
Chapter 6

VISIBILITY

CALCULATIONS

In order to be able to calculate the color of a pixel we must know from

where the light ray through the pixel comes. Of course, as a pixel has

�nite dimensions, there can be an in�nite number of light rays going into

the eye through it. In contrast to this fact, an individual color has to be

assigned to each pixel, so it will be assumed, at least in this chapter, that

each pixel has a speci�ed point, for example its center, and only a single

light ray through this point is to be considered. The origin of the ray | if

any | is a point on the surface of an object. The main problem is �nding

this object. This is a geometric searching problem at discrete positions on

the image plane. The problem of �nding the visible surface points can be

solved in one of two ways. Either the pixels can be taken �rst and then the

objects for the individual pixels. In this case, for each pixel of the image,

the object which can be seen in it at the special point is determined; the

object which is closest to the eye will be selected from those falling onto

the pixel point after projection. Alternatively, the objects can be examined

before the pixels. Then for the whole scene the parts of the projected

image of the objects which are visible on the screen are determined, and

then the result is sampled according to the resolution of the raster image.

The �rst approach can solve the visibility problem only at discrete points

and the accuracy of the solution depends on the resolution of the screen.

This is why it is called an image-precision method, also known as an

image-space, approximate, �nite-resolution or discrete method. The second

143

144 6. VISIBILITY CALCULATIONS

approach handles the visible parts of object projections at the precision of

the object description, which is limited only by the �nite precision of
oating

point calculations in the computer. The algorithms falling into this class are

categorized as object-precision algorithms, alternatively as object-space,

exact, in�nite-resolution or continuous methods [SSS74].

The following pseudo-codes give a preliminary comparison to emphasize

the di�erences between the two main categories of visibility calculation al-

gorithms. An image-precision algorithm typically appears as follows:

ImagePrecisionAlgorithm

do

select a set P of pixels on the screen;

determine visible objects in P ;

for each pixel p 2 P do

draw the object determined as visible at p;

endfor

while not all pixels computed

end

The set of pixels (P) selected in the outer loop depends on the nature

of the algorithm: it can be a single pixel (ray tracing) or a row of pixels

(scan-line algorithm) or the pixels covered by a given object (z-bu�er algo-

rithm). An object-precision algorithm, on the other hand, typically appears

as follows:

ObjectPrecisionAlgorithm

determine the set S of visible objects;

for each object o 2 S do

for each pixel p covered by o do

draw o at p;

endfor

endfor

end

If N;R2 are the number of objects and the number of pixels respectively,

then an image-precision algorithm always has a lower bound of
(R2) for

its running time, since every pixel has to be considered at least once. An

6. VISIBILITY CALCULATIONS 145

object-precision algorithm, on the other hand, has a lower bound of
(N)

for its time complexity. But these bounds are very optimistic; the �rst one

does not consider that �nding the visible object in a pixel requires more

and more time as the number of objects grows. The other does not give any

indication of how complicated the objects and hence the �nal image can be.

Unfortunately, we cannot expect our algorithms to reach these lower limits.

In the case of image-space algorithms, in order to complete the visibility

calculations in a time period proportional to the number of pixels and in-

dependent of the number of objects, we would have to be able to determine

the closest object along a ray from the eye in a time period independent

of the number of objects. But if we had an algorithm that could do this,

this algorithm could, let us say, be used for reporting the smallest number

in a non-ordered list within time period independent of the number of list

elements, which is theoretically impossible. The only way of speeding this

up is by preprocessing the objects into some clever data structure before

the calculations but there are still theoretical limits.

N/2

N/2

Figure 6.1: Large number of visible parts

In the case of object-space algorithms, let us �rst consider an extreme

example, as shown in �gure 6.1. The object scene is a grid consisting of N=2

horizontal slabs and N=2 vertical slabs in front of the horizontal ones. If the

projections of the two groups fall onto each other on the image plane, then

the number of the separated visible parts is �(N2). This simple example

shows that an object-precision visibility algorithmwith a worst-case running

time proportional to the number of objects is impossible, simply because of

the potential size of the output.

146 6. VISIBILITY CALCULATIONS

Since the time spent on visibility calculations is usually overwhelming in

3D rendering, the speed of these algorithms is of great importance. There

is no optimal method in either of the two classes (possessing the above-

mentioned lower limit speed). This statement, however, holds only if the

examinations are performed for the worst case. There are algorithms that

have optimal speed in most cases (average case optimal algorithms).

6.1 Simple ray tracing

Perhaps the most straightforward method of �nding the point on the surface

of an object from where the light ray through a given pixel comes, is to take

a half-line starting from the eye and going through (the center of) the pixel,

and test it with each object for intersection. Such a ray can be represented

by a pair (~s; ~d), where ~s is the starting point of the ray and ~d is its direction

vector. The starting point is usually the eye position, while the direction

vector is determined by the relative positions of the eye and the actual pixel.

Of all the intersection points the one closest to the eye is kept. Following this

image-precision approach, we can obtain the simplest ray tracing algorithm:

for each pixel p do

~r = ray from the eye through p;

visible object = null;

for each object o do

if ~r intersects o then

if intersection point is closer than previous ones then

visible object = o;

endif

endif

endfor

if visible object 6= null then

color of p = color of visible object at intersection point;

else

color of p = background color;

endif

endfor

6.1. SIMPLE RAY TRACING 147

When a ray is to be tested for intersection with objects, each object

is taken one by one, hence the algorithm requires O(R2N) time (both in

worst and average case) to complete the rendering. This is the worst that

we can imagine, but the possibilities of this algorithm are so good | we

will examine it again in chapter 9 on recursive ray tracing | that despite

its slowness ray tracing is popular and it is worth making the e�ort to

accelerate it. The algorithm shown above is the \brute force" form of ray

tracing.

The method has a great advantage compared to all the other visible sur-

face algorithms. It works directly in the world coordinate system, it can

realize any type of projection, either perspective or parallel, without using

transformation matrices and homogeneous division, and �nally, clipping

is also done automatically (note, however, that if there are many objects

falling outside of the viewport then it is worth doing clipping before ray

tracing). The �rst advantage is the most important. A special character-

istic of the perspective transformation | including homogeneous division

| is that the geometric nature of the object is generally not preserved af-

ter the transformation. This means that line segments and polygons, for

example, can be represented in the same way as before the transformation,

but a sphere will no longer be a sphere. Almost all types of object are

sensitive to perspective transformation, and such objects must always be

approximated by transformation-insensitive objects, usually by polygons,

before the transformation. This leads to loss of geometric information, and

adversely a�ects the quality of the image.

The key problem in ray tracing is to �nd the intersection between a ray

~r(~s; ~d) and the surface of a geometric object o. Of all the intersection

points we are mainly interested in the �rst intersection along the ray (the

one closest the origin of the ray). In order to �nd the closest one, we

usually have to calculate all the intersections between ~r and the surface of

o, and then select the one closest to the starting point of ~r. During these

calculations the following parametric representation of the ray is used:

~r(t) = ~s+ t � ~d (t 2 [0;1)): (6:1)

The parameter t refers to the the distance of the actual ray point ~r(t)

from the starting point ~s. The closest intersection can then be found by

comparing the t values corresponding to the intersection points computed.

148 6. VISIBILITY CALCULATIONS

6.1.1 Intersection with simple geometric primitives

If object o is a sphere, for example, with its center at ~c and of radius R,

then the equation of the surface points ~p is:

j~p� ~cj = R (6:2)

where j � j denotes vector length. The condition for intersection between the

sphere and a ray ~r is that ~p = ~r for some ~p. Substituting the parametric

expression 6.1 of ray points for ~p into 6.2, the following quadratic equation

is derived with parameter t as the only unknown:

(~d)2 � t2 + 2 � ~d � (~s� ~c) � t+ (~s� ~c)2 �R2 = 0 (6:3)

This equation can be solved using the resolution formula for quadratic equa-

tions. It gives zero, one or two di�erent solutions for t, corresponding to

the cases of zero, one or two intersection points between the ray and the

surface of the sphere, respectively. An intersection point itself can be de-

rived by substituting the value or values of t into expression 6.1 of the ray

points. Similar equations to 6.2 can be used for further quadratic primitive

surfaces, such as cylinders and cones.

The other type of simple primitive that one often meets is the planar

polygon. Since every polygon can be broken down into triangles, the case

of a triangle is examined, which is given by its vertices ~a;~b and ~c. One

possibility of calculating the intersection point is taking an implicit equation

| as in the case of spheres | for the points ~p of the (plane of the) triangle.

Such an equation could look like this:

((~b� ~a)� (~c� ~a)) � (~p � ~a) = 0 (6:4)

which, in fact, describes the plane containing the triangle. Substituting

the expression of the ray into it, a linear equation is constructed for the

unknown ray parameter t. This can be solved easily, and always yields a

solution, except in cases where the ray is parallel to the plane of the triangle.

But there is a further problem. Since equation 6.4 describes not only the

points of the triangle, but all the points of the plane containing the triangle,

we have to check whether the intersection point is inside the triangle. This

leads to further geometric considerations about the intersection point ~p. We

6.1. SIMPLE RAY TRACING 149

can check, for example, that for each side of the triangle, ~p and the third

vertex fall onto the same side of it, that is:

((~b� ~a)� (~p � ~a)) � ((~b� ~a)� (~c� ~a)) � 0;

((~c�~b)� (~p �~b)) � ((~b� ~a)� (~c� ~a)) � 0;

((~a� ~c)� (~p� ~c)) � ((~b� ~a)� (~c� ~a)) � 0

(6:5)

The point ~p falls into the triangle if and only if all the three inequalities

hold.

An alternative approach is to use an explicit expression of the inner points

of the triangle. These points can be considered as positive-weighted linear

combinations of the three vertices, with a unit sum of weights:

~p(�; �;
) = � � ~a+ � �~b+
 � ~c;

�; �;
 � 0;

� + � +
 = 1

(6:6)

The coe�cients �; � and
 are also known as the baricentric coordinates

of point ~p with respect to the spanning vectors ~a;~b and ~c (as already de-

scribed in section 5.1). For the intersection with a ray, the condition ~p = ~r

must hold, giving a linear equation for the four unknowns �; �;
 and t:

� � ~a+ � �~b+
 � ~c = ~s + t � ~d;

�+ � +
 = 1
(6:7)

The number of unknowns can be reduced by merging the second equation

into the �rst one. Having solved the merged equation, we have to check

whether the resulting intersection point is inside the triangle. In this case,

however, we only have to check that � � 0; � � 0 and
 � 0.

The two solutions for the case of the triangle represent the two main

classes of intersection calculation approaches. In the �rst case, the sur-

face of the object is given by an implicit equation F (x; y; z) = 0 of the

spatial coordinates of the surface. In this case, we can always substitute

expression 6.1 of the ray into the equation, getting a single equation for the

unknown ray parameter t. In the other case, the surface points of the ob-

ject are given explicitly by a parametric expression ~p = ~p(u; v), where u; v

are the surface parameters. In this case, we can always derive an equation

system ~p(u; v) � ~r(t) = ~0 for the unknowns, u; v and t. In the �rst case,

150 6. VISIBILITY CALCULATIONS

the equation is only a single one (although usually non-linear), but objects

usually only use a portion of the surface described by the implicit equation

and checking that the point is in the part used causes extra di�culties.

In the second case, the equation is more complicated (usually a non-linear

equation system), but checking the validity of the intersection point requires

only comparisons in parameter space.

6.1.2 Intersection with implicit surfaces

In the case where the surface is given by an implicit equation F (x; y; z) = 0,

the parametric expression 6.1 of the ray can be substituted into it to arrive

at the equation f(t) = F (x(t); y(t); z(t)) = 0, thus what has to be solved is:

f(t) = 0 (6:8)

This is generally non-linear, and we cannot expect to derive the roots in

analytic form, except in special cases.

One more thing should be emphasized here. From all the roots of f(t),

we are interested only in its real roots (complex roots have no geometric

meaning). Therefore the problem of �nding the real roots will come to the

front from now on.

Approximation methods

Generally some approximation methodmust be used in order to compute

the roots with any desired accuracy. The problem of approximate solutions

to non-linear equations is one of the most extensively studied topics in

computational mathematics. We cannot give here more than a collection

of related theorems and techniques (mainly taken from the textbook by

Demidovich and Maron [DM87]). It will be assumed throughout this section

that the function f is continuous and continuously di�erentiable.

A basic observation is that if f(a) � f(b) < 0 for two real numbers a and

b, then the interval [a; b] contains at least one root of f(t). This condition

of changing the sign is su�cient but not necessary. A counter example is

an interval containing an even number of roots. Another counter example

is a root where the function has a local minimum or maximum of 0 at the

root, that is, the �rst derivative f 0(t) also has a root at the same place as

f(t). The reason for the �rst situation is that the interval contains more

6.1. SIMPLE RAY TRACING 151

than one root instead of an isolated one. The reason for the second case is

that the root has a multiplicity of more than one. Techniques are known for

both isolating the roots and reducing their multiplicity, as we will see later.

a 1 2 bb

a3

3 12

t

f(t) f(t)
(a)

a 1

2

b b a3 31 2

t

f(t) f(t)
(b)

a

t 1t3

t

f(t) f(t)
(c)

t 2a b b = = = =

Figure 6.2: Illustrations for the halving (a), chord (b) and Newton's (c) method

If f(a) �f(b) < 0 and we know that the interval [a; b] contains exactly one

root of f(t), then we can use a number of techniques for approximating this

root t� as closely as desired. Probably the simplest technique is known as the

halving method. First the interval is divided in half. If f((a+ b)=2) = 0,

then t� = (a+ b)=2 and we stop. Otherwise we keep that half, [a; (a+ b)=2]

or [(a + b)=2; b], at the endpoints of which f(t) has opposite signs. This

reduced interval [a1; b1] will contain the root. Then this interval is halved

in the same way as the original one and the same investigations are made,

etc. Continuing this process, we either �nd the exact value of the root or

produce a nested sequence f[ai; bi]g of intervals of rapidly decreasing width:

bi � ai =
1

2i
(b� a): (6:9)

The sequence contracts into a single value in the limiting case i!1, which

value is the desired root:

t� = lim
i!1

ai = lim
i!1

bi: (6:10)

Another simple technique is the method of chords, also known as the

method of proportional parts. Instead of simply halving the interval [a; b],

it is divided at the point where the function would have a root if it were

linear (a chord) between a; f(a) and b; f(b). If | without loss of generality

152 6. VISIBILITY CALCULATIONS

| we assume that f(a) < 0 and f(b) > 0, then the ratio of the division will

be �f(a)=f(b), giving an approximate root value thus:

t1 = a�
f(a)

f(b)� f(a)
(b� a): (6:11)

If f(t1) = 0, then we stop, otherwise we take the interval [a; t1] or [t1; b],

depending on that at which endpoints the function f(t) has opposite signs,

and produce a second approximation t2 of the root, etc. The convergence

speed of this method is generally faster than that of the halving method.

A more sophisticated technique isNewton's method, also known as the

method of tangents. It takes more of the local nature of the function into

consideration during consecutive approximations. The basic idea is that if

we have an approximation t1 close to the root t
�, and the di�erence between

them is �t, then f(t�) = 0 implies f(t1 + �t) = 0. Using the �rst two terms

of Taylor's formula for the latter equation, we get:

f(t1 + �t) � f(t1) + f 0(t1) � �t = 0 (6:12)

Solving this for �t gives �t � �f(t1)=f
0(t1). Adding this to t1 results in a

new (probably closer) approximation of the root t�. The general scheme of

the iteration is:

ti+1 = ti �
f(ti)

f 0(ti)
(i = 1; 2; 3; : : :): (6:13)

The geometric interpretation of the method (see �gure 6.2) is that at each

approximation ti the function f(t) is replaced by the tangent line to the

curve at ti; f(ti) in order to �nd the next approximation value ti+1. Newton's

method is the most rapidly convergent of the three techniques we have

looked at so far, but only if the iteration sequence 6.13 is convergent. If we

are not careful, it can become divergent. The result can easily depart from

the initial interval [a; b] if for some ti the value of f
0(ti) is much less than that

of f(ti). There are many theorems about \good" initial approximations,

from which the approximation sequence is guaranteed to be convergent.

One of these is as follows. If f(a) � f(b) < 0, and f 0(t) and f 00(t) are non-

zero and preserve signs over a � t � b, then, proceeding from an initial

approximation t1 2 [a; b] which satis�es f 0(t1) � f
00(t1) > 0, it is possible to

compute the sole root t� of f(t) in [a; b] to any degree of accuracy by using

6.1. SIMPLE RAY TRACING 153

Newton's iteration scheme (6.13). Checking these conditions is by no means

a small matter computationally. One possibility is to use interval arithmetic

(see section 6.1.3). There are many further approximation methods beyond

the three basic ones that we have outlined, but they are beyond the scope

of this book.

Reducing the multiplicity of roots of algebraic equations

The function f(t) is algebraic in most practical cases of shape modeling

and also in computer graphics. This comes from the fact that surfaces are

usually de�ned by algebraic equations, and the substitution of the linear

expression of the ray coordinates also gives an algebraic equation. The

term algebraic means that the function is a polynomial (rational) function

of its variable. Although the function may have a denominator, the problem

of solving the equation f(t) = 0 is equivalent with the problem of �nding

the roots of the numerator of f(t) and then checking that the denominator

is non-zero at the roots. That is, we can restrict ourselves to equations

having the following form:

f(t) = a0t
n + a1t

n�1 + : : :+ an = 0 (6:14)

The fundamental theorem of algebra says that a polynomial of degree n (see

equation 6.14 with a0 6= 0) has exactly n roots, real or complex, provided

that each root is counted according to its multiplicity. We say that a root

t� has multiplicity m if the following holds:

f(t�) = f 0(t�) = f 00(t�) = : : : = f (m�1)(t�) = 0 and f (m)(t�) 6= 0 (6:15)

We will restrict ourselves to algebraic equations in the rest of the subsection,

because this special property can be exploited in many ways.

Multiplicity of roots can cause problems in the approximation of the roots,

as we pointed out earlier. Fortunately, any algebraic equation can be re-

duced to another equation of lower or equal degree, which has the same

roots, each having a multiplicity of one. If t�1; t
�
2; : : : ; t

�
k are the distinct

roots of f(t) with multiplicities of m1;m2; : : : ;mk, respectively, then the

polynomial can be expressed by the following product of terms:

f(t) = a0(t� t�1)
m1(t� t�2)

m2 � � � (t� t�k)
mk ; where m1+m2+ : : :+mk = n:

(6:16)

154 6. VISIBILITY CALCULATIONS

The �rst derivative f 0(t) can be expressed by the following product:

f 0(t) = a0(t� t�1)
m1�1(t� t�2)

m2�1 � � � (t� t�k)
mk�1p(t) (6:17)

where

p(t) = m1(t� t�2) � � � (t� t�k) + : : :+ (t� t�1) � � � (t� t�k�1)mk: (6:18)

Note that the polynomial p(t) has a non-zero value at each of the roots

t�1; t
�

2; : : : ; t
�

k of f(t). As a consequence of this, the polynomial:

d(t) = a0(t� t�1)
m1�1(t� t�2)

m2�1 � � � (t� t�k)
mk�1 (6:19)

is the greatest common divisor of the polynomials f(t) and f 0(t), that is:

d(t) = gcd(f(t); f 0(t)): (6:20)

This can be computed using Euclid's algorithm. Dividing f(t) by d(t) yields

the following result:

g(t) =
f(t)

d(t)
= (t� t�1)(t� t�2) � � � (t� t�k) (6:21)

(compare the terms in expression 6.16 of f(t) with those in the expression of

d(t)). All the roots of g(t) are distinct, have a multiplicity of 1 and coincide

with the roots of f(t).

Root isolation

The problem of root isolation is to �nd appropriate disjoint intervals

[a1; b1]; [a2; b2]; : : : ; [ak; bk], each containing exactly one of the distinct real

roots t�1; t
�

2; : : : ; t
�

k, respectively, for the polynomial f(t).

An appropriate �rst step is to �nd a �nite interval containing all the roots,

because it can then be recursively subdivided. Lagrange's theorem helps in

this. It states the following about the upper bound R of the positive roots

of the equation: Suppose that a0 > 0 in expression 6.14 of the polynomial

and ak (k � 1) is the �rst of the negative coe�cients (if there is no such

coe�cient, then f(t) has no positive roots). Then for the upper bound of

the positive roots of f(t) we can take the number:

R = 1 + k

s
B

a0
(6:22)

6.1. SIMPLE RAY TRACING 155

where B is the largest absolute value of the negative coe�cients of the

polynomial f(t). Using a little trick, this single theorem will be enough to

give both upper and lower bounds for the positive and negative roots as

well. Let us create the following three equations from our original f(t):

f1(t) = tnf
�
1
t

�
= 0;

f2(t) = f(�t) = 0;

f3(t) = tnf
�
�1
t

�
= 0

(6:23)

Let the upper bound of their positive roots be R1; R2 and R3, respectively.

Then any positive root t+ and negative root t� of f(t) will satisfy (R comes

from equation 6.22):
1
R1

� t+ � R;

�R2 � t� � � 1
R3

:

(6:24)

Thus we have at most two �nite intervals containing all possible roots. Then

we can search for subintervals, each containing exactly one real root. There

are a number of theorems of numerical analysis useful for determining the

number of real roots in a given interval, such as the one based on Sturm-

sequences [Ral65, Ral69] or the Budan{Fourier theorem [DM87]. Instead of

reviewing any of these here, a simple method will be shown which is easy

to implement and e�cient if the degree of the polynomial f(t) is not too

large.

The basic observation is that if t�i and t�j are two distinct roots of of the

polynomial f(t) and t�i < t�j , then there is de�nitely a value t�i < � � < t�j
between them for which f 0(� �) = 0. This implies that each pair t�i ; t

�

i+1

of consecutive roots are separated by a value (or more than one values) � �i
(t�i < � �i < t�i+1) for which f

0(� �i) = 0 (1 � i � k�1 where k is the number of

distinct roots of f(t)). This is illustrated in �gure 6.3. Note, however, that

the contrary is not true: if � �i and � �j are two distinct roots of f 0(t) then

there is not necessarily a root of f(t) between them. These observations

lead to a recursive method:

� Determine the approximate distinct real roots of f 0(t). This yields the

values � �1 < : : : < � �n0 , where n0 < n (n is the degree of f(t)). Then

156 6. VISIBILITY CALCULATIONS

f(t)

ttt

τ

i i+1

i

Figure 6.3: Roots isolated by the roots of derivative

each of the n0+1 intervals [�1; � �1]; [�
�

1 ; �
�

2]; : : : ; [�
�

n0 ;1] contains either

exactly one root or no roots of f(t). If it is ensured that all the roots

of f(t) are of multiplicity 1 (see previous subsection) then it is easy

to distinguish between the two cases: if f(� �i) � f(�
�

i+1) < 0 then the

interval [� �i ; �
�

i+1] contains one root, otherwise it contains no roots. If

there is a root in the interval, then an appropriate method can be

used to approximate it.

� The approximate distinct real roots of f 0(t) can be found recursively.

Since the degree of f 0(t) is one less than that of f(t) the recursion

always terminates.

� At the point where the degree of f(t) becomes 2 (at the bottom of the

recursion) the second order equation can be solved easily.

Note that instead of the intervals [�1; � �1] and [� �n0;1] the narrower in-

tervals [�R2; �
�

1] and [� �n0; R] can be used, where R2 and R are de�ned by

equations 6.23 and 6.22.

An example algorithm

As a summary of this section, a possible algorithm is given for approximat-

ing all the real roots of a polynomial f(t). It maintains a list L for storing

the approximate roots of f(t) and a list L0 for storing the approximate roots

6.1. SIMPLE RAY TRACING 157

of f 0(t). The lists are assumed to be sorted in increasing order. The nota-

tion deg(f(t)) denotes the degree of the polynomial f(t) (the value of n in

expression 6.14):

Solve(f(t))

L = fg;

if deg(f(t)) < 3 then

add roots of f(t) to L // 0, 1 or 2 roots

return L;

endif

calculate g(t) = f(t)/ gcd(f(t); f 0(t)); // eq. 6.21 and 6.20

L0 = Solve(g0(t)); // roots of derivative

add �R2 and R to L0; // eq. 6.22 and 6.23

a = �rst item from L0;

while L0 not empty do

b = next item from L0;

if g(a) � g(b) < 0 // [a; b] contains one root

t = approximation of the root in [a; b];

add t to L;

endif

a = b;

endwhile

return L;

end

6.1.3 Intersection with explicit surfaces

If we are to �nd the intersection point between a ray ~r(t) and an explicitly

given free-form surface ~s(u; v), then, in fact, the following equation is to be

solved:
~f(~x) = ~0; (6:25)

where ~f (~x) = ~f(u; v; t) = ~s(u; v) � ~r(t), and the mapping ~f is usually

non-linear. We can dispose of the problem of solving a non-linear equa-

tion system if we approximate the surface ~s by a �nite number of planar

polygons and then solve the linear equation systems corresponding to the

individual polygons one by one. This method is often used, because it is

158 6. VISIBILITY CALCULATIONS

straightforward and easy to implement, but if we do not allow such anoma-

lies as jagged contours of smooth surfaces on the picture, then we either

have to use a huge number of polygons for the approximation with the snag

of having to check all of them for intersection, or we have to use a numer-

ical root-�nding method for computing the intersection point within some

tolerance.

Newton's method is a classical numerical method for approximating any

real root of a non-linear equation system ~f(~x) = ~0. If [@ ~f=@~x] is the Jaco-

bian matrix of ~f at ~x, then the recurrence formula is:

~xk+1 = ~xk �

2
4@ ~f
@~x

3
5
�1

~f (~xk): (6:26)

If our initial guess ~x0 is close enough to a root ~x�, then the sequence ~xk is

convergent, and lim
k!1

~xk = ~x�. The main problem is how to produce such

a good initial guess for each root. A method is needed which always leads

to reasonable starting points before performing the iterations. We need,

however, computationally performable tests.

One possible method will be introduced in this chapter. The considera-

tions leading to the solution are valid in the n-dimensional real space Rn.

For the sake of notational simplicity, the superscript (~) above vector vari-

ables will be omitted. They will be reintroduced when returning to our

three-dimensional object space.

The method is based on a fundamental theorem of topology: Schauder's

�xpoint theorem [Sch30, KKM29]. It states that if X � Rn is a convex

and compact set and g:Rn ! Rn is a continuous mapping, then g(X) � X

implies that g has a �xed point x 2 X (that is for which g(x) = x). Let

the mapping g be de�ned as:

g(x) = x�Yf(x); (6:27)

whereY is a non-singular n�nmatrix. Then, as a consequence of Schauder's

theorem, g(X) � X implies that there is a point x� 2 X for which:

g(x�) = x� �Yf(x�) = x�: (6:28)

6.1. SIMPLE RAY TRACING 159

Since Y is non-singular, it implies that f(x�) = 0. In other words, if

g(X) � X, then there is at least one solution to f(x�) = 0 in X. Another

important property of the mapping g is that if x� 2 X is such a root of

f , then g(x�) 2 X. This is so because if f(x�) = 0 then g(x�) = x� 2 X.

Thus we have a test for the existence of roots of f in a given set X. It is

based on the comparison of the set X and its image g(X):

� if g(X) � X then the answer is positive, that is, X contains at least

one root

� if g(X) \ X = ; then the answer is negative, that is, X contains no

roots, since if it contained one, then this root would also be contained

by g(X), but this would be a contradiction

� if none of the above two conditions holds then the answer is neither

positive nor negative; in this latter case, however, the set X can be

divided into two or more subsets and these smaller pieces can be ex-

amined similarly, leading to a recursive algorithm

An important question, if one intends to use this test, is that how the image

g(X) and its intersection with X can be computed. Another important

problem, if the test gives a positive answer for X, is to decide where to

start the Newton-iteration from. A numerical technique, called interval

arithmetic, gives a possible solution to the �rst problem. We will survey it

here. What it o�ers is its simplicity, but the price we have to pay is that

we never get more than rough estimations for the ranges of mappings. The

second problem will be solved by an interval arithmetic based modi�cation

of the Newton-iteration scheme.

Interval arithmetic

A branch of numerical analysis, called interval analysis, basically deals with

real intervals, vectors of real intervals, and mappings from and into such

objects. Moore's textbook [Moo66] gives a good introduction to it. Our

overview contains only those results, which are relevant from the point of

view of our problem. Interval objects will be denoted by capital letters.

160 6. VISIBILITY CALCULATIONS

Let us start with algebraic operations on intervals (addition, subtraction,

multiplication and division). Generally, if a binary operation � is to be

extended to work on two real intervals X1 = [a1; b1] and X2 = [a2; b2], then

the rule is:

X1 �X2 = fx1 � x2 j x1 2 X1 and x2 2 X2g (6:29)

that is, the resulting interval should contain the results coming from all

the possible pairings. In the case of subtraction, for example, X1 � X2 =

[a1 � b2; b1 � a2]. Such an interval extension of an operation is inclusion

monotonic, that is, if X 0

1 � X1 then X 0

1 �X2 � X1 � X2. Based on these

operations, the interval extension of an algebraic function can easily be

derived by substituting each of its operations by the corresponding interval

extension. The (inclusion monotonic) interval extension of a function f(x)

will be denoted by F (X). If f(x) is a multidimensional mapping (where x is

a vector) then F (X) operates on vectors of intervals called interval vectors.

The interval extension of a linear mapping can be represented by an interval

matrix (matrix of intervals).

An interesting fact is that the Lagrangean mean-value theorem extends to

the interval extension of functions (although it does not extend to ordinary

vector-vector functions). It implies that if f is a continuously di�erentiable

mapping, and F is its interval extension, then for all x;y 2 X:

f(x)� f(y) 2 F 0(X)(x� y); (6:30)

where X is an interval vector (box), x;y are real vectors, and F 0 is the

interval extension of the Jacobian matrix of f .

Let us now see some useful de�nitions. If X = [a; b] is a real interval,

then its absolute value, width and middle are de�ned as:

jXj = max(jaj; jbj) (absolute value);

w (X) = b� a (width);

m(X) = (a+ b)=2 (middle)

(6:31)

If X = (X1; : : : ;Xn) is an interval vector, then its respective vector norm,

width and middle vector are de�ned as:

jXj = max
i
fjXijg ;

w (X) = max
i
fw (Xi)g ; (6.32)

m(X) = (m(X1); : : : ;m(Xn))

6.1. SIMPLE RAY TRACING 161

For an interval matrix A = [Aij] the row norm and middle matrix are

de�ned as:

kAk = max
i

8<
:

nX
j=1

jAijj

9=
; ;

m(A) = [m(Aij)] (6.33)

The above de�ned norm for interval matrices is very useful. We will use

the following corollary of this de�nition later: it can be derived from the

de�nitions [Moo77] that, for any interval matrix A and interval vector X:

w (A(X �m(X))) � kAk � w (X): (6:34)

That is, we can estimate the width of the interval vector containing all the

possible images of an interval vector (X � m(X)) if transformed by any

of the linear transformations contained in a bundle of matrices (interval

matrix A), and we can do this by simple calculations. Note, however, that

this inequality can be used only for a special class of interval vectors (origin

centered boxes).

Interval arithmetic and the Newton-iteration

We are now in position to perform the test g(X) � X (equation 6.27) in

order to check whether X contains a root (provided that X is a rectangular

box): if the interval extension of g(x) is G(X), then g(X) � G(X), and

hence G(X) � X implies g(X) � X.

Now the question is the following: provided that X contains a root, is

the Newton-iteration convergent from any point of X? Another question

is that how many roots are in X: only one (a unique root) or more than

one? Although it is also possible to answer these questions based on interval

arithmetic, the interested reader is referred to Toth's article [Tot85] about

this subject. We will present here another method which can be called an

interval version of the Newton-iteration, �rst published by Moore [Moo77].

In fact, Toth's work is also based on this method.

The goal of the following argument will be to create an iteration formula,

based on the Newton-iteration, which produces a nested sequence of interval

vectors:

X � X1 � X2 � : : : (6:35)

162 6. VISIBILITY CALCULATIONS

converging to the unique solution x� 2 X if it exists. A test scheme suitable

for checking in advance whether a unique x� exists will also be provided.

Based on the interval extension G(X) of the mapping g(x) (equation

6.27), consider now the following iteration scheme:

Xk+1 = G(Xk) where X0 = X: (6:36)

We know that if G(X) � X then there is at least one root x� of f in X.

It is also sure that for each such x�, x� 2 Xk (for all k � 0), that is, the

sequence of interval boxes contains each root. If, furthermore, there exists

a positive real number r < 1 so that w (Xk+1) � r � w (Xk) for all k � 0,

then lim
k!1

w (Xk) = 0, that is, the sequence of interval vectors contracts

onto a single point. This implies that if the above conditions hold then X

contains a unique solution x� and iteration 6.36 converges to x�. How can

the existence of such a number r (the \contraction factor") be veri�ed in

advance?

Inequality 6.34 is suitable for estimating the width of an interval vector

resulting from (the interval extension of) a linear mapping performed on a

symmetric interval vector. In order to exploit this inequality, the mapping

should be made linear and the interval vector should be made symmetric.

Let the expression of mapping g be rewritten as:

g(x) = x�Y (f(m(X)) + f(x)� f(m(X))) (6:37)

where X can be any interval vector. Following from the Lagrangean mean-

value theorem:

g(x) 2 x�Yf(m (X))�YF 0(X) (x�m(X)) (6:38)

provided that x 2 X. Following from this, the interval extension of g will

satisfy (decomposing the right-hand side into a real and an interval term):

G(X) � m(X)�Yf(m (X)) + [1�YF 0(X)] (X �m(X)) (6:39)

where 1 is the unit matrix. Note that the interval mapping on the right-

hand side is a linear mapping performed on a symmetric interval vector.

Applying now inequality 6.34 (and because w (X �m(X)) = w (X)):

w (G(X)) � k1�YF 0(X)k � w (X) (6:40)

6.1. SIMPLE RAY TRACING 163

that is, checking whether iteration 6.36 is convergent has become possible.

One question is still open: how should the matrix Y be chosen. Since the

structure of the mapping g (equation 6.27) is similar to that of the Newton-

step (equation 6.26 with Y = [@ ~f=@~x]�1), intuition tells that Y should be

related to the inverse Jacobian matrix of f (hoping that the convergence

speed of the iteration can then be as high as that of the Newton-iteration).

Taking the inverse middle of the interval Jacobian F 0(X) seems to be a good

choice.

In fact, Moore [Moo77] introduced the mapping on the right-hand side of

equation 6.39 as a special case of a mapping which he called theKrawczyk

operator. Let us introduce it for notational simplicity:

K(X;y;Y) = y �Yf(y) + [1�YF 0(X)](X � y); (6:41)

whereX is an interval vector, y 2 X is a real vector,Y is a non-singular real

matrix and f is assumed to be continuously di�erentiable. The following

two properties of this mapping are no more surprising. The �rst is that if

K(X;y;Y) � X for some y 2 X, then there exists an x 2 X for which

f(x) = 0. The second property is that if x� is such a root with f(x�) = 0,

then x� 2 K(X;y;Y).

We are now ready to obtain the interval version of Newton's iteration

scheme in terms of the Krawczyk operator. Note that this scheme is no else

but iteration 6.36 modi�ed so that detecting whether it contracts onto a

single point become possible. Setting

X0 = X;

Y0 = [m(F 0(X0))]
�1; (6.42)

ri = k1�YiF
0(Xi)k

the iteration is de�ned as follows:

Xi+1 = K(Xi;m(Xi);Yi) \Xi; (6.43)

Yi+1 =

8><
>:
[m(F 0(Xi+1))]

�1; if ri+1 � ri;

Yi; otherwise

The initial condition that should be checked before starting the iteration is:

K(X0;m(X0);Y0) � X0 and r0 < 1 (6:44)

164 6. VISIBILITY CALCULATIONS

If these two conditions hold, then iteration 6.43 will produce a sequence

of nested interval boxes converging to the unique solution x� 2 X of the

equation system f(x) = 0.

Let us return to our original problem of �nding the intersection point (or

all the intersection points) between a ray ~r(t) and an explicitly given surface

~s(u; v). Setting ~f (~x) = ~f (u; v; t) = ~s(u; v)� ~r(t), the domain X where we

have to �nd all the roots is bounded by someminimumand maximumvalues

of u; v and t respectively. The basic idea of a possible algorithm is that we

�rst check if initial condition 6.44 holds for X. If it does, then we start the

iteration process, otherwise we subdivide X into smaller pieces and try to

solve the problem on these. The algorithm maintains a list L for storing the

approximate roots of ~f(~x) and a list C for storing the candidate interval

boxes which may contain solutions:

C = fXg; // candidate list

L = fg; // solution list

while C not empty do

X0 = next item on C;

if condition 6.44 holds for X0 then

perform iteration 6.43 until w (Xk) is small enough;

add m(Xk) to L;

else if w (X0) is not too small then

subdivide X0 into pieces X1; : : : ;Xs;

add X1; : : : ;Xs to C;

endif

endwhile

6.1.4 Intersection with compound objects

In constructive solid geometry (CSG) (see subsection 1.6.2) compound ob-

jects are given by set operations ([;\; n) performed on primitive geometric

objects such as blocks, spheres, cylinders, cones or even halfspaces bounded

by non-linear surfaces. The representation of CSG objects is usually a

binary tree with the set operations in its internal nodes and the primitive

objects in the leaf nodes. The root of the tree corresponds to the compound

object, and its two children represent less complicated objects. If the tree

6.1. SIMPLE RAY TRACING 165

possesses only a single leaf (and no internal nodes), then the intersection

calculation poses no problem; we have only to compute the intersection be-

tween the ray and a primitive object. On the other hand, if two objects

are combined by a single set operation, and all the intersection points are

known to be on the surface of the two objects, then, considering the opera-

tion, one can easily decide whether any intersection point is on the surface

of the resulting object. For example, if one of the intersection points on the

�rst object is contained in the interior of the second one, and the combined

object is the union ([) of the two, then the intersection point is not on its

surface | it is internal to it | hence it can be discarded. Similar argu-

ments can be made for any of the set operations and the possible in/out/on

relationships between a point and an object.

These considerations lead us to a simple divide-and-conquer approach:

if the tree has only a single leaf, then the intersection points between the

ray and the primitive object are easily calculated, otherwise | when the

root of the tree is an internal node | the intersection points are recursively

calculated for the left child of the root, taking this child node as the root,

and then the same is done with the right child of the root, and �nally the

two sets of intersection points are combined according the set operation at

the root.

r

S

S
l

r

S l U

*

Sr

r

S

S
l

r

S l

U
*

S r

r

S

S
l

r

S l \

*

Sr

r
A

B

A U

*

B
A

U*

B
A \

*

B

Figure 6.4: Ray spans and their combinations

A slight modi�cation of this approach will help us in considering regu-

larized set operations in ray-object intersection calculations. Recall that

it was necessary to introduce regularized set operations in solid modeling

166 6. VISIBILITY CALCULATIONS

in order to avoid possible anomalies resulting from an operation (see sub-

section 1.6.1 and �gure 1.5). That is, the problem is to �nd the closest

intersection point between a ray and a compound object, provided that the

object is built by the use of regularized set operations. Instead of the iso-

lated ray-surface intersection points, we had better deal with line segments

resulting from the intersection of the ray and the solid object (more pre-

cisely, the closure of the object is to be considered, which is the complement

of its exterior). The sequence of consecutive ray segments corresponding to

an object will be called a ray span. If we take a look at �gure 6.4, then

we will see how the two ray spans calculated for the two child objects of a

node can be combined by means of the set operation of the node. In fact,

the result of the combination of the left span Sl and the right span Sr is

Sl �
� Sr, where �

� is the set operation ([�;\� or n�). If we really implement

the operation �� in the regularized way, then the result will be valid for

regularized set operations. This means practically that all segments in a

ray span must form a closed set with positive length. There are three cases

when regularization takes place. The �rst is when the result span Sl �
� Sr

contains an isolated point (�� is \�). This point has to be omitted because

it would belong to a dangling face, edge or vertex. The second case is when

the span contains two consecutive segments, and the endpoint of the �rst

one coincides with the starting point of the second one (�� is [�). The

two segments have to be merged into one and the double point omitted,

because it would belong to a face, edge or vertex (walled-up) in the interior

of a solid object. Finally, the third case is when a segment becomes open,

that is when one of its endpoints is missing (�� is n�). The segment has to

be closed by an endpoint. The algorithm based on the concepts sketched in

this subsection is the following:

CSGIntersec(ray, node)

if node is compound then

left span = CSGIntersec(ray, left child of node);

right span = CSGIntersec(ray, right child of node);

return CSGCombine(left span, right span, operation);

else (node is a primitive object)

return PrimitiveIntersec(ray, node);

endif

end

6.2. BACK-FACE CULLING 167

The intersection point that we are looking for will appear as the starting

point of the �rst segment of the span.

6.2 Back-face culling

It will be assumed in this and all the consecutive sections of this chapter

that objects are transformed into the screen coordinate system, and that in

the case of perspective projection the homogeneous division has also been

performed. This means that objects have to be projected orthographically

onto the image plane spanned by the coordinate axes X;Y , and the coor-

dinate axis Z coincides with the direction of view.

eye

X,Y

Z

front-faces
back-faces

Figure 6.5: Normal vectors and back-faces

A usual agreement is, furthermore, that the normal vector at any object

surface point (the normal vector of the tangent plane at that point) is

de�ned so that it always points outwards from the object, as illustrated

in �gure 6.5. What can be stated about a surface point where the surface

normal vector has a positive Z-coordinate (in the screen coordinate system)?

It is de�nitely hidden from the eye since no light can depart from that point

towards the eye! Roughly one half of the object surfaces is hidden because

of this reason | and independently from other objects |, hence it is worth

eliminating them from visibility calculations in advance. Object surfaces are

usually decomposed into smaller parts called faces. If the normal vector at

each point of a face has a positive Z-coordinate then it is called a back-face

(see �gure 6.5).

168 6. VISIBILITY CALCULATIONS

If a face is planar, then it has a unique normal vector, and the back-face

culling (deciding whether it is a back-face) is not too expensive compu-

tationally. De�ning one more convention, the vertices of planar polygonal

faces can be numbered in counter-clockwise order, for example, looking from

outside the object. If the vertices of this polygon appear in clockwise order

on the image plane then the polygon is a back-face. How can it be detected?

If ~r1; ~r2; ~r3 are three consecutive and non-collinear vertices of the polygon,

then its normal vector, ~n, can be calculated as:

~n = (�1)c � (~r2 � ~r1)� (~r3 � ~r1) (6:45)

where c = 0 if the inner angle at vertex ~r2 is less than � and c = 1 otherwise.

If the Z-coordinate of ~n is positive, then the polygon is a back-face and can

be discarded. If it is zero, then the projection of the polygon degenerates to

a line segment and can also be discarded. A more tricky way of computing ~n

is calculating the projected areas Ax; Ay; Az of the polygon onto the planes

perpendicular to the x-, y- and z-axes, respectively, and then taking ~n as

the vector of components Ax; Ay; Az. If the polygon vertices are given by

the coordinates (x1; y1; z1); : : : ; (xm; ym; zm) then the projected area Az, for

example, can be calculated as:

Az =
1

2

mX
i=1

(xi�1 � xi)(yi + yi�1) (6:46)

where i� 1 = i+1 if i < m and m� 1 = 1. This method is not sensitive to

collinear vertices and averages the errors coming from possible non-planarity

of the polygon.

Note that if the object scene consists of nothing more than a single convex

polyhedron, then the visibility problem can completely be solved by back-

face culling: back-faces are discarded and non-back-faces are painted.

6.3 z-bu�er algorithm

Another possible method for �nding the visible object in individual pixels

is that, for each object, all the pixels forming the image of the object on

the screen are identi�ed, and then, if a collision occurs at a given pixel due

to overlapping, it is decided which object must be retained. The objects

6.3. Z-BUFFER ALGORITHM 169

are taken one by one. To generate all the pixels that the projection of an

object covers, scan conversion methods can be used to convert the area

of the projections �rst into (horizontal) spans corresponding to the rows of

the raster image, and then split up the spans into pixels according to the

columns. Imagine another array behind the raster image (raster bu�er),

with the same dimensions, but containing distance information instead of

color values. This array is called z-bu�er. Each pixel in the raster bu�er

has a corresponding cell in the z-bu�er. This contains the distance (depth)

information of the surface point from the eye which is used to decide which

pixel is visible. Whenever a new color value is to be written into a pixel

during the raster conversion of the objects, the value already in the z-bu�er

is compared with that of the actual surface point. If the value in the z-bu�er

is greater, then the pixel can be overwritten, both the corresponding color

and depth information, because the actual surface point is closer to the eye.

Otherwise the values are left untouched.

The basic form of the z-bu�er algorithm is then:

Initialize raster bu�er to background color;

Initialize each cell of zbu�er[] to 1;

for each object o do

for each pixel p covered by the projection of o do

if Z-coordinate of the surface point < zbu�er[p] then

color of p = color of surface point;

zbu�er[p] = depth of surface point;

endif

endfor

endfor

The value1 loaded into each cell of the z-bu�er in the initialization step

symbolizes the greatest possible Z value that can occur during the visibility

calculations, and it is always a �nite number in practice. This is also an

image-precision algorithm, just like ray tracing. Its e�ectiveness can be |

and usually is | increased by combining it with back-face culling.

The z-bu�er algorithm is not expensive computationally. Each object is

taken only once, and the number of operations performed on one object is

proportional to the number of pixels it covers on the image plane. Having

N objects o1; : : : ; oN , each covering Pi number of pixels individually on the

170 6. VISIBILITY CALCULATIONS

image plane, the time complexity T of the z-bu�er algorithm is:

T = O

N +

NX
i=1

Pi

!
: (6:47)

Since the z-bu�er algorithm is usually preceded by a clipping operation

discarding parts of objects outside the viewing volume, the number of pixels

covered by the input objects o1; : : : ; oN is Pi = O(R2) (R2 is the resolution

of the screen), and hence the time complexity of the z-bu�er algorithm can

also be written as:

T = O(R2N): (6:48)

6.3.1 Hardware implementation of the z-bu�er

algorithm

Having approximated the surface by a polygon mesh, the surface is given by

the set of mesh vertices, which should have been transformed to the screen

coordinate system. Without loss of generality, we can assume that the

polygon mesh consists of triangles only (this assumption has the important

advantage that three points are always on a plane and the triangle formed by

the points is convex). The visibility calculation of a surface is thus a series

of visibility computations for screen coordinate system triangles, allowing

us to consider only the problem of the scan conversion of a single triangle.

Let the vertices of the triangle in screen coordinates be ~r1 = [X1; Y1; Z1],

~r2 = [X2; Y2; Z2] and ~r3 = [X3; Y3; Z3] respectively. The scan conversion

algorithms should determine theX;Y pixel addresses and the corresponding

Z coordinates of those pixels which belong to this triangle (�gure 6.6). If

the X;Y pixel addresses are already available, then the calculation of the

corresponding Z coordinate can exploit the fact that the triangle is on a

plane, thus the Z coordinate is some linear function of theX;Y coordinates.

This linear function can be derived from the equation of the plane, using

the notation ~n and ~r to represent the normal vector and the points of the

plane respectively:

~n � ~r = ~n � ~r1 where ~n = (~r2 � ~r1)� (~r3 � ~r1): (6:49)

Let us denote the constant ~n �~r1 by C, and express the equation in scalar

form, substituting the coordinates of the vertices (~r = [X;Y;Z(X;Y)]) and

6.3. Z-BUFFER ALGORITHM 171

n
r =(X , Y , Z)3 3 33

r =(X , Y , Z)2 2 2 2r =(X , Y , Z)1 1 11

Z(X,Y)

X

 Y

Figure 6.6: Screen space triangle

the normal of the plane (~n = [nX ; nY ; nZ]). The function of Z(X;Y) is

then:

Z(X;Y) =
C � nX �X � nY � Y

nZ
: (6:50)

This linear function must be evaluated for those pixels which cover the

pixel space triangle de�ned by the vertices [X1; Y1], [X2; Y2] and [X3; Y3].

Equation 6.50 is suitable for the application of the incremental concept

discussed in subsection 2.3.2 on multi-variate functions. In order to make

the boundary curve di�erentiable and simple to compute, the triangle is

split into two parts by a horizontal line at the position of the vertex which

is in between the other two vertices in the Y direction.

As can be seen in �gure 6.7, two di�erent orientations (called left and right

orientations respectively) are possible, in addition to the di�erent order of

the vertices in the Y direction. Since the di�erent cases require almost

similar solutions, we shall discuss only the scan conversion of the lower part

of a left oriented triangle, supposing that the Y order of the vertices is:

Y1 < Y2 < Y3.

The solution of the subsection 2.3.2 (on multi-variate functions) can read-

ily be applied for the scan conversion of this part. The computational bur-

den for the evaluation of the linear expression of the Z coordinate and for the

calculation of the starting and ending coordinates of the horizontal spans of

pixels covering the triangle can be signi�cantly reduced by the incremental

concept (�gure 6.8).

172 6. VISIBILITY CALCULATIONS

[
3 3

Y

X

X Y,]

[
1 1X Y,]

[
2 2X Y,]

[
3 3X Y,]

[
1 1X Y,]

[
2 2X Y,]

Figure 6.7: Breaking down the triangle

Expressing Z(X + 1; Y) as a function of Z(X;Y), we get:

Z(X +1; Y) = Z(X;Y)+
@Z(X;Y)

@X
� 1 = Z(X;Y)�

nX

nZ
= Z(X;Y)+ �ZX:

(6:51)

Since �ZX does not depend on the actualX;Y coordinates, it has to be eval-

uated once for the polygon. In a scan-line, the calculation of a Z coordinate

requires a single addition according to equation 6.51.

Since Z and X vary linearly along the left and right edges of the triangle,

equations 2.33, 2.34 and 2.35 result in the following simple expressions in

the range of Y1 � Y � Y2, denoting the Ks and Ke variables used in the

general discussion by Xstart and Xend respectively:

Xstart(Y + 1) = Xstart(Y) +
X2 �X1

Y2 � Y1
= Xstart(Y) + �Xs

Y

Xend(Y + 1) = Xend(Y) +
X3 �X1

Y3 � Y1
= Xend(Y) + �Xe

Y

Zstart(Y + 1) = Zstart(Y) +
Z2 � Z1

Y2 � Y1
= Zstart(Y) + �Zs

Y (6.52)

6.3. Z-BUFFER ALGORITHM 173

(X ,Y ,Z)1 1 1

(X ,Y ,Z)

(X ,Y ,Z)2

3

22

3 3

X

Y

Z

Z = Z(X,Y)

YZsδ

Y
X eδ

X Zδ

Y
Xsδ

Figure 6.8: Incremental concept in Z-bu�er calculations

The complete incremental algorithm is then:

Xstart = X1 + 0:5; Xend = X1 + 0:5; Zstart = Z1 + 0:5;

for Y = Y1 to Y2 do

Z = Zstart;

for X = Trunc(Xstart) to Trunc(Xend) do

z = Trunc(Z);

if z < Zbu�er[X;Y] then

raster bu�er[X;Y] = computed color;

Zbu�er[X;Y] = z;

endif

Z += �ZX;

endfor

Xstart += �Xs
Y ; Xend += �Xe

Y ; Zstart += �Zs
Y ;

endfor

Having represented the numbers in a �xed point format, the derivation

of the executing hardware for this algorithm is straightforward following

the methods outlined in section 2.3 on hardware realization of graphics

algorithms.

174 6. VISIBILITY CALCULATIONS

6.4 Scan-line algorithm

The visibility problem can be solved separately for each horizontal row of

the image. This approach is a hybrid one, half way between image-precision

and object-precision methods. On the one hand, the so-called scan-lines

are discrete rows of the image, on the other hand, continuous calculations

are used at object-precision within the individual scan-lines. Such a hori-

zontal line corresponds to a horizontal plane in the screen coordinate system

(see left side of �gure 6.9). For each such plane, we have to consider the

intersection of the objects with it. This gives two-dimensional objects on

the scan plane. If our object space consists of planar polygons, then a set of

line segments will appear on the plane. Those parts of these line segments

which are visible from the line Z = 0 have to be kept and drawn (see right

side of �gure 6.9). If the endpoints of the segments are ordered by their X

coordinate, then the visibility problem is simply a matter of �nding the line

segment with the minimal Z coordinate in each of the quadrilateral strips

between two consecutive X values. If the line segments can intersect, then

the X coordinates of the intersection points have also to be inserted into

the list of segment endpoints in order to get strips that are homogeneous

with respect to visibility, that is, with at most one segment visible in each.

Y

X

Z

X

Z

Figure 6.9: Scan-line algorithm

6.4. SCAN-LINE ALGORITHM 175

The basic outline of the algorithm is the following:

for Y = Ymin to Ymax do

for each polygon P do

compute intersection segments between P and plane at Y ;

endfor

sort endpoints of segments by their x coordinate;

compute and insert segment-segment intersection points;

for each strip s between two consecutive x values do

�nd segment in s closest to axis x;

draw segment;

endfor

endfor

If a given polygon intersects the horizontal plane at Y , it will probably

intersect the next scan plane at Y + 1, as well. This is one of the guises

of the phenomenon called object coherence. The origin of it is the basic

fact that objects usually occupy compact and connected parts of space.

Object coherence can be exploited in many ways in order to accelerate the

calculations. In the case of the scan-line algorithm we can do the following.

Before starting the calculation, we sort the maximal and minimal Y values

of the polygons into a list called the event list. Another list, called the

active polygon list, will contain only those polygons which really intersect

the horizontal plane at the actual height Y . A Y coordinate on the event

list corresponds either to the event of a new polygon being inserted into

the active polygon list, or to the event of a polygon being deleted from it.

These two lists will then be considered when going through the consecutive

Y values in the outermost loop of the above algorithm. This idea can be

re�ned by managing an active edge list (and the corresponding event list)

instead of the active polygon list. A further acceleration can be the use of

di�erential line generators for calculating the intersection point of a given

segment with the plane at Y + 1 if the point at Y is known.

The time complexity of the algorithm in its \brute-force" form, as sketched

above, is proportional to the number of rows in the picture on the one hand,

and to the number of objects on the other hand. If the resolution of the

screen is R2, and the object scene consists of disjoint polygons having a

176 6. VISIBILITY CALCULATIONS

total of n edges, then:

T = O(R � n): (6:53)

If the proposed event list is used, and consecutive intersection points (the

X values at Y + 1) are computed by di�erential line generators, then the

time complexity is reduced:

T = O(n log n+R log n): (6:54)

The O(n log n) term appears because of the sorting step before building the

event list, the origin of theO(R log n) term is that the calculated intersection

points must be inserted into an ordered list of length O(n).

6.5 Area subdivision methods

If a pixel of the image corresponds to a given object, then its neighbors

usually correspond to the same object, that is, visible parts of objects appear

as connected territories on the screen. This is a consequence of object

coherence and is called image coherence.

W

P

W W W

P

P

P

(a) (b) (c) (d)

Figure 6.10: Polygon-window relations: distinct (a), surrounding (b),

intersecting (c), contained (d)

If the situation is so fortunate | from a labor saving point of view | that

a polygon in the object scene obscures all the others and its projection onto

the image plane covers the image window completely, then we have to do no

6.5. AREA SUBDIVISION METHODS 177

more than simply �ll the image with the color of the polygon. This is the

basic idea of Warnock's algorithm [War69]. If no polygon edge falls into

the window, then either there is no visible polygon, or some polygon covers

it completely. The window is �lled with the background color in the �rst

case, and with the color of the closest polygon in the second case. If at least

one polygon edge falls into the window, then the solution is not so simple. In

this case, using a divide-and-conquer approach, the window is subdivided

into four quarters, and each subwindow is searched recursively for a simple

solution. The basic form of the algorithm rendering a rectangular window

with screen (pixel) coordinates X1; Y1 (lower left corner) and X2; Y2 (upper

right corner) is this:

Warnock(X1; Y1;X2; Y2)

if X1 6= X2 or Y1 6= Y2 then

if at least one edge falls into the window then

Xm = (X1 +X2)=2;

Ym = (Y1 + Y2)=2;

Warnock(X1; Y1;Xm; Ym);

Warnock(X1; Ym;Xm; Y2);

Warnock(Xm; Y1;X2; Ym);

Warnock(Xm; Ym;X2; Y2);

return ;

endif

endif

// rectangle X1; Y1;X2; Y2 is homogeneous

polygon = nearest to pixel (X1 +X2)=2; (Y1 + Y2)=2;

if no polygon then

�ll rectangle X1; Y1;X2; Y2 with background color;

else

�ll rectangle X1; Y1;X2; Y2 with color of polygon;

endif

end

It falls into the category of image-precision algorithms. Note that it can

handle non-intersecting polygons only. The algorithm can be accelerated

by �ltering out those polygons which can de�nitely not be seen in a given

subwindow at a given step. Generally, a polygon can be in one of the fol-

178 6. VISIBILITY CALCULATIONS

lowing four kinds of relation with respect to the window, as shown in �gure

6.10. A distinct polygon has no common part with the window; a sur-

rounding polygon contains the window; at least one edge of an intersecting

polygon intersects the border of the window; and a contained polygon falls

completely within the window. Distinct polygons should be �ltered out at

each step of recurrence. Furthermore, if a surrounding polygon appears at

a given stage, then all the others behind it can be discarded, that is all

those which fall onto the opposite side of it from the eye. Finally, if there

is only one contained or intersecting polygon, then the window does not

have to be subdivided further, but the polygon (or rather the clipped part

of it) is simply drawn. The price of saving further recurrence is the use of

a scan-conversion algorithm to �ll the polygon.

The time complexity of the Warnock algorithm is not easy to analyze,

even for its initial form (sketched above). It is strongly a�ected by the

actual arrangement of the polygons. It is easy to imagine a scene where

each image pixel is intersected by at least one (projected) edge, from where

the algorithm would go down to the pixel level at each recurrence. It gives

a very poor worst-case characteristic to the algorithm, which is not worth

demonstrating here. A better characterization would be an average-case

analysis for some proper distribution of input polygons, which again length

constraints of this book do not permit us to explore.

The Warnock algorithm recursively subdivides the screen into rectangular

regions, irrespective of the actual shape of the polygons. It introduces

super
uous vertical and horizontal edges. Weiler and Atherton [WA77]

(also in [JGMHe88]) re�ned Warnock's idea from this point of view. The

Weiler{Atherton algorithm also subdivides the image area recursively,

but using the boundaries of the actual polygons instead of rectangles. The

calculations begin with a rough initial depth sort. It puts the list of input

polygons into a rough depth priority order, so that the \closest" polygons are

in the beginning of the list, and the \farthest" ones at the end of it. At this

step, any reasonable criterion for a sorting key is acceptable. The resulting

order is not at all mandatory but increases the e�ciency of the algorithm.

Such a sorting criterion can be, for example, the smallest Z-value (Zmin)

for each polygon (or Zmax, as used by the Newell{Newell{Sancha algorithm,

see later). This sorting step is performed only once, at the beginning of the

calculations, and is not repeated.

6.5. AREA SUBDIVISION METHODS 179

Let the resulting list of polygons be denoted by L = fP1; : : : ; Png. Having

done the sorting, the �rst polygon on the list (P1) is selected. It is used to

clip the remainder of the list into two new lists of polygons: the �rst list,

say I = fP I
1 ; : : : ; P

I
mg (m � n), will contain those polygons | or parts of

polygons | that fall inside the clip polygon P1, and the second list, say

O = fPO
1 ; : : : ; P

O
Mg (M � n), will contain those ones that fall outside P1.

Then the algorithm examines the inside list I and removes all polygons

located behind the current clip polygon since they are hidden from view. If

the remaining list I 0 contains no polygon (the clip polygon obscures all of

I), then the clip polygon is drawn and the initial list L is replaced by the

outside list O and examined in a similar way to L. If the remaining list I 0

contains at least one polygon | that is, at least one polygon falls in front of

the clip polygon | then it means that there was an error in the initial rough

depth sort. In this case the (closest) o�ending polygon is selected as the clip

polygon, and the same process is performed on list I 0 recursively, as on the

initially ordered list L. Note that although the original polygons may be

split into several pieces during the recursive subdivision, the clipping step

(generating the lists I and O from L) can always be performed by using

the original polygon corresponding to the actual clip polygon (which itself

may be a clipped part of the original polygon). Maintaining a copy of each

original polygon needs extra storage, but it reduces time.

There is, however, a more serious danger of clipping to the original copy

of the polygons instead of their remainders! If there is cyclic overlapping

between the original polygons, see �gure 6.11 for example, then it can cause

in�nite recurrence of the algorithm. In order to avoid this, a set S of polygon

names (references) is maintained during the process. Whenever a polygon

P is selected as the clip polygon, its name (a reference to it) is inserted into

S, and if it is processed (drawn or removed), its name is deleted from S.

The insertion is done, however, only if P is not already in S, because if it

is, then a cyclic overlap has been detected, and no additional recurrence is

necessary because all polygons behind P have already been removed.

There is another crucial point of the algorithm: even if the scene consists

only of convex polygons, the clipping step can quickly yield non-convex

areas and holes (�rst when producing an outside list and then concavity is

inherited by polygons in the later inside lists, as well). Thus, the polygon

clipper has to be capable of clipping concave polygons with holes to both

the inside and outside of a concave polygon with holes. Without going

180 6. VISIBILITY CALCULATIONS

into further details here, the interested reader is referred to the cited work

[WA77], and only the above sketched ideas are summarized in the following

pseudo-code:

WeilerAtherton(L)

P = the �rst item on L;

if P 2 S then draw P ; return ; endif

insert P into S;

I = Clip(L, P);

O = Clip(L, P); // P : complement of P

for each polygon Q 2 I;

if Q is behind P then

remove Q from I;

if Q 2 S then remove Q from S; endif

endif

endfor

if I = fg then

draw P ;

delete P from S;

else

WeilerAtherton(I);

endif

WeilerAtherton(O);

end

The recursive algorithm is called with the initially sorted list L of input

polygons at the \top" level after initializing the set S to fg.

6.6 List-priority methods

Assume that the object space consists of planar polygons. If we simply scan

convert them into pixels and draw the pixels onto the screen without any

examination of distances from the eye, then each pixel will contain the color

of the last polygon falling onto that pixel. If the polygons were ordered by

their distance from the eye, and we took the farthest one �rst and the closest

one last, then the �nal picture would be correct. Closer polygons would

6.6. LIST-PRIORITY METHODS 181

obscure farther ones | just as if they were painted an opaque color. This

(object-precision) method, is really known as the painter's algorithm.

Q

Q

Q

P
1

2

P

R

Q

P P
1 2

Figure 6.11: Examples for cyclic overlapping

The only problem is that the order of the polygons necessary for perform-

ing the painter's algorithm, the so-called depth order or priority relation

between the polygons, is not always simple to compute.

We say that a polygon P obscures another polygon Q, if at least one

point of Q is obscured by P . Let us de�ne the relation � between two

polygons P and Q so that P � Q if Q does not obscure P . If the relations

P1 � P2 � : : : � Pn hold for a sequence of polygons, then this order

coincides with the priority order required by the painter's algorithm. Indeed,

if we drew the polygons by starting with the one furthest to the right (having

the lowest priority) and �nishing with the one furthest to the left, then the

picture would be correct. However, we have to contend with the following

problems with the relation � de�ned this way:

1. If the projection of polygons P and Q do not overlap on the image

plane, then P � Q and P � Q, both at the same time, that is, the

relation � is not antisymmetric.

2. Many situations can be imagined, when P 6� Q and Q 6� P at the

same time (see �gure 6.11 for an example), that is, the relation � is

not de�ned for each pair of polygons.

3. Many situations can be imagined when a cycle P � Q � R � P

occurs (see �gure 6.11 again), that is, the relation � is not transitive.

182 6. VISIBILITY CALCULATIONS

The above facts prevent the relation � from being an ordering relation,

that is, the depth order is generally impossible to compute (at least if the

polygons are not allowed to be cut). The �rst problem is not a real problem

since polygons that do not overlap on the image plane can be painted in any

order. What the second and third problems have in common is that both

of them are caused by cyclic overlapping on the image plane. Cycles can be

resolved by properly cutting some of the polygons, as shown by dashed lines

in �gure 6.11. Having cut the \problematic" polygons, the relation between

resulting polygons will be cycle-free (transitive), that is Q2 � P � Q1 and

P1 � Q � R � P2 respectively.

P
Q

z (P)

z (Q)max

max

Z

X,Y

Figure 6.12: A situation when zmax(P) > zmax(Q) yet P 6� Q

TheNewell{Newell{Sancha algorithm [NNS72], [NS79] is one approach

for exploiting the ideas sketched above. The �rst step is the calculation of

an initial depth order. This is done by sorting the polygons according

to their maximal z value, zmax, into a list L. If there are no two polygons

whose z ranges overlap, the resulting list will re
ect the correct depth or-

der. Otherwise, and this is the general case except for very special scenes

such as those consisting of polygons all perpendicular to the z direction, the

calculations need more care. Let us �rst take the polygon P which is the

last item on the resulting list. If the z range of P does not overlap with any

of the preceding polygons, then P is correctly positioned, and the polygon

preceding P can be taken instead of P for a similar examination. Otherwise

(and this is the general case) P overlaps a set fQ1; : : : ; Qmg of polygons.

This set can be found by scanning L from P backwards and taking the

6.6. LIST-PRIORITY METHODS 183

consecutive polygons Q while zmax(Q) > zmin(P). The next step is to try

to check that P does not obscure any of the polygons in fQ1; : : : ; Qmg, that

is, that P is at its right position despite the overlapping. A polygon P

does not obscure another polygon Q, that is Q � P , if any of the following

conditions holds:

1. zmin(P) > zmax(Q) (they do not overlap in z range, this is the so-called

z minimax check);

2. the bounding rectangle of P on the x; y plane does not overlap with

that of Q (x; y minimax check);

3. each vertex of P is farther from the viewpoint than the plane contain-

ing Q;

4. each vertex of Q is closer to the viewpoint than the plane containing

P ;

5. the projections of P and Q do not overlap on the x; y plane.

The order of the conditions re
ects the complexity of the check, hence it

is worth following this order in practice. If it turns out that P obscures Q

(Q 6� P) for a polygon in the set fQ1; : : : ; Qmg, then Q has to be moved

behind P in L. This situation is illustrated in �gure 6.12. Naturally, if P

intersects Q, then one of them has to be cut into two parts by the plane of

the other one. Cycles can also be resolved by cutting. In order to accomplish

this, whenever a polygon is moved to another position in L, we mark it. If

a marked polygon Q is about to be moved again because, say Q 6� P , then

| assuming that Q is a part of a cycle | Q is cut into two pieces Q1; Q2,

so that Q1 6� P and Q2 � P , and only Q1 is moved behind P . A proper

cutting plane is the plane of P , as illustrated in �gure 6.11.

Considering the Newell{Newell{Sancha algorithm, the following observa-

tion is worth mentioning here. For any polygon P , let us examine the two

halfspaces, say H+
P and H�

P , determined by the plane containing P . If the

viewing position is in H+
P , then for all p 2 H+

P , P cannot obscure p, and for

all p 2 H�

P , p cannot obscure P . On the other hand, if the viewing position

is contained by H�

P , similar observations can be made with the roles of H+
P

and H�

P interchanged. A complete algorithm for computing the depth or-

der of a set S = fP1; : : : ; Png of polygons can be constructed based on this

184 6. VISIBILITY CALCULATIONS

idea, as proposed by Fuchs et al. [FKN80]. First Pi, one of the polygons, is

selected. Then the following two sets are computed:

S+
i = (S n Pi) \H

+
i ; S�i = (S n Pi) \H

�

i ; (jS+
i j; jS

�

i j � jSj � 1 = n� 1):

(6:55)

Note that some (if not all) polygons may be cut into two parts during the

construction of the sets. If the viewing point is in H+
i , then Pi cannot

obscure any of the polygons in S+
i , and no polygon in S�i can obstruct Pi.

If the viewing point is in H�

i , then the case is analogous with the roles of

S+
i and S�i interchanged. That is, the position of Pi in the depth order is

between those of the polygons in S+
i and S�i . The depth order in S+

i and

S�i can then be recursively computed: a polygon Pj is selected from S+
i

and the two sets S+
j ; S

�

j are created, and a polygon Pk is selected from S�i
and the two sets S+

k ; S
�

k are created, etc. The subdivision is continued until

the resulting set S�
�
contains not more than one polygon (the depth order is

then obvious in S�� ; the dots in the subscript and superscript places stand

for any possible value). This stop condition will de�nitely hold, since the

size of both resultant sets S+
� ; S

�

� is always at least one smaller than that

of S�
�
, from which they are created (cf. equation 6.55).

P1

P2

P4

P3 P1

P2 P3

P4 0

Figure 6.13: A binary space partitioning and its BSP-tree representation

The creation of the sets induces a subdivision of the object space, the so-

called binary space partitioning (BSP) as illustrated in �gure 6.13: the

�rst plane divides the space into two halfspaces, the second plane divides the

�rst halfspace, the third plane divides the second halfspace, further planes

split the resulting volumes, etc. The subdivision can well be represented by

a binary tree, the so-called BSP-tree, also illustrated in �gure 6.13: the

6.6. LIST-PRIORITY METHODS 185

�rst plane is associated with the root node, the second and third planes are

associated with the two children of the root, etc. For our application, not so

much the planes, but rather the polygons de�ning them, will be assigned to

the nodes of the tree, and the set S�
�
of polygons contained by the volume is

also necessarily associated with each node. Each leaf node will then contain

either no polygon or one polygon in the associated set S �� (and no partition-

ing plane, since it has no child). The algorithm for creating the BSP-tree

for a set S of polygons can be the following, where S(N); P (N); L(N) and

R(N) denote the set of polygons, the \cutting" polygon and the left and

right children respectively, associated with a node N :

BSPTree(S)

create a new node N ;

S(N) = S;

if jSj � 1 then

P (N) = null; L(N) = null; R(N) = null;

else

P = Select(S); P (N) = P ;

create sets S+
P and S�P ;

L(N) = BSPTree(S+
P);

R(N) = BSPTree(S�P);

endif

return N ;

end

The size of the BSP-tree, that is, the number of polygons stored in it, is

on the one hand highly dependent on the nature of the object scene, and

on the other hand on the \choice strategy" used by the routine Select.

We can a�ect only the latter. The creators of the algorithm also proposed

a heuristic choice criterion (without a formal proof) [FKN80], [JGMHe88]

for minimizing the number of polygons in the BSP-tree. The strategy is

two-fold: it minimizes the number of polygons that are split, and at the

same time tries to maximize the number of \polygon con
icts" eliminated

by the choice. Two polygons are in con
ict if they are in the same set,

and the plane of one polygon intersects the other polygon. What hoped for

when maximizing the elimination of polygon con
icts is that the number

of polygons which will need to be split in the descendent subtrees can be

186 6. VISIBILITY CALCULATIONS

reduced. In order to accomplish this, the following three sets are associated

with each polygon P in the actual (to-be-split) set S:

S1 =
n
Q 2 S j Q is entirely in H+

P

o
;

S2 = fQ 2 S j Q is intersected by the plane of Pg ;

S3 =
n
Q 2 S j Q is entirely in H�

P

o
:

(6:56)

Furthermore, the following functions are de�ned:

f(P;Q) =

8<
:
1; if the plane of P intersects Q;

0; otherwise;

Ii;j =
P

P2Si

P
Q2Sj

f(P;Q)

(6:57)

Then the routine Select(S) will return that polygon P 2 S, for which the

expression I1;3+ I3;1 +w � jS2j is maximal, where w is a weight factor. The

actual value of the weight factor w can be set based on practical experiments.

Note that the BSP-tree computed by the algorithm is view-independent,

that is it contains the proper depth order for any viewing position. Dif-

ferences caused by di�erent viewing positions will appear in the manner

of traversing the tree for retrieving the actual depth order. Following the

characteristics of the BSP-tree, the traversal will always be an inorder

traversal. Supposing that some action is to be performed on each node

of a binary tree, the inorder traversal means that for each node, �rst one

of its children is traversed (recursively), then the action is performed on

the node, and �nally the other child is traversed. This is in contrast to

what happens with preorder or postorder traversals, where the action is

performed before or after traversing the children respectively. The action

for each node N here is the drawing of the polygon P (N) associated with

it. If the viewing position is in H+
P (N), then �rst the right subtree is drawn,

then the polygon P (N), and �nally the left subtree, otherwise the order of

the left and right children is back to front.

6.7. PLANAR GRAPH BASED ALGORITHMS 187

The following algorithm draws the polygons of a BSP-tree N in their

proper depth order:

BSPDraw(N)

if N is empty then return ;

if the viewing position is in H+
P (N) then

BSPDraw(R(N)); Draw(P (N)); BSPDraw(L(N));

else

BSPDraw(L(N)); Draw(P (N)); BSPDraw(R(N));

endif

end

Once the BSP-tree has been created by the algorithm BSPTree, subse-

quent images for subsequent viewing positions can be generated by subse-

quent calls to the algorithm BSPDraw.

6.7 Planar graph based algorithms

A graph G is a pair G(V;E) in its most general form, where V is the set

of vertices or nodes, and E is the set of edges or arcs, each connecting two

nodes. A graph is planar if it can be drawn onto the plane so that no

two arcs cross each other. A straight line planar graph (SLPG) is a

concrete embedding of a planar graph in the plane where all the arcs are

mapped to (non-crossing) straight line segments. Provided that the graph

is connected, the \empty" regions surrounded by an alternating chain of

vertices and edges, and containing no more of them in the interior, are

called faces. (Some aspects of these concepts were introduced brie
y in

section 1.6.2 on B-rep modeling.)

One of the characteristics of image coherence is that visible parts of ob-

jects appear as connected territories on the screen. If we have calculated

these territories exactly, then we have only to paint each of them with the

color of the corresponding object. Note that although the calculations are

made on the image plane, this is an object-precision approach, because the

accuracy of the result | at least in the �rst step | does not depend on

the resolution of the �nal image. If the object scene consists of planar poly-

gons, then the graph of visible parts will be a straight line planar graph,

188 6. VISIBILITY CALCULATIONS

also called the visibility map of the objects on the image plane. Its nodes

and arcs correspond to the vertices and edges of polygons and intersections

between polygons, and the faces represent homogeneous visible parts. We

use the terms nodes and arcs of G in order to distinguish them from the

vertices and edges of the polyhedra in the scene.

Let us assume in this section that the polygons of the scene do not in-

tersect, except in cases when two or more of them share a common edge

or vertex. This assumption makes the treatment easier, and it is still gen-

eral enough, because scenes consisting of disjoint polyhedra fall into this

category. The interested reader is recommended to study the very recent

work of Mark de Berg [dB92], where the proposed algorithms can handle

scenes of arbitrary (possibly intersecting) polygons. A consequence of our

assumption is that the set of projected edges of the polygons is a superset

of the set of edges contained in the visibility map. This is not so for the

vertices, because a new vertex can occur on the image plane if a polygon

partially obscures an edge. But the set of such new vertices is contained

in the set of all intersection points between the projected edges. Thus we

can �rst project all the polygon vertices and edges onto the image plane,

then determine all the intersection points between the projected edges, and

�nally determine the parts that remain visible.

Y

X

Z

G:

G’
G’’

Y

X

Figure 6.14: Example scene and the corresponding planar subdivision

In actual fact what we will do is to compute the graph G corresponding to

the subdivision of the image plane induced by the projected vertices, edges

6.7. PLANAR GRAPH BASED ALGORITHMS 189

and the intersection between the edges. This graph will not be exactly

the visibility map as we de�ned above, but will possess the property that

the visibility will not change within the regions of the subdivision (that is

the faces of the graph). Once we have computed the graph G, then all we

have to do is visit its regions one by one, and for each region, we select the

polygon closest to the image plane and use its color to paint the region.

Thus the draft of the drawing algorithm for rendering a set P1; : : : ; PN of

polygons is the following:

1. project vertices and edges of P1; : : : ; PN onto image plane;

2. calculate all intersection points between projected edges;

3. compute G, the graph of the induced planar subdivision;

4. for each region R of G do

5. P = the polygon visible in R;

6. for each pixel p covered by R do

7. color of p = color of P ;

8. endfor

9. endfor

The speed of the algorithm is considerably a�ected by how well its steps

are implemented. In fact, all of them are critical, except for steps 1 and 7.

A simplistic implementation of step 2, for example, would test each pair of

edges for possible intersection. If the total number of edges is n, then the

time complexity of this calculation would be O(n2). Having calculated the

intersection points, the structure of the subdivision graph G has to be built,

that is, incident nodes and arcs have to be assigned to each other somehow.

The number of intersection points is O(n2), hence both the number of nodes

and the number of arcs fall into this order. A simplistic implementation of

step 3 would search for the possible incident arcs for each node, giving a time

complexity of O(n4). This itself is inadmissible in practice, not to mention

the possible time complexity of the further steps. (This was a simplistic

analysis of simplistic approaches.)

We will take the steps of the visibility algorithm sketched above one by

one, and also give a worst-case analysis of the complexity of the solution

used. The approach and techniques used in the solutions are taken from

[D�ev93].

190 6. VISIBILITY CALCULATIONS

Representing straight line planar graphs

First of all, we have to devote some time to a consideration of what data

structures can be used for representing a straight line planar graph, say

G(V;E). If the \topology" of the graph is known, then the location of the

vertices determines unambiguously all other geometric characteristics of the

graph. But if we intend to manipulate a graph quickly, then the matter of

\topological" representation is crucial, and it may well be useful to include

some geometric information too. Let us examine two examples where the

di�erent methods of representation allow di�erent types of manipulations

to be performed quickly.

v2 v3

v1

v4

v1

v4

v3v2

(similarly for rest of vertices) (similarly for rest of edges)

Figure 6.15: Adjacency lists and doubly connected edge list

The �rst scheme stores the structure by means of adjacency lists. Each

vertex v 2 V has an adjacency list associated with it, which contains a

reference to another vertex w, if there is an edge from v to w, that is

(v;w) 2 E. This is illustrated in �gure 6.15. In the case of undirected

graphs, each edge is stored twice, once at each of its endpoints. If we

would like to \walk along" the boundary of a face easily (that is retrieve

its boundary vertices and edges), for instance, then it is worth storing some

extra information beyond that of the position of the vertices, namely the

order of the adjacent vertices w around v. If adjacent vertices appear in

counter clockwise order, for example, on the adjacency lists then walking

around a face is easily achievable. Suppose that we start from a given vertex

v of the face, and we know that the edge (v;w) is an edge of the face with

6.7. PLANAR GRAPH BASED ALGORITHMS 191

the face falling onto the right-hand side of it, where w is one of the vertices

on the adjacency list of v. Then we search for the position of v on the

adjacency list of w, and take the vertex next to v on this list as w0, and

w as v0. The edge (v0; w0) will be the edge next to (v;w) on the boundary

of the face, still having the face on its right-hand side. Then we examine

(v0; w0) in the same way as we did with (v;w), and step on, etc. We stop

the walk once we reach our original (v;w) again. This walk would have

been very complicated to perform without having stored the order of the

adjacent vertices.

An alternative way of representing a straight line planar graph is the use

of doubly connected edge lists (DCELs), also shown in �gure 6.15.

The basic entity is now the edge. Each edge e has two vertex references,

v1(e) and v2(e), to its endpoints, two edge references, e1(e) and e2(e), to the

next edge (in counter clockwise order, for instance) around its two endpoints

v1(e) and v2(e), and two face references, f1(e) and f2(e), to the faces sharing

e. This type of representation is useful if the faces of the graph carry some

speci�c information (for example: which polygon of the scene is visible in

that region). It also makes it possible to traverse all the faces of the graph.

The chain of boundary edges of a face can be easily retrieved from the

edge references e1(e) and e2(e). This fact will be exploited by the following

algorithm, which traverses the faces of a graph, and performs an action

on each face f by calling a routine Action(f). It is assumed that each

face has an associated mark �eld, which is initialized to non-traversed. The

algorithm can be called with any edge e and one of its two neighboring faces

f (f = f1(e) or f = f2(e)).

Traverse(e, f)

if f is marked as traversed then return ; endif

Action(f); mark f as traversed;

for each edge e0 on the boundary of f do

if f1(e
0) = f then Traverse(e0, f2(e

0));

else Traverse(e0, f1(e
0));

endfor

end

Note that the algorithm can be used only if the faces of the graph contain

no holes | that is the boundary edges of each face form a connected chain,

192 6. VISIBILITY CALCULATIONS

or, what is equivalent, the graph is connected. The running time T of

the algorithm is proportional to the number of edges, that is T = O(jEj),

because each edge e is taken twice: once when we are on face f1(e) and

again when we are on face f2(e).

If the graph has more than one connected component as the one shown

in �gure 6.14, then the treatment needs more care (faces can have holes,

for example). In order to handle non-connected and connected graphs in a

uni�ed way, some modi�cations will be made on the DCEL structure. The

unbounded part of the plane surrounding the graph will also be considered

and represented by a face. Let this special face be called the surrounding

face. Note that the surrounding face is always multiply connected (if the

graph is non-empty), that is it contains at least one hole (in fact the edges of

the hole border form the boundary edges of the graph), but has no boundary.

We have already de�ned the structure of an edge of a DCEL structure, but

no attention was paid to the structure of a face, although each edge has two

explicit references to two faces. A face f will have a reference e(f) to one

of its boundary edges. The other boundary edges (except for those of the

holes) can be retrieved by stepping through them using the DCEL structure.

For the boundary of the holes, f will have the references h1(f); : : : ; hm(f),

where m � 0 is the number holes in f , each pointing to one boundary edge

of them di�erent holes. Due to this modi�cation, non-connected graphs will

become connected from a computational point of view, and the algorithm

Traverse will correctly visit all its faces, provided that the enumeration

\for each edge e0 on the boundary of f do" implies both the outer and the

hole boundary edges. A proper call to visit each face of a possibly multiply

connected graph is Traverse(h1(F), F), where F is the surrounding face.

Step 1: Projecting the edges

Let the object scene be a set of polyhedra, that is, where the faces of the

objects are planar polygons. Assume furthermore that the boundary of

the polyhedra (the structure of the vertices, edges and faces) is given by

DCEL structures. (The DCEL structure used for boundary representation

is known as the winged edge data structure for people familiar with shape

modeling techniques.) This assumption is important because during the

traversal of the computed visibility graph we will enter a new region by

crossing one of its boundary edges, and we will have to know the polygon(s)

6.7. PLANAR GRAPH BASED ALGORITHMS 193

of the object scene the projection of which we leave or enter when crossing

the edge on the image plane.

If the total number of edges is n, then the time T1 required by this step

is proportional to the number of edges, that is:

T1 = O(n): (6:58)

Step 2: Calculating the intersection points

The second step is the calculation of the intersection points between the

projected edges on the image plane. In the worst case the number of inter-

section points between n line segments can be as high as O(n2) (imagine, for

instance, a grid of n=2 horizontal and n=2 vertical segments, where each of

the horizontal ones intersects each of the vertical ones). In this worst case,

therefore, calculation time cannot be better than O(n2), and an algorithm

that compares each segment with all other ones would accomplish the task

in optimal worst-case time. The running time of this algorithm would be

O(n2), independently of the real number of intersections. We can create

algorithms, however, the running time of which is \not too much" if there

are \not too many" intersections. Here we give the draft of such an output

sensitive algorithm, based on [D�ev93] and [BO79]. Let us assume that no

three line segments intersect at the same point and all the 2n endpoints of

the n segments have distinct x-coordinates on the plane, a consequence of

the latter being that no segments are vertical. Resolving these assumptions

would cause an increase only in the length of the algorithm but not in its

asymptotic complexity. See [BO79] for further details. Consider a vertical

line L(x) on the plane at a given abscissa x. L(x) may or may not intersect

some of our segments, depending on x. The segments e1; : : : ; ek intersecting

L(x) at points (x; y1); : : : ; (x; yk) appear in an ordered sequence if we walk

along L(x). A segment ei is said to be above ej at x if yi > yj. This relation

is a total order for any set of segments intersecting a given vertical line. A

necessary condition in order for two segments ei and ej to intersect is that

there be some x at which ei and ej appear as neighbors in the order. All

intersection points can be found by sweeping a vertical line in the horizontal

direction on the plane and always comparing the neighbors in the order for

intersection. The order along L(x) can change when the abscissa x corre-

sponds to one of the following: the left endpoint (beginning) of a segment,

194 6. VISIBILITY CALCULATIONS

the right endpoint (end) of a segment, and/or the intersection point of two

segments. Thus our sweep can be implemented by stepping through only

these speci�c positions, called events. The following algorithm is based on

these ideas, which we can call as the sweep-line approach. It maintains a

set Q for the event positions, a set R for the intersection points found and

a set S for storing the order of segments along L(x) at the actual position.

All three sets are ordered, and for set S, succ(s) and prec(s) denote the

successor and the predecessor of s 2 S, respectively.

Q = the set of all the 2n segment endpoints;

R = fg; S = fg;

sort Q by increasing x-values;

for each point p 2 Q in increasing x-order do

if p is the left endpoint of a segment s then

insert s into S;

if s intersects succ(s) at any point q then insert q into Q;

if s intersects prec(s) at any point q then insert q into Q;

else if p is the right endpoint of a segment s then

if succ(s) and prec(s) intersect at any point q then

if q 62 Q then insert q into Q;

endif

delete s from S

else // p is the intersection of segments s and t, say

add p to R; swap s and t in S; //say s is above t

if s intersects succ(s) at any point q then

if q 62 Q then insert q into Q;

endif

if t intersects prec(t) at any q then

if q 62 Q then insert q into Q;

endif

endif

endfor

Note that the examinations \if q 62 Q" are really necessary, because the

intersection of two segments can be found to occur many times (the appear-

ance and disappearance of another segment between two segments can even

occur n � 2 times!). The �rst three steps can be performed in O(n log n)

6.7. PLANAR GRAPH BASED ALGORITHMS 195

time because of sorting. The main loop is executed exactly 2n + k times,

where k is the number of intersection points found. The time complex-

ity of one cycle depends on how sophisticated the data structures used for

implementing the sets Q and S are, because insertions and deletions have

to be performed on them. R is not crucial, a simple array will do. Since

the elements of both Q and S have to be in order, an optimal solution is

the use of balanced binary trees. Insertions, deletions and searching can

be performed in O(logN) time on a balanced tree storing N elements (see

[Knu73], for instance). Now N = O(n2) for Q and N = O(n) for S, hence

logN = O(log n) for both. We can conclude that the time complexity of

our algorithm for �nding the intersection of n line segments in the plane,

that is the time T2 required by step 2 of the visibility algorithm is:

T2 = O((n+ k) log n): (6:59)

Such an algorithm is called an output sensitive algorithm, because its

complexity depends on the actual size of the output. It is generally worth

mentioning that if we have a problem with a very bad worst-case complexity

due to the possible size of the output, although the usual size of the output

is far less, then we have to examine whether an output sensitive algorithm

can be constructed.

Step 3: Constructing the subdivision graph G

In step 3 of the proposed visibility algorithm we have to produce the sub-

division graph G so that its faces can be traversed e�ciently in step 4. A

proper representation of G, as we have seen earlier, is a DCEL structure.

It will be computed in two steps, �rst producing an intermediate structure

which is then easily converted to a DCEL representation. We can assume

that the calculations in steps 1 and 2 have been performed so that all the

points | that is the projections of the 2n vertices and the k intersection

points | have references to the edge(s) they lie on. First of all, for each

edge we sort the intersection points lying on it (sorting is done along each

edge, individually). Since O(N logN) time is su�cient (and also necessary)

for sorting N numbers, the time consumed by the sorting along an edge ei
is O(Ni logNi), where Ni is the number of intersection points to be sorted

on ei. Following from the general relation that if N1 + : : :+Nn = N , then

N1 logN1+ : : :+Nn logNn � N1 logN + : : :+Nn logN = N logN; (6:60)

196 6. VISIBILITY CALCULATIONS

the sum of the sorting time at the edges is O(k log k) = O(k log n), since

N = 2k = O(n2) (one intersection point appears on two segments). Having

sorted the points along the edges, we divide the segments into subsegments

at the intersection points. Practically speaking this means that the represen-

tation of each edge will be transformed into a doubly linked list, illustrated

in �gure 6.16. Such a list begins with a record describing its starting point.

Figure 6.16: Representation of a subdivided segment

It is (doubly) linked to a record describing the �rst subsegment, which is

further linked to its other endpoint, etc. The last element of the list stores

the end point of the edge. The total time needed for this computation is

O(n + k), since there are n + 2k subsegments. Note that each intersec-

tion point is duplicated although this could be avoided by modifying the

representation a little. Note furthermore that if the real spatial edges cor-

responding to the projected edges ei1; : : : ; eim meet at a common vertex on

the boundary of a polyhedron, then the projection of this common vertex

is represented m times in our present structure. So we merge the di�er-

ent occurrences of each vertex into one. This can be done by �rst sorting

the vertices in lexicographic order with respect to their x; y coordinates and

then merging equal ones. Lexicographic ordering means that a vertex with

coordinates x1; y1 precedes another one with coordinates x2; y2, if x1 < x2
or x1 = x2 ^ y1 < y2. They are equal if x1 = x2 ^ y1 = y2. The merging

operation can be performed in O((n+k) log(n+k)) = O((n+k) log n) time

because of the sorting step. Having done this, we have a data structure for

the subdivision graph G, which is similar to an adjacency list representation

with the di�erence that there are not only vertices but edges too, and the

neighbors (edges, vertices) are not ordered around the vertices. Ordering

adjacent edges around the vertices can be done separately for each vertex.

For a vertex vi with Ni edges around it, this can be done in O(Ni logNi)

time. The total time required by the m vertices will be O((n + k) log n),

using relation 6.60 again with N1 + : : :+Nm = n+ 2k. The data structure

obtained in this way is halfway between the adjacency list and the DCEL

6.7. PLANAR GRAPH BASED ALGORITHMS 197

representation of G. It is \almost" DCEL, since edges appear explicitly,

and each edge has references to its endpoints. The two reasons for incom-

pleteness are that no explicit representation of faces appears, and the edges

have no explicit reference to the edges next to them around the endpoints

| the references exist, however, but only implicitly through the vertices.

Since the edges are already ordered about the vertices, these references can

be made explicit by scanning all the edges around each vertex, which re-

quires O(n+ k) time. The faces can be constructed by �rst generating the

faces of the connected components of G separately, and then merging the

DCEL structure of the components into one DCEL structure. The �rst step

can be realized by using an algorithm very similar to Traverse, since the

outer boundary of each face can be easily retrieved from our structure, be-

cause edges are ordered around vertices. Assuming that the face references

f1(e); f2(e) of each edge e are initialized to null, the following algorithm

constructs the faces of G and links them into the DCEL structure:

for each edge e do MakeFaces(e); endfor

MakeFaces(e)

for i = 1 to 2 do

if fi(e) = null then

construct a new face f ;

e(f) = e; set m (the number of holes in f) to 0;

for each edge e0 on the boundary of f do

if f1(e
0) corresponds to the side of f then

f1(e
0) = f ;

else

f2(e
0) = f ;

endif

MakeFaces(e0);

endfor

endif

endfor

end

Note that the recursive subroutine MakeFaces(e) traverses that con-

nected component of G which contains the argument edge e. The time

complexity of the algorithm is proportional to the number of edges, that

198 6. VISIBILITY CALCULATIONS

is O(n + k), because each edge is taken at most three times (once in the

main loop and twice when traversing the connected component containing

the edge).

The resulting structure generally consists of more than one DCEL struc-

ture corresponding to the connected components of G. Note furthermore

that the surrounding faces contain no holes. Another observation is that

for any connected component G0 of G the following two cases are possible:

(1) G0 falls onto the territory of at least one component (as in �gure 6.14)

and then it is contained by at least one face. (2) G0 falls outside any other

components (it falls into their surrounding face). In case (1) the faces con-

taining G0 form a nested sequence. Let the smallest one be denoted by f .

Then for each boundary edge of G0, the reference to the surrounding face

of G0 has to be substituted by a reference to f . Moreover, the boundary

edges of G0 will form the boundary of a hole in the face f , hence a new hole

edge reference hm+1(f) (assuming that f has had m holes so far) has to be

created for f , and hm+1(f) is to be set to one of the boundary edges of G0.

In case (2) the situation is very similar, the only di�erence being that the

surrounding face F corresponding to the resulting graph G plays the role

of f . Thus the problem is �rst creating F , the \united" surrounding face

of G, and then locating and linking the connected components of G in its

faces. In order to accomplish this task e�ciently, a sweep-line approach

will be used.

X

Y

Figure 6.17: Slabs

6.7. PLANAR GRAPH BASED ALGORITHMS 199

The problem of locating a component, that is �nding the face containing

it, is equivalent to the problem of locating one of its vertices, that is, our

problem is a point location problem. Imagine a set of vertical lines through

each vertex of the graph G, as shown in �gure 6.17. These parallel lines

divide the plane into unbounded territories, called slabs. The number of

slabs is O(n + k). Each slab is divided into O(n + k) parts by the crossing

edges, and the crossing edges always have the same order along any ver-

tical line in the interior of the slab. Given e�cient data structures (with

O(log(n+k)) search time) for storing the slabs and for the subdivision inside

the slabs, the problem of locating a point can be performed e�ciently (in

O(log(n+ k)) time). This is the basic idea behind the following algorithm

which �rst determines the order of slabs, and then scans the slabs in order

(from left to right) and incrementally constructs the data structure storing

the subdivision. This data structure is a balanced binary tree, which allows

e�cient insertion and deletion operations on it. In order that the algorithm

may be understood, two more notions must be de�ned. Each vertical line

(beginning of a slab) corresponds to a vertex. The edges incident to this

vertex are divided into two parts: the edges on the left side of the line are

called incoming edges, while those on the right side are outgoing edges. If

we imagine a vertical line sweeping the plane from left to right, then the

names are quite apt. The vertex which is �rst encountered during the sweep

| that is, the vertex furthest to the left | de�nitely corresponds to the

boundary of the (�rst) hole of the surrounding face F , hence F can be con-

structed at this stage. (Note that this is so because the line segments are

assumed to be straight.) Generally, if a vertex v with no incoming edges

is encountered during the sweep (this is the case for the furthest left ver-

tex too), it always denotes the appearance of a new connected component,

which then has to be linked into the structure. The structure storing the

subdivision of the actual slab (that is the edges crossing the actual slab)

will be a balanced tree T .

200 6. VISIBILITY CALCULATIONS

The algorithm is the following:

sort all the vertices of G by their (increasing) x coordinates;

create F (the surrounding face);

T = fg;

for each vertex v in increasing x-order do

if v has only outgoing edges (a new component appears) then

f = the face containing v (search in T);

mutually link f and the boundary chain containing v;

endif

for all the incoming edges ein at v do

delete ein from T ;

endfor

for all the outgoing edges eout at v do

insert eout into T ;

endfor

endfor

The face f containing a given vertex v can be found by �rst searching

for the place where v could be inserted into T , and then f can be retrieved

from the edge either above or below the position of v in T . If T is empty,

then f = F .

The sorting (�rst) step can be done in O((n + k) log(n + k)) = O((n +

k) log n) time; the main cycle is executed O(n + k) times; the insertions

into and deletions from T need only O(log(n + k)) = O(log n) time. The

time required to link the boundary of a connected component into the face

containing it is proportional to the number of edges in the boundary chain,

but each component is linked only once (when encountering its leftmost

vertex), hence the total time required by linking is O(n + k). Thus the

running time of the algorithm is O((n + k) log n).

We have come up with a DCEL representation of the subdivision graph

G, and we can conclude that the time T3 consumed by step 3 of the visibility

algorithm is:

T3 = O((n+ k) log n): (6:61)

6.7. PLANAR GRAPH BASED ALGORITHMS 201

Steps 4{9: Traversing the subdivision graph G

Note that it causes no extra di�culties in steps 1{3 to maintain two more

references F1(e); F2(e) for each edge e, pointing to the spatial faces incident

to the original edge from which e has been projected (these are boundary

faces of polyhedra in the object scene).

Steps 4{9 of the algorithm will be examined together. The problem is to

visit each face of G, retrieve the spatial polygon closest to the image plane

for the face, and then draw it. We have already proposed the algorithm

Traverse for visiting the faces of a DCEL structure. Its time complexity

is linearly proportional to the number of edges in the graph, if the action

performed on the faces takes only a constant amount of time. We will

modify this algorithm a little bit and examine the time complexity of the

action. The basic idea is the following: for each face f of G, there are

some spatial polygons, the projection of which completely covers f . Let

us call them candidates. The projections of all the other polygons have

empty intersection with f , hence they cannot be visible in f . Candidate

polygons are always in a unique order with respect to their distance from

the image plane (that is from f). The candidate polygon must always be

retrieved at the �rst position. The candidate-set changes if we cross an edge

of G. If we cross some edge e, then for each of the two spatial faces F1(e)

and F2(e) pointed to by e there are two possibilities: either it appears as a

new member in the set of candidates or it disappears from it, depending on

which direction we cross e. Thus we need a data structure which is capable

of storing the actual candidates in order, on which insertions and deletions

can be performed e�ciently, and where retrieving the �rst element can be

done as fast as possible. The balanced binary tree would be a very good

candidate were there not a better one: the heap. An N -element heap is a

1-dimensional array H[1; : : : ; N], possessing the property:

H[i] � H[2i] and H[i] � H[2i+ 1]: (6:62)

Insertions and deletions can be done in O(logN) time [Knu73], just as for

balanced binary trees, but retrieving the �rst element (which is alwaysH[1])

requires only constant time. Initializing a heap H for storing the candidate

polygons at any face f can be done inO(n log n) time, sinceN = O(n) in our

case (from Euler's law concerning the number of faces, edges and vertices

of polyhedra). This has to be done only once before the traversal, because

202 6. VISIBILITY CALCULATIONS

H can be updated during the traversal when crossing the edges. Hence the

time required for retrieving the closest polygon to any of the faces (except

for the �rst one) will not be more than O(log n). The �nal step is the

drawing (�lling the interior) of the face with the color of the corresponding

polygon. Basic 2D scan conversion algorithms can be used for this task. An

arbitrary face fi with Ni edges can be raster converted in O(Ni logNi+Pi)

time, where Pi is the number of pixels it covers (see [NS79]). The total

time spent on raster converting the faces of G is O((n+k) log n+R2), since

N1 + : : : + Nm = 2(n + 2k), and P1 + : : : + Pm � R2 (no pixel is drawn

twice), where R2 is the resolution (number of pixels) of the screen. Thus

the time T4 required by steps 4{9 of the visibility algorithm is:

T4 = O((n + k) log n +R2): (6:63)

This four-step analysis shows that the time complexity of the proposed

visibility algorithm, which �rst computes the visibility map induced by a set

of non-intersecting polyhedra having n edges altogether, and then traverses

its faces and �lls them with the proper color, is:

T1 + T2 + T3 + T4 = O((n+ k) log n+R2); (6:64)

where k is the number of intersections between the projected edges on the

image plane. It is not really an output sensitive algorithm, since many of

the k intersection points may be hidden in the �nal image, but it can be

called an intersection sensitive algorithm.

