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Abstract
This paper offers a novel approach to the indirect photon mapping method. The placement of photons acting as
virtual light sources is regarded as a cheap sampling scheme, allowing for the reuse of a complete shooting path
at the cost a single shadow ray. In order to counter for its shortcomings, the variance reduction technique called
weighted importance sampling is applied. This allows for the extension of the indirect photon mapping method
for specular settings, because the weighting function can mimic surface BRDF characteristics disregarded by
the virtual light source placement. On the other hand, weighted importance sampling also helps to eliminate
the “corner spikes” caused by the fact that shooting cannot mimic the geometric factor of the connection rays.
Advantages and problems are examined for several weighting schemes.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing

1. Introduction

1.1. Importance sampling schemes

A global illumination algorithm should compute the average
of the radiance values leaving the area visible through a pixel
in the direction of the eye:

CA =
1
A
·
∫

A

L(~x,ωeye)d~x,

whereA is the area of the surface on which the average is
computed. We shall call this area as thearea of interest. Ac-
cording to the rendering equation, the radiance is the sum of
the emission and a reflected component that can be obtained
by reflecting the radiance of all points that are visible from
here. Let us concentrate on the reflected component since the
emission is easy to compute. The average of the reflected ra-
diance is:

CA =
1
A
·
∫

A

∫

Ω

Lin(~x,ω′) · fr (ω′,~x,ωeye) ·cosθ′~x dω′d~x,

whereLin is the incoming radiance at point~x, fr is the BRDF
andθ′~x is the angle between the surface normal and incoming
directionω′. The product of the BRDF and the cosine of the
incoming angle is thescattering densityw(ω′,~x,ωeye) that
expresses the probability density that scattering connects di-
rectionsωeyeandω′.

This integral is often evaluated by Monte-Carlo quadra-

ture. Classical Monte-Carlo quadrature would takeM ran-
dom samples with probability densityp(~x,ω′) and approxi-
mate the integral as follows:

CA =
1
A
·
∫

A

∫

Ω

Lin(~x,ω′) ·w(ω′,~x,ωeye) dω′d~x≈

1
M
·

M

∑
n=1

Lin(~xn,ω′n) ·w(ω′n,~xn,ωeye)
A · p(~xn,ω′n)

. (1)

In order to reduce the variance, probability densityp should
mimic the integrand. This approach is calledimportance
sampling. Sampling according to a given probability density
is carried out by transforming uniformly distributed num-
bers provided by the pseudo or quasi random number gen-
erator. This transformation requires the inverse of the cumu-
lative probability distribution, thusp should be analytically
integrable and we should be able to compute the inverse of
its integral. These requirements can be met only ifp is al-
gebraically simple, which makes it impossible to accurately
mimic the integrand. On the other hand, the incoming radi-
anceLin is not available, but we have to use another Monte-
Carlo estimation to approximate it.

Examining the integrand we can note that this is the prod-
uct of the incoming radiance and the scattering density.
Since it seems hopeless to sample according to this product,
Monte-Carlo algorithms try to mimic either the incoming ra-
diance, or the scattering probability to the eye. The first ap-
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proach is followed ingathering algorithms, such as in path
tracing, while the second is inshooting algorithms.

Random walks are either initiated from samples of light
sources or samples of our area of interest. Walks are termi-
nated according to the rules of Russian roulette or by some
deterministic decimation scheme9. If a walk is to be con-
tinued, another point, visible from the previous one, is sam-
pled according to one of the above strategies. At the vis-
ited points, this offers an estimate of either the outgoing eye
potential, or the incoming radiance. However, these points
usually do not coincide with light sources or our area of in-
terest. Therefore, deterministic steps are needed to complete
the light paths so that some contribution can be calculated
along them. Unfortunately, the distribution of these connec-
tions will not fit into the importance sampling scheme. This
makes the rendering of scenes with specular surfaces diffi-
cult.

1.2. Indirect photon mapping

The indirect photon mapping is also calledinstant radiosity
4 or the virtual light sources method9. It is a shooting type
algorithm, where all the points visited by shooting walks and
their respective power values are stored. Thereafter, in order
to calculate pixel values one by one, the points on the sur-
faces visible through the pixels are connected to all of these
photon hits in a deterministic manner, as depicted in Figure
1. These hits act like abstract, point-like light sources. There-
fore, they are often referred to asvirtual light sources. Even
in the diffuse case, the deterministic step produces obvious
artifacts. Hits near a surface element have more influence on
its incoming radiance. Importance sampling would choose
paths through near surface points with a high probability,
and scale down their contribution appropriately. In the deter-
ministic sampling scheme, however, it is relatively rare that
a virtual light source is near the surface point. In turn, when
it happens, its contribution is not scaled down. In the image
this will appear as bright spots near the virtual light sources,
and lack of proper illumination in between (Figure2). If all

Figure 1: Indirect photon mapping.

surfaces are considered to be diffuse, the estimator for the
radiance in the indirect photon mapping method will be the

Figure 2: Diffuse scene rendered by indirect photon map-
ping.

following:

Lout(~x,ωeye) = ∑
~y

a~x

π
cosθ~x cosθ′~y
|~x−~y|2

a~y

π
Φin

~y , (2)

wherea is the local albedo, summation is performed for ev-
ery virtual light source~y, and Φin

~y is the incoming power

provided by the shooting walk algorithm. The terma~y
π Φin

~y is
the radiant exitance characteristic for a virtual light source.

It is straightforward to extend the technique to handle
specular surfaces9. If the incoming direction of the radiance
at the shooting walk nodes is also stored, the local BRDF
may be evaluated. However, in case of a highly specular, vis-
ible surface, the deterministic connections may or may not
coincide with the directions where the scattering density is
high. Therefore, variance of the estimator will be high. This
means that large specular highlights will appear where the
virtual light sources suggest, but nothing in between (Fig-
ure3). For the general case, the radiance is estimated by the
sum:

Lout(~x,ωeye) = ∑
~y

w(ω~y→~x,~x,ωeye)w(ωin,~y,ω~y→~x)
|~x−~y|2 Φin

~y .

(3)
The direction of the incoming radianceωin is also to be
stored for every photon hit.

If the indirect photon mapping method is viewed as a
gathering type algorithm, the weak point is revealed. As the
next point of the walk is chosen, continuing from the surface
point visible from the pixel, we are limited to the enumera-
tion of the stored virtual light sources. However, as discussed
above, it would be beneficial to choose a direction according
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Figure 3: Specular scene rendered by indirect photon map-
ping.

to a probability distribution that mimics the scattering prob-
ability, and thus, a surface point whose distribution mimics

fr (ω~y→~x,~x,ωeye) ·
cosθ~x cosθ′~y
|~x−~y|2 .

This means, we have a sampling scheme that has some
shortcomings, and a probability distribution that we know
would be better. This problem has been observed in other bi-
directional path tracing5, 8 and in classical photon mapping
3. In bi-directional path tracing the problem has been solved
by multiple importance sampling7, while in photon mapping
by multi-step final gathering2.

In indirect photon mapping, however, we usually do not
want to create random gathering paths including more than
one rays, since that would destroy the efficiency of the algo-
rithm (an exception is the hit of ideal mirrors or refracting
surfaces, when we cannot do anything else). Thus indirect
photon mapping requires another solution that do not applies
additional paths for final gathering but uses only those paths
that have been created by photon shooting. This is exactly
the case where weighted importance sampling can be effec-
tively applied.

Weighted importance sampling is a rather old method6

which has received just little attention in rendering so far.
The exception is the pioneering paper1, which applied this
technique in stochastic iteration of the radiosity equation.
However, we believe that this technique has more potential
in other algorithms, and particularly in the non-diffuse set-
ting. In the next section we review the theory of weighted
importance sampling.

2. Weighted Importance Sampling

Suppose that integralF =
∫
V f (z) dz needs to be evaluated

by Monte-Carlo quadrature. The classical Monte-Carlo ap-
proach would compute the following sum:

F =
∫

V

f (z) dz≈ 1
M
·

M

∑
n=1

f (zn)
p(zn)

,

where p is the sampling density, which should mimic in-
tegrand f . In practical casesp cannot mimic f accurately
and be appropriate for sample generation at the same time.
Weighted importance sampling6, 1 attacks this problem by
working with two probability densities simultaneously. Sup-
pose we have probability densityg(z) that is quite good in
mimicking integrandf but we are unable to sample accord-
ing to this density due to its algebraic complexity. On the
other hand, we also have another probability densityp(z)
which is possibly poorer in mimickingf but is appropriate
to construct a sampling scheme. Weighted importance sam-
pling proposes the following quadrature formula to estimate
the integral:

∫

V

f (z) dz≈ ∑M
n=1 f (zn)/p(zn)

∑M
n=1 g(zn)/p(zn)

,

where sampleszn are obtained with probability densityp. In
order to demonstrate that this quadrature is asymptotically
equivalent to the original Monte-Carlo quadrature, let us di-
vide both the numerator and the denominator by the number
of samplesM:

1
M ·∑M

n=1 f (zn)/p(zn)
1
M ·∑M

n=1 g(zn)/p(zn)
.

The new numerator is the same as the original integral
quadrature, thus it converges to the integral. The denomina-
tor, on the other hand, is the Monte-Carlo estimate of integral∫
V g(z) dz. Sinceg is a probability density function, its in-

tegral is 1, thus the new quadrature converges to the same
value as the old quadrature.

The question is whether or not this new estimate is better
than the old one. This depends on whether or not densityg is
better in mimickingf thanp. The formal analysis6 results in
the following formulae. The mean square error afterM sam-
ples obtained with weighted importance sampling, including
both the bias and the variance, is

εWIS≈ 1
M
·
∫

V

(
f (z)
p(z)

−F · g(z)
p(z)

)2

· p(z) dz. (4)

For the sake of comparison, we also present the mean square
error of the classical Monte-Carlo estimator applying stan-
dard importance sampling:

εCMC≈ 1
M
·
∫

V

(
f (z)
p(z)

−F

)2

· p(z) dz. (5)
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Instead of repeating the proof, we provide an intuitive expla-
nation. Suppose thatp is poor in sampling a particular sub-
domainS. It does not generate samples here as frequently
as would be required by the large integrand values. If classi-
cal Monte-Carlo method is used, when we are lucky enough
to generate a sample in sub-domainS, we get a large in-
tegrand value that is divided by a small probability, which
results in a huge term in the average approximating the in-
tegral. These infrequent but huge values are responsible for
large fluctuations. However, if this method is used with a
probability densityg according to weighted importance sam-
pling, then the approximating sum is also divided by the sum
of g(zn)/p(zn) terms. When we are not lucky to sample the
important regions,g will also be small, thus the denominator
will be smaller than one. Dividing by the denominator, the
approximation will be scaled up. However, when the sam-
ple is in important sub-domainS, the Monte-Carlo estimate
and the denominator will be increased simultaneously by a
larger value. Since the fluctuations of the numerator and the
denominator are thus synchronised, the fluctuation of their
ratio is decreased.

However, weighted importance sampling may have not
only advantages but disadvantages as well. It has a small
bias, which disappears quickly. On the other hand, ifp is al-
ready good enough to mimic integrandf , then the numerator
will be stable. The fluctuation of the denominator around 1
appears just as an additional noise.

Thus we can conclude that weighted importance sampling
should be used carefully, since it can reduce and increase the
variance depending on the mimicking capabilities of the two
probability densities. Let us examine the difference of the
mean square errors of the estimator of classical Monte-Carlo
and the estimator of weighted Monte-Carlo:

εCMC− εWIS =

1

M
·
∫

V

F ·
(

g(z)
p(z)

−1

)
·
(

2 f (z)
p(z)

−F

(
g(z)
p(z)

+1

))
· p(z) dz

In order to get improvement, this difference should be posi-
tive. Note that the integrand of the error difference is a prod-
uct where the first factor cannot be negative, but the second
and the third factors can. Thus improvement is guaranteed if
the second and the third terms change their signs simultane-
ously. There are two cases. The quadrature overestimates in
z if f (z)/p(z) > F . On the other hand, the quadrature under-
estimates inz if f (z)/p(z) < F .

In case of overestimation the new probability densityg
should meet the following requirement in order to make the
integrand of the error difference positive:

f (z)
F

≥ g(z) > p(z).

It means thatg should also result in overestimation but its
level should be decreased. This statement can be proven by
checking that in this case both the second and the third fac-
tors are positive.

In case of underestimation, the requirement of the inte-
grand of the error difference being positive is

f (z)
F

≤ g(z) < p(z),

thus the level of underestimation should be decreased. In this
case the second and third factors are both negative.

3. Application of weighted importance sampling for
indirect photon mapping

In the classic indirect photon mapping algorithm, we solve
the radiance equation for a pixel using multi-dimensional
samples, or light paths, generated using the shooting walk
method. However, a large number of effects, most of them
directly affecting image quality would better be handled us-
ing samples generated with the gathering walk sampling
scheme. This means, that when we evaluate the radiance es-
timator for a pixel, we may weight samples generated by one
method using the probabilities of the sample being generated
by the other one.

However, it is not obvious how the deterministic formula
given in Equation3 can be interpreted as a Monte-Carlo in-
tegration of the form specified by Equation1. The division
with the generation probability of the sample is hidden in
the termΦin

~y , the incoming radiance estimated by the shoot-
ing walk algorithm.

3.1. Single step weighting

Shooting creates a radiance estimate for the entire scene,
represented by the virtual light sources. When we calculate
the incoming radiance using the indirect photon mapping
method, we actually sample radiance in a limited way. The
scattering probability to the eye would mimic transfer bet-
ter, and could therefore be used as a weighting probability
g1(~y). However, we need to know the probabilityp1(~y) of a
surface point being visited by the shooting. Because of the
importance sampling approach of shooting, this probability
is proportional to the radiance, estimated by the virtual light
sources themselves. Therefore, it is possible to derive an ap-
proximation for p1(~y) from their density distribution. If a
proximity search for the nearestn nodes of the totalN is car-
ried out, and the area of the surface element within which
they are located isA, then:

p1(~y) =
n

AN

The weighting probability is that of a gathering step:

g1(~y) =
w(ωeye,~x,ω~y→~x)cosθ′~y

a(~x,ωeye)|~x−~y|2
That makes the final estimator:

Lout
1 (~x,ωeye) =

∑~y
w(ωeye,~x,ω~y→~x)w(ωin,~y,ω~y→~x)

|~x−~y|2 Φin
~y

∑~y
w(ωeye,~x,ω~y→~x)cosθ′~y

a(~x,ωeye)|~x−~y|2
1

p1(~x)
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The similarity of the numerator and the denominator is obvi-
ous. The disturbing high-variance terms disregarded by the
original sampling scheme, namely the scattering probability
to the eye and the distance to the virtual light source appear
in both. Singularities cancel out, removing extreme values
and associated image artifacts. However,p1(~y) is only an
approximation. In the image, the former bright singularities
will be traded for far less intense light and dark spots (Fig-
ures4 and5).

Figure 4: Diffuse scene rendered without weighting and us-
ing single step weighting in 14 seconds on an Athlon 950
Mhz computer

Figure 5: Specular scene rendered without weighting and
using single step weighting in 20 seconds.

3.2. Full path weighting

A sample produced by shooting is a light path, for which the
generation probability is known exactly. Although surface
points used in the previous approach are also produced, we
can only approximate their generation probabilities. There-
fore, we would need a weighting probability distribution
over the domain of light paths, not surface points. The re-
cursive shooting walk scheme provides such a distribution.
Whenever we calculate the contribution of a light path repre-
sented by a virtual light source, we can determine the prob-
ability with which gathering would have generated the path.

The probability of generating the path that ends in the

virtual light source at~zl−1 by shooting will be denoted by
p2(ω1, . . . ,ωl−2,~zl−1).

p2(~z0,ω1, . . . ,ωl−2) =

plight(~z0,ω1) ·
l−2

∏
i=1

w(−ωi ,~zi ,ωi+1)cosθ~zi+1

|~zi −~zi+1|2

wherel is the number of surface nodes,zi denotes consecu-
tive nodes of the path andωi denotes consecutive directions.
z0 is the starting point andw(−ω0,~z0,ω1) can be interpreted
as the emittance distribution of the light source (see Figure
6 for nomenclature). This probability can be calculated for
every virtual light source during shooting. The probability of

pixel

zl

zl-1

z2

z1

z0

ωl-1

ω2

ωl = ωeye

ω1 θ θ’

θ

θθ’

θ’

deterministic
connection

virtual
light
source

area of interest

path
generated
by shooting

path that could
have been
generated
by gathering

Figure 6: Full path weighting.

generating the same path using gathering would be:

g2(~zl ,−ωl−1, . . . ,−ω2) =
l−2

∏
i=1

w(ωi+2,~zi+1,−ωi+1)cosθ′~zi

|~zi −~zi+1|2

In order to be able to calculateg2(~x), we would need to store
information about the entire shooting path. However, only

the ratio g2(~zl ,−ωl−1,...,−ω2)
p2(~z0,ω1,...,wl−2)

is needed. The ratio of the two
factors within the numerator and the denominator that cor-
respond to the same path section, without the distance terms
that obviously cancel out, is:

fr (ωi+2,~zi+1,−ωi+1)cosθ~zi+1
cosθ′~zi

fr (−ωi ,~zi ,ωi+1)cosθ′~zi
cosθ~zi+1

=
fr (ωi+2,~zi+1,−ωi+1)

fr (−ωi ,~zi ,ωi+1)
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The product of these ratios, and the terms for the first and
the last segment that do no cancel out give:

g2(−ωl−1, . . . ,−ω2,~z1)
p2(ω1, . . . ,wl−2,~y)

=

=
w(ωeye,~zl ,−ωl )cosθ′~zl−1

fr (−ωl−1,~zl−1,ωl )

|~zl −~zl−1|2
·

· |~z0−~z1|2
plight(~z0,ω1)cosθ~z1

fr (ω2,~z1,−ω1)

The first part of the product can be computed knowing the in-
coming direction of the photon hits, and the second part can
be calculated for every virtual light source during shooting.
A notable special case is, whenl = 2, andω2 is the direction
pointing from the photon hit towards the surface point visi-
ble from the pixel. For these paths,w(ω2,~z1,−ω1) can not
be calculated for primary photon hits in advance.

Although the previous formulae appear to be convinc-
ing, they do not consider occlusions. Whenever the last,
deterministic connection of a gathering walk failed, be-
cause the light source was occluded, the resulting path
would not possibly be generated by shooting. Therefore,
a portion of g2(~zl ,−ωl−1, . . . ,−ω2) is not sampled by
p2(~z0,ω1, . . . ,wl−2). This means that the expected value of
the denominator of the weighted importance sampling for-
mula will not be one. However, the method works for special
scenes where the light source is visible from every surface
point, like the ones in Figures7 and8.

Figure 7: Scene with unocculded light source rendered with-
out weighting and with full path weighting in 14 seconds

In order to attack the problem of occluded scenes, several
unbiased and biased alternatives are available. It is possi-
ble to provide a modified gathering-type probability distribu-
tion that does not include paths never generated by shooting.
Firstly, a gathering walk could always be continued when
the light source sample to be reached is not visible from its
end point. Secondly, the gathering walk could fully exclude
Russian roulette and the deterministic step, and go on until
it reaches a light source. The formulae are easily modified to
include new continuation probabilities. Although both meth-
ods assure that the expected value of the estimator is correct

Figure 8: Scene with specularity and caustic effects ren-
dered without weighting and with full path weighting in 14
seconds.

(these methods are unbiased), they assign high generation
probabilities to longer paths. This distortion increases the
variance of the estimator that appears on the image as mis-
placed shadows (Figure9).

Figure 9: Scene rendered using modified gathering proba-
bility for weighting.

Biased methods, on the other hand, aim at the approxi-
mate normalization of the densityg in the subdomain which
can be generated byp. In particular it means that we have
to approximate the probability that a gathering path ends
in a light source, or, alternatively, arrives in a point from
which the light source is visible. Note that this probability
has usually low variation over the pixels, thus very few gath-
ering paths can result in accurate estimates. We propose to
compute this probability separately for those set of pixels in
which the same object is seen.
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4. Conclusion

Weighted importance sampling is a promising tool to im-
prove the quality of cheap sampling schemes that are not
good enough in mimicking the integrand. In fact, we sample
according to the cheap scheme, but pretend that we got the
samples with a more accurate and therefore more expensive
scheme.

In this paper we presented a work in progress, in which
the problems of deterministic connections in random paths
have been eliminated by weighting the samples by the prob-
ability density of gathering walks. Although the basic idea is
simple, the combination of the two probabilities is not triv-
ial. The problem is that both shooting and gathering tend to
sample zero contribution paths, and the sets of these irrele-
vant paths are different in shooting and gathering. One way
of solving this is to consider only the last, and the most prob-
lematic reflection of the paths.

The second approach is to assume a gathering density
which cannot generate paths which cannot be obtained with
shooting. However, such densities are not as good quality
as the original path tracing applying Russian roulette, which
degrades the performance. Speaking of the images gener-
ated, these methods generally lack at creating proper shad-
ows. The viewer could feel that misplaced lights are traded
for misplaced shadows. This is because weighting ignores
virtual light sources not visible from a surface point. It would
be desirable to find a mathematically reasonable way to
make use of the occlusion information carried by these vir-
tual light sources.

Finally, we have the possibility to normalize the probabil-
ity densities in those subregions which can be obtained by
the cheap sampling schemes. This is left for the future work.
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