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Abstract
This paper presents efficient algorithms for free path sampling in heterogeneous participating media defined either
by high-resolution voxel arrays or generated procedurally. The method is based on the concept of mixing “virtual”
material or particles to the medium, augmenting the extinction coefficient to a function for which the free path can
be sampled in a straightforward way. The virtual material is selected such that it modifies the volume density but
does not alter the radiance. We define the total extinction coefficient of the real and virtual particles by a low-
resolution grid of super-voxels that are much larger than the real voxels defining the medium. The computational
complexity of the proposed method depends just on the resolution of the super-voxel grid, and does not grow with
the resolution above the scale of super-voxels. The method is particularly efficient to render large, low-density,
heterogeneous volumes, which should otherwise be defined by enormously high resolution voxel grids, and where
the average free path length would cross many voxels.

1. Introduction

Simulating multiple scattering and rendering inhomoge-
neous participating media in a realistic way are challenging
problems [RT87, Rus94, LBC95, CPP∗05, Fat09]. The most
accurate approaches are based on Monte Carlo quadrature
and trace photons or importons (i.e. visibility rays) randomly
in the medium [JC98, PKK00, QXFN07] (Figure 1).

Generating a single step of the random path involves the
sampling of the free path traveled by the photon before scat-
tering, deciding whether or not absorbtion happens, and fi-
nally sampling the new scattering direction. Absorbtion han-
dling and the determination of the new scattering direction
are based on the local properties of the medium, thus these
tasks can be solved by evaluating relatively simple formu-
lae that need just a few variables, which are either globally
available or can be determined from the actual position.

Free path sampling is also simple when the medium is ho-
mogeneous since the next scattering point will depend just
on the constant extinction coefficient of the medium. How-
ever, in inhomogeneous media having position dependent
density, free path sampling should gather information about
the continuously changing extinction coefficient along the
way of the photon [CSI09].

A popular method for exploring the volume to decide the

Figure 1: Monte Carlo global illumination rendering of in-
homogeneous participating media of 40963 effective resolu-
tion. The cloud is rendered at 1.2 seconds, the smoke at 8
seconds on an NVIDIA GeForce 480 GPU.

position of scattering is ray marching that takes small steps
along the ray and assumes that between steps the density is
constant. For participating media defined by voxel arrays, a
safe step size is comparable to the edge length of the voxel.
Ray marching should take a lot of steps until collision if the
average density is low, i.e. the expected free path is long,
and the density has high frequency variations or the voxel
array has high resolution, i.e. the steps must be small to al-
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low the assumption on constant density between them. In
high resolution voxel arrays, ray marching will dominate the
rendering time.

Another possibility for free path sampling is Woodcock
tracking that advances in the media with random length steps
instead of the constant length steps of ray marching. The
expected length of the random steps is determined by the
maximum extinction coefficient of the volume. Conceptu-
ally, Woodcock tracking is similar to Russian roulette in the
sense that both of them randomly decide whether or not a
complicated operation is executed and then scale the result
in order to compensate those cases when the random de-
cision does not require the execution of the computation.
Woodcock tracking offers free path sampling with correct
expected values and randomly varying number of steps. As
the length of random steps is governed by the maximum ex-
tinction coefficient, the probability that we save computa-
tion time with respect to ray marching is high if the varying
extinction coefficient is close to the maximum value. How-
ever, in cases when the extinction is much higher in a small
portion of the volume than in the rest, Woodcock tracking
becomes prohibitively inefficient.

Our objective is to generalize Woodcock tracking and
make it efficient even for participating media where the max-
imum extinction is far from the extinction values of most
points. This paper proposes an efficient free path sampling
method for volumes where we have not only the density val-
ues of the voxels, but also an upper-bounding function for
which free path sampling is straightforward. If the volume
is available as a high resolution voxel array, then the bound-
ing function can be computed before rendering starts. In case
of procedurally generated volumes [EMP∗03], the bounding
function can be obtained directly from the procedural defi-
nition, without generating the high resolution and therefore
very large voxel array.

The paper is structured in the following way. In Section 2
we survey the previous work on free path sampling. Sec-
tion 3 presents our new method. In Section 4 the method is
applied for voxel data and volumes generated procedurally
with multi-scale noise. Section 5 discusses a photon map-
ping global illumination renderer that incorporates the pro-
posed free path sampling algorithms. This system has been
implemented in CUDA. Finally, Section 6 presents results
and performance evaluation as well.

2. Light attenuation and free path sampling

In participating media radiance L is attenuated along ray
p⃗(s) = p⃗start + ω⃗s of origin p⃗start and direction ω⃗ by ab-
sorbtion and out-scattering, which results in an exponential
decay:

L(s) = L(0) · exp

−
s∫

0

σt(p⃗(s′))ds′

 (1)

where σt(p⃗) is the extinction coefficient that defines the
probability density that photon-particle collision happens in
point p⃗ provided that the photon arrived at this point.

The integral of the extinction coefficient is also called the
optical depth of this interval and is denoted by τ:

τ(s0,s1) =

s1∫
s0

σt(p⃗(s′))ds′. (2)

Monte Carlo methods generate discrete light path samples
and approximate integral quadratures by the weighted sum
of the contribution of these paths. The error of the approxi-
mation can be reduced by importance sampling that places
the discrete samples with a frequency that is proportional to
the integrand. Sampling proportionally to a prescribed func-
tion can be done by the inversion method. The inversion
method first calculates the probability density as the normal-
ization of the original function, then obtains the desired cu-
mulative probability distribution (CDF) as the integral of the
probability density, and finally generates the discrete sam-
ples by inverting the CDF for values that are uniformly dis-
tributed in the unit interval.

The CDF of the free path length s along ray p⃗(s) is

P(s) = 1− exp(−τ(0,s)). (3)

Thus, free path length s corresponding to a uniform random
number r is the solution of the following equation:

r = P(s) ⇔ − log(1− r) = τ(0,s). (4)

When the medium is inhomogeneous, the extinction coef-
ficient is not constant but is represented by a voxel grid or by
other finite elements. In this case, the usual approach is ray
marching that takes small steps ∆s along the ray and checks
when the Riemann sum approximation of the optical depth
gets larger than − log(1− r):

n−1

∑
i=0

σt(p⃗(i∆s))∆s ≤− log(1− r)<
n

∑
i=0

σt(p⃗(i∆s))∆s. (5)

Unfortunately, this algorithm is biased [RSK08] and re-
quires a lot of voxel array fetches, especially when the voxel
array is large and the average extinction is small.

Woodcock tracking [WMHL65] (also called as fictitious
interaction tracking, pseudo-scattering, hole-tracking, self-
scattering or delta-tracking) provides an unbiased alternative
to ray marching, and samples the free path with the follow-
ing randomized algorithm:

1. Generate tentative path length s using the maximum ex-
tinction coefficient σmax in the volume.

2. Accept the tentative collision point with probability
σt(p⃗(s))/σmax.

3. If the collision is rejected, then the particle’s direction is
not altered and a similar sampling step is repeated from
the tentative collision point.
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We do not repeat the proof [Col68] that this method is unbi-
ased here since our new sampling strategy will also contain
Woodcock tracking as a special case, and we shall prove the
unbiasedness for the general case.

Woodcock tracking becomes very inefficient when the
maximum extinction coefficient is much larger than the ex-
tinction coefficient in a particular domain of the volume,
since here the acceptance probability, σt(p⃗(s))/σmax, will
be very small, which requires the sampling of a lot of ten-
tative scattering points [Lep10]. In the Hole geometry pack-
age [Ans], the application developer should decompose the
geometry to roughly homogeneous regions where Woodcock
tracking can be executed with different maximum extinction
parameters. However, this approach requires the inclusion of
a fictitious scattering at each crossed boundary of different
regions, where a new random sample needs to be generated
and the sample process repeated, which degrades perfor-
mance when the path crosses many regions. In [SKTMC10]
Woodcock tracking has been extended to piece-wise con-
stant upper-bounding functions. In this paper we further
generalize Woodcock tracking for arbitrary upper-bounding
functions that are obtained either during pre-processing or
on-the-fly taking advantage of the procedural definition.

3. The new method

Free path sampling is equivalent to the solution of equa-
tion (4) for path length s. If the extinction coefficient and
consequently the optical depth are available in a simple al-
gebraic form defined by a few parameters, then the solu-
tion is straightforward and requires just the fetching of these
parameters from the main memory. However, if the opti-
cal depth can only be computed from many data, which
happens when the extinction coefficient is specified by a
high-resolution voxel array, then the sampling process will
be slow. To solve this problem, we modify the volume by
adding virtual “material” or particles in a way that the total
density will follow a simple function. One might think that
modifying the material density would also change the light
radiance inside the volume resulting in a distorted rendering
solution, which is obviously not desired. Fortunately, this is
not necessarily the case if the other two free properties of
the virtual material, namely the albedo and the phase func-
tion are appropriately defined. Virtual particles do not alter
the radiance inside the medium if they do not change the
energy and the direction of photons during scattering. This
requirement is met if the virtual particle has albedo 1, and its
phase function is a Dirac-delta, since in this case the colli-
sion with a virtual particle alters neither the photon’s energy
nor its direction with probability 1, so the virtual material
does not affect the light’s radiance (Figure 2).

More formally, we handle heterogeneous volumes by
mixing additional virtual particles into the medium to aug-
ment the extinction coefficient to a simpler upper-bounding
function σmax(p⃗). For original extinction coefficient σt(p⃗),

High density
region

Low density
region

Photon Free
path

Real
collision

Modified density that is
appropriate for free path sampling

Photon Virtual
collision

Real
collision

Real particle and its
scattering lobe

Virtual particle and its
scattering lobe

Figure 2: Virtual particles modify the density but not the
radiance since their albedo is 1 and their phase function is
a Dirac-delta.

we have to find the extinction coefficient σv(p⃗) of the virtual
particles, so that in the combined medium of real and vir-
tual particles the extinction coefficient is σmax(p⃗) = σt(p⃗)+
σv(p⃗). During scattering we have to determine whether it
happened on a real or on a virtual particle. As sampling is re-
quired to generate random points with a prescribed probabil-
ity density, it is enough to solve this problem randomly with
the proper probabilities. As the extinction parameters define
the probability density of scattering, ratios σt(p⃗)/σmax(p⃗)
and σv(p⃗)/σmax(p⃗) give us the probabilities whether scatter-
ing happened on a real or on a virtual particle, respectively.

3.1. Free path sampling with virtual particles

Having added the virtual particles, free path sampling is ex-
ecuted in the following steps:

1. Generate path length s using the upper-bounding extinc-
tion coefficient function σmax(p⃗(s)).

2. When a potential scattering point p⃗ is identified, we de-
cide randomly with probability σt(p⃗)/σmax(p⃗) whether
scattering happened on a real or on a virtual particle. If
only virtual scattering occurred, then the particle’s direc-
tion is not altered and a similar sampling step is repeated
from the scattering point.

Note that this algorithm is quite similar to that of Wood-
cock tracking. The key difference is that we do not require
the maximum extinction coefficient be a global constant, but
allow arbitrary non-negative virtual particle density σv(p⃗).

3.2. Piece-wise polynomial upper-bound

Free path length s in the combined medium of the real and
virtual particles is obtained by solving the following equa-
tion, which is the adaptation of equation (4) for the medium

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.



László Szirmay-Kalos, Balázs Tóth, Milán Magdics / Free Path Sampling in High Resolution Inhomogeneous Participating Media

containing both the real and the virtual particles:

− log(1− r) =
s∫

0

σmax(p⃗(s′))ds′. (6)

If we have a simple representation for σmax(p⃗), then the
scattering point in the combined medium can be found in
a simpler way than identifying the scattering point of the
medium containing only the real particles.

super-voxels

is stored inmaxσ

original voxels

is stored in

super-voxel grid points
max

)(max p
r

σ is a polynomial 

interpolation

Figure 3: Super-voxel grid that encodes upper-bounding
density σmax(p⃗).

In this paper we assume that the upper-bounding σmax(p⃗)
is a piece-wise polynomial function defined in a low-
resolution grid. The voxels of this low-resolution grid are
much larger than the actual voxels defining the true extinc-
tion coefficient σt(p⃗), and are called super-voxels (Figure 3).
We note that other upper-bounding functions might also be
used if the solution of equation (6) is straightforward for
them.
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Figure 4: 3D DDA algorithm to visit super-voxels.

We execute a 3D DDA like voxel traversal [FTK86,
AW87] on the super-voxels and find the super-voxel that
contains the root of equation (6) (Figure 4). The 3D DDA
algorithm is based on the recognition that the boundaries of

the cells are on three collections of parallel planes, which
are orthogonal to the x, y, and z axes, respectively. The algo-
rithm maintains three ray parameters representing the next
intersection points with these plane collections. The mini-
mum of the three ray parameters represents the exit point of
the current cell. To step onto the next cell, an increment is
added to this ray parameter. The increments corresponding
to the three plane collections are constants for a given ray.

As super-voxels are visited one after the other, we check
whether the root of equation (6) is in this super-voxel. The
inequalities selecting the super-voxel n that contains the
scattering point are:

n−2

∑
i=0

τmax(si,si+1)≤− log(1− r)<
n−1

∑
i=0

τmax(si,si+1) (7)

where

τmax(si,si+1) =

si+1∫
si

σmax(p⃗(s′))ds′

is the optical depth of the ray segment intersecting the ith
super-voxel, computed for the upper-bounding extinction
coefficient.

The important differences of ray marching and the pro-
posed approach are that steps ∆si = si+1−si are not constant
but are obtained as the length of the intersection of the ray
and the super-voxel, and sample points si are consequently
on super-voxel boundaries.

When in step n the inequalities are first satisfied, the
super-voxel of the scattering point is located. The actual
scattering point is computed by solving the following equa-
tion for s:

τ(sn−1,s) =− log(1− r)−
n−2

∑
i=0

τmax(si,si+1) (8)

where the right side is computed from the uniform sample r
and the optical depth of previously visited super-voxels.

To find the super-voxel containing the scattering point and
to locate the scattering point inside this super-voxel, we need
to compute the optical depth along the ray segments inter-
secting the super-voxels. Let us consider a single super-voxel
and use normalized coordinates X ,Y,Z that are all zeros at
the left-front-lower corner of the super-voxel and all ones
at its right-back-upper corner (Figure 5). The optical depth
integral of a single super-voxel can be computed from the
extinction coefficients σ000, . . . ,σ111 of the corners, where
the first, second, and third indices denote the X ,Y,Z coordi-
nates, respectively.

The ray enters the super-voxel at entry point e⃗ and leaves
it at exit point o⃗. Points p⃗ of the ray segment that are inside
the super-voxel satisfy the following equation:

p⃗(s) = (1− t(s))⃗e+ t(s)⃗o

where t(s) = (s− si)/∆si ∈ [0,1]. As extinction coefficient
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Figure 5: Processing of a single super-voxel. The ray enters
the super-voxel at entry point e⃗ and leaves it at exit point
o⃗. The extinction coefficient equals to σ000, . . . ,σ111 at the
corner points, and is a polynomial of ray parameter t inside
the super-voxel.

σmax(p⃗) is a tri-variate polynomial of the Cartesian coordi-
nates, which are linear functions of parameter t, the extinc-
tion coefficient will be a polynomial of parameter t:

σmax(p⃗(s(t))) =
M

∑
d=0

cdtd , (9)

where (c0, . . . ,cM) are the coefficients of the polynomial.
Thus, the optical depth between entering this super-voxel
and parameter s is:

τmax(si,s) =
s∫

si

σmax(p⃗(s′))ds′ =

∆si

t∫
0

σmax(p⃗(s(t′)))dt′ = ∆si

M

∑
d=0

cd
td+1

d +1
. (10)

The total optical depth τ(si,si+1) in super-voxel i can be ob-
tained by substituting the end point, i.e. s = si+1 or t = 1:

τmax(si,si+1) = ∆si

M

∑
d=0

cd
d +1

. (11)

When the super-voxel that contains the scattering point
is identified, the root of equation (6) can be obtained by
the false position root finding method since the function is
monotonically increasing.

3.3. Algorithmic details

The algorithm to find the next scattering point p⃗ taking the
ray of origin p⃗start and direction ω⃗ is a nested loop. The outer
loop is responsible for random decisions whether a virtual
or a real particle is hit. The inner loop is a 3D DDA voxel
traversal of the super-voxel grid.

SuperVoxelTraversal( p⃗start , ω⃗ ⇒ p⃗)
do // Loop until a real scattering is found

τsample =− log(1− rnd()); // Sample’s optical depth
o⃗ = p⃗start ; s⃗o = 0; τ⃗o = 0; // Exit point
while τ⃗o < τsample do // 3D DDA loop

e⃗ = o⃗; s⃗e = s⃗o; τ⃗e = τ⃗o; // Entry point
s⃗o = Ray parameter of the next intersection;
if (out of volume) return "No scattering";
o⃗ = r⃗+ s⃗oω⃗; // Next exit point
PolyCoeff(⃗e, o⃗ ⇒ c0, . . . ,cM); // Polynomial
τ⃗o = τ⃗e +(s⃗o − s⃗e) ·∑M

d=0 cd/(d +1);
endwhile
SolvePolyInt(c0, . . . ,cM , s⃗e, s⃗o, τ⃗e, τ⃗o,τsample ⇒ s, t);
σmax = ∑M

d=0 cdtd ; // Max extinction coefficient
p⃗ = p⃗start + s⃗ω; // Next scattering point
Preal = σt(p⃗)/σmax; // Probability of real scattering

while (rnd() > Preal ); // Is real or virtual?
return "Scattering"; // Real scattering is found

end

The outer loop starts with sampling the optical depth
τsample by transforming a random value uniformly dis-
tributed in the unit interval, generated by the rnd() function.
Then, the inner loop visits super-voxels, maintaining entry
point e⃗ with its ray parameter s⃗e and optical depth τ⃗e, as well
as exit point o⃗ with its ray parameter s⃗o and optical depth τ⃗o.
Initially, the entry point is the origin of the ray with zero ray
parameter and optical depth, then the parameters of the entry
point are updated with the parameters of the exit point of the
previous super-voxel at each DDA step. The ray parameter
of the exit point s⃗o is determined by the 3D DDA algorithm,
and the location of the exit point is obtained by inserting the
ray parameter into the equation of the ray. Function PolyCo-
eff computes the coefficients of the polynomial of the upper-
bounding optical depth in this super-voxel. The optical depth
of the exit point is computed as the sum of that of the en-
try point and the integral of the polynomial in this super-
voxel. The inner loop is executed until the optical depth of
the exit point becomes larger than the sampled optical depth,
i.e. when the super-voxel contains the sample point. Exiting
the inner loop, we have to identify the exact location of the
scattering point, which is the solution of the sampling equa-
tion by calling SolvePolyInt, which returns ray parameter s
and its normalized version t. The upper-bounding extinction
coefficient σmax is computed by substituting the ray param-
eter into the polynomial, and the location of the scattering
by inserting the ray parameter into the equation of the ray.
At the end of the outer loop, we decide randomly whether
this point corresponds to a real or a virtual scattering having
fetched extinction σt(p⃗) from the original volume.

The computation of the polynomial coefficients by Poly-
Coeff and the solution of the sampling equation by Solve-
PolyInt depend on the actual form of the upper-bounding
function. In the following subsections, we provide the imple-
mentations for the piece-wise constant and tri-linear cases.
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3.3.1. Piece-wise constant upper-bound

If the upper-bounding σmax(p⃗) is constant in a super-voxel,
then c0 = σmax(p⃗) in this super-voxel and all other coeffi-
cients are zero. The optical depth will be a linear function of
ray parameter t, thus equation τ(si,s) = τsample − τ⃗e can be
solved directly:

SolvePolyInt(c0, s⃗e, s⃗o, τ⃗e, τ⃗o,τsample ⇒ s, t)
t = (τsample − τ⃗e)/(s⃗o − s⃗e)/c0;
s = s⃗e +(s⃗o − s⃗e) · t;

end

3.3.2. Tri-linearly interpolated upper-bound

In the case of tri-linear upper-bound, the polynomial
of σmax(p⃗(t)) is cubic with coefficients (c0,c1,c2,c3).
The coefficients are computed from the extinction values
σ000, . . . ,σ111 in the eight corners and from the end points of
the ray segment. First, we transform the entry and exit points
into normalized coordinates, where the left-front-lower cor-
ner of the super-voxel is the origin and the right-back-upper
corner has coordinates (1,1,1), resulting in transformed entry
point E⃗ and exit point O⃗. In this space, the extinction coef-
ficient is the following function of normalized coordinates
X ,Y,Z:

σmax(X ,Y,Z) = σ000X̄Ȳ Z̄ +σ100XȲ Z̄ +σ010X̄Y Z̄+

σ001X̄Ȳ Z +σ110XY Z̄ +σ101XȲ Z +σ011X̄Y Z +σ111XY Z
(12)

where we used the shorthand notation Ā = 1 − A. Substi-
tuting the ray of equation (X(t),Y (t),Z(t)) = (1− t)E⃗ + tO⃗
into this equation, the maximum coefficient is expressed as
a cubic polynomial of t, where the similar powers of t are
grouped and the coefficients are expressed. The computation
is summarized in the following function:

PolyCoeff(⃗e, o⃗ ⇒ c0,c1,c2,c3)

E⃗ = Transform entry point e⃗ to the unit voxel cube;
O⃗ = Transform exit point e⃗ to the unit voxel cube;
(∆x,∆y,∆z) = (O⃗x − E⃗x, O⃗y − E⃗y, O⃗z − E⃗z);
dxyz = σ111 −σ011 −σ101 −σ110 +σ100 +σ010 +σ001 −σ000;
dxy = σ000 −σ100 −σ010 +σ110;
dxz = σ000 −σ100 −σ001 +σ101;
dyz = σ000 −σ010 −σ001 +σ011;
dx = σ100 −σ000; dy = σ010 −σ000; dz = σ001 −σ000;
c3 = dxyz∆x∆y∆z;
c2 =(E⃗z∆x∆y+ E⃗y∆x∆z+ E⃗x∆y∆z)dxyz+

dyz∆x∆y+dxz∆x∆z+dyz∆y∆z;
c1 = (E⃗xE⃗z∆x+ E⃗xE⃗z∆y+ E⃗xE⃗y∆z)dxyz +dx∆x+dy∆y+dz∆z+

(⃗ey∆x+ e⃗x∆y)dxy +(E⃗z∆x+ E⃗x∆z)dxz +(E⃗z∆y+ E⃗y∆z)dyz;
c0 = E⃗xE⃗yE⃗zdxyz + E⃗xE⃗ydxy + E⃗xE⃗zdxz + E⃗yE⃗zdyz+

E⃗xdx + E⃗ydy + E⃗zdz +σ000;
end

Function SolvePolyInt finds the solution of τ(si,s) =
τsample − τ⃗e by the false position method (regula falsi):

SolvePolyInt(c0, . . . ,cM , s⃗e, s⃗o, τ⃗e, τ⃗o,τsample ⇒ s, t)
tlow = 0; thigh = 1;
τlow = τ⃗e; τhigh = τ⃗o;
while (thigh − tlow > EPS)

t = tlow +(thigh − tlow) · (τsample − τlow)/(τhigh − τlow);
τ = τ⃗e +(s⃗e − s⃗o) ·∑M

d=0 cdtd+1/(d +1);
if (τ < τsample) tlow = t, τlow = τ;
else thigh = t, τhigh = τ;

endwhile
s = (s⃗o − s⃗e) · t + s⃗e;

end

3.4. Attenuation calculation with virtual particles

In both physically based and simplified simulations, we of-
ten have to determine the total radiance attenuation between
two points. If scattering is ignored, the total attenuation be-
tween the source and the camera will determine the image. In
volume shadowing, the attenuation between the source and
the current sample point is needed to find the shadowing fac-
tor. In Monte Carlo simulation, paths are usually completed
by deterministic connections [DBB03], and the attenuation
along this connection is included into the estimator. If the
path is started in the source (photon tracing), then scattering
points are connected to the eye. Alternatively, in path trac-
ing, scattering points are usually connected to the sources.

In all these calculations the integral of the optical depth
should be computed for the line segment. The optical depth
can be obtained by ray marching at the expense of many
texture fetches. Another possibility is the direct application
of the proposed free path sampling. We decide randomly
whether or not the free path is longer than the line segment.
If the random free path is longer, the radiance at the start
point is added to the end without attenuation. If the random
free path is shorter, then no radiance is added. Although the
expected value of this estimator provides correct results, its
variance is too high.

Thus, we apply the concept of virtual particles in a better
way. The optical depth is decomposed to two terms corre-
sponding to the upper-bounding extinction and the negative
extinction of the virtual particles:

s∫
0

σt(p⃗(s′))ds′ =
s∫

0

σmax(p⃗(s′))ds′−
s∫

0

σv(p⃗(s′))ds′.

(13)
The integral of the upper-bounding extinction can be ana-
lytically computed. The integral of the extinction in virtual
particles is estimated by a numerical quadrature. If the differ-
ence of the maximum and the actual extinction coefficients
(the extinction of the virtual particles) has relatively low
variation, then a few samples can provide acceptable accu-
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racy. This idea, its advantages and drawbacks are similar to
those of the separation of the main part used in Monte Carlo
approaches. If the upper-bounding extinction coefficient is
tight, then the estimation error can be greatly reduced. How-
ever, if the upper-bound is a very crude approximation and is
farther from the extinction coefficient than the constant zero
function, then this method is not worth using.

4. Obtaining the upper-bounding extinction function

In this section we consider two volume representations in-
cluding voxel arrays and procedurally defined participating
media, and discuss how the upper-bounding extinction func-
tion can be obtained for them.

4.1. Voxel arrays

Measured or computed volumes are often defined in a dis-
cretized form, as a 3D regular grid of voxel values, which
can have large resolution. If we use ray marching, then the
computational complexity of free path sampling will be lin-
ear in terms of the linear voxel grid resolution. In order to
use the proposed method, we need an upper-bounding func-
tional representation defined on a low-resolution grid. An
upper-bounding zero-order polynomial, i.e. a single maxi-
mum value of voxels in each super-voxel is easy to find.
For tri-linear or higher-order functional upper-bounds, we
use the following algorithm. First, the original voxel values
are considered only at the super-voxel corners and a function
is fitted to these samples. Then, the original voxel values in-
side each super-voxel are compared to the initial functional
representation, and the maximum difference between them
is obtained. Finally, this maximum difference is added to the
functional upper-bound. Note that using this method, neigh-
boring super-voxels may have different values at the shared
super-voxel corners. The increased storage is small since the
super-voxel grid has a low-resolution. However, should it
pose problems, the maximum value at each shared corner
is computed, and assigned to the corner as the value of every
super-voxel sharing it.

4.2. Procedural volumes

Volumes are collections of small particles of given cross sec-
tions and varying densities. Thinking of the forms of a cloud,
fire or smoke, we note that these phenomena have some gen-
eral smooth shapes, which are perturbed by random and high
frequency fluctuations. Thus, at point p⃗ the varying density
and consequently extinction coefficient σt(p⃗) are defined
by smooth shape function F(p⃗) that is randomly perturbed
by noise n(p⃗). Here perturbation may mean, for exam-
ple, addition (σt(p⃗) = F(p⃗)+n(p⃗)), multiplication (σt(p⃗) =
F(p⃗) ·n(p⃗)), the translation of variable p⃗ by a random offset
(σt(p⃗) = F(p⃗+ n⃗(p⃗))), or any combination of these.

Natural noise has fractal characteristics, or from another

1
S

2
S

3
S

Figure 6: 1D value noise defined as the sum of interpolated
white noise functions of different scales.

point of view, its power density function decreases at higher
frequencies unlike that of the white noise, which delivers
the same power on all frequencies. To create a fractal noise,
we can add up elemental noise functions defined on differ-
ent scales. On a given scale, elemental noise function ν(p⃗)
is defined on a 3D integer grid and smoothed in between
the grid points with separable interpolating filters. In value
noise [Lew89] the values are specified randomly in grid
points. Gradient noise [Per85] assigns random gradients or
planes to the grid points, evaluates the signed distance be-
tween these planes and the point of interest, and interpolates
the distances. Wavelet noise [CD05] is generated by an algo-
rithm similar to that of value noise but obtains scales as dif-
ferent smoothed versions of the same white noise. All these
noise construction methods result in a tri-variate polynomial
of Cartesian coordinates X ,Y,Z inside a voxel, where the co-
efficients can be computed from the given values or gradi-
ents in the grid points. In the simplest case of tri-linearly
interpolated value noise, the polynomial is a tri-linear func-
tion.

From the perspective of our proposed method, it is im-
portant to note that the elemental noise function can easily
be lower-bounded and upper-bounded between grid points
since the tri-linear interpolating filters are monotonic. For
value noise, the minimum and the maximum of the function
inside the grid cell are the minimum and maximum of the
values assigned to the corners of the cell. As random values
of interval [0,1) are assigned to the corners, we obtain for the
minimum and the maximum νmin = 0 and νmax = 1, respec-
tively. For gradient noise, a signed distance is calculated for
the sampling point, which is then interpolated. The signed
distance is in [−

√
3,
√

3] in a unit sized cube and tri-linear
interpolation also keeps the resulting value in this interval,
thus νmin =−

√
3 and νmax =

√
3.

In a multi-scale noise representation, the linear grid reso-
lution is doubled at each scale, introducing new “octaves”.
Meanwhile, the amplitude is decreased at higher scales,
which is responsible for the 1/ f -noise characteristics. Gen-

c⃝ 2010 The Author(s)
Journal compilation c⃝ 2010 The Eurographics Association and Blackwell Publishing Ltd.



László Szirmay-Kalos, Balázs Tóth, Milán Magdics / Free Path Sampling in High Resolution Inhomogeneous Participating Media

erally, a multi-scale noise function is

n(p⃗) =
N

∑
l=1

S(l)ν(2l p⃗) (14)

where S(l) defines the amplitude at scale l. A typical selec-
tion of the amplitudes is S(l) = 1/2l . Fractal noise was suc-
cessfully applied to static 3D volumes and animated 3D, also
called 4D volumes, including clouds, fire, and other natural
phenomena [Per85].
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Figure 7: At level k the multi-scale noise can be enclosed by
two piece-wise polynomial functions defined on the super-
voxel grid. The distance between the upper and lower
bounds depends on the amplitudes of the ignored scales.

If we replace the scales above k by the bounds, the multi-
scale noise can also be lower-bounded and upper-bounded
without generating the finer scales:

n(k)(p⃗)+νminŜ(k+1) ≤ n(p⃗)≤ n(k)(p⃗)+νmaxŜ(k+1) (15)

where

Ŝ(k+1) =
N

∑
l=k+1

S(l)

is the amplitude sum of scales above k.

If we select the scale and the super-voxel grid so that
shape function F is smooth enough in a super-voxel to allow
its approximation by an upper-bound Fmax, then the bound-
ing scheme can also be generalized for the extinction coef-
ficient. In the cases of additive and multiplicative perturba-
tions, the upper-bound is obtained with the maximum shape
function Fmax and the tri-linear upper-bound of the noise,
which is also a tri-linear function in the super-voxels. In this
paper we examine only additive and multiplicative noise ma-
chines, but also note that the more general case of point
translation can also be traced back to these simple cases
if the gradient of the shape function is upper-bounded and
lower-bounded in the super-voxels.

5. The complete rendering algorithm

The discussed free path sampling method can be integrated
into Monte Carlo algorithms, e.g. photon tracing, path trac-
ing, bi-directional path tracing, or photon mapping. Photon

tracing, path tracing, and bi-directional path tracing connect
scattering points deterministically to the sources, to the cam-
era, or to already generated scattering points. Note that only
real scattering points should be connected, virtual scattering
points serve only as an aid to find the real scattering loca-
tions.

For demonstration, we implemented a photon mapping
application, which decomposes rendering to a shooting and
a gathering phase. During shooting, multiple scattering of
photons is calculated in the volume, registering the real scat-
tering points, the photon powers, and the incident directions.
The products of photon powers and phase functions eval-
uated for the incident and camera directions are summed
in a 3D array of gathering super-voxels, thus we save the
expensive construction of a kd-tree and also nearest neigh-
bor search. Finally, the volume is rendered from the camera
accumulating the attenuation and the radiance in gathering
super-voxels that are along the view ray.

In a gathering super-voxel at point x⃗, the in-scattered radi-
ance L(⃗x, ω⃗′) is obtained from the in-scattered flux [JC98]:

L(⃗x, ω⃗′) =
1

σt (⃗x)
d2Φ(⃗x, ω⃗′)

dωdV
(16)

where Φ(⃗x, ω⃗′) is the in-scattered flux from direction ω⃗′.
The in-scattered flux is obtained from the photon hits stored
in the gathering super-voxel. The radiance scattered towards
the eye being in direction ω⃗ is

Ls(⃗x, ω⃗) = a(⃗x)∑i ∆ΦiP(⃗ω′
i , ω⃗)

∆V
(17)

where a(⃗x) is the albedo of the volume, P(⃗ω′, ω⃗) is the phase
function, Φi and ω⃗′

i are the power and the incident direction
of the ith photon hit, respectively, and ∆V is the volume of
the gathering super-voxel where photon hits are considered.

In medical simulation, we are interested in the radiation
dose of the body tissues, which requires another visualiza-
tion scheme. Instead of the scattered radiance, the power in-
scattered from all directions per unit volume is calculated:

I(⃗x) = ∑i ∆Φi

∆V
(18)

Then, assigning a pseudo-color to the radiation dose by an
appropriate transfer function, the volume is rendered with
standard alpha blending.

6. Results

We demonstrate the proposed free path sampling scheme
in two applications: (1) multiple scattering simulation in a
high-resolution voxel array and (2) global illumination ren-
dering of procedurally generated participating media. The
proposed methods have been implemented in CUDA and
their performance measured on an NVIDIA GeForce 480
GPU.
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6.1. Radiation transfer in voxel arrays

(a) Ray marching (9 sec) (b) Woodcock tracking (7 sec)

(c) Piece-wise constant σmax (d) Piece-wise linear σmax

(1.8 sec) (1.4 sec)

Figure 8: Radiation dose calculation in the Visible Human
of 5123 resolution voxel array. The power density is shown
with pseudo-colors obtained with the transfer function of the
right bar, and is superimposed onto the density field visual-
ized with the transfer function of the left bar. Times refer to
building the photon map containing 32 million hits.

To measure the performance, we took the standard Visi-
ble Human data set and resampled it at 5123 resolution to fit
it into the GPU memory, simulated multiple scattering and
computed the radiation dose with four different free-path
sampling methods: (a) classical ray marching, (b) Wood-
cock tracking, (c) the new method using piece-wise constant
upper-bound, and (d) with piece-wise tri-linear upper bound.
The resolution of the super-voxel grid was 163. The images
obtained with 32 million photons are shown by Figure 8.
Note that the visual quality is similar since all methods use
the same probability density and the same number of the
samples, but the photon shooting times significantly differ
since the cost of finding the scattering point is method de-
pendent.

Upper-bound 13 23 43 83 163 323

Constant 5 10 12 14 18 15
Linear 5 11 14 19 22 16

Table 1: The effect of the super-voxel grid resolution on the
performance, which is expressed as million rays per second
traced in the Visible Human data set.

The dependence of the performance on the super-voxel

Ray marching (50 FPS) 1 sample (110 FPS)

2 samples (100 FPS) 4 samples (90 FPS)

Figure 9: Attenuation calculation for the Visible Human,
with ray marching visiting voxels, and with the proposed
scheme taking 1, 2, and 4 samples in each super-voxel. Ren-
dering times are measured at 600×600 image resolution.

grid resolution is shown by Table 1. At higher super-voxel
resolution, rays cross more super-voxels, which requires
slightly more computation. On the other hand, increasing the
resolution makes the upper-bound tighter, thus it reduces the
probability of virtual collisions and consequently the num-
ber of texture fetches from the large voxel array. This effect
is strong if the extinction coefficient has high variation, thus
the optimal tradeoff depends on this factor.

We tested the proposed attenuation calculation algorithm
in an X-ray like scenario (Figure 9). Assuming a constant
radiance planar source behind the body, the pixel intensity is
proportional to the exponential of the optical depth between
the source and the camera along the ray of the pixel. Here,
the images are obtained by ray marching and by the pro-
posed attenuation estimation method taking 1, 2, or 4 sam-
ples in each super-voxel. The step size of ray marching is
equal to the linear size of the voxel in the original 5123 res-
olution array. The resolution of the super-voxel grid is 323.
Note that the image rendered with as few as 4 samples per
super-voxel is very similar to the image computed with more
effort due to the fact that the upper-bounding function is a
good approximation and is integrated analytically.
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6.2. Rendering participating media defined by Perlin
noise

First we take a lower density variation and a higher density
variation cloud model defined by ellipsoids multiplied by 8-
octave and 12-octave Perlin noise machines, which corre-
spond to 2563 and 40963 effective resolution voxel arrays,
respectively. The resolution of the super-voxel grid is 163 in
both cases. The scene is illuminated by a single point source.
The images of the lower-variation and higher-variation cloud
models are shown by Figures 10 and 11. The shooting phase
traces 8 million photon rays. The resolutions of the gathering
super-voxels are 643 and 2563 for low-resolution and high-
resolution clouds, respectively.

Table 2 compares the ray shooting performance obtained
with classical ray marching (RM), Woodcock tracking, and
the new method using piece-wise constant and tri-linear
upper-bounds. Note that even at low resolution, the proposed
method is faster than ray marching and Woodcock tracking.
The advantage of the new method over Woodcock track-
ing becomes very significant when the volume density has
higher variation, and the tri-linear upper-bound adds a 10%
speed increase to the method of piece-wise constant upper-
bound.

Method LV/2563 HV/2563 LV/40963 HV/40963

RM 1.1 1.0 0.05 0.05
Woodcock 3.3 2.0 2.2 1.2

New/constant 9.1 8.1 5.2 4.9
New/linear 10 8.9 6.3 5.7

Table 2: Performance expressed as millions of shot rays
per second when rendering the lower-variation (LV) and
the higher-variation (HV) cloud models generated at both
2563 and 40963 resolutions. Note that ray marching (RM)
becomes prohibitively slow for high resolution models. Nei-
ther Woodcock tracking nor the new method are sensitive
to the resolution increase, and the new method outperforms
Woodcock tracking even for the lower-variation model when
the cloud fills 60% of the complete voxel array. In case of
the higher-variation model where clouds occupy about 10%
of the volume, Woodcock tracking degrades due to the high
number of tentative collisions, but the new method maintains
its speed since the piece-wise tri-linear approximation be-
comes quite accurate in this case.

When the resolution is higher, ray marching becomes very
slow, but Woodcock tracking and the new method are still
fast, and the new method keeps its advantage over Woodcock
tracking for inhomogeneous volumes (Table 3). The perfor-
mance advantage of the tri-linear upper-bounding function is
about 10% for these models. This factor, similarly to the op-
timal resolution of the super-voxel grid, is scene dependent.

The image resolution is 1000× 1000 which is equivalent
to 1 million gathering rays. We implemented ray marching

Method 2563 5123 20483 81823 327683

RM 1.1 0.5 0.1 0.02 0.005
Woodcock 3.3 2.9 2.5 2.0 1.6

New/constant 9.1 7.8 7.1 5.8 5.1
New/linear 10 8.5 8.0 6.0 5.5

Table 3: Analysis of the scalability. The numbers show the
million rays per second with respect to the effective resolu-
tion of the cloud model. The new method scales very well
and its slight performance decrease is due to the more ex-
pensive procedural evaluation of the additional octaves in
the extinction coefficient.

2563 effective resolution 40963 effective resolution

Ray marching, 8 seconds Ray marching, 180 seconds

New method, 0.9 seconds New method, 1.2 seconds

Figure 10: Single cloud, lower-variation models generated
at 2563 and 40963 effective resolutions. The resolution of the
super-voxel grid is 163. We traced 8 million shooting and 1
million gathering rays.

and the proposed attenuation calculation for gathering. Ray
marching and the new method could trace 2.4 million gath-
ering rays per second and 7.2 million rays per second in the
2563 resolution volume, respectively. For the higher, 40963

resolution case, the performance of ray marching dropped
below 0.1 million rays per second, while the new method
still maintained the 3.6 million gathering rays per second
speed. With 8 million shooting and 1 million gathering rays,
the new method can render multiple scattering effects in a
volume of 40963 effective resolution in a second.

Figure 12 shows a frame of a smoke animation sequence
where the procedural model is based on 4D Perlin noise. We
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2563 effective resolution 40963 effective resolution

Ray marching, 8 seconds Ray marching, 190 seconds

New method, 0.9 seconds New method, 1.2 seconds

Figure 11: Multi cloud, higher-variation models generated
at 2563 and 40963 effective resolutions. The resolution of the
super-voxel grid is 163. We traced 8 million shooting and 1
million gathering rays.

Figure 12: A frame of a smoke animation rendered with mul-
tiple scattering. The effective resolution is 40963, the super-
voxel grid resolution is 1283.

defined 12 octaves for the spatial domain, which is equiva-
lent to 40963 effective resolution. Shooting 50 million pho-
tons and rendering an image take 8 seconds.

7. Conclusions

This paper proposed an effective method to sample the
free path length and to compute the optical depth in inho-
mogeneous participating media, and we used this method
to find the global illumination solution of high-resolution
voxel arrays or procedurally defined volumetric models. The
strength of the method is that its computational complexity
depends just on the resolution of the super-voxel data and
is independent of the number of additional scales, thus vol-
umes of very large effective resolution can be rendered with
multiple scattering effects in seconds. This kind of scala-
bility is due to the randomization of the volume by adding
virtual particles and deciding randomly whether a collision
happened on these or on real particles. Randomization may
have overhead, which is small if the super-voxels absorb
the major variations of the original data, and thus the scales
above the super-voxels have small amplitude. This is fortu-
nately the case of many natural phenomena having smoother
large shapes and small random fluctuations.

Unlike procedurally defined models, measured voxel ar-
rays should be stored into the GPU memory, which limits
their resolution. As our proposed method accesses the high
resolution array just to decide whether or not a real colli-
sion happened, and otherwise uses only the low-resolution
array of super-voxels, it is a natural extension to store only
the low-resolution array in the GPU memory and copy the
real extinction coefficients from the CPU memory only when
they are needed. This extension would allow practically ar-
bitrarily high resolution models to be simulated, which is
badly needed in medical applications. However, the data ac-
cess pattern of the high resolution array is very incoherent,
so realizing a caching scheme for it in the GPU memory is
not simple and is considered as a future work.
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