subsystem which works with geometric information and a low-

level subsystem which deals with pixel information.

8.4 High-level subsystem

The high-level subsystem consists of the model access and display list pro-

cessors, the display list memory and the geometry engine.

The model access processor is always, the display processor is often, a

general purpose processor. The display list processor which is responsible

for controlling the rest of the display pipeline can also be implemented as
a special purpose processor executing the program of the display list. The

display list memory is the interface between the model access processor and
the display list processor, and thus it must have double access organization.
The advantages of display list memories can be understood if the case of
an animation sequence is considered. The geometric models of the objects
need to be converted to display list records or instructions only once before

the �rst image. The same data represented in an optimal way can be used
again for each frame of the whole sequence, the model access processor
just modi�es the transformation matrices and viewing parameters before
triggering the display list processor. Thus, both the computational burden
of the model access processor and the communication between the model

access and display list processors are modest, allowing the special purpose
elements to utilize their maximum performance.
The display list processor interprets and executes the display lists by ei-

ther realizing the necessary operations or by providing control to the other
hardware units. A lookup table set instruction, for example, is executed by

the display list processor. Encountering a DRAWLINE instruction, on the
other hand, it gets the geometry engine to carry out the necessary transfor-

mation and clipping steps, and forces the scan converter to draw the screen

space line at the points received from the geometry engine. Thus, the ge-
ometry engine can be regarded as the oating-point and special instruction
set co-processor of the display list processor.

8.5. LOW-LEVEL SUBSYSTEM 227

8.5 Low-level subsystem

8.5.1 Scan conversion hardware

Scan conversion of lines

The most often used line generators are the implementations of Bresenham's

incremental algorithm that uses simple operations that can be directly im-

plemented by combinational elements and does not need division and other

complicated operations during initialization. The basic algorithm can gen-

erate the pixel addresses of a 2D digital line, therefore it must be extended

to produce the Z coordinates of the internal pixels and also their color

intensities if depth cueing is required. The Z coordinates and the pixel

colors ought to be generated by an incremental algorithm to allow for easy

hardware implementation. In order to derive such an incremental formula,

the increment of the Z coordinate and the color is determined. Let the 3D
screen space coordinates of the two end points of the line be [X1; Y1; Z1] and
[X2; Y2; Z2], respectively and suppose that the z-bu�er can hold values in
the range [0 : : : Zmax]. Depth cueing requires the attenuation of the colors
by a factor proportional to the distance from the camera, which is repre-

sented by the Z coordinate of the point. Assume that the intensity factor
of depth cueing is Cmax for Z = 0 and Cmin for Zmax. The number of pixels
composing this digital line is:

L = maxfjX2 �X1j; jY2 � Y1jg: (8:1)

Since Z varies linearly along the line, the di�erence of the Z coordinates of
two consecutive pixel centers is:

�Z =
Z2 � Z1

L
: (8:2)

Let I stand for any of the line's three color coordinates R;G;B. The

perceived color, taking into account the e�ect of depth cueing, is:

I�(Z) = I � C(Z) = I � (Cmax �
Cmax �Cmin

Zmax

� Z): (8:3)

The di�erence in color of the two pixel centers is:

�I =
I�(Z2)� I�(Z1)

L
: (8:4)

228 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

line
Bresenham

generator

>Clk
6 6

X Y

I
- -

Z> >

T
T�

�

6

66

�I

T
T�

�

6

66

�Z

P P

6 6

I Z (to z-bu�er)

-

Figure 8.4: Hardware to draw depth cueing lines

For easy hardware realization, Z and I� should be computed by integer
additions. Examining the formulae for �Z and �I�, we will see that they

are non-integers and not necessarily positive. Thus, some signed �xed point
representation must be selected for storing Z and I�. The calculation of the
Z coordinate and color I� can thus be integrated into the internal loop of
the Bresenham's algorithm:

3D BresenhamLine (X1; Y1; Z1;X2; Y2; Z2; I)
Initialize a 2D Bresenham's line generator(X1; Y1;X2; Y2);
L = maxfjX2 �X1j; jY2 � Y1jg;
�Z = (Z2 � Z1)=L;

�I = I � ((Cmin� Cmax) � (Z2 � Z1))=(Zmax � L);
Z = Z1 + 0:5;
I� = I � (Cmax� (Z1 � (Cmax � Cmin))=Zmax) + 0:5;
for X = X1 to X2 do

Iterate Bresenham's algorithm(X;Y);
I� += �I; Z += �Z; z = Trunc(Z);

if Zbu�er[X;Y] > z then

Write Zbu�er(X;Y; z);

Write frame bu�er(X;Y;Trunc(I�));

endif

endfor

8.5. LOW-LEVEL SUBSYSTEM 229

The z-bu�er check is only necessary if the line drawing is mixed with

shaded image generation, and it can be neglected when the complete image

is wire frame.

Scan-conversion of triangles

For hidden surface elimination the z-bu�er method can be used together

withGouraud shading if a shaded image is needed or with constant shad-

ing if a hidden-line picture is generated. The latter is based on the recog-

nition that hidden lines can be eliminated by a special version of the z-bu�er

hidden surface algorithm which draws polygons generating their edges with

the line color and �lling their interior with the color of the background. In

the �nal result the edges of the visible polygons will be seen, which are,

in fact, the visible edges of the object. Constant shading, on the other
hand, is a special version of the linear interpolation used in Gouraud shad-
ing with zero color increments. Thus the linear color interpolator can also
be used for the generation of constant shaded and hidden-line images. The

linear interpolation over a triangle is a two-dimensional interpolation over
the pixel coordinates X and Y , which can be realized by a digital network
as discussed in subsection 2.3.2 on hardware realization of multi-variate
functions. Since a color value consists of three scalar components | the
R, G and B coordinates | and the internal pixels' Z coordinates used for

z-bu�er checks are also produced by a linear interpolation, the interpola-
tor must generate four two-variate functions. The applicable incremental
algorithms have been discussed in section 6.3 (z-bu�er method) and in sec-
tion 7.5 (Gouraud shading). The complete hardware system is shown in
�gure 8.5.

8.5.2 z-bu�er

The z-bu�er consists of a Z-comparator logic and the memory subsystem.

As has been mentioned, the memory must have a special organization to

allow higher access speed than provided by individual memory chips when

they are accessed coherently; that is in the order of subsequent pixels in a

single pixel row. The same memory design problem arises in the context
of the frame bu�er, thus its solution will be discussed in the section of the

frame bu�er.

230 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

Y counter <

6Y1

AA��
comp

6 6 r
Y2

�STOP
>

Interpolator
<

6 6
�Xs

yX1 + 0:5 X1 + 0:5

Z1 + 0:5 R1 + 0:5

Interpolator
<

6 6
�Xe

y

> X counter

AA��
comp

<

6 6

Zstart

Interpolator
>

6 6
�Zs

y

Interpolator

>

�Zx

�

- Rstart

Interpolator
>

6 6
�Rs

y

Interpolator

>

�Rx

Z R66 XY

6

CLK

-�

Xstart Xend 6 6�

Z R

6 6

r

r
- -

G B

r r r
-SELECT

6 6 66

SEL

load step load step

load step load step

r r r

Figure 8.5: Scan converter for rendering triangles

The Z-comparator consists of a comparator element and a temporary
register to hold the Z value already stored in the z-bu�er. A comparison
starts by loading the Z value stored at the X;Y location of the z-bu�er into
the temporary register. This is compared with the new Z value, resulting in

an enabling signal that is true (enabled) if the new Z value is smaller than
the one already stored. The Z-comparator then tries to write the new value
into the z-bu�er controlled by the enabling signal. If the enabling signal is
true, then the write operation will succeed, otherwise the write operation
will not alter the content of the z-bu�er. The same enabling signal is used

to enable or disable rewriting the content of the frame bu�er to make the
z-bu�er algorithm complete.

8.5.3 Pixel-level operation

There are two categories of pixel-level operations: those which belong to
the �rst category are based on only the new color values, and those which
generate the �nal color from the color coming from the scan converter and

the color stored in the frame bu�er fall into the second category. The �rst

category is a post-processing step of the scan conversion, while the second

8.5. LOW-LEVEL SUBSYSTEM 231

is a part of the frame bu�er operation. Important examples of the post-

processing class are the transparency support, called the translucency

generator, the dithering hardware and the overlay management.

Support of translucency and dithering

As has been stated, transparency can be simulated if the surfaces are written

into the frame bu�er in order of decreasing distance from the camera and

when a new pixel color is calculated, a weighted sum is computed from the

new color and the color already stored in the frame bu�er. The weight is

de�ned by the transparency coe�cient of the object. This is obviously a

pixel operation. The dependence on the already stored color value, however,

can be eliminated if the weighting summation is not restricted to a single

pixel, and the low-pass �ltering property of the human eye is also taken into
consideration.
Suppose that when a new surface is rendered some of its spatially uni-

formly selected pixels are not written into the frame bu�er memory. The

image will contain pixel colors from the new surface and from the previously
rendered surface | which is behind the last surface | that are mixed to-
gether. The human eye will �lter this image and will produce the perception
of some mixed color from the high frequency variations due to alternating
the colors of several surfaces.

This is similar to looking through a �ne net. Since in the holes of the net
the world behind the net is visible, if the net is �ne enough, the observer will
have the feeling that he perceives the world through a transparent object
whose color is determined by the color of the net, and whose transparency
is given by the relative size of the holes in the net.

The implementation of this idea is straightforward. Masks, called translu-
cency patterns, are de�ned to control the e�ective degree of transparency
(the density of the net), and when a surface is written into the frame bu�er,

the X;Y coordinates of the actual pixel are checked whether or not they
select a 0 (a hole) in the mask (net), and the frame bu�er write operation
is enabled or disabled according to the mask value.

This check is especially easy if the mask is de�ned as a 4 � 4 periodic

pattern. Let us denote the low 2 bits of X and Y coordinates by Xj2 and
Y j2 respectively. If the 4 � 4 translucency pattern is T [x; y], then the bit

enabling the frame bu�er write is T [Xj2; Y j2].

232 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

The hardware generating this can readily be combined with the dithering

hardware discussed in subsection 11.5.2 (ordered dithers), as described in

�gure 8.6.

color

X

Y

dither
RAM

data

dithered colorn

d

n+d

2

2

address

d
Σ

translucency
 pattern
 RAM

write enable

Figure 8.6: Dither and translucency pattern generator

8.5.4 Frame bu�er

The frame bu�er memory is responsible for storing the generated image
in digital form and for allowing the video display hardware to scan it at
the speed required for icker-free display. As stated, the frame bu�er is a

double access memory, since it must be modi�ed by the drawing engine on
the one hand, while it is being scanned by the video display hardware on
the other hand. Both access types have very critical speed requirements
which exceed the speed of commercial memory chips, necessitating special
architectural solutions. These solutions increase the e�ective access speed

for \coherent" accesses, that is for those consecutive accesses which need

data from di�erent parts of the memory. The problem of the video refresh
access is solved by the application of temporary shift registers which are

loaded parallelly, and are usually capable of storing a single row of the

image. These shift registers can then be used to produce the pixels at the
speed of the display scan (approx. 10 nsec/pixel) without blocking memory

access from the drawing engine.

8.5. LOW-LEVEL SUBSYSTEM 233

address decoder

FIFO

ALU

pixel planes

row shift

VRAM
channel

pixel mask

address decoder

FIFO

ALU

VRAM
channel

address decoder

FIFO

ALU

row shift

VRAM
channel

row shift

X,Y R,G,B write_enable

...

channel multiplexer

lookup table

D/A D/AD/A

R G B

address data

Figure 8.7: Frame bu�er architecture

234 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

The problem of high speed drawing accesses can be addressed by parti-

tioning the memory into independent channels and adding high-speed tem-

porary registers or FIFOs to these channels. The write operation of these

FIFOs needs very little time, and having written the new data into it, a

separate control logic loads the data into the frame bu�er memory at the

speed allowed by the memory chips. If a channel is not accessed very often,

then the e�ective access speed will be the speed of accessing the temporary

register of FIFO, but if the pixels of a single channel are accessed repeatedly,

then the access time will degrade to that of the memory chips. That is why

adjacent pixels are assigned to di�erent channels, because this decreases the

probability of repeated accesses for normal drawing algorithms. FIFOs can

compensate for the uneven load of di�erent channels up to their capacity.

In addition to these, the frame bu�er is also expected to execute arith-

metic and logic operations on the new and the stored data before modifying

its content. This can be done without signi�cant performance sacri�ce if
the di�erent channels are given independent ALUs, usually integrated with
the FIFOs.
The resulting frame bu�er architecture is shown in �gure 8.7.

