
Chapter 5

TRANSFORMATIONS,

CLIPPING AND

PROJECTION

5.1 Geometric transformations

Three-dimensional graphics aims at producing an image of 3D objects. This
means that the geometrical representation of the image is generated from
the geometrical data of the objects. This change of geometrical description
is called the geometric transformation. In computers the world is repre-
sented by numbers; thus geometrical properties and transformations must
also be given by numbers in computer graphics. Cartesian coordinates pro-
vide this algebraic establishment for the Euclidean geometry, which de�ne
a 3D point by three component distances along three, non-coplanar axes
from the origin of the coordinate system.
The selection of the origin and the axes of this coordinate system may

have a signi�cant e�ect on the complexity of the de�nition and various cal-
culations. As mentioned earlier, the world coordinate system is usually not
suitable for the de�nition of all objects, because here we are not only con-
cerned with the geometry of the objects, but also with their relative position
and orientation. A brick, for example, can be simplistically de�ned in a co-
ordinate system having axes parallel to its edges, but the description of the
box is quite complicated if arbitrary orientation is required. This consid-

99



100 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

eration necessitated the application of local coordinate systems. Viewing
and visibility calculations, on the other hand, have special requirements
from a coordinate system where the objects are represented, to facilitate
simple operations. This means that the de�nition and the photographing
of the objects may involve several di�erent coordinate systems suitable for
the di�erent speci�c operations. The transportation of objects from one
coordinate system to another also requires geometric transformations.
Working in several coordinate systems can simplify the various phases

of modeling and image synthesis, but it requires additional transformation
steps. Thus, this approach is advantageous only if the computation needed
for geometric transformations is less than the decrease of the computation
of the various steps due to the speci�cally selected coordinate systems. Rep-
resentations invariant of the transformations are the primary candidates for
methods working in several coordinate systems, since they can easily be
transformed by transforming the control or de�nition points. Polygon mesh
models, Bezier and B-spline surfaces are invariant for linear transformation,
since their transformation will also be polygon meshes, Bezier or B-spline
surfaces, and the vertices or the control points of the transformed surface
will be those coming from the transformation of the original vertices and
control points.
Other representations, sustaining non-planar geometry, and containing,

for example, spheres, are not easily transformable, thus they require all the
calculations to be done in a single coordinate system.
Since computer graphics generates 2D images of 3D objects, some kind

of projection is always involved in image synthesis. Central projection,
however, creates problems (singularities) in Euclidean geometry, it is thus
worthwhile considering another geometry, namely the projective geome-

try, to be used for some phases of image generation. Projective geometry is
a classical branch of mathematics which cannot be discussed here in detail.
A short introduction, however, is given to highlight those features that are
widely used in computer graphics. Beyond this elementary introduction,
the interested reader is referred to [Her91] [Cox74].
Projective geometry can be approached from the analysis of central pro-

jection as shown in �gure 5.1.
For those points to which the projectors are parallel with the image plane

no projected image can be de�ned in Euclidean geometry. Intuitively speak-
ing these image points would be at \in�nity" which is not part of the Eu-



5.1. GEOMETRIC TRANSFORMATIONS 101

center of projection
"ideal points"

vanishing line

affine lines
projection plane

Figure 5.1: Central projection of objects on a plane

clidean space. Projective geometry �lls these holes by extending the Eu-
clidean space by new points, called ideal points, that can serve as the
image of points causing singularities in Euclidean space. These ideal points
can be regarded as \intersections" of parallel lines and planes, which are at
\in�nity". These ideal points form a plane of the projective space, which is
called the ideal plane.
Since there is a one-to-one correspondence between the points of Eu-

clidean space and the coordinate triples of a Cartesian coordinate system,
the new elements obviously cannot be represented in this coordinate system,
but a new algebraic establishment is needed for projective geometry. This
establishment is based on homogeneous coordinates.
For example, by the method of homogeneous coordinates a point of space

can be speci�ed as the center of gravity of the structure containing mass
Xh at reference point p1, mass Yh at point p2, mass Zh at point p3 and mass
w at point p4. Weights are not required to be positive, thus the center of
gravity can really be any point of the space if the four reference points are
not co-planar. Alternatively, if the total mass, that is h = Xh+Yh+Zh+w,
is not zero and the reference points are in Euclidean space, then the center
of gravity will also be in the Euclidean space.
Let us call the quadruple (Xh; Yh; Zh; h), where h = Xh + Yh + Zh + w,

the homogeneous coordinates of the center of gravity.
Note that if all weights are multiplied by the same (non-zero) factor,

the center of gravity, that is the point de�ned by the homogeneous coordi-



102 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

nates, does not change. Thus a point (Xh; Yh; Zh; h) is equivalent to points
(�Xh; �Yh; �Zh; �h), where � is a non-zero number.
The center of gravity analogy used to illustrate the homogeneous coor-

dinates is not really important from a mathematical point of view. What
should be remembered, however, is that a 3D point represented by homoge-
neous coordinates is a four-vector of real numbers and all scalar multiples
of these vectors are equivalent.
Points of the projective space, that is the points of the Euclidean space

(also called a�ne points) plus the ideal points, can be represented by
homogeneous coordinates. First the representation of a�ne points which
can establish a correspondence between the Cartesian and the homogeneous
coordinate systems is discussed. Let us de�ne the four reference points of
the homogeneous coordinate system in points [1,0,0], [0,1,0], [0,0,1] and in
[0,0,0] respectively. If h = Xh + Yh + Zh +w is not zero, then the center of
gravity in Cartesian coordinate system de�ned by axes i; j;k is:

r(Xh; Yh; Zh; h) =
1

h
(Xh � [1; 0; 0] + Yh � [0; 1; 0] +Zh � [0; 0; 1] +w � [0; 0; 0]) =

Xh

h
� i+

Yh

h
� j+

Zh

h
� k: (5:1)

Thus with the above selection of reference points the correspondence be-
tween the homogeneous coordinates (Xh; Yh; Zh; h) and Cartesian coordi-
nates (x; y; z) of a�ne points (h 6= 0) is:

x =
Xh

h
; y =

Yh

h
; z =

Zh

h
: (5:2)

Homogeneous coordinates can also be used to characterize planes. In the
Cartesian system a plane is de�ned by the following equation:

a � x+ b � y + c � z + d = 0 (5:3)

Applying the correspondence between the homogeneous and Cartesian co-
ordinates, we get:

a �Xh + b � Yh + c � Zh + d � h = 0 (5:4)

Note that the set of points that satisfy this plane equation remains the same
if this equation is multiplied by a scalar factor. Thus a quadruple [a; b; c; d]



5.1. GEOMETRIC TRANSFORMATIONS 103

of homogeneous coordinates can represent not only single points but planes
as well. In fact all theorems valid for points can be formulated for planes
as well in 3D projective space. This symmetry is often referred to as the
duality principle. The intersection of two planes (which is a line) can be
calculated as the solution of the linear system of equations. Suppose that
we have two parallel planes given by quadruples [a; b; c; d] and [a; b; c; d0]
(d 6= d0) and let us calculate their intersection. Formally all points satisfy
the resulting equations for which

a �Xh + b � Yh + c � Zh = 0 and h = 0 (5:5)

In Euclidean geometry parallel planes do not have intersection, thus the
points calculated in this way cannot be in Euclidean space, but form a subset
of the ideal points of the projective space. This means that ideal points
correspond to those homogeneous quadruples where h = 0. As mentioned,
these ideal points represent the in�nity, but they make a clear distinction
between the \in�nities" in di�erent directions that are represented by the
�rst three coordinates of the homogeneous form.
Returning to the equation of a projective plane or considering the equa-

tion of a projective line, we can realize that ideal points may also satisfy
these equations. Therefore, projective planes and lines are a little bit more
than their Euclidean counterparts. In addition to all Euclidean points, they
also include some ideal points. This may cause problems when we want to
return to Euclidean space because these ideal points have no counterparts.
Homogeneous coordinates can be visualized by regarding them as Carte-

sian coordinates of a higher dimensional space (note that 3D points are
de�ned by 4 homogeneous coordinates). This procedure is called the em-
bedding of the 3D projective space into the 4D Euclidean space or the
straight model [Her91] (�gure 5.2). Since it is impossible to create 4D
drawings, this visualization uses a trick of reducing the dimensionality and
displays the 4D space as a 3D one, the real 3D subspace as a 2D plane and
relies on the reader's imagination to interpret the resulting image.
A homogeneous point is represented by a set of equivalent quadruples

f(�Xh; �Yh; �Zh; �h) j � 6= 0g;

thus a point is described as a 4D line crossing the origin, [0,0,0,0], in the
straight model. Ideal points are in the h = 0 plane and a�ne points are
represented by those lines that are not parallel to the h = 0 plane.



104 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

h

h

z

affine points

ideal point

embedded Euclidean space

h

=1 plane

=0 plane

Figure 5.2: Embedding of projective space into a higher dimensional Euclidean

space

Since points are represented by a set of quadruples that are equivalent
in homogeneous terms, a point may be represented by any of them. Still,
it is worth selecting a single representative from this set to identify points
unambiguously. For a�ne points, this representative quadruple is found
by making the fourth (h) coordinate equal to 1, which has a nice property
that the �rst three homogeneous coordinates are equal to the Cartesian
coordinates of the same point taking equation 5.2 into account, that is:

(
Xh

h
;
Yh

h
;
Zh

h
; 1) = (x; y; z; 1): (5:6)

In the straight model thus the representatives of a�ne points correspond
to the h = 1 hyperplane (a 3D set of the 4D space), where they can be
identi�ed by Cartesian coordinates. This can be interpreted as the 3D
Euclidean space and for a�ne points the homogeneous to Cartesian conver-
sion of coordinates can be accomplished by projecting the 4D point onto
the h = 1 hyperplane using the origin as the center of projection. This
projection means the division of the �rst three coordinates by the fourth
and is usually called homogeneous division.
Using the algebraic establishment of Euclidean and projective geometries,

that is the system of Cartesian and homogeneous coordinates, geometric
transformations can be regarded as functions that map tuples of coordi-
nates onto tuples of coordinates. In computer graphics linear functions are



5.1. GEOMETRIC TRANSFORMATIONS 105

preferred that can conveniently be expressed as a vector-matrix multiplica-
tion and a vector addition. In Euclidean geometry this linear function has
the following general form:

[x0; y0; z0] = [x; y; z] �A3�3 + [px; py; pz ]: (5:7)

Linear transformations of this kind map a�ne points onto a�ne points,
therefore they are also a�ne transformations.
When using homogeneous representation, however, it must be taken into

account that equivalent quadruples di�ering only by a scalar multiplication
must be transformed to equivalent quadruples, thus no additive constant is
allowed:

[X 0

h; Y
0

h; Z
0

h; h
0] = [Xh; Yh; Zh; h] �T4�4: (5:8)

Matrix T4�4 de�nes the transformation uniquely in homogeneous sense;
that is, matrices di�ering in a multiplicative factor are equivalent.
Note that in equations 5.7 and 5.8 row vectors are used to identify points

unlike the usual mathematical notation. The preference for row vectors
in computer graphics has partly historical reasons, partly stems from the
property that in this way the concatenation of transformations corresponds
to matrix multiplication in \normal", that is left to right, order. For column
vectors, it would be the reverse order. Using the straight model, equation 5.7
can be reformulated for homogeneous coordinates:

[x0; y0; z0; 1] = [x; y; z; 1] �

2
6664
A3�3

0
0
0

pT 1

3
7775 : (5:9)

Note that the 3�3 matrixA is accommodated inT as its upper left minor
matrix, while p is placed in the last row and the fourth column vector of
T is set to constant [0,0,0,1]. This means that the linear transformations
of Euclidean space form a subset of homogeneous linear transformations.
This is a real subset since, as we shall see, by setting the fourth column to
a vector di�erent from [0,0,0,1] the resulting transformation does not have
an a�ne equivalent, that is, it is not linear in the Euclidean space.
Using the algebraic treatment of homogeneous (linear) transformations,

which identi�es them by a 4 � 4 matrix multiplication, we can de�ne the
concatenation of transformations as the product of transformation matrices



106 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

and the inverse of a homogeneous transformation as the inverse of its trans-
formation matrix if it exists, i.e. its determinant is not zero. Taking into
account the properties of matrix operations we can see that the concatena-
tion of homogeneous transformations is also a homogeneous transformation
and the inverse of a homogeneous transformation is also a homogeneous
transformation if the transformation matrix is invertible. Since matrix mul-
tiplication is an associative operation, consecutive transformations can al-
ways be replaced by a single transformation by computing the product of
the matrices of di�erent transformation steps. Thus, any number of linear
transformations can be expressed by a single 4 � 4 matrix multiplication.
The transformation of a single point of the projective space requires 16
multiplications and 12 additions. If the point must be mapped back to the
Cartesian coordinate system, then 3 divisions by the fourth homogeneous
coordinate may be necessary in addition to the matrix multiplication. Since
linear transformations of Euclidean space have a [0; 0; 0; 1] fourth column
in the transformation matrix, which is preserved by multiplications with
matrices of the same property, any linear transformation can be calculated
by 9 multiplications and 9 additions.
According to the theory of projective geometry, transformations de�ned

by 4 � 4 matrix multiplication map points onto points, lines onto lines,
planes onto planes and intersection points onto intersection points, and
therefore are called collinearities [Her91]. The reverse of this statement
is also true; each collinearity corresponds to a homogeneous transformation
matrix. Instead of proving this statement in projective space, a special
case that has importance in computer graphics is investigated in detail. In
computer graphics the geometry is given in 3D Euclidean space and having
applied some homogeneous transformation the results are also required in
Euclidean space. From this point of view, the homogeneous transformation
of a 3D point involves:

1. A 4� 4 matrix multiplication of the coordinates extended by a fourth
coordinate of value 1.

2. A homogeneous division of all coordinates in the result by the fourth
coordinate if it is di�erent from 1, meaning that the transformation
forced the point out of 3D space.

It is important to note that a clear distinction must be made between the



5.1. GEOMETRIC TRANSFORMATIONS 107

central or parallel projection de�ned earlier which maps 3D points onto 2D
points on a plane and projective transformations which map projective space
onto projective space. Now let us start the discussion of the homogeneous
transformation of a special set of geometric primitives. A Euclidean line
can be de�ned by the following equation:

~r(t) = ~r0 + ~v � t; where t is a real parameter. (5:10)

Assuming that vectors ~v1 and ~v2 are not parallel, a Euclidean plane, on the
other hand, can be de�ned as follows:

~r(t1; t2) = ~r0 + ~v1 � t1 + ~v2 � t2; where t1; t2 are real parameters. (5:11)

Generally, lines and planes are special cases of a wider range of geometric
structures called linear sets. By de�nition, a linear set is de�ned by a
position vector ~r0 and some axes ~v1; ~v2; : : : ; ~vn by the following equation:

~r(t1; : : : ; tn) = ~r0 +
nX

i=1

ti � ~vi: (5:12)

First of all, the above de�nition is converted to a di�erent one that uses
homogeneous-like coordinates. Let us de�ne the so-called spanning vectors
~p0; : : : ; ~pn of the linear set as:

~p0 = ~r0;

~p1 = ~r0 + ~v1;
...
~pn = ~r0 + ~vn:

(5:13)

The equation of the linear set is then:

~r(t1; : : : ; tn) = (1� t1 � : : :� tn) � ~p0 +
nX

i=1

ti � ~pi: (5:14)

Introducing the new coordinates as

�0 = 1� t1 � : : :� tn; �1 = t1; �2 = t2; : : : ; �n = tn; (5:15)

the linear set can be written in the following form:

S = f~p j ~p =
nX

i=0

�i � ~pi ^
nX

i=0

�i = 1g: (5:16)



108 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

The weights (�i) are also called the baricentric coordinates of the point
~p with respect to ~p0, ~p1,: : : ,~pn. This name reects the interpretation that ~p
would be the center of gravity of a structure of weights (�0; �1; : : : ; �n) at
points ~p0; ~p1; : : : ; ~pn.
The homogeneous transformation of such a point ~p is:

[~p; 1] �T = [
nX

i=0

�i � ~pi; 1] �T = [
nX

i=0

�i � ~pi;
nX
i=0

�i] �T =

(
nX

i=0

�i � [~pi; 1]) �T =
nX

i=0

�i � ([~pi; 1] �T) (5:17)

since
Pn

i=0 �i = 1. Denoting [~pi; 1] �T by [~Pi; hi] we get:

[~p; 1] �T =
nX
i=0

�i � [~Pi; hi] = [
nX

i=0

�i � ~Pi;
nX

i=0

�i � hi]: (5:18)

If the resulting fourth coordinate
Pn

i=0 �i � hi is zero, then the point ~p is
mapped onto an ideal point, therefore it cannot be converted back to Eu-
clidean space. These ideal points must be eliminated before the homoge-
neous division (see section 5.5 on clipping).
After homogeneous division we are left with:

[
nX

i=0

�i � hiPn
j=1 �j � hj

�
~Pi

hi
; 1] = [

nX
i=0

��i � ~p
�

i ; 1] (5:19)

where ~p �

i is the homogeneous transformation of ~pi. The derivation of ��i
guarantees that

Pn
i=0 �

�

i = 1. Thus, the transformation of the linear set is
also linear. Examining the expression of the weights (��i ), we can conclude
that generally �i 6= ��i meaning the homogeneous transformation may de-
stroy equal spacing. In other words the division ratio is not projective
invariant. In the special case when the transformation is a�ne, coordinates
hi will be 1, thus �i = ��i , which means that equal spacing (or division
ratio) is a�ne invariant.
A special type of linear set is the convex hull. The convex hull is de�ned

by equation 5.16 with the provision that the baricentric coordinates must
be non-negative.



5.1. GEOMETRIC TRANSFORMATIONS 109

To avoid the problems of mapping onto ideal points, let us assume the
spanning vectors to be mapped onto the same side of the h = 0 hyper-
plane, meaning that the hi-s must have the same sign. This, with �i � 0,
guarantees that no points are mapped onto ideal points and

��i =
nX

i=0

�i � hiPn
i=0 �i � hi

� 0 (5:20)

Thus, baricentric coordinates of the image will also be non-negative, that
is, convex hulls are also mapped onto convex hulls by homogeneous trans-
formations if their transformed image does not contain ideal points. An
arbitrary planar polygon can be broken down into triangles that are convex
hulls of three spanning vectors. The transformation of this polygon will
be the composition of the transformed triangles. This means that a planar
polygon will also be preserved by homogeneous transformations if its image
does not intersect with the h = 0 plane.
As mentioned earlier, in computer graphics the objects are de�ned in

Euclidean space by Cartesian coordinates and the image is required in a 2D
pixel space that is also Euclidean with its coordinates which correspond to
the physical pixels of the frame bu�er. Projective geometry may be needed
only for speci�c stages of the transformation from modeling to pixel space.
Since projective space can be regarded as an extension of the Euclidean
space, the theory of transformations could be discussed generally only in
projective space. For pedagogical reasons, however, we will use the more
complicated homogeneous representations if they are really necessary for
computer graphics algorithms, and deal with the Cartesian coordinates in
simpler cases. This combined view of Euclidean and projective geometries
may be questionable from a purely mathematical point of view, but it is
accepted by the computer graphics community because of its clarity and its
elimination of unnecessary abstractions.
We shall consider the transformation of points in this section, which will

lead on to the transformation of planar polygons as well.



110 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

5.1.1 Elementary transformations

Translation

Translation is a very simple transformation that adds the translation vector
~p to the position vector ~r of the point to be transformed:

~r 0 = ~r + ~p: (5:21)

Scaling along the coordinate axes

Scaling modi�es the distances and the size of the object independently along
the three coordinate axes. If a point originally has [x; y; z] coordinates, for
example, after scaling the respective coordinates are:

x0 = Sx � x; y0 = Sy � y; z0 = Sz � z: (5:22)

This transformation can also be expressed by a matrix multiplication:

~r 0 = ~r �

2
64
Sx 0 0
0 Sy 0
0 0 Sz

3
75 : (5:23)

Rotation around the coordinate axes

Rotating around the z axis by an angle �, the x and y coordinates of a point
are transformed according to �gure 5.3, leaving coordinate z una�ected.

y

φ

(x’,y’)

(x,y)

xz

Figure 5.3: Rotation around the z axis

By geometric considerations, the new x; y coordinates can be expressed
as:

x0 = x � cos �� y � sin �; y0 = x � sin�+ y � cos�: (5:24)



5.1. GEOMETRIC TRANSFORMATIONS 111

Rotations around the y and x axes have similar form, just the roles of x; y
and z must be exchanged. These formulae can also be expressed in matrix
form:

~r 0(x; �) = ~r �

2
64
1 0 0
0 cos � sin�
0 � sin � cos �

3
75

~r 0(y; �) = ~r �

2
64
cos � 0 � sin �
0 1 0

sin� 0 cos �

3
75

~r 0(z; �) = ~r �

2
64

cos � sin � 0
� sin� cos� 0

0 0 1

3
75 :

(5:25)

These rotations can be used to express any orientation [Lan91]. Suppose
that K and K 000 are two Cartesian coordinate systems sharing a common
origin but having di�erent orientations. In order to determine three special
rotations around the coordinate axes which transform K into K 000, let us
de�ne a new Cartesian system K 0 such that its z0 axis is coincident with z

and its y0 axis is on the intersection line of planes [x; y] and [x000; y000]. To
transform axis y onto axis y0 a rotation is needed around z by angle �. Then
a new rotation around y0 by angle � has to be applied that transforms x0

into x000 resulting in a coordinate system K 00. Finally the coordinate system
K 00 is rotated around axis x00 = x000 by an angle  to transform y00 into y000.
The three angles, de�ning the �nal orientation, are called roll, pitch and

yaw angles. If the roll, pitch and yaw angles are �, � and  respectively,
the transformation to the new orientation is:

~r 0 = ~r �

2
64

cos� sin� 0
� sin� cos� 0

0 0 1

3
75 �
2
64
cos� 0 � sin�
0 1 0

sin � 0 cos�

3
75 �
2
64
1 0 0
0 cos  sin 
0 � sin  cos 

3
75 :

(5:26)

Rotation around an arbitrary axis

Let us examine a linear transformation that corresponds to a rotation by
angle � around an arbitrary unit axis ~t going through the origin. The origi-
nal and the transformed points are denoted by vectors ~u and ~v respectively.



112 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Let us decompose vectors ~u and ~v into perpendicular (~u?; ~v?) and parallel
(~uk; ~vk) components with respect to ~t. By geometrical considerations we can
write:

~uk = ~t(~t � ~u)

~u? = ~u� ~uk = ~u� ~t(~t � ~u) (5.27)

Since the rotation does not a�ect the parallel component, ~vk = ~uk.

φ
u

t

t

||u ||

u

v

v

=v

x u

Figure 5.4: Rotating around ~t by angle �

Since vectors ~u?; ~v? and ~t � ~u? = ~t � ~u are in the plane perpendicular
to ~t, and ~u? and ~t � ~u? are perpendicular vectors (�gure 5.4), ~v? can be
expressed as:

~v? = ~u? � cos�+ ~t� ~u? � sin�: (5:28)

Vector ~v, that is the rotation of ~u, can then be expressed as follows:

~v = ~vk + ~v? = ~u � cos �+ ~t� ~u � sin�+ ~t(~t � ~u)(1 � cos �): (5:29)

This equation, also called theRodrigues formula, can also be expressed
in matrix form. Denoting cos� and sin� by C� and S� respectively and
assuming ~t to be a unit vector, we get:

~v = ~u �

2
64

C�(1 � t2x) + t2x txty(1� C�) + S�tz txtz(1 � C�)� S�ty
tytx(1 �C�)� S�tz C�(1 � t2y) + t2y txtz(1 �C�) + S�tx
tztx(1� C�) + S�ty tzty(1� C�)� S�tx C�(1 � t2z) + t2z

3
75 :

(5:30)



5.2. TRANSFORMATION TO CHANGE THE COORDINATE SYSTEM 113

It is important to note that any orientation can also be expressed as
a rotation around an appropriate axis. Thus, there is a correspondence
between roll-pitch-yaw angles and the axis and angle of �nal rotation, which
can be given bymaking the two transformation matrices de�ned in equations
5.26 and 5.30 equal and solving the equation for unknown parameters.

Shearing

Suppose a shearing stress acts on a block �xed on the xy face of �gure 5.5,
deforming the block to a parallepiped. The transformation representing the
distortion of the block leaves the z coordinate una�ected, and modi�es the
x and y coordinates proportionally to the z coordinate.

x

y

z

Figure 5.5: Shearing of a block

In matrix form the shearing transformation is:

~r 0 = ~r �

2
64
1 0 0
0 1 0
a b 1

3
75 : (5:31)

5.2 Transformation to change the

coordinate system

Objects de�ned in one coordinate system are often needed in another co-
ordinate system. When we decide to work in several coordinate systems
and to make every calculation in the coordinate system in which it is the



114 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

simplest, the coordinate system must be changed for each di�erent phase of
the calculation.
Suppose unit coordinate vectors ~u, ~v and ~w and the origin ~o of the new

coordinate system are de�ned in the original x; y; z coordinate system:

~u = [ux; uy; uz]; ~v = [vx; vy; vz]; ~w = [wx; wy; wz]; ~o = [ox; oy; oz]: (5:32)

Let a point ~p have x; y; z and �; �;  coordinates in the x; y; z and in the
u; v; w coordinate systems respectively. Since the coordinate vectors ~u;~v; ~w
as well as their origin, ~o, are known in the x; y; z coordinate system, ~p can
be expressed in two di�erent forms:

~p = � � ~u+ � � ~v +  � ~w + ~o = [x; y; z]: (5:33)

This equation can also be written in homogeneous matrix form, having
introduced the matrix formed by the coordinates of the vectors de�ning the
u; v; w coordinate system:

Tc =

2
6664
ux uy uz 0
vx vy vz 0
wx wy wz 0
ox oy oz 1

3
7775 ; (5:34)

[x; y; z; 1] = [�; �; ; 1] �Tc: (5:35)

Since Tc is always invertible, the coordinates of a point of the x; y; z

coordinate system can be expressed in the u; v; w coordinate system as well:

[�; �; ; 1] = [x; y; z; 1] �Tc
�1: (5:36)

Note that the inversion of matrixTc can be calculated quite e�ectively since
its upper-left minor matrix is orthonormal, that is, its inverse is given by
mirroring the matrix elements onto the diagonal of the matrix, thus:

T�1
c =

2
6664

1 0 0 0
0 1 0 0
0 0 1 0
�ox �oy �oz 1

3
7775 �
2
6664
ux vx wx 0
uy vy wy 0
uz vz wz 0
0 0 0 1

3
7775 : (5:37)



5.3. DEFINITION OF THE CAMERA 115

5.3 De�nition of the camera

Having de�ned transformation matrices we can now look at their use in
image generation, but �rst some basic de�nitions.
In 3D image generation, a window rectangle is placed into the 3D space

of the virtual world with arbitrary orientation, a camera or eye is put
behind the window, and a photo is taken by projecting the model onto the
window plane, supposing the camera to be the center of projection, and
ignoring the parts mapped outside the window rectangle or those which are
not in the speci�ed region in front of the camera. The data, which de�ne
how the virtual world is looked at, are called camera parameters, and
include:

vrp

x

y

z

u
v

w

bp

fb

eye

window

front clipping plane

vpn

Figure 5.6: De�nition of the camera

� Position and orientation of the window. The center of the win-
dow, called the view reference point, is de�ned as a point, or a
vector ~vrp, in the world coordinate system. The orientation is de�ned
by a u; v; w orthogonal coordinate system, which is also called the
window coordinate system, centered at the view reference point,
with ~u and ~v specifying the direction of the horizontal and vertical
sides of the window rectangle, and ~w determining the normal of the
plane of the window. Unit coordinate vectors ~u;~v; ~w are obviously



116 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

not independent, because each of them is perpendicular to the other
two, thus that dependence has also to be taken care of during the
setting of camera parameters. To ease the parameter setting phase,
instead of specifying the coordinate vector triple, two almost inde-
pendent vectors are used for the de�nition of the orientation, which
are the normal vector to the plane of the window, called the view
plane normal, or ~vpn for short, and a so-called view up vector, or
~vup, whose component that is perpendicular to the normal and is in
the plane of ~vpn and ~vup de�nes the direction of the vertical edge of
the window. There is a slight dependence between them, since they
should not be parallel, that is, it must always hold that ~vup� ~vpn 6= 0.
The ~u;~v; ~w coordinate vectors can easily be calculated from the view
plane normal and the view up vectors:

~w =
~vpn

j ~vpnj
; ~u =

~w � ~vup

j~w � ~vupj
; ~v = ~u� ~w: (5:38)

Note that unlike the x; y; z world coordinate system, the u; v; w system
has been de�ned left handed to meet the user's expectations that ~u
points to the right, ~v points upwards and ~w points away from the
camera located behind the window.

� Size of the window. The length of the edges of the window rectangle
are de�ned by two positive numbers, the width by wwidth, the height
by wheight. Photographic operations, such as zooming in and out,
can be realized by proper control of the size of the window. To avoid
distortions, the width/height ratio has to be equal to width/height
ratio of the viewport on the screen.

� Type of projection. The image is the projection of the virtual world
onto the window. Two di�erent types of projection are usually used
in computer graphics, the parallel projection (if the projectors are
parallel), and the perspective projection (if all the projectors go
through a given point, called the center of projection). Parallel pro-
jections are further classi�ed into orthographic and oblique projec-
tions depending on whether or not the projectors are perpendicular to
the plane of projection (window plane). The attribute \oblique" may
also refer to perspective projection if the projector from the center of



5.3. DEFINITION OF THE CAMERA 117

the window is not perpendicular to the plane of the window. Oblique
projections may cause distortion of the image.

� Location of the camera or eye. The camera is placed behind
the window in our conceptual model. For perspective projection, the
camera position is, in fact, the center of projection, which can be
de�ned by a point ~eye in the u; v; w coordinate system. For parallel
projection, the direction of the projectors has to be given by the u; v; w
coordinates of the direction vector. Both in parallel and perspective
projections the depth coordinate w is required to be negative in order
to place the camera \behind" the window. It also makes sense to
consider parallel projection as a special perspective projection, when
the camera is at an in�nite distance from the window.

� Front and back clipping planes. According to the conceptual
model of taking photos of the virtual world, it is obvious that only
those portions of the model which lie in the in�nite pyramid de�ned
by the camera as the apex, and the sides of the 3D window (for per-
spective projection), and in a half-open, in�nite parallelepiped (for
parallel projection) can a�ect the photo. These in�nite regions are
usually limited to a �nite frustum of a pyramid, or to a �nite par-
allelepiped respectively, to avoid overows and also to ease the pro-
jection task by eliminating the parts located behind the camera, by
de�ning two clipping planes called the front clipping plane and the
back clipping plane. These planes are parallel with the window
and thus have constant w coordinates appropriate for the de�nition.
Thus the front plane is speci�ed by an fp value, meaning the plane
w = fp, and the back plane is de�ned by a bp value. Considering
the objectives of the clipping planes, their w coordinates have to be
greater than the w coordinate of the eye, and fp < bp should also
hold.



118 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

5.4 Viewing transformation

Image generation involves:

1. the projection of the virtual world onto the window rectangle,

2. the determination of the closest surface at each point (visibility calcu-
lation) by depth comparisons if more than one surface can be projected
onto the same point in the window, and

3. the placement of the result in the viewport rectangle of the screen.

Obviously, the visibility calculation has to be done prior to the projection of
the 3D space onto the 2D window rectangle, since this projection destroys
the depth information.
These calculations could also be done in the world coordinate system,

but each projection would require the evaluation of the intersection of an
arbitrary line and rectangle (window), and the visibility problem would
require the determination of the distance of the surface points along the
projectors. The large number of multiplications and divisions required by
such geometric computations makes the selection of the world coordinate
system disadvantageous even if the required calculations can be reduced by
the application of the incremental concept, and forces us to look for other
coordinate systems where these computations are simple and e�ective to
perform.
In the optimal case the points should be transformed to a coordinate

system where X;Y coordinates would represent the pixel location through
which the given point is visible, and a third Z coordinate could be used to
decide which point is visible, i.e. closest to the eye, if several points could
be transformed to the same X;Y pixel. Note that Z is not necessarily pro-
portional to the distance from the eye, it should only be a monotonously
increasing function of the distance. The appropriate transformation is also
expected to map lines onto lines and planes onto planes, allowing simple
representations and linear interpolations during clipping and visibility cal-
culations. Coordinate systems meeting all the above requirements are called
screen coordinate systems. In a coordinate system of this type, the visi-
bility calculations are simple, since should two or more points have the same
X;Y pixel coordinates, then the visible one has the smallest Z coordinate.



5.4. VIEWING TRANSFORMATION 119

From a di�erent perspective, if it has to be decided whether one point will
hide another, two comparisons are needed to check whether they project
onto the same pixel, that is, whether they have the same X;Y coordinates,
and a third comparison must be used to select the closest. The projection
is very simple, because the projected point has, in fact, X;Y coordinates
due to the de�nition of the screen space.
For pedagogical reasons, the complete transformation is de�ned through

several intermediate coordinate systems, although eventually it can be ac-
complished by a single matrix multiplication. For both parallel and perspec-
tive cases, the �rst step of the transformation is to change the coordinate
system to u; v; w from x; y; z, but after that there will be di�erences de-
pending on the projection type.

5.4.1 World to window coordinate system

transformation

First, the world is transformed to the u; v; w coordinate system �xed to the
center of the window. Since the coordinate vectors ~u, ~v, ~w and the origin
~vrp are de�ned in the x; y; z coordinate system, the necessary transforma-
tion can be developed based on the results of section 5.2 of this chapter.
The matrix formed by the coordinates of the vectors de�ning the u; v; w

coordinate system is:

Tuvw =

2
6664

ux uy uz 0
vx vy vz 0
wx wy wz 0
vrpx vrpy vrpz 1

3
7775 ; (5:39)

[x; y; z; 1] = [�; �; ; 1] �Tuvw: (5:40)

Since ~u, ~v, ~w are perpendicular vectors, Tuvw is always invertible. Thus,
the coordinates of an arbitrary point of the world coordinate system can be
expressed in the u; v; w coordinate system as well:

[�; �; ; 1] = [x; y; z; 1] �T�1
uvw: (5:41)



120 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

5.4.2 Window to screen coordinate system

transformation for parallel projection

Shearing transformation

For oblique transformations, that is when eyeu or eyev is not zero, the pro-
jectors are not perpendicular to the window plane, thus complicating visi-
bility calculations and projection (�gure 5.7). This problem can be solved
by distortion of the object space, applying a shearing transformation in
such a way that the non-oblique projection of the distorted objects should
provide the same images as the oblique projection of the original scene,
and the depth coordinate of the points should not be a�ected. A general

w

(0,0,eye    )w

P=eyewindow

Figure 5.7: Shearing

shearing transformation which does not a�ect the w coordinate is:

Tshear =

2
6664

1 0 0 0
0 1 0 0
su sv 1 0
0 0 0 1

3
7775 : (5:42)

The unknown elements, su and sv, can be determined by examining the
transformation of the projector ~P = [eyeu; eyev; eyew; 1]. The transformed
projector is expected to be perpendicular to the window and to have depth
coordinate eyew, that is:

~P �Tshear = [0; 0; eyew; 1]: (5:43)



5.4. VIEWING TRANSFORMATION 121

Using the de�nition of the shearing transformation, we get:

su = �
eyeu

eyew
; sv = �

eyev

eyew
: (5:44)

Normalizing transformation

Having accomplished the shearing transformation, the objects for parallel
projection are in a space shown in �gure 5.8. The subspace which can be
projected onto the window is a rectangular box between the front and back
clipping plane, having side faces coincident to the edges of the window.
To allow uniform treatment, a normalizing transformation can be applied,
which maps the box onto a normalized block, called the canonical view
volume, moving the front clipping plane to 0, the back clipping plane to
1, the other boundaries to x = 1, y = 1, x = �1 and y = �1 planes
respectively.

fp

window

bp

w 1

-1

1
v

Figure 5.8: Normalizing transformation for parallel projection

The normalizing transformation can also be expressed in matrix form:

Tnorm =

2
6664
2=wwidth 0 0 0

0 2=wheight 0 0
0 0 1=(bp � fp) 0
0 0 �fp=(bp � fp) 1

3
7775 : (5:45)

The projection in the canonical view volume is very simple, since the
projection does not a�ect the (X;Y ) coordinates of an arbitrary point, but
only its depth coordinate.



122 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Viewport transformation

The space inside the clipping volume has been projected onto a 2� 2 rect-
angle. Finally, the image has to be placed into the speci�ed viewport of
the screen, de�ned by the center point, (Vx; Vy) and by the horizontal and
vertical sizes, Vsx and Vsy. For parallel projection, the necessary viewport
transformation is:

Tviewport =

2
6664
Vsx=2 0 0 0
0 Vsy=2 0 0
0 0 1 0
Vx Vy 0 1

3
7775 : (5:46)

Summarizing the results, the complete viewing transformation for parallel
projection can be generated. The screen space coordinates formed by the
(X;Y ) pixel addresses and the Z depth value mapped into the range of
[0::1] can be determined by the following transformation:

TV = T�1
uvw �Tshear �Tnorm �Tviewport;

[X;Y;Z; 1] = [x; y; z; 1] �TV: (5.47)

Matrix TV, called the viewing transformation, is the concatenation of
the transformations representing the di�erent steps towards the screen co-
ordinate system. Since TV is a�ne, it obviously meets the requirements of
preserving lines and planes, making both the visibility calculation and the
projection easy to accomplish.

5.4.3 Window to screen coordinate system

transformation for perspective projection

As in the case of parallel projection, objects are �rst transformed from the
world coordinate system to the window, that is u; v; w, coordinate system
by applying T�1

uvw.

View-eye transformation

For perspective projection, the center of the u; v; w coordinate system is
translated to the camera position without altering the direction of the axes.



5.4. VIEWING TRANSFORMATION 123

Since the camera is de�ned in the u; v; w coordinate system by a vector
~eye, this transformation is a translation by vector � ~eye, which can also be
expressed by a homogeneous matrix:

Teye =

2
6664

1 0 0 0
0 1 0 0
0 0 1 0

�eyeu �eyev �eyew 1

3
7775 : (5:48)

Shearing transformation

As for parallel projection, if eyeu or eyev is not zero, the projector from the
center of the window is not perpendicular to the window plane, requiring
the distortion of the object space by a shearing transformation in such
a way that the non-oblique projection of the distorted objects provides the
same images as the oblique projection of the original scene and the depth
coordinate of the points is not a�ected. Since the projector from the center
of the window (~P = [eyeu; eyev; eyew; 1]) is the same as all the projectors
for parallel transformation, the shearing transformation matrix will have
the same form, independently of the projection type:

Tshear =

2
6664

1 0 0 0
0 1 0 0

�eyeu=eyew �eyev=eyew 1 0
0 0 0 1

3
7775 : (5:49)

Normalizing transformation

After shearing transformation the region which can be projected onto the
window is a symmetrical, �nite frustum of the pyramid in �gure 5.9. By
normalizing this pyramid, the back clipping plane is moved to 1, and the
angle at its apex is set to 90 degrees. This is a simple scaling transformation,
with scales Su, Sv and Sw determined by the consideration that the back
clipping plane goes to w = 1, and the window goes to the position d which
is equal to half the height and half the width of the normalized window:

Su �wwidth=2 = d; Sv �wheight=2 = d; eyew �Sw = d; Sw �bp = 1 (5:50)



124 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

fp window bp

w

1

bp

fp

window

d

w

Figure 5.9: Normalizing transformation for perspective projection

Solving these equations and expressing the transformation in a homoge-
neous matrix form, we get:

Tnorm =

2
6664
2 � eyew=(wwidth � bp) 0 0 0

0 2 � eyew=(wheight � bp) 0 0
0 0 1=bp 0
0 0 0 1

3
7775 :

(5:51)
In the canonical view volume, the central projection of a point Xc; Yc; Zc

onto the window plane is:

Xp = d �
Xc

Zc

; Yp = d �
Yc

Zc

: (5:52)

Perspective transformation

The projection and the visibility calculations are more di�cult in the canon-
ical view volume for central projection than they are for parallel projection
because of the division required by the projection. When calculating vis-
ibility, it has to be decided if one point (X1

c ; Y
1
c ; Z

1
c ) hides another point

(X2
c ; Y

2
c ; Z

2
c ). This involves the check for relations

[X1
c =Z

1
c ; Y

1
c =Z

1
c ] = [X2

c =Z
2
c ; Y

2
c =Z

2
c ] and Z1

c < Z2
c

which requires division in a way that the visibility check for parallel projec-
tion does not. To avoid division during the visibility calculation, a transfor-
mation is needed which transforms the canonical view volume to meet the



5.4. VIEWING TRANSFORMATION 125

requirements of the screen coordinate systems, that is, X and Y coordinates
are the pixel addresses in which the point is visible, and Z is a monotonous
function of the original distance from the camera (see �gure 5.10).

1

1

V  ,Vx y
V    ,Vsx sy

canonical view volume screen coordinate system

eye

Figure 5.10: Canonical view volume to screen coordinate system transformation

Considering the expectations for the X and Y coordinates:

X =
Xc

Zc

�
Vsx

2
+ Vx; Y =

Yc

Zc

�
Vsy

2
+ Vy : (5:53)

The unknown function Z(Zc) can be determined by forcing the transforma-
tion to preserve planes and lines. Suppose a set of points of the canonical
view volume are on a plane with the equation:

a �Xc + b � Yc + c � Zc + d = 0 (5:54)

The transformation of this set is also expected to lie in a plane, that is, there
are parameters a0; b;0 c;0 d0 satisfying the equation of the plane for trans-
formed points:

a0 �X + b0 � Y + c0 � Z + d0 = 0 (5:55)

Inserting formula 5.53 into this plane equation and multiplying both sides
by Zc, we get:

a0 �
Vsx

2
�Xc+ b0 �

Vsy

2
�Yc+ c0 �Z(Zc) �Zc+(a0 �Vx+ b0 �Vy+d0) �Zc = 0 (5:56)



126 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Comparing this with equation 5.54, we can conclude that both Z(Zc) � Zc

and Zc are linear functions of Xc and Yc, requiring Z(Zc) �Zc to be a linear
function of Zc also. Consequently:

Z(Zc) � Zc = � � Zc + � =) Z(Zc) = �+
�

Zc

: (5:57)

Unknown parameters � and � are set to map the front clipping plane of
the canonical view volume (fp0 = fp=bp) to 0 and the back clipping plane
(1) to 1:

� � fp0 + � = 0; � � 1 + � = 1
+

� = bp=(bp � fp); � = �fp=(bp � fp)
(5:58)

The complete transformation, called the perspective transformation,
is:

X =
Xc

Zc

�
Vsx

2
+ Vx; Y =

Yc

Zc

�
Vsy

2
+ Vy; Z =

Zc � bp � fp

(bp� fp) � Zc

: (5:59)

Examining equation 5.59, we can see that X �Zc, Y �Zc and Z �Zc can be
expressed as a linear transformation of Xc; Yc; Zc, that is, in homogeneous
coordinates [Xh; Yh; Zh; h] = [X �Zc; Y �Zc, Z �Zc; Zc] can be calculated with
a single matrix product by Tpersp:

Tpersp =

2
6664
Vsx=2 0 0 0
0 Vsy=2 0 0
Vx Vy bp=(bp � fp) 1
0 0 �fp=(bp � fp) 0

3
7775 : (5:60)

The complete perspective transformation, involving homogeneous divi-
sion to get real 3D coordinates, is:

[Xh; Yh; Zh; h] = [Xc; Yc; Zc; 1] �Tpersp;

[X;Y;Z; 1] = [
Xh

h
;
Yh

h
;
Zh

h
; 1]: (5:61)

The division by coordinate h is meaningful only if h 6= 0. Note that the
complete transformation is a homogeneous linear transformation which con-
sists of a matrix multiplication and a homogeneous division to convert the
homogeneous coordinates back to Cartesian ones.



5.4. VIEWING TRANSFORMATION 127

This is not at all surprising, since one reason for the emergence of projec-
tive geometry has been the need to handle central projection somehow by
linear means. In fact, the result of equation 5.61 could have been derived
easily if it had been realized �rst that a homogeneous linear transformation
would solve the problem (�gure 5.10). This transformation would transform
the eye onto an ideal point and make the side faces of the viewing pyramid
parallel. Using homogeneous coordinates this transformation means that:

T : [0; 0; 0; 1] 7! �1[0; 0;�1; 0]: (5:62)

Multiplicative factor �1 indicates that all homogeneous points di�ering by
a scalar factor are equivalent. In addition, the corner points where the side
faces and the back clipping plane meet should be mapped onto the corner
points of the viewport rectangle on the Z = 1 plane and the front clipping
plane must be moved to the origin, thus:

T : [1; 1; 1; 1] 7! �2[Vx + Vsx=2; Vy + Vsy=2; 1; 1];
T : [1;�1; 1; 1] 7! �3[Vx + Vsx=2; Vy � Vsy=2; 1; 1];
T : [�1; 1; 1; 1] 7! �4[Vx � Vsx=2; Vy + Vsy=2; 1; 1];
T : [0; 0; fp0; 1] 7! �5[Vx; Vy; 0; 1]:

(5:63)

Transformation T is de�ned by a matrix multiplication with T4�4. Its
unknown elements can be determined by solving the linear system of equa-
tions generated by equations 5.62 and 5.63. The problem is not determinant
since the number of equations (20) is one less than the number of variables
(21). In fact, it is natural, since scalar multiples of homogeneous matrices
are equivalent. By setting �2 to 1, however, the problem will be determinant
and the resulting matrix will be the same as derived in equation 5.60.
As has been proven, homogeneous transformation preserves linear sets

such as lines and planes, thus deriving this transformation from the re-
quirement that it should preserve planes also guaranteed the preservation
of lines.
However, when working with �nite structures, such as line segments, poly-

gons, convex hulls, etc., homogeneous transformations can cause serious
problems if the transformed objects intersect the h = 0 hyperplane. (Note
that the preservation of convex hulls could be proven for only those cases
when the image of transformation has no such intersection.)
To demonstrate this problem and how perspective transformation works,

consider an example when Vx = Vy = 0; Vsx = Vsy = 2; fp = 0:5; bp = 1 and



128 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

x

h=

h

z

h

z

x

h

z

x

1. Canonical view volume in 3D Euclidean space

an Euclidean line segment

2. After the perspective transformation

3. After the homogenous division

line segment with wrap-around

eye

eye’

eye’’

intersection with 

8

"points"

AB

A’

B’

B’’
A’’

1

h=1

h=1

h=0 plane

Figure 5.11: Steps of the perspective transformation and the wrap-around

problem



5.4. VIEWING TRANSFORMATION 129

examine what happens with the clipping region and with a line segment
de�ned by endpoints [0.3,0,0.6] and [0.3,0,-0.6] in the Cartesian coordinate
system (see �gure 5.11). This line segment starts in front of the eye and goes
behind it. When the homogeneous representation of this line is transformed
by multiplying the perspective transformation matrix, the line will intersect
the h = 0 plane, since originally it intersects the Zc = 0 plane (which is
parallel with the window and contains the eye) and the matrixmultiplication
sets h = Zc. Recall that the h = 0 plane corresponds to the ideal points in
the straight model, which have no equivalent in Euclidean geometry.
The conversion of the homogeneous coordinates to Cartesian ones by ho-

mogeneous division maps the upper part corresponding to positive h values
onto a Euclidean half-line and maps the lower part corresponding to neg-
ative h values onto another half-line. This means that the line segment
falls into two half-lines, a phenomenon which is usually referred to as the
wrap-around problem.
Line segments are identi�ed by their two endpoints in computer graph-

ics. If wrap-around phenomena may occur we do not know whether the
transformation of the two endpoints really de�ne the new segment, or these
are the starting points of two half-lines that form the complement of the
Euclidean segment. This is not surprising in projective geometry, since a
projective version of a Euclidean line, for example, also includes an ideal
point in addition to all a�ne points, which glues the two \ends" of the line
at in�nity. From this point of view projective lines are similar (more pre-
cisely isomorphic) to circles. As two points on a circle cannot identify an arc
unambiguously, two points on a projective line cannot de�ne a segment ei-
ther without further information. By knowing, however, that the projective
line segment does not contain ideal points, this de�nition is unambiguous.
The elimination of ideal points from the homogeneous representation be-

fore homogeneous division obviously solves the problem. Before the homo-
geneous division, this procedure cuts the objects represented by homoge-
neous coordinates into two parts corresponding to the positive and negative
h values respectively, then projects these parts back to the Cartesian co-
ordinates separately and generates the �nal representation as the union of
the two cases. Recall that a clipping that removes object parts located
outside of the viewing pyramid must be accomplished somewhere in the
viewing pipeline. The cutting proposed above is worth combining with this
clipping step, meaning that the clipping (or at least the so-called depth clip-



130 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

ping phase that can remove the vanishing plane which is transformed onto
ideal points) must be carried out before homogeneous division. Clipping is
accomplished by appropriate algorithms discussed in the next section.
Summarizing the transformation steps of viewing for the perspective case,

the complete viewing transformation is:

TV = T�1
uvw �Teye �Tshear �Tnorm �Tpersp;

[Xh; Yh; Zh; h] = [x; y; z; 1] �TV;

[X;Y;Z; 1] = [
Xh

h
;
Yh

h
;
Zh

h
; 1]: (5.64)

5.5 Clipping

Clipping is responsible for eliminating those parts of the scene which do not
project onto the window rectangle, because they are outside the viewing
volume. It consists of depth | front and back plane | clipping and clipping
at the side faces of the volume. For perspective projection, depth clipping is
also necessary to solve the wrap-around problem, because it eliminates the
objects in the plane parallel to the window and incident to the eye, which
are mapped onto the ideal plane by the perspective transformation.
For parallel projection, depth clipping can be accomplished in any co-

ordinate system before the projection, where the depth information is still
available. The selection of the coordinate system in which the clipping is
done may depend on e�ciency considerations, or more precisely:

1. The geometry of the clipping region has to be simple in the selected
coordinate system in order to minimize the number of necessary op-
erations.

2. The transformation to the selected coordinate system from the world
coordinate system and from the selected coordinate system to pixel
space should involve the minimum number of operations.

Considering the �rst requirement, for parallel projection, the brick shaped
canonical view volume of the normalized eye coordinate system and the
screen coordinate system are the best, but, unlike the screen coordinate
system, the normalized eye coordinate system requires a new transformation
after clipping to get to pixel space. The screen coordinate system thus ranks



5.5. CLIPPING 131

as the better option. Similarly, for perspective projection, the pyramid
shaped canonical view volume of the normalized eye and the homogeneous
coordinate systems require the simplest clipping calculations, but the latter
does not require extra transformation before homogeneous division. For side
face clipping, the screen coordinate system needs the fewest operations, but
separating the depth and side face clipping phases might be disadvantageous
for speci�c hardware realizations. In the next section, the most general case,
clipping in homogeneous coordinates, will be discussed. The algorithms
for other 3D coordinate systems can be derived from this general case by
assuming the homogeneous coordinate h to be constant.

5.5.1 Clipping in homogeneous coordinates

The boundaries of the clipping region can be derived by transforming the re-
quirements of the screen coordinate system to the homogeneous coordinate
system. After homogeneous division, in the screen coordinate system the
boundaries are Xmin = Vx � Vsx=2, Xmax = Vx + Vsx=2, Ymin = Vy � Vsy=2
and Ymax = Vy + Vsy=2. The points internal to the clipping region must
satisfy:

Xmin � Xh=h � Xmax;

Ymin � Yh=h � Ymax;

0 � Zh=h � 1
(5:65)

The visible parts of objects de�ned in an Euclidean world coordinate
system must have positive Zc coordinates in the canonical view coordinate
system, that is, they must be in front of the eye. Since multiplication by
the perspective transformation matrix sets h = Zc, for visible parts, the
fourth homogeneous coordinate must be positive. Adding h > 0 to the
set of inequalities 5.65 and multiplying both sides by this positive h, an
equivalent system of inequalities can be derived as:

Xmin � h � Xh � Xmax � h;

Ymin � h � Yh � Ymax � h;

0 � Zh � h:

(5:66)

Note that inequality h > 0 does not explicitly appear in the requirements,
since it comes from 0 � Zh � h. Inequality h > 0, on the other hand,
guarantees that all points are eliminated that are on the h = 0 ideal plane,
which solves the wrap-around problem.



132 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

h=
h

Z

X

h

Z

X

Z  =

X  = h Xmin

internal point

external point

 
h

h

h

h

Embedded screen coordinate system

4D homogenous space clipping plane:

clipping plane: 0

Z  =hhclipping plane:

1

h=1

Figure 5.12: Transforming the clipping region back to projective space

Notice that the derivation of the homogeneous form of clipping has been
achieved by transforming the clipping box de�ned in the screen coordinate
system back to the projective space represented by homogeneous coordi-
nates (�gure 5.12).
When the de�nition of the clipping region was elaborated, we supposed

that the objects are de�ned in a Cartesian coordinate system and relied
on the camera construction discussed in section 5.3. There are �elds of
computer graphics, however, where none of these is true. Sometimes it is
more convenient to de�ne the objects directly in the projective space by
homogeneous coordinates. A rational B-spline, for example, can be de�ned
as a non-rational B-spline in homogeneous space, since the homogeneous to
Cartesian mapping will carry out the division automatically. When dealing
with homogeneous coordinates directly, scalar multiples of the coordinates



5.5. CLIPPING 133

are equivalent, thus both positive and negative h regions can contribute to
the visible section of the �nal space. Thus, equation 5.65 must be converted
to two system of inequalities, one supposing h > 0, the other h < 0.

Case 1: h > 0 Case 2: h < 0
Xmin � h � Xh � Xmax � h Xmin � h � Xh � Xmax � h

Ymin � h � Yh � Ymax � h Ymin � h � Yh � Ymax � h

0 � Zh � h 0 � Zh � h

(5:67)

Clipping must be carried out for the two regions separately. After homo-
geneous division these two parts will meet in the screen coordinate system.
Even this formulation | which de�ned a front clipping plane in front

of the eye to remove points in the vanishing plane | may not be general
enough for systems where the clipping region is independent of the viewing
transformation like in PHIGS [ISO90]. In the more general case the image
of the clipping box in the homogeneous space may have intersection with
the ideal plane, which can cause wrap-around. The basic idea remains the
same in the general case; we must get rid of ideal points by some kind of
clipping. The interested reader is referred to the detailed discussion of this
approach in [Kra89],[Her91].
Now the clipping step is investigated in detail. Let us assume that the

clipping region is de�ned by equation 5.66 (the more general case of equa-
tion 5.67 can be handled similarly by carrying out two clipping procedures).
Based on equation 5.66 the clipping of points is very simple, since their

homogeneous coordinates must be examined to see if they satisfy all the
equations. For more complex primitives, such as line segments and planar
polygons, the intersection of the primitive and the planes bounding the clip-
ping region has to be calculated, and that part of the primitive should be
preserved where all points satisfy equation 5.66. The intersection calcula-
tion of bounding planes with line segments and planar polygons requires the
solution of a linear equation involving multiplications and divisions. The
case when there is no intersection happens when the solution for a parameter
is outside the range of the primitive. The number of divisions and multi-
plications necessary can be reduced by eliminating those primitive-plane
intersection calculations which do not provide intersection, assuming that
there is a simple way to decide which these are. Clipping algorithms contain
special geometric considerations to decide if there might be an intersection
without solving the linear equation.



134 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Clipping of line segments

One of the simplest algorithms for clipping line segments with fewer in-
tersection calculations is the 3D extension of the Cohen and Sutherland
clipping algorithm.
Each bounding plane of the clipping region divides the 3D space into two

half-spaces. Points in 3D space can be characterized by a 6-bit code, where
each bit corresponds to a respective plane de�ning whether the given point
and the convex view volume are on opposite sides of the plane by 1 (or true)
value, or on the same side of the plane, by 0 (or false) value. Formally the
code bits C[0] : : :C[5] of a point are de�ned by:

C[0] =
�
1 if Xh < Xmin � h

0 otherwise
C[1] =

�
1 if Xh > Xmax � h

0 otherwise

C[2] =
�
1 if Yh < Ymin � h

0 otherwise
C[3] =

�
1 if Yh > Ymax � h

0 otherwise

C[4] =
�
1 if Zh < 0
0 otherwise

C[5] =
�
1 if Zh > h

0 otherwise

(5:68)

Obviously, points coded by 000000 have to be preserved, while all other
codes correspond to regions outside the view volume (�gure 5.13).

000000

100010

101000101000

010100

000000

Figure 5.13: Clipping of line segments

Let the codes of the two endpoints of a line segment be C1 and C2 re-
spectively. If both C1 and C2 are zero, the endpoints, as well as all inner



5.5. CLIPPING 135

points of the line segment, are inside the view volume, thus the whole line
segment has to be preserved by clipping. If the corresponding bits of both
C1 and C2 are non-zero at some position, then the endpoints, and the inner
points too, are on the same side of the respective bounding plane, external
to the view volume, thus requiring the whole line segment to be eliminated
by clipping. These are the trivial cases where clipping can be accomplished
without any intersection calculation.
If this is not the case | that is if at least one bit pair in the two codes are

not equal, and for those bits where they are the same, they have a value of 0,
then the intersection between the line and that plane which corresponds to
the bit where the two codes are di�erent has to be calculated, and the part
of the line segment which is outside must be eliminated by replacing the
endpoint having 1 code bit by the intersection point. Let the two endpoints
have coordinates [X

(1)

h ; Y
(1)

h ; Z
(1)

h ; h(1)] and [X
(2)

h ; Y
(2)

h ; Z
(2)

h ; h(2)] respectively.
The parametric representation of the line segment, supposing parameter
range [0::1] for t, is:

Xh(t) = X
(1)

h � t+X
(2)

h � (1� t)

Yh(t) = Y
(1)

h � t+ Y
(2)

h � (1 � t)

Zh(t) = Z
(1)

h � t+ Z
(2)

h � (1� t)

h(t) = h(1) � t+ h(2) � (1 � t)

(5.69)

Note that this representation expresses the line segment as a linear set
spanned by the two endpoints. Special care has to be taken when the h

coordinates of the two endpoints have di�erent sign because this means
that the linear set contains an ideal point as well.
Now let us consider the intersection of this line segment with a clipping

plane (�gure 5.14). If, for example, the code bits are di�erent in the �rst bit
corresponding to Xmin, then the intersection with the plane Xh = Xmin � h

has to be calculated thus:

X
(1)

h � t+X
(2)

h � (1 � t) = Xmin � (h
(1) � t+ h(2) � (1� t)): (5:70)

Solving for parameter t� of the intersection point, we get:

t� =
Xmin � h

(2) �X
(2)

h

X
(1)

h �X
(2)

h �Xmin � (h(1) � h(2))
: (5:71)



136 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

X h.
minXh

X
(2)
h

(t  ),*
t = t = 

hyperplane=

Y
(2)
h Z

(2)
h h

(2)
X

(1)
h Y

(1)
h Z

(1)
h h

(1)

X h Yh Z h h(t  ),* (t  ),* (t  )*

, , ,, , ,

10

Figure 5.14: Clipping by a homogeneous plane

Substituting t� back to the equation of the line segment, the homogeneous
coordinates of the intersection point are [Xh(t

�); Yh(t
�); Zh(t

�); h(t�)]. For
other bounding planes, the algorithm is similar. The steps discussed can
be converted into an algorithm which takes and modi�es the two endpoints
and returns TRUE if some inner section of the line segment is found, and
FALSE if the segment is totally outside the viewing volume, thus:

LineClipping(P
(1)

h , P
(2)

h )

C1 = Calculate code bits for P
(1)

h ;

C2 = Calculate code bits for P
(2)

h ;
loop

if (C1 = 0 AND C2 = 0) then return TRUE; // Accept

if (C1 & C2 6= 0) then return FALSE; // Reject

f = Index of clipping face, where bit of C1 di�ers from C2;

P �

h = Intersection of line (P
(1)

h , P
(2)

h ) and plane f ;
C� = Calculate code bits for P �

h ;

if C1[f ] = 1 then P
(1)

h = P �

h ; C1 = C�;

else P
(2)

h = P �

h ; C2 = C�;
endloop

The previously discussed Cohen{Sutherland algorithm replaces a lot of
intersection calculations by simple arithmetics of endpoint codes, increasing
the e�ciency of clipping, but may still calculate intersections which later



5.5. CLIPPING 137

turn out to be outside the clipping region. This means that it is not optimal
for the number of calculated intersections. Other algorithms make use of
a di�erent compromise in the number of intersection calculations and the
complexity of other geometric considerations [CB78], [LB84], [Duv90].

Clipping of polygons

Unfortunately, polygons cannot be clipped by simply clipping the edges,
because this may generate false results (see �gure 5.15). The core of the
problem is the fact that the edges of a polygon can go around the faces
of the bounding box, and return through a face di�erent from where they
left the inner section, or they may not intersect the faces at all, when the
polygon itself encloses or is enclosed by the bounding box.

Figure 5.15: Cases of polygon clipping

This problem can be solved if clipping against a bounding box is replaced
by six clipping steps to the planes of the faces of the bounding box, as
has been proposed for the 2D equivalent of this problem by Hodgman and
Sutherland [SH74]. Since planes are in�nite objects, polygon edges cannot
go around them, and a polygon, clipped against all the six boundary planes,
is guaranteed to be inside the view volume.
When clipping against a plane, consecutive vertices have to be examined

to determine whether they are on the same side of the plane. If both of
them are on the same side of the plane as the region, then the edge is also
the edge of the clipped polygon. If both are on the opposite side of the
plane from the region, the edge has to be ignored. If one vertex is on the
same side and one on the opposite side, the intersection of the edge and the
plane has to be calculated, and a new edge formed from that to the point
where the polygon returns back through the plane (�gure 5.16).



138 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

p

p

p

p

p
p

q

q

q

q

q

clipping plane

[2]

[5]

[4]

[6]

[5]
[1]

[1]

[4]

[2]

[3]

[3]

Figure 5.16: Clipping of a polygon against a plane

Suppose the vertices of the polygon are in an array p[0]; : : : ; p[n� 1], and
the clipped polygon is expected in q[0]; : : : ; q[m� 1], while the number of
vertices of the clipped polygon in variable m. The clipping algorithm, using
the notation � for modulo n addition, is:

m = 0;
for i = 0 to n� 1 do

if p[i] is inside then f

q[m++] = p[i];
if p[i� 1] is outside then
q[m++] = Intersection of edge (p[i]; p[i� 1]);

g else if p[i� 1] is inside then
q[m++] = Intersection of edge (p[i]; p[i� 1]);

endif

endfor

Running this algorithm for concave polygons that should fall into several
pieces due to clipping (�gure 5.17) may result in an even number of edges
where no edges should have been generated and the parts that are expected
to fall apart are still connected by these even number of boundary lines.
For the correct interpretation of the inside of these polygons, the GKS

concept must be used, that is, to test whether a point is inside or outside
a polygon, a half-line is extended from the point to in�nity and the num-



5.6. VIEWING PIPELINE 139

double boundary

even number
of boundaries

Figure 5.17: Clipping of concave polygons

ber of intersections with polygon boundaries counted. If the line cuts the
boundary an odd number of times the point is inside the polygon, if there
are even number of intersections the point is outside the polygon. Thus the
super�cial even number of boundaries connecting the separated parts do
not a�ect the interpretation of inside and outside regions of the polygon.
The idea of Sutherland{Hodgman clipping can be used without modi�-

cation to clip a polygon against a convex polyhedron de�ned by planes. A
common technique of CAD systems requiring the clipping against an arbi-
trary convex polyhedron is called sectioning, when sections of objects have
to be displayed on the screen.

5.6 Viewing pipeline

The discussed phases of transforming the primitives from the world coor-
dinate system to a pixel space are often said to form a so-called viewing

pipeline. The viewing pipeline is a dataow model representing the trans-
formations that the primitives have to go through.
Examining �gure 5.18, we can see that these viewing pipelines are some-

how di�erent from the pipelines discussed by other computer graphics text-
books [FvDFH90], [NS79], because here the screen coordinates contain in-
formation about the viewport, in contrast to many authors who de�ne the
screen coordinate system as a normalized system independent of the �nal
physical coordinates. For parallel projection, it makes no di�erence which
of the two interpretations is chosen, because the transformations are eventu-



140 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

T�1
uvw

Teye

Tshear

Tnorm

Tpersp

Depth clipping

Homogenous
division

Side clipping

Projection

?

?

?

?

T�1
uvw

Tshear

Tnorm

Tviewport

Clipping

Projection

?

?

?

? ?

Tv Tv

Screen coordinate
system

2D pixel space 2D pixel space

4D homogenous
system

Screen coordinate
system

World coordinate system

?

?

?

?

?

?

?

?

Figure 5.18: Viewing pipeline for parallel and perspective projection



5.7. COMPLEXITY OF TRANSFORMATION AND CLIPPING 141

ally concatenated to the same �nal matrix. For perspective transformation,
however, the method discussed here is more e�cient, although more di�-
cult to understand, because it does not need an extra transformation to the
viewport after the homogeneous division, unlike the approach based on the
concept of normalized screen coordinates.
Concerning the coordinate system where the clipping has to be done,

�gure 5.18 represents only one of many possible alternatives. Nevertheless,
this alternative is optimal in terms of the total number of multiplications
and divisions required in the clipping and the transformation phases.
At the end of the viewing pipeline the clipped primitives are available

in the screen coordinate system which is the primary place of visibility
calculations, since here, as has been emphasized, the decision about whether
one point hides another requires just three comparisons. Projection is also
trivial in the screen coordinate system, since the X and Y coordinates are
in fact the projected values.
The angles needed by shading are not invariant to the viewing transfor-

mation from the shearing transformation phase. Thus, color computation
by the evaluation of the shading equation must be done before this phase.
Most commonly, the shading equation is evaluated in the world coordinate
system.

5.7 Complexity of transformation and

clipping

Let the number of vertices, edges and faces of a polygon mesh model be v,
e and f respectively. In order to transform a polygon mesh model from its
local coordinate system to the screen coordinate system for parallel projec-
tion or to the homogeneous coordinate system for perspective projection,
the vector of the coordinates of each vertex must be multiplied by the com-
posite transformation matrix. Thus the time and the space required by this
transformation are obviously proportional to the number of vertices, that
is, the transformation is an O(v) algorithm.
Clipping may alter the position and the number of vertices of the repre-

sentation. For wireframe display, line clipping is accomplished, which can
return a line with its original or new endpoints, or it can return no line at



142 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

all. The time for clipping is O(e), and it returns 2e number of points in
the worst case. Projection processes these points or the resulting clipped
edges independently, thus it is also an O(e) process. For wireframe image
synthesis, the complexity of the complete viewing pipeline operation is then
O(v + e). According to Euler's theorem, for normal solids, it holds that:

f + v = e+ 2 (5:72)

Thus, e = v + f � 2 > v for normal objects, which means that pipeline
operation has O(e) complexity.
For shaded image synthesis, the polygonal faces of the objects must be

clipped. Let us consider the intersection problem of polygon i having ei
edges and a clipping plane. In the worst case all edges intersect the plane,
which can generate e new vertices on the clipping plane. The discussed
clipping algorithm connects these new vertices by edges, which results in at
most ei=2 new edges. If all the original edges are preserved (partially) by
the clipping, then the maximal number of edges of the clipped polygon is
ei + ei=2. Thus an upper bound for the number of edges clipped by the 6
clipping plane is (3=2)6 � ei = const � ei.
Since in the polygon mesh model an edge is adjacent to two faces, an

upper bound for the number of points which must be projected is:

2 � const � (e1 + : : :+ ef) = 4 � const � e: (5:73)

Hence the pipeline also requires O(e) time for the polygon clipping mode.
In order to increase the e�ciency of the pipeline operation, the method

of bounding boxes can be used. For objects or group of objects, bound-
ing boxes that completely include these objects are de�ned in the local or
in the world coordinate system, and before transforming the objects their
bounding boxes are checked whether or not their image is inside the clip-
ping region. If it is outside, then the complete group of objects is rejected
without further calculations.


