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Figure 1: Bunny shaped dense medium rendered with 50k fetches per pixel.

Abstract
Rendering inhomogeneous participating media requires a lot of volume samples since the extinction coefficient needs to be inte-
grated along light paths. Ray marching makes small steps, which is time consuming and leads to biased algorithms. Woodcock-
like approaches use analytic sampling and a random rejection scheme guaranteeing that the expectations will be the same as
in the original model. These models and the application of control variates for the extinction have been successful to compute
transmittance and single scattering but were not fully exploited in multiple scattering simulation. Our paper attacks the multiple
scattering problem in heterogeneous media and modifies the light–medium interaction model to allow the use of simple analytic
formulae while preserving the correct expected values. The model transformation reduces the variance of the estimates with the
help of Rao-Blackwellization and control variates applied both for the extinction coefficient and the incident radiance. Based
on the transformed model, efficient Monte Carlo rendering algorithms are obtained.

1. Introduction

This paper focuses on the multiple scattering rendering of inhomo-
geneous participating media [CPP∗05,Fat09,KGH∗14]. Consistent
numerical approaches are usually based on Monte Carlo quadrature
and trace photons or importons randomly [JC98,JNT∗11,NNDJ12,
KF12,BJ17]. Particle tracing has high computational cost in hetero-
geneous participating media since we cannot efficiently compute
the transmittance and analytically sample the free flight. To attack
these problems, we modify the underlying model of the participat-
ing media to allow the partial analytic solution while preserving
the expectation of the Monte Carlo simulation. In its core, we ap-

ply two variance reduction techniques, Rao-Blackwellization and
control variates.

Rao-Blackwellization means that in a random estimate the vari-
ance is usually decreased if some internal random variable is re-
placed by its mean. For example, in direct physical simulation a
photon survives an interaction with the probability of the scattering
albedo when its energy is unchanged. The variance of the estima-
tor can be reduced if we never terminate a photon, but its energy is
scaled by the survival probability [AK90].

The method of control variates separates a control variate
fmain(x) from integrand f (x), computes the integral of the control
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variate analytically, and adds its result to the Monte Carlo esti-
mate of the integral of difference f (x)− fmain(x). If control vari-
ate fmain(x) can capture the variation of the original integrand,
the difference will be small, resulting in low variance estimates
[LW95, RJN16].

The objective of this paper is to put the modification of the laws
of light–material interaction in a unified framework, allowing to
obtain low variance estimates for the scattered radiance by simul-
taneous application of Rao-Blackwellization and control variates.
Our main contributions are:

• A transformed particle model for heterogeneous participating
media where free flight sampling is analytic and the estimators
are unbiased.
• The application of the control variates both for the extinction and

for the scattered radiance to reduce the variance.
• The combination of control variates with medium decomposition

to reduce the cost of sampling.
• Moderating the exponential explosion of the variance caused by

the negative difference extinction in decomposed volumes.
• Natural extension to efficient multi-spectral tracking.
• The proof of unbiasedness and variance analysis.

In Section 2 we review the related previous work. Sections 3
and 4 discuss our new model and rendering algorithm. Finally,
Section 5 presents rendering results and we compare the new
method to Woodcock tracking [WMHL65], generalized residual
ratio tracking [NSJ14, SKGM∗17] and weighted decomposition
tracking [KHLN17].

2. Previous work

A Monte Carlo solution of the light transport in participating me-
dia requires the sampling of the free flight of light particles, the
computation of the transmittance between two points, and the sim-
ulation of the interaction of the material and light particles. Trans-
mittance calculation needs the integral of the medium extinction,
and free flight sampling requires the inverse of this integral. An-
alytic integration of the extinction and its inversion are possible
only in simple cases, like the homogeneous medium. In heteroge-
neous media numerical methods are needed, including ray march-
ing that approximates the integral by a finite sum or Woodcock
tracking [WMHL65] that samples the free flight with multiple ran-
dom steps declaring visited points either real or fictitious. Random
steps are sampled using a constant majorant extinction coefficient.
Efficient Woodcock tracking needs tight majorants, for which Yue
et al. [YIC∗10] proposed the application of a kd-tree and Szirmay-
Kalos et al. [SKTM11] introduced the concept of virtual particles
to deal with arbitrary majorants. Galtier et al. [GBC∗13] investi-
gated the integrals showing up in the solution and concluded that
with taking the absolute value of the difference, they make sense
even if the sampling density is not a majorant. Although they men-
tioned that using non-majorant sampling increases the variance, no
formal variance analysis was given, neither did they propose solu-
tion for this problem. In Section 3 and in the Appendix, we provide
variance analysis and show that the variance grows exponentially
with the length of the path where the sampling extinction is not a
majorant, thus such cases must be minimized.

It was shown [SKTM11] that Woodcock tracking and control
variates can also be exploited for transmittance calculation, which
requires a minorant of the extinction. The ratio tracking method
[NSJ14] modified the weights of light particles instead of randomly
terminating them, and the residual ratio tracking method combined
the weighting scheme with control variates. This concept has been
further generalized giving physical interpretation of non-majorant
sampling and even for negative extinction [SKGM∗17] showing up
when the control variate is not a minorant. In these methods control
variates were used to compute the transmittance between two given
points and not during free flight.

If the evaluation of the extinction coefficient is expensive, the
cost of deciding whether a collision is real or fictitious is signif-
icant. Decomposition tracking [KHLN17] reduces this burden by
considering the original volume as a mixture of a homogeneous
medium and a residual medium. If the homogeneous medium is re-
sponsible for most of the interactions, then the majority of the real
extinction evaluations can be saved. We should emphasize that al-
though Kutz et al. [KHLN17] call the two media resulting from the
decomposition as control and residual media, they do not apply the
method of control variates, and their goal is not variance reduction,
but to save the computation of the expensive extinction coefficient.
As we show it in this paper, the decomposition increases the vari-
ance and if the residual volume has negative extinctions, the vari-
ance grows exponentially. Thus, decomposition tracking is efficient
only if a constant positive minorant can be found.

The method of this paper exploits the data generated during a
pre-processing step similarly to [SKTM11, KHLN17], works with
non-bounding majorant in sampling and approximate minorant in
decomposition as [SKGM∗17, KHLN17], and naturally extends to
spectral tracking. According to our knowledge, this is the first pa-
per that exploits the statistical method of control variates for the
extinction in multiple scattering rendering and non-trivially com-
bines the control variates of the extinction and the scattered radi-
ance. With these control variates, we can attack the problem of the
exponentially growing variance caused by the non-majorant sam-
pling extinction values or the negative extinction introduced by de-
composition.

3. Model transformation

The particular building blocks to obtain low variance and low cost
estimators are adding virtual particles, decomposing the volume to
a mixture of particles of different properties, Rao-Blackwellization,
and control variates. From these, control variates have been dis-
cussed only in the integral formulation framework, and used only
for transmittance and single scattering. Decomposition has been
proposed also only with the integral formulation. Our goal is to
combine, generalize, and improve these techniques in the particle
model to allow the exploitation of control variates in multiple scat-
tering simulation and to optimize the model based on rigorous vari-
ance analysis. To incorporate control variates of the extinction, the
radiance modification cannot be restricted to discrete light–material
interaction points, but the weight should change even between such
interactions. To handle decomposition, we should allow a variety
of particles types.

We talk about light particles and their associated weight W that
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can mean photon energy or importance [Chr03]. Our practical im-
plementation is based on path tracing, so it traces importons. Dur-
ing Monte Carlo simulation the weight of the light particle is mod-
ified randomly and the contribution is the product of its weight and
the incident radiance, which are sampled independently. Thus, the
statistical properties of the estimator can be described by the prop-
erties, i.e. the mean and the variance of the weight.

We first analyze the analog simulation following the physical
laws. Then the medium and the simulated laws are changed in par-
allel with the aim of maintaining the same expected values, but with
a simpler computation and lower variance.

3.1. Original medium

The behavior of a light particle of initial weight W0 and direction
~ω in the real medium can be described by the following postulates
(Figure 2):

1. A light particle collides with a material particle in [s,s+ds) with
probability σt(s)ds provided that the light particle has reached
distance s, where σt(s) is the extinction coefficient that is pro-
portional to the density of material particles.

2. Direction and weight do not change while the light particle trav-
els in free space, i.e. W (s) =W0.

3. Upon collision at distance s, the particle survives with the prob-
ability of scattering albedo a(s), its direction ~ω is modified ran-
domly according to phase function ρ(~ω ·~ω′), and the weight
W scat of the scattered particle is equal to the weight of the inci-
dent particle.

W

Density: σt W

W W

Interaction

Free flight

W0

0 0

00

0
scat=W

Material
particle

Figure 2: The original medium. The weight of the particle does not
change, but particles may be terminated.

This physics-driven approach can be analysed by examining ex-
pectation E[·] and variance V[·] of weights W (s) and W scat. As the
indicator whether or not a particle is scattered in [0,S] follows a
Bernoulli distribution, we obtain:

E[W (s)] = W0Tσt (0,S), (1)

V[W (s)] = W 2
0

(
Tσt (0,S)−T 2

σt (0,S)
)
, (2)

where

Tσt (s1,s2) = exp
(
−

∫ s2

s1

σt(τ)dτ

)
(3)

is the transmittance, i.e. the probability of flying through [s1,s2]
without collision.

The probability density (pdf) of the free flight to distance s and
scattering at s is

pdf(s) = Tσt (0,s)σt(s). (4)

Let us consider the scattered weight W scat that represents the ran-
dom weight when scattering occurs in [s,s+ ds). Using the prob-
ability density of collision from Eq. 4 and the scattering albedo as
the probability of survival, we obtain:

W scat(s) =
{

W0 with prob. a(s)Tσt (0,s)σt(s)ds,
0 otherwise.

(5)

The expectation and the variance of the scattered weight are

E[W scat(s)] = W0a(s)Tσt (0,s)σt(s)ds, (6)

V[W scat(s)] = W 2
0 a(s)Tσt (0,s)σt(s)ds+o(ds) (7)

where the little-o notation o(ds) represents the terms for which

lim
ds→0

o(ds)
ds

= 0.

The total expected contribution of a ray leaving the volume at
distance S is:

E[Φ̂] =W0L(S,~ω)Tσt (0,S)+
∫ S

0
W0Lscat(s,~ω)Tσt (0,s)σt(s)ds

(8)
where L(s,~ω) is the incident radiance, and we used the following
shorthand notation for the expectation of the scattered radiance at
a point of distance s:

Lscat(s,~ω) = a(s)
∫

Ω

L(s,~ω′)ρ(~ω ·~ω′)dω
′.

The direct simulation of this physically based model is usually
not feasible since it is impossible to analytically compute Tσt (0,s)
and to sample the distance with Tσt (0,s)σt(s). Numerical quadra-
ture methods like ray marching are expensive and would make
the algorithm biased as it was pointed out in [RSK08], which can
be reduced by more samples or higher order integration schemes
[Mun14, JLSJ11]. On the other hand, when the particle flies over a
region, we ignore what the scattering albedo and the incident radi-
ance are in this region. Should we have at least approximate infor-
mation about these, it could be built into the estimator reducing its
variance.

3.2. Transformed medium

To incorporate control variates of the extinction, the radiance mod-
ification cannot be restricted to discrete light–material interaction
points, but the weight should change even between such interac-
tions. To reduce the sampling cost, we allow volume decomposi-
tion [KHLN17], i.e. assume the medium to be a mixture of different
materials where material m is described by real extinction σt,m and
by two proxy densities, sampling extinction µm that is good for free
flight sampling, and main or control extinction νm that allows the
analytic evaluation of a reasonable approximation of the transmit-
tance. For the sake of simplicity, the phase functions are supposed
to be the same, but the generalization to different phase functions
in different materials would be straightforward. The real extinction
σt of the combined material is the sum of extinctions σt = ∑m σt,m.
Similarly, we introduce the notations of the total sampling density
µ = ∑m µm and total control variate ν = ∑m νm, as the sum of the
respective parameters of the component materials.

Sampling extinctions µm and control extinctions νm are free
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parameters of our model, which is constructed to make the es-
timated contribution unbiased for arbitrary control extinction and
non-negative sampling extinction. The objective of finding the free
parameters is to minimize the variance and the cost of the estima-
tors requiring only approximate or sampled information about the
medium. During the development of the practical rendering algo-
rithm, these proxy densities are piece-wise constant functions.

W

scat
Density: μ

W(s-0)=
W T (0,s)

W     (s)=
W(s-0)aσ   /μ

W(s+0)=
W(s-0)(1- δ /μ )

W

Interaction with material 1

Free flight

ν 1t,1

W(s)=W T (0,s)ν

μ

11

W

scat
W(s-0)=
W T (0,s)

W     (s)=
W(s-0)aσ   /μ

W(s+0)=
W(s-0)(1- δ  /μ )

ν 2t,2

22

Interaction with material 2

1

Density: μ2

0

0
0

0

0

0

Figure 3: The transformed model. The weight is continuously de-
creasing during free flight. When scattering occurs, the particle
splits into a transmitted and a scattered particle.

We express the real extinction σt,m(s) as a sum of control extinc-
tion νm(s) and a difference extinction in material m:

δm(s) = σt,m(s)−νm(s). (9)

The postulates of the light particle behavior in the transformed
medium are stated to guarantee expected values to remain correct
(Figure 3):

1. A light particle collides with a particle of type m in [s,s+ ds)
with probability µm(s)ds.

2. While the light particle travels in free space, its direction does
not change but its weight W (s) decays in any interval [s1,s2] as

W (s2) =W (s1)exp
(
−

∫ s2

s1

ν(τ)dτ

)
=W (s1)Tν(s1,s2) (10)

where ν is the sum of the control variates of materials compos-
ing the medium.

3. Upon collision at distance s with a material particle of type m,
the light particle is broken into a transmitted light particle and
a scattered light particle. The transmitted light particle has the
same direction as the incident particle. The scattered light parti-
cle modifies its direction randomly according to the phase func-
tion. The weights of the transmitted and scattered particles are:

W (s+0) = W (s−0)
(

1− δm(s)
µm(s)

)
, (11)

W scat(s) = W (s−0)a(s)
σt,m(s)
µm(s)

(12)

where we used the notation s− 0 to refer to the weight before
scattering and s+0 to just after scattering, to resolve the ambi-
guity caused by the not continuous function W (s).

We show in Appendix 1 that the expectation and the variance of
transmitted weight W are

E[W (s)] = W0Tσt (0,s), (13)

V[W (s)] = W 2
0 (T2σt−w(0,s)−T2σt (0,s)) (14)

= W 2
0 exp

(
−

∫ s

0
2σt(τ)dτ

)(
exp
(∫ s

0
w(τ)dτ

)
−1
)

where w = ∑m δ
2
m/µm is the only parameter that depends on the

sampling strategy and is called the variance introduction density
[SKGM∗17]. The expectation of the transmitted weight is the same
as in Eq. 1, thus it is an unbiased estimator.

The random scattered weight is:

W scat(s) =


W (s−0)a(s)σt,1(s)

µ1(s)
with prob. µ1(s)ds,

. . .

W (s−0)a(s)σt,m(s)
µm(s)

with prob. µm(s)ds,
0 otherwise.

(15)

The expectation and the variance are (proof in Appendix 2):

E[W scat(s)] = W0a(s)Tσt (0,s)σt(s)ds, (16)

V[W scat(s)] = W 2
0 T2σt−w(0,s)a

2(s)∑
m

σ
2
t,m(s)

µm(s)
ds+o(ds).

As the expectation of the scattered weight in the transformed model
(Eq. 16) is the same as in the original model (Eq. 6), the scattered
contribution of the transformed model is also unbiased.

3.2.1. Discussion of the variance

The variance of the transmitted weight W is determined by function
w, which should be kept as small as possible. As the square function
is convex, Jensen inequality gives us the following bound:

w = ∑
m

δ
2
m

µm
= µ∑

m

µm

µ

(
δm

µm

)2

≥ µ
(

∑
m

µm

µ
δm

µm

)2

=
(σt −ν)2

µ
,

(17)
which means that the result is more accurate if the medium is not
decomposed.

According to Eq. 14 the minimization of the variance is equiva-
lent to the minimization of the integral of w. If sampling densities
µm are constant, this means that control variates νm(s) must be the
L2 optimal approximations of real extinction σt,m(s) since∫ s

0
w(τ)dτ =

∫ s

0
∑
m

δ
2
m(τ)

µm(τ)
dτ = ∑

m

1
µm

∫ s

0
(σt,m(τ)−νm(τ))

2 dτ.

Variance V[W (s)] is surely smaller than that of the original model
if the following condition holds:

T2σt−w−T2σt < Tσt −T2σt ⇒ 2σt−w> σt ⇒ σt >w=∑
m

δ
2
m

µm
,

(18)
which is definitely the case, for example, when

∑
m
|δm|= ∑

m
|σt,m−νm|< σt and |δm|< µm, (19)

i.e. the control variate does not make the situation worse than not
using it at all, and in each material the sampling density is a majo-
rant of the difference extinction.
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To examine the price of the variance reduction, let us associate
the cost with the expected number of sampled interaction points in a
ray, which is

∫ s
0 µ(τ)dτ for the transformed model and 1−Tσt (0,s)

for the original model. Using the exp(−x) ≥ 1− x inequality for
non-negative x=

∫ s
0 σt(τ)dτ, we can see that the transformed model

has higher cost if µ is a majorant of σt , and the difference is sig-
nificant, when the transparency of the whole volume is negligible.
Thus, we should also introduce a re-randomization that reduces the
cost, which is discussed in Section 3.4.

Let us now examine the scattered weight W scat. Comparing the
variance of Eq. 16 to Eq. 7 describing the original model, we can
conclude that the transformed model has lower variance if

Tσt aσt > T2σt−wa2
∑
m

σ
2
t,m

µm
=⇒ σt ≥ aTσt−w ∑

m

σ
2
t,m

µm
. (20)

The first factor on the right hand side is the scattering albedo, which
is always less than 1. Second factor Tσt−w is surely less than 1 if
σt > w, which is the same condition that makes the transmission
have lower variance (Eq. 18). The third factor is less than σt if µm
is a majorant of σt,m. Considering all of these, a sufficient condition
for the variance reduction is

∑
m
|δm|< σt and |σt,m|< µm. (21)

Decomposition not only increases variance introduction density w
but also makes the third factor of the variance of the scattered
weight worse since

∑
m

σ
2
t,m

µm
= µ∑

m

µm

µ

(
σt,m

µm

)2

≥ µ
(

∑
m

µm

µ
σt,m

µm

)2

=
σ

2
t

µ
. (22)

3.3. Control variate for the in-scattered radiance

So far, we have applied the control variate technique for the extinc-
tion coefficient and provided formulae to obtain weight W scat that
needs to be multiplied by the estimate of the incident radiance. The
incident radiance estimate can be obtained by generating a random
direction with the pdf of the phase function and by executing the
same process for the child ray.

Let us assume that we have a control variate Lscat
main(s) for the scat-

tered radiance for which the line integral problem can be analyti-
cally solved in the transformed model. For the sake of simplicity,
we use a piece-wise constant control variate along the ray that is
direction independent:

Lscat
main(s) = Lscat

i if si ≤ s < si+1, i = 0,1, . . . ,M.

We mention that directional dependent approximations would im-
prove the control variate but the computational cost would also be
higher [LW95, PWP08].

The estimate of the radiance gathered along a ray is then a sum
of two estimates. The first one is the recursive path tracing estimate
that is reduced by its control variate Lscat

main(s)/a(s) before adding its
contribution to the considered ray. The second one is the line inte-
gral taking the pre-defined control variate Lscat

main(s) as the scattered
radiance. Now, we examine this calculation and consider the inte-
gral of Eq. 8 when Lscat(s,~ω) is replaced by a piece-wise constant

control variate Lscat
main(s):

Φ
scat
main = W0

∫ S

0
Lscat

main(s)Tσt (0,s)σt(s)ds

=
M

∑
i=0

Lscat
i W0

∫ si+1

si

Tσt (0,s)σt(s)ds

=
M

∑
i=0

Lscat
i W0 (Tσt (0,si)−Tσt (0,si+1)) . (23)

In the classical control variate technique the integral of the con-
trol variate is analytically computed. However, Eq. 23 and Tσt (0,s)
cannot be evaluated analytically in practical cases. Instead of the
analytic integral, a low variance, unbiased estimator for W0Tσt (0,s)
is W (s) according to Eq. 13, thus we obtain

Φ
scat
main ≈

M

∑
i=0

Lscat
i (W (si)−W (si+1)) . (24)

3.4. Path termination and splitting

Rao-Blackwellization eliminated random particle termination, thus
a single ray will generate a binary tree where nodes are scattering
points and leafs correspond to points where the weight becomes
zero or the ray leaves the medium. It means that the simulation may
spend a lot of time processing particles with weight of low absolute
values (note that the particle weight can also be negative). To keep
the number of particles and the size of the binary tree under control,
we introduce random branch cutting.

The random termination affects particles with weights in
(−Wmin,Wmin) [SKAS05, VK16]. A light particle in this window
survives with probability p and is terminated with probability 1− p.
To compensate the not computed contribution, the weights of sur-
viving particles are divided by p. The particle weight is increased
to the window boundary if p = |W |/Wmin.

There is an even better strategy that considers control vari-
ate Lscat

main(s). Instead of assuming that the incident radiance is
zero for the terminated path, the incident radiance is approx-
imated by Lscat

main(s)/a(s). If the particle is terminated, we add
W (s)Lscat

main(s)/a(s) to its contribution. If the particle survives, the
weight is compensated first as W ′ = W/p, and then the contribu-
tion is decreased by (1− p)W ′(s)Lscat

main(s)/a(s). The expectation
will be correct:

E[W (s)L(s,~ω)] = E[W ′(s)L(s,~ω)− (1− p)W ′(s)Lscat
main(s)/a(s)] · p

+ W (s)Lscat
main(s)/a(s) · (1− p). (25)

Comparing to classical Russian roulette using the albedo or to
the single particle model of [SKGM∗17], our windowed termina-
tion scheme has advantages and disadvantages as well. Unlike other
methods, it also uses the weight accumulated so far and not just the
factor of the current interaction, so its variance is smaller. However,
it means that if a particle weight should have a high absolute value,
then it would create a large binary tree. To handle this, we use the
windowed termination scheme before reaching depth 10, and then
turn to the single particle model at higher depths.

Termination eliminates small weight particles. High weight par-
ticles also pose problems and cause high variance. Such high
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weight particles are generated when 2σt −w is negative since in
such cases the simulation produces a chain reaction (Eq. 14). To
keep the weights under control, these particles can be split.

4. Rendering algorithm

According to the variance analysis, decomposition increases the
variance, thus should be applied only if extinction σt is expen-
sive to evaluate and the medium can be decomposed to a homo-
geneous and a residual volume [KHLN17]. The homogeneous vol-
ume should have an extinction that approximates the minimum of
σt , otherwise the residual volume has negative extinction that leads
to the exponential growth of the variance. To adapt this idea, we
also decompose the medium into two media, the first has extinction
σt,1 = σmin that approximates the minimum extinction of the origi-
nal medium (Figure 4). The second medium has the residual extinc-
tion σt,2 = σt−σmin. Low variance scattering is guaranteed if sam-
pling extinction µ1 is not less than σt,1, thus a reasonable choice is
µ1 = σmin. There are several alternatives to select the control vari-
ate ν1 in the homogeneous material. If the control extinction is set
to the real extinction here, i.e. ν1 = σmin, then the difference ex-
tinction will be zero, δ1 = 0, and the transmitted weight will have
a zero variance estimator in the homogeneous medium for the cost
of generating two child particles at each interaction. However, this
option has high computational cost if the volume is large or dense.
Therefore, the better alternative is to set control extinction ν1 to
zero, which means that the weight of the transmitted particle is also
zero, thus only the scattered particle needs to be traced in the ho-
mogeneous medium.

ν =ν
min

2

t,1

σ
σ  =σ   =μmin

t,2
σ 

μ2

s

μ

ν
σt

1

Figure 4: Decomposition of the material and the setting of proxy
extinctions. Parameters µ and σmin approximate the maximum and
the minimum of extinction σt but they are not necessarily upper
and lower bounds. Material 1 is homogeneous with real extinction
equal to σmin. Material 2 is the residual, in which control variate
ν2 approximates its mean.

In the residual material, sampling extinction µ2 = µ− σmin is
preferred to be close to the maximum extinction in this material.
Control extinction of the second medium is the approximation of
the mean of σt,2.

To represent primary proxy densities σmin, ν and µ, as well as the
control variate of the scattered radiance, Lscat

main, we use a coarse grid
structure similarly to [SKTM11, NSJ14, KHLN17]. Each cell con-
tains one value for each of the four parameters, thus proxy densities
and the control radiance are piece-wise constant functions along ar-
bitrary rays. Their integration and free flight calculation with the
sampling extinctions are straightforward, the algorithm should tra-
verse the grid structure with a DDA algorithm. The way how a ray

is traced is shown by Algorithm 1. First termination or splitting is
executed, should any of them be needed. We use two running vari-
ables I1 and I2 for free flight sampling in the homogeneous and the
residual materials, that are accumulated while the algorithm steps
through the voxels.

Algorithm 1 Path Tracing of a ray defined by start ~e, direction ~ω
and initial weight W . The medium is composed of two materials.
1: procedure TRACE(~e,~ω, W )
2: if |W | <Wmin then . Termination
3: P = |W |/Wmin
4: if P < rand() then
5: return W ·Lscat

main/a(~p) . Terminate
6: else
7: W =W/P . Compensate
8: Φ̂ = −(1−P) ·W ·Lscat

main/a(~p)

9: if |W | >Wmax then . Splitting
10: n =(int)|W |/Wmax . number of children
11: W /= n
12: for i = 1 TO n−1 do
13: Φ̂ += Trace(~p, ~ω, W ) . Child
14: Φ̂ = 0 . Estimated contribution
15: ts = 0 . Start of the ray
16: I1 = I2 = 0 . Running variable of

∫
µm(τ)dτ

17: M1 =− log(1− rand()) . Threshold
18: M2 =− log(1− rand())
19: while DDAGet(~e,~ω, ts→ te,σmin,µ,ν,Lscat

main) do
20: Φ̂ += Lscat

main ·W . Eq. 24
21: µ2 = µ−σmin
22: t1 = ts +(M1− I1)/σmin, t2 = ts +(M2− I2)/µ2
23: if t1 > te AND t2 > te then . No scattering in cell
24: I1 += σmin · (te− ts), I2 += µ2 · (te− ts)
25: W =W · exp(−ν(te− ts)) . Eq. 10
26: Φ̂ −= Lscat

main ·W . Eq. 24
27: ts = te . Step to next cell
28: else . Scattering in cell
29: ~ω′ = PhaseFunction(~ω) . Scattering direction
30: if t1 < t2 then . Collision with material 1
31: ~p =~e+~ωt1 . Location of scattering
32: W =W · exp(−ν(t1− ts)) . Eq. 10
33: W scat =W ·a(~p) . Eq. 12
34: Φ̂ += Trace(~p, ~ω′, W scat)−Lscat

main ·W scat/a(~p)
35: else . Collision with material 2
36: ~p =~e+~ωt2 . Location of scattering
37: W =W · exp(−ν(t2− ts)) . Eq. 10
38: σt,2 = σt(~p)−σmin . Real extinction fetch
39: W scat =W ·a(~p) ·σt,2/µ2 . Eq. 12
40: δ2 = σt,2−ν

41: W =W · (1−δ2/µ2) . Eq. 11
42: Φ̂ += Trace(~p, ~ω′, W scat)−Lscat

main ·W scat/a(~p)
43: Φ̂ += Trace(~p, ~ω, W ) . Transmission
44: Φ̂ −= Lscat

main ·W . Eq. 24
45: return Φ̂

46: Φ̂ += W ·Lenv(~ω) . Environment illumination
return Φ̂

The DDAGet function is used to query the grid structure, which
takes the ray of start ~e and direction ~ω as well as ray parameter
ts of the current point. The function determines ray parameter te
where the ray exits the current cell, and the pre-computed proxy
densities and the main scattered radiance are returned. Comparing
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free flight distances t1 and t2 to the distance of the exit point of
the cell, te, the algorithm determines whether there are potential
collisions in the current cell and which material is hit first. If there is
no interaction in this cell, running variables are updated and we step
to the next cell. If there are potential collisions in both materials,
the fist collision of smaller distance is selected, where scattering
direction ~ω′ is sampled, and the weights are updated depending on
the type of the hit material particle. Note that we choose the control
variate of the extinction in the homogeneous material in a way to
make the weight of the transmitted particle zero, which needs not
to be computed. In the residual material, the same Trace function is
called both for the scattered and the transmitted light particles.

The grid structure can be initialized in a pre-processing phase
when we take extinction samples in each cell and assign the av-
erage, minimum and the maximum to the ν, σmin and µ values of
the cell. Setting the average to ν is optimal from the point of view
of the transmitted contribution but is not necessarily the best op-
tion if scattering is more significant. Control radiance Lscat

main can be
estimated by sending pilot rays from random points.

4.1. Multi-spectral tracking

In the transformed model, interaction points are found with sam-
pling extinctions σmin and µ2 = µ−σmin, which should be scalars.
However, all other parameters, including particle weights, radiance
values, real and control extinctions, as well as scattering albedos
can be vectors, just the arithmetic operations should be applied on
them in element-wise manner, and the absolute value of the weight
should be replaced by a vector norm. Thus our model can also be
used in a spectral rendering framework where a light particle si-
multaneously carries energy or importance on several wavelengths.
We follow the approach of [KHLN17] and set σmin and µ to the
minimum and maximum of the wavelength dependent extinctions,
respectively.

5. Results

To demonstrate the proposed approach, we consider three different
media, the first is defined by an analytic function and rendered with
constant control variates, the second is generated procedurally by
multi-octave Perlin noise, and the third is a high resolution voxel
grid. In the second and third cases, we also evaluate the benefits of
the coarse grid structure. Throughout our tests we use the Henyey-
Greenstein phase function with anisotropy parameter g. When not
given explicitly, we consider the g = 0 isotropic case. We omit the
negligible pre-computation costs from the comparison and use the
Root Mean Squared Error (RMSE) to quantify the accuracy, which
is rounded to the nearest integer for clarity.

5.1. Analytic medium and constant control variates

The first test medium [SKGM∗17] is a sphere of radius 10 and
center (0,0,10), and its extinction at point (x,y,z) is

σt =

(
cos(3(x+ y+ z)/2)+1

2

)5

· sin(z/2)+2
3

(1−σ0)+σ0.

(26)

Parameter σ0 defines the minimum of the extinction and describes
how strongly homogeneous the medium is. The environment illu-
mination is an RGB color box. The scattering albedo is 0.7. For this
model, we use constant µ, ν and Lscat

main values.
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Figure 5: The extinction, the mean and the standard deviations of
transmitted weight W (s) (upper plot) and scattered weight W scat(s)
(lower plot) along the ray going through the center of the analytic
medium when σ0 = 0.

First, we do not apply decomposition, i.e. µ1 = ν1 = σmin = 0,
µ2 = µ, and set minimum extinction σ0 to zero, which corresponds
to the most heterogeneous case. Figure 5 depicts the extinction and
the statistical properties of weights W (s) and W scat(s) along a ray
of axis z that goes through the center of the medium. Note that
increasing µ makes the variance smaller. We can also observe that
control variate ν improves the estimate of W (s) and also of W scat(s)
if µ is far from being a majorant of the extinction. However, control
variate ν does not help much to reduce the variance of the scattered
contribution if µ is a majorant. Generally, larger sampling extinc-
tion also increases the computational cost, since samples are taken
more frequently. To provide a fair comparison, the number of cast
rays is set to make the number of medium fetches equal in all com-
pared cases (we target 200 fetches per pixel). The corresponding
images and their RMSE values are presented by Figure 6. Note that
increasing sampling extinction µ makes the algorithm more effec-
tive until it reaches 0.8, which is a little less than the maximum
extinction of the medium. The optimal control variate ν is about
0.1, which is the average value of σt . We set Wmax = 10 in all tests
since the algorithm is not too sensitive to this parameter.
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Lscat
main = (0,0,0) Lscat

main = (0.5,0.5,0.5)
µ = 0.4 µ = 0.8 µ = 1.2 µ = 0.4 µ = 0.8 µ = 1.2

ν
=

0.
0

RMSE: 1979 RMSE: 93 RMSE: 114 RMSE: 1923 RMSE: 77 RMSE: 80

ν
=

0.
1

RMSE: 161 RMSE: 89 RMSE: 110 RMSE: 151 RMSE: 70 RMSE: 79

Figure 6: Particle tracing of the medium of Eq. 26 setting σ0 = 0 with 200 medium fetches per pixel. No control variate is used for scattered
radiance Lscat

main (left hand side) and Lscat
main = (0.5,0.5,0.5) (right hand side). Random termination is executed for those light particles where

|W |<Wmin = 0.1. No medium decomposition is applied, i.e. σmin = 0.

Wmin = 0.01 Wmin = 0.1 Wmin = 0.5 Wmin = 1

RMSE: 150 RMSE: 78 RMSE: 81 RMSE: 93

Figure 7: The effect of termination window Wmin on the results. We
set µ = 0.8 and ν = 0.1.

Figure 7 shows the results when termination window Wmin
changes. Too large window adds noise similarly to Russian-
roulette. On the other hand, if the window is small, then small
weight particles are traced, thus in the equal effort comparison, the
number of rays should be reduced, which also increases the vari-
ance. From now on, Wmin = 0.1 is assumed.

As demonstrated by Figure 8, the direction independent control
variate for the scattered radiance can significantly reduce the error
even when the medium is not isotropic.

Figure 9 compares the new method to weighted decomposition
tracking [KHLN17] and to an improved version of residual ratio
tracking [NSJ14] that is generalized to handle non-majorant sam-
pling density and non-minorant control variate [SKGM∗17] and to
compute not only transmittance but also scattering. To use resid-
ual ratio tracking in multiple scattering simulation, we applied the
same termination scheme as in the new method. Generalized resid-
ual ratio tracking reduces the absolute weight of light particles even
during free flight, which is advantageous in variance reduction es-
pecially when the sampling density is low. On the other hand, de-
composition tracking can save extinction coefficient evaluations,
but increases the variance especially when the residual volume has

g = 0.5 g = 0 g =−0.5

Lsc
at

m
ai

n
=

0.
5

RMSE: 69 RMSE: 75 RMSE: 78

Lsc
at

m
ai

n
=

0

RMSE: 84 RMSE: 90 RMSE: 92

Figure 8: The effect of the control variate for the radiance in for-
ward scattering (g = 0.5), isotropic (g = 0), and backward scatter-
ing (g =−0.5) media, when µ = 1, σ0 = 0 and ν = 0.

negative extinction. Our method combines the advantages of both
residual ratio tracking and decomposition tracking, and further im-
proves the variance by the exploitation of the scattered radiance
control variate. In this test, we have violated the minorant and ma-
jorant conditions since the minimum of the real extinction is 0 and
the maximum is 1 in this volume. Note that decomposition tracking
is very sensitive to this issue, residual ratio tracking is less so, and
the new method is the most robust.

Figure 10 is the repetition of the same experiment for spectral
tracking when the environment illumination is white but the ex-
tinctions on the wavelengths of r,g,b are proportional to the abso-
lute value of the x,y,z coordinates expressing the direction from
the center of the volume. For comparison, we implemented the
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New method Residual ratio T. Decomposition T.

µ
=

0.
8

RMSE: 78 RMSE: 91 RMSE: 123

µ
=

0.
6

RMSE: 86 RMSE: 93 RMSE: 681

Figure 9: Rendering the analytic model of σ0 = 0 when the mi-
norant and majorant conditions are violated, i.e. µ is 0.8 and 0.6,
respectively, which are less than max(σt) = 1, and σmin = 0.01,
which is larger than min(σt) = 0. We compare the new method
to generalized residual ratio tracking and decomposition tracking
when all methods compute 200 evaluations of σt per pixel. We use
constant control proxy values ν = 0.1, Lscat

main = (0.5,0.5,0.5).

New method Residual ratio Decomposition Woodcock

RMSE: 45 RMSE: 81 RMSE: 127 RMSE: 129

Figure 10: Spectral tracking with the settings of Figure 9 when µ =
0.8, g = −0.5 and extinction σt is modulated with the coordinates
of the direction vector from the center of the medium, illuminated
by a uniform white environment map.

history-aware-avg version of Decomposition tracking, and Wood-
cock tracking is executed independently on the three wavelengths.

Figure 11 and Table 1 compares the methods again when all ma-
jorant and minorant conditions are met and a non-zero minimum
extinction σ0 is introduced. Decomposition tracking can benefit the
most from the positive minimum extinction, but the new method
still outperforms all other compared techniques. We also test the
methods in this case for spectral tracking in Figure 12, and the con-
clusions are similar to the scalar case.

5.2. Procedural medium generated with 12-octave Perlin noise

Now, we render a cloud model generated by 12-octave Perlin noise
and illuminated by a strongly inhomogeneous environment map

New method Residual Ratio T. Decomposition T.

RMSE: 82 RMSE: 99 RMSE: 104

Figure 11: Rendering the analytic model of σ0 = 0.05 with the
three compared methods when the minorant and majorant condi-
tions are not violated, i.e. µ = 1, σmin = 0.05.

σ0 New meth. Woodcock Residual ratio Decomposition

0 71 120 90 110
0.05 82 118 99 104
0.1 85 114 103 96
0.2 66 112 106 88
0.5 50 110 108 51

Table 1: RMSE values for different degrees of homogeneity σ0
when the minorant and majorant conditions are not violated. Sam-
pling density µ is 1 for all models. The new method sets ν to 0.1 and
makes σmin equal to σ0. Generalized residual ratio tracking sets ν

to σ0, and decomposition tracking σmin to σ0.

New method Residual ratio Decomposition Woodcock

RMSE: 54 RMSE: 94 RMSE: 90 RMSE: 139

Figure 12: Spectral tracking with the settings of Figure 11, i.e.
when the minorant a majorant conditions are not violated, and
σmin = σ0, g = 0.5, and above σ0 = 0.1 extinction σt is modu-
lated with the coordinates of the direction vector from the center of
the medium, illuminated by a uniform white environment map.

(Figure 13). We also repeat the test with a lower dynamic range
environment map (Figure 15). The scattering albedo is 0.9 to em-
phasize the multiple scattering effects.

Firstly, control variates are computed in a preprocessing phase
and stored on a coarse grid of 323 resolution. This precomputa-
tion takes only 160 seconds on a single-core CPU. Figure 13 shows
the comparison of the new method to previous work for 3k vol-
ume fetches per pixel on average. Note that decomposition track-
ing, residual ratio tracking and the new method work on the same
grid structure and thus rendering times are similar (10 minutes). If
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New method Residual ratio tracking Decomposition tracking Woodcock tracking

RMSE: 57 RMSE: 78 RMSE: 75 RMSE: 151

Figure 13: Procedurally generated cloud with 3k volume evaluations per pixel.

New method Decomposition tracking Woodcock tracking

3k
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RMSE: 9 RMSE: 44 RMSE: 63

32
0

se
cs

RMSE: 29 RMSE: 80 RMSE: 65

Figure 14: Spectral tracking with equal number of volume fetches per pixel (3k) in the upper row and with equal time (320 seconds) in the
lower row. The environment illumination is constant, the medium is forward scattering (g = 0.5) and its extinction σt varies in space.

New method Woodcock tracking

Figure 15: Comparison to Woodcock tracking when both methods
fetch the procedural data by 170 times per pixel.

the grid resolution is decreased from 323 to 163 and 83, the error in-
creases from 57 to 61 and 67, respectively, i.e. even a relatively low
resolution grid may lead to a noticeable improvement over Wood-
cock tracking.

Figure 14 compares the new method performing spectral track-
ing to the history-aware-max version of Decomposition tracking
and to Woodcock tracking executed independently on the three
wavelengths. The anisotropy parameter of the Henyey-Greenstein
phase function is g = 0.5.

5.3. Participating medium defined by a voxel grid

The final test case is a bunny shaped medium that is defined by
a voxel array of 577× 572× 438 resolution (Figure 1). The scat-
tering albedo is 0.95 and the model has large physical extent (60
units radius) with an average and maximum extinctions of 0.7 and
5.9, respectively. With such parameters, the transmittance is prac-
tically zero and the multiple scattering becomes the dominant phe-
nomenon. The grid resolution is 64×64×64. First, we apply fairly
high dynamic range illumination mimicking a directional light be-
hind the camera. Figure 1 compares the new method with Wood-
cock tracking, residual ratio tracking and decomposition tracking
allowing 50k volume fetches per pixel. Close-ups are also shown
by Figure 16 when the rendering is executed with 10k fetches per
pixel.

We also render a less dense bunny with a lower dynamic range
environment map (Figure 17). As this is a simpler problem, the
number of required samples can be significantly lower.

6. Conclusions

This paper presented a transformed model for participating media
in which the steps of multiple scattering simulation can be done
with analytic formulae, and the result is an unbiased estimate with
low variance. The method does not require the a-priori knowledge
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Woodcock Decomposition Residual ratio New method

RMSE: 96.46 RMSE : 38.12 RMSE : 37.46 RMSE: 36.28

RMSE: 21.12 RMSE : 14.48 RMSE : 14.21 RMSE: 11.55

Figure 16: Dense medium rendered with 10k fetches per pixel.

New method Woodcock tracking

Figure 17: Sparser medium with 40 fetches per pixel.

of the extinction function, which is an advantage in case of proce-
dural models. We can use approximate sampled values to set the
sampling extinction and the control variates that can reduce the
variance. The approximation error does not compromise the un-
biasedness of the result, only the variance may increase. Control
variates are stored in a coarse grid, and we have shown that even
low resolution grids of low overhead can significantly reduce the
variance of the Monte Carlo estimation.
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Appendix 1: Statistical analysis of transmitted weight W

Let us consider how transmitted weight W changes when an infinitesimal
step ds is made along the ray:

W (s+ds) =W (s)T (s,ds), (27)

where T is a random variable describing the differential transmission:

T (s,ds) = exp(−ν(s)ds)
(

1−
δm(s)
µm(s)

)
(28)

if the light particles collides with a material particle of type m, which hap-
pens with probability µm(s)ds. If there is no collision, then

T (s,ds) = exp(−ν(s)ds), (29)

which occurs with probability 1− µds. The probability of multiple colli-
sions in ds is in o(ds).

The expectation of the differential transmission is

E[T (s,ds)] = exp(−ν(s)ds)
(

∑
m

(
1−

δm(s)
µm(s)

)
µm(s)ds+(1−µ(s)ds)

)
+ o(ds). (30)

This expectation is rewritten by applying a linear expansion for the expo-
nential exp(−ν(s)ds) and hiding all higher order terms of ds behind the
little o notation:

E[T (s,ds)] = 1− (ν(s)+µ(s)−∑
m
(µm(s)−δm(s)))ds+o(ds)

= 1−σt(s)ds+o(ds). (31)

since ν+µ−∑m µm +∑m δm = ν+δ = σt .

The variance of the differential transmittance estimator is:

V[T (s,ds)] = ∑
m

(
exp(−ν(s)ds)

(
1−

δm(s)
µm(s)

))2

µm(s)ds

+ (exp(−ν(s)ds))2 (1−µ(s)ds)

− (1−σt(s)ds)2 +o(ds)

=

(
∑
m

µm(s)−2δm(s)+
δ2

m(s)
µm(s)

)
ds

+ (1−2ν(s)ds−µ(s)ds)− (1−2σt(s)ds)+o(ds)

= ∑
m

δ2
m(s)

µm(s)
ds+o(ds) = w(s)+o(ds). (32)

Using the E[XY ] = E[X ]E[Y ] identity for independent random variables
X =W and Y = T , the expectation of the transmission is

E[W (s+ds)] = E[W (s)]E[T (s,ds)] = E[W (s)](1−σt(s)ds+o(ds)).

Subtracting E[W (s)] from both sides, dividing the equation by ds and taking
the ds→ 0 limit, we can establish a differential equation for the expectation

dE[W (s)]
ds

=−σt(s)ds.

Taking into account the E[W (s)] = W0 initial condition, this equation can
be solved as

E[W (s)] =W0Tσt (0, s). (33)

For the variance of the weight in the transformed model, we exploit the
identity V[XY ] =V[X ]V[Y ]+V[X ]E2[Y ]+V[Y ]E2[X ] valid for independent
random variables X =W (s) and Y = T (s,ds):

V[W (s+ds)] = V[W (s)]
(

V[T (s,ds)]+E2[T (s,ds)]
)

+ E2[W (s)]V[T (s,ds)]

= V[W (s)] (w(s)ds+1−2σt(s)ds)

+ W 2
0 T 2

σt
(0, s)w(s)ds+o(ds),

We again obtain a differential equation

dV[W (s)]
ds

= (w(s)−2σt(s))V[W (s)]+w(s)W 2
0 T 2

σt
(0, s).

The solution of this equation is

V[W (s)] = W 2
0 exp

(
−

∫ s

0
2σt(~p(τ))dτ

)(
exp
(∫ s

0
w(τ)dτ

)
−1
)

= W 2
0 (T2σt−w(0, s)−T2σt (0, s)) . (34)
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Appendix 2: Statistical analysis of the scattered weight

Using Eq. 12 defining the weight of the scattered light particle and realizing
that a scattering on material of type m happens with probability µm(s)ds in
[s, s+ds), the random scattered weight is

W scat(s) =W (s−0)a(s)
σt,m(s)
µm(s)

(35)

with probability µm(s)ds and zero with probability 1−µds.

Random variable W scat(s) is the product of two independent random
variables, X = W (s− 0) and Y = a(s) σt,m(s)

µm(s) occurring with probability
µm(s)ds and is zero otherwise. The expectation is the product of the ex-
pectations of the two factors:

E[W scat(s)] = E[W (s−0)]E
[

a(s)
σt,m(s)
µm(s)

]
= W0Tσt (0, s)a(s)∑

m
σt,m(s)ds

= W0a(s)Tσt (0, s)σt(s)ds. (36)

The calculation of the variance is also based on identity V[XY ] =
(V[X ] +E2[X ])V[Y ] +V[X ]E2[Y ]. The expectation and the variance of X
is taken from Eqs. 33 and 34, and the expectation of Y is proportional to ds,
thus its square is in o(ds):

V[X ]+E2[X ] = W 2
0 (T2σt−w(0, s)−T2σt (0, s))+W 2

0 T2σt (0, s)

= W 2
0 T2σt−w(0, s),

E2 [Y ] = o(ds),

V [Y ] = ∑
m

(
a(s)

σt,m(s)
µm(s)

)2

µm(s)ds+o(ds). (37)

The variance is then:

V[W scat(s)] =W 2
0 T2σt−w(0, s)a2(s)∑

m

σ2
t,m(s)

µm(s)
ds+o(ds). (38)
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