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Abstract
The paper introduces a global illumination method that combines continuous and finite-element approaches, pre-
serving the speed of finite-element based iteration and the accuracy of continuous random walks. The basic idea is
to decompose the radiance function to a finite-element component that is only a rough estimate and to a difference
component that is obtained by Monte-Carlo techniques. Iteration and random walk are handled uniformly in the
framework of stochastic iteration. This uniform treatment allows the finite-element component to be built up adap-
tively aiming at minimizing the Monte-Carlo component. The method is also suited for interactive walkthrough
animation in glossy scenes since when the viewpoint changes, only the small Monte-Carlo component needs to be
recomputed.

1. Introduction

Global illumination algorithms, which aim at the physically
correct simulation of the light propagation, solve the render-
ing equation

L = Le
+T fr L;

which expresses the radianceL(~x;ω) of point~x at direction
ω as a sum of the emissionLe and the reflection of all point
radiances that are visible from here. The reflection of the
radiance of visible points is expressed by an integral operator

T fr L(~x;ω) =

Z

Ω

L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0 dω0;

which is also called as thelight transport operator. In this
equationh is the visibility function finding that point which
is visible from~x at direction�ω0, fr is the BRDF andθ0 is
the angle between the surface normal and direction�ω0.

The solution of the rendering equation and the computa-
tion of an image from the radiance of the points visible in
different pixels are rather time consuming. The timing re-
quirements become even more prohibitive when animation
sequences are needed. The computation time can be reduced
if the similarity or coherence of the radiance function in a

single frame and even in multiple frames in the sequence are
exploited. It means that the radiance of neighboring points in
an image or in subsequent frames in the animation are quite
close thus a great portion of the illumination and visibility
information can be reused during the solution.

Global illumination algorithms can be classified as ran-
dom walk and iteration techniques.

Random walkalgorithms search light paths following a
depth-firststrategy15; 9; 5; 12; 27. From mathematical point of
view, they are based on the Neumann series expansion of
the rendering equation and compute the color of a pixel as

C =

1

∑
i=0
MT

i
fr L

e; (1)

whereM is the measurement operator finding the average
radiance of the points visible in this pixel. The terms of
this series are ever increasing high-dimensional integrals that
are estimated by Monte-Carlo quadrature in order to avoid
the exponential core of classical quadrature rules21. Monte-
Carlo quadrature takes randomly or quasi-randomly10 se-
lected discrete samples in the domain of the possible light-
paths, evaluate their contribution to the camera and obtain
the final image as the average of these contributions. The
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2 Szirmay-Kalos, Csonka, Antal / Combined Continuous Random Walk and Finite-Element Based Iteration

convergence of Monte-Carlo quadrature is in the order of
O(m�0:5

), wherem is the number of light paths. Quasi-
Monte Carlo quadrature is faster, but for infinite dimen-
sional domains and for the infinite variation integrand of the
rendering equation, the order of convergence is worse than
O(m�(1�ε)

) that could be predicted for smooth integrands
by the Koksma-Hlawka inequality23. Since just discrete sam-
ples of the radiance and the geometry are needed, these
methods can work with the original geometry and require no
tessellation. The samples are generated independently, thus
this approach is free from error accumulation and can be eas-
ily ported to parallel machines. The obtained result will be
the asymptotically correct solution of the original problem.
Unfortunately, we have to pay a high-price for this asymp-
totically correct solution. Since the paths are generated inde-
pendently, the earlier results cannot be efficiently stored and
reused in the computations. On the one hand, these meth-
ods are unable to efficiently utilize the space and time coher-
ence of the radiance function. An exception is the Metropo-
lis light transport26 which obtains the new path by perturbing
the last path rather than rebuilding it from scratch. Although
remembering just the last path is a very limited knowledge
of the previous paths, this trick can result in significant per-
formance improvements in scenes containing highly spec-
ular materials or allowing just a small fraction of paths to
have non-zero contribution. On the other hand, queries to the
geometry are unstructured, thus instead of efficient visibil-
ity methods random walk algorithms must use ray-shooting.
Note also that in equation (1) the measurement operator that
depends on the camera is included in all terms, thus this ap-
proach is strongly view dependent. If the camera changes,
the complete calculation should be started from scratch. In
their original form, random walk methods are unable to uti-
lize any coherence among frames thus they cannot be used
in fast animation sequences.

Iteration techniques, on the other hand, generate light
paths according to abreadth-firstsearch4; 3. In a single step
all paths are advanced once simultaneously. These tech-
niques are based on the fact that the solution of the rendering
equation is the fixed point of the following iteration scheme:

L(m) = Le
+T fr L(m�1):

If this scheme is convergent, then the pixel colors can be
obtained as a limiting value:

C = lim
m!1

ML(m):

Iteration converges with the speed of a geometric series, i.e.
the error from the limiting value is in the order ofO(am

)

wherea is the contraction of integral operatorT fr . The con-
traction is proportional to the average albedo of the sur-
faces and depends on how open the scene is. Note that it-
eration uses the estimate of the complete radiance function,
thus it can potentially exploit coherence and reuse previous
information, and can optimize geometric queries allowing
fast and hardware supported visibility algorithms. Since the

complete radiance function is inserted into the iteration for-
mula, parallelization is not as trivial as for random walks,
and the error introduced in each step may accumulate to a
large value23. To store the radiance estimates, finite-element
approaches should be used which represent the radiance
function in a finite function series form:

L(~x;ω) = ∑L j �bj (~x;ω)

where functionsbj (~x;ω) are pre-defined basis functions and
parametersL j are scalars. Basis functionsbj (~x;ω) are usu-
ally decomposed to a product of positional (sk(~x)) and direc-
tional basis functions (di(ω)). The positional basis functions
may be either constant or linear on a patch, while the di-
rectional basis functions can also be piece-wise constant6,
spherical harmonics16 or Haar functions19. Due to the fact
that the radiance has 4 variates and changes quickly, an ac-
curate finite-element representation requires very many ba-
sis functions, which makes these algorithms both storage
and time consuming. If the number of basis functions is less
than necessary, light-leaks may occur and the shadows and
highlights may be placed incorrectly17. Unlike in random
walks, the radiance estimatesL(m) are completely view-
independent, thus when they are available, the image can be
obtained from any viewpoint. Thus iteration can potentially
exploit the coherence of frames. However, it has a high prize
in terms of storage space.

Original 
rendering problem

solve

Original 
rendering problem

solve

project into
finite element base

Discrete
rendering problem

continuous random walk finite-element based iteration

Figure 1: Comparison of the conceptual schemes of the con-
tinuous random walk and iteration techniques

Comparing random walk and iteration we can conclude
that random walk requires just one light-path to be stored
while iteration needs very many variables, but random walk
uses practically no coherence information while iteration can
strongly exploit it. Iteration is slow due to the handling of the
very many finite elements, while random walks are slow due
to the lack of the utilization of the coherence. Although a
single iteration step requires much more computation than
a single random light-path, theO(am

) convergence of iter-
ation still seems to be far superior to theO(m�0:5) conver-
gence of random walks. However, random walk converges to
the real solution while iteration to the solution of the finite-
element approximation of the original problem (figure 1).
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Furthermore, if the light-transport operator is not exactly
evaluated, the limiting value is also distorted by the cumu-
lative error. Thus only the initial behavior of iteration over-
comes random walk. Finite-element methods are good when
the radiance is smooth, i.e. for diffuse or glossy scenes. Ran-
dom walk, on the other hand, is effective when BRDF sam-
pling can significantly reduce the candidates of directions,
that is when the surfaces are highly specular. Since the two
approaches can complement each other, their combination
is a promising alternative. Multi-pass28; 20 approaches sep-
arately run different algorithms being good in finding dif-
ferent types of light-paths, and combine their results. Two-
pass methods, on the other hand, store the result of the first-
phase in some approximation form, which is then used by the
view-dependent random walk second phase. The informa-
tion of the first phase can be a radiosity solution28, a photon-
map8, irradiance vectors1, i.e. incomplete light-paths that are
completed by the second phase. Alternatively, the result of
the first phase can be some importance information that is
used later to guide the walks towards important regions7; 24.
A common problem of these methods is that the computa-
tional times given to the preprocessing phase and to the final
gather should be decided before starting the rendering and
the different approaches cannot strengthen each other on the
fly. Another interesting combination of the random walk and
iteration methods occurs in multi-path14 algorithms. Since
they were designed to attack the diffuse radiosity problem,
the original problem is projected to a finite-element base,
where it is solved by a special random walk, which simulta-
neously advances several but not all light-paths.

2. The combined approach

In this paper we present a combined approach which tries to
get the benefits from both approaches in a single pass. Intu-
itively, iteration is used only for those components that can
be stored in a simple way but which are responsible for the
greater part of the radiance function. Components that would
have expensive finite-element representation, on the other
hand, are estimated by Monte-Carlo method on the fly. The
combined method can be thought of as an adaptation strategy
that automatically subdivides the original global illumina-
tion problem into a simple finite-element problem and a low-
variance Monte-Carlo estimation problem. The Monte-Carlo
part is responsible for building up the finite-element part in
order to keep itself relatively small. The finite-element part,
in turn, reduces the variance of the Monte-Carlo integra-
tion (figure 2). In this way, the finite-element method and
the Monte-Carlo simulation help each other. The accuracy
and the resolution of the finite-element representation is not
important, since it is only used as a rough estimate that is
corrected by the Monte-Carlo simulation. Due to this and
to the adaptive evolution of the finite-element decomposi-
tion, accurate results can be obtained with relatively few ba-
sis functions. The separation of Monte-Carlo and the finite-
element parts seems to be similar to a classical variance re-

duction technique called the separation of the main part18.
However, here the main part is not known in advance, nei-
ther can it analytically be integrated. In11 this problem has
been solved by function approximation. Here the main part
is generated adaptively and is integrated by a Monte-Carlo
quadrature rule simultaneously with the calculation of the
Monte-Carlo component.

Original 
rendering problem

solve build

Monte-Carlo component

finite-element 
approximation

Figure 2: Conceptual scheme of the combined algorithm

In order to work out the details, a formal framework is
needed that can incorporate both continuous random walks
and finite-element based iterations. The formal basis is the
stochastic iteration, which was originally proposed for the
solution of the linear equations obtained in the radiosity
setting13; 14; 2, then extended for the continuous rendering
equation22. It means that in the iteration sequence a random
transport operator is used instead of the light-transport op-
erator, which gives back the light-transport operator in the
average case:

L(m) = Le
+T

�

fr L(m�1); E[T
�

fr L] = T fr L: (2)

The pixel colors are computed as an average of the esti-
mates of all iteration steps

C(m)=
1
m
�

m

∑
i=1
ML(i)=

1
m
�ML(m)+

�
1�

1
m

�
�C(m�1):

Note that stochastic iteration can find a flexible com-
promise between finite-element based iteration and random
walks. If the random light transport operator is determinis-
tic, then we get back the classical iteration. However, if it is
randomized to a degree that it uses the radiance function just
in a single point and single direction, then it gives back the
random walk22.

2.1. Decomposition of the radiance function

Let us decompose the radiance functionL to an emissionLe,
to a reflected componentL̃ that can be approximated by the
linear combination of the finite-elements (called thefinite-
element component), and to a reflected residuum∆L(ω)

(called theMonte-Carlo component) that is estimated by
Monte-Carlo simulation:

L = Le
+ L̃+∆L: (3)
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Suppose that the positional and directional basis func-
tions and the adjoint basis functions aresi(~x);dj(ω) and
s̃i(~x); d̃j(ω), respectively, thus the component approximated
by the finite-elements is

L̃(~x;ω) = ∑
i

∑
j

si(~x)dj (ω) �L i j ; L i j = hL�Le; s̃i d̃ji;

where

hu;vi=
Z

S

Z

Ω

u(~x;ω) �v(~x;ω) �cosθ dωd~x

is the scalar product of two functions.

Let us substitute this decomposition into the stochastic it-
eration formula (equation 2):

L(m) = Le
+T

�

fr (L
e
+ L̃(m�1)+∆L(m�1)):

The finite-element component is the projection into the ad-
joint base, that is

L̃(m) = ∑
i

∑
j

si(~x)dj(ω) � hL(m)�Le; s̃i d̃j i:

Sincefr is the only term that depends on the output direction
ω, we can further obtain:

L̃(m) = ∑
i

si(~x) �
Z

S

T
�

f̃r
L(m�1) � s̃i(~x) d~x

where f̃r is the projected BRDF:

f̃r(ω0;~x;ω) = ∑
j

dj (ω) �

Z

Ω

fr(ω0;~x;ω) � d̃j(ω) �cosθ dω:

Suppose that piece-wise constant basis functions are used,
i.e.si(~x) ands̃i(~x) are 1 and 1=Ai respectively if~x is in patch
i and zero otherwise, anddj (ω) andd̃j (ω) are 1 and 1=Ω�j
respectively ifω is in solid angleΩ j and zero otherwise,
whereΩ�j =

R
Ω j

cosθ dω: These basis functions result in the
following formulae:

L̃(m) = ∑
i

si(~x) �
1
Ai
�

Z

Ai

T
�

f̃r
L(m�1) d~x (4)

where

f̃r(ω0;~x;ω) = ∑
j

dj (ω) �
1

Ω�j
�

Z

Ω j

fr(ω0;~x;ω) �cosθ dω:

The projected BRDF̃fr can be computed in the preprocess-
ing phase for each possible material and stored in tables or
can be estimated on the fly. The values should not be accu-
rate, since the result is corrected by the algorithm. Note that
if a single directional basis function is used, then the pro-
jected BRDF becomes thealbedodivided byπ.

The Monte-Carlo component can be obtained by subtract-
ing the emission and the finite-element component from the
reflected radiance:

∆L(m) = L�Le
� L̃ =

T
�

fr L(m�1)�∑
i

si(~x) �
Z

S

T
�

f̃r
L(m�1) � s̃i(~x) d~x:

This Monte-Carlo component should be stored until it is sub-
stituted into the iteration formula in the next step.

2.2. The new algorithm

The new algorithm follows a stochastic iteration scheme and
in each iteration step the radiance is projected to the adjoint
base and an image estimate is computed from the actual ra-
diance. Note that the image estimates and the projected radi-
ance values, as stochastic iteration in general, will not con-
verge, but they will fluctuate around the real solution. Thus
the final image is obtained as the average of these image es-
timates, and the finite-element component as the average of
the projected radiance approximations. If the finite-element
projection of the radiance at stepm is L̃0(m), then the finite-
element part may be derived as follows:

L̃(m) =
1
m
�

m

∑
n=1

L̃0(n) =
1
m
� L̃0(m)+

�
1�

1
m

�
� L̃(m�1):

(5)

The Monte-Carlo component, which is obtained as a dif-
ference between the actual radiance estimate and its finite-
element projection, is used to correct the finite-element ap-
proximation. This also means that the behavior of the Monte-
Carlo component in the support of a given basis function
shows how accurately this basis function represents the ra-
diance function and whether or not it should be refined. To
exploit this fact, the iteration is broken down to phases and
in each phase the norm of the Monte-Carlo components for
all basis function domains are evaluated. Then using these
norms, the finite-element structure is refined and patches and
solid angles are broken down appropriately.

The complete algorithm is:

CombinedGlobalIllumination
L̃(0) = 0, ∆L(0) = 0
for m= 1 to M do

Lr
= T

�

fr (L
e
+ L̃(m�1)+∆L(m�1))

L̃0(m) = projection ofLr to an adjoint base
∆L(m) = Lr

� L̃0(m)

L̃(m) = 1=m� L̃0(m)+ (1�1=m) � L̃(m�1)
C0(m) =M(Le+ L̃(m)+∆L(m))

C(m) = 1=m�C0(m)+ (1�1=m) �C(m�1)
Contribute to the norms
if m is an end of the phase

Refine the finite-element structure
endif

endfor
DisplayC(m) colors

end

The dataflow of the new algorithm is shown in figure 3.
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Note that the new reflected radianceL̃(m)+∆L(m) is com-
puted from the radiance generated by the random trans-
port operator as first subtracting its finite-element projec-
tion then adding the average of these finite-element projec-
tions. At the beginning of the execution of the algorithm
this replaces a high-variance main part by its estimated aver-
age, which is responsible for good initial convergence. Later,
when the algorithm converges, the expected finite-element
component gets close to its average, thus subtraction and ad-
dition compensate each other and the finite-element approx-
imation does not distort final result. We could get the speed
of the iteration together with the asymptotic accuracy of ran-
dom walks.

T *
n

project

average
subtract

if large, refine 
finite-element
base

average

measure

L(m-1)

finite-element
component

Monte-Carlo
component

L(m)
L’(m)
~

L(m)
~

new finite-element
componentnew  Monte-Carlo

component

L(m)∆

add

image

Figure 3: Dataflow in the new algorithm

This is a generic algorithm from which different specific
versions can be built by inserting the random transport oper-
ator, the system of basis functions and the refinement oracle.
Having selected the random transport operator and the fam-
ily of basis functions, two sub-problems should be consid-
ered. We have to represent Monte-Carlo component∆L(m)

temporarily and compute its reflection to obtain the image
estimate and the radiance in the next iteration cycle. On the
other hand, refinement criteria are needed that are based on
the norm of the Monte-Carlo component in the support of
the basis functions.

3. Iterating with parallel radiance transfers

In this section a specific algorithm is discussed that trans-
fers the radiance of all patches to a randomly selected global
direction in each iteration cycle. The basis functions will
be piece-wise constant and when refinement is necessary,
the support of the given basis function is divided into four
equal areas. However, unlike other deterministic iteration
techniques, this finite-element representation does not aim
at the accurate representation of the radiance, it is only for a
rough approximation that is corrected by the radiance com-
ponent obtained by Monte-Carlo simulation. On the other

hand, the number of basis functions are not determined a-
priori. The algorithm is started with a single constant basis
function per patch which is refined on the fly if the Monte-
Carlo component turns out to be too big on this patch.

Since the algorithm transfers the radiance into a randomly
selected directionω0, the random transport operator is

Lr
(~x;ω) = T

�

fr L = 4π �L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0:

Indeed, if the direction is sampled uniformly, then its
probability density is 1=4π, thus the expectation of the ran-
dom transport operator gives back the effect of the light
transport operatorT fr L, as required by equation (2):

E[T
�

fr L] =
Z

Ω0

4π �L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0 � dω0

4π
:

The radiance transfer needs the identification of those
points that are mutually visible in the global direction. In
order to solve this global visibility problem, a window is
placed perpendicular to the global direction. The window
is decomposed into a number of pixels. A pixel is capable
to store a list of patch indices and z-values. The lists are
sorted according to the z-values. The collection of these pix-
els are called thetransillumination buffer13. The patches are
rendered one after the other into the buffer using a modified
z-buffer algorithm which keeps all visible points not just the
nearest one. Traversing the generated lists the pairs of mutu-
ally visible points can be obtained. For each pair of points,
the radiance transfer is computed and the transferred radi-
ance is multiplied by the BRDF, resulting in the reflected
radianceLr .

1

2

3

window

transillumination buffer

global direction

1 2 3

1 3

3

2

Figure 4: Organization of the transillumination buffer

From the reflected radiance the finite-element component
can be obtained by a simple averaging operation according
to equation (4). Note that if the integral is evaluated on the
window, then the cosine factor is compensated:

L̃(m)ji =
1
Ai
�

Z

Ai

T
�

f̃r
L(m�1) d~x�

4π �δP
Ai

�∑
P

Lin
(P) � f̃r(ω0;P;ω)
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whereP runs on the pixels covering the projection of patch
i, Lin

(P) is the radiance of the surface point visible in pixel
P, fr(ω0;P;ω) is the BRDF of that point which receives this
radiance coming through pixelP andδP is the area of the
pixels.

It is straightforward to extend the method to be bi-
directional, which transfers the radiance not only into direc-
tion ω0 but also to�ω0. Note that this does not even require
additional visibility computation.

3.1. Temporary representation of the reflected
component

The Monte-Carlo component∆L(m) should temporarily be
represented until it is included in the image estimate and is
used to obtain the reflected radiance of the consecutive itera-
tion step. In this section two alternatives are considered, the
first one is an image-space approach while the second is an
object-space technique.

3.1.1. Representing the radiance wavefront in the
transillumination buffer

Since the radiance is transferred in a single direction through
a discretized window, called the transillumination buffer,
snapshots of this discretized window can also be used for
the temporary representation of the radiance. Looking at fig-
ure 4, we can note that each pixel stores a list of patches.
For each patch of the list, the visible patch is either the pre-
vious or the next member of this list. Identifying the visible
patch, the radiance arriving through the given pixel at the
given patch can be calculated. If we are interested in the re-
flected radiance of a point on a triangle, then this point is
projected onto the window surface to select that pixel which
stores the respective list needed for the incoming radiance
information. From the incoming radiance, the outgoing radi-
ance for any possible direction can be obtained by multiply-
ing with the local BRDF.

patch

projected patch
at step    -1

projected patch
at step

global direction 

global 
direction     -1 

linear function

m

m

m

i

window at 
step     -1 m

window at 
step     mpixel

pixel

m

Figure 5: Reflection of the radiance wavefront of a ray-
bundle

These calculations can be made fast using the incremen-
tal concept. Suppose that the outgoing radiance is required
for the points of a triangle to compute the radiance trans-
fer of the image estimates. The triangle is projected onto a
pixel grid, which either corresponds to the image or to the
transillumination buffer of the next iteration. Let us call this
grid as the output grid to distinguish from the transillumina-
tion buffer which serves as the input buffer. The correspon-
dence of the coordinates of the input and output buffers is
linear if parallel projection is used and homogeneous linear
for perspective projection. Note that the projection onto the
transillumination buffer is always parallel, while the projec-
tion onto the image plane may be perspective. The operation
is basically equivalent to texture mapping, where the input
buffer serves as the texture.

3.1.2. Representing the radiance wavefront on
sub-patches

The sources of the radiance are the patches, thus they can
also be used to represent the temporary radiance in the global
direction. Since the output radiance of the patches is not nec-
essarily constant, patches are further subdivided until a sub-
patch can be assumed to have constant radiance. Thus the
radiance wavefront can also be stored as the radiance values
of the collection of sub-patches.

Comparing the sub-patch method to the transillumination
buffer representation we can note that the sub-patch method
works well with lower resolution transillumination buffers
but require fine geometric tessellation. It does not com-
pletely get rid of the finite-element approximation error, only
reduces it. On the other hand, the transillumination buffer
representation can process roughly tessellated surfaces, but
needs high-resolution transillumination buffer. Lower res-
olution transillumination buffers might cause aliasing arti-
facts. The random nature of the algorithm eliminates these
artifacts in the final image, but the phenomenon can slow
down the convergence. The number of BRDF calculations is
proportional to the number of transillumination pixels (about
1 million) in the wavefront method and to the number of
sub-patches in the sub-patch method. The transillumination
representation can potentially exploit the texture mapping
hardware and can cache BRDF values, but without using
these tricks, the sub-patch approach is significantly faster for
scenes of less than a hundred thousand patches.

3.2. Refinement criterion

Having run the algorithm and computing the Monte-Carlo
component as the difference of the reflected radiance and
the finite-element component on the support of all basis
functions, we can find where the Monte-Carlo component is
large, thus the corresponding basis should be refined. Recall
that in general the finite-element structure is formed by trian-
gles with discretized hemispheres. Now the question is that
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when the Monte-Carlo component over a triangle is signifi-
cant, then whether the triangle or the directional hemisphere
should be broken down.

patch

global direction m reflected
radiance

finite-element component

average of the 
Monte-Carlo component

pixels

i

Figure 6: Errors of the positional and directional discretiza-
tion

Since the input and output directions are the same for all
points of the triangle, the error of the directional discretiza-
tion appears as a constant shift for different pixels in the out-
put buffer.

Considering this fact, let us use two measures:

Vs =
1
N ∑(∆LP�

1
N ∑∆LP)

2; Vd =
1
N
(∑∆LP)

2

whereP runs for theN different pixels covering the projec-
tion of the patches in the output buffer. These measures are
averaged during the iteration. At the end of the phase if the
average ofVs is high, then the corresponding triangle is de-
composed into 4 sub-triangles. However, whenVd is high,
then the directional hemisphere of the triangle is refined by
dividing each discrete solid angle into four.

4. Optimizing further: incoming first shot

The proposed method selects bundles of parallel lines to
transfer the radiance blindly without considering where the
important sources are. On the one hand, this is good, since
very many rays can be traced simultaneously in a single step
(note that if the resolution of the transillumination buffer is
1000�1000, then a single transfer corresponds to tracing a
million global lines where all intersections are used, i.e. at
least 2 million rays). On the other hand, this becomes inef-
fective if the initial radiance is very heterogeneous due to the
small bright light sources. These light sources need special
treatment that is generally called as thefirst-shotor direct
light source computation.

First-shot can be formulated as decomposing the radi-
ance into emission and reflection and deriving an appropriate
form of the rendering equation for the reflection term. Sub-
stituting theL = Le

+ Lr decomposition into the rendering
equation, we can obtain the following formulae:

Le
+Lr

= Le
+T fr (L

e
+Lr

) =)

Lr
= (T fr L

e
)+T fr L

r
= Ldirect+T fr L

r ;

This equation is similar to the original rendering equation.
The only difference is that the original emission functionLe

is replaced by its single reflectionLdirect = T fr L
e.

In order to compute and store the first reflection of the
emission function, point samples are defined on the small
light sources and hemicubes are placed above these point
samples25. Running z-buffer/constant shading visibility al-
gorithms for the sides of the hemicubes, the visible triangles
and their visible portions can be identified. Then if the radi-
ances of the grid points on a triangle point are computed, first
it is determined whether or not the triangle is seen through
some hemicube face from the light source. If it is seen, then
the same texture mapping-like algorithm can be used to map
pixels onto hemicube points. Another possibility is the cal-
culation of those light vectors29 on each patch, which can
represent the illumination coming from the light sources.
Note that unlike in other first-shot algorithms developed for
diffuse radiosity, here the incoming radiance is stored, from
which the outgoing radiance can be obtained by multiply-
ing it with the BRDF taking into account the incoming and
outgoing directions.

The combination of the proposed iteration with the incom-
ing first-shot technique is quite straightforward. At a given
iteration step not only the incoming radiance of previous
transfer is reflected towards the new direction, but also the
illumination of the light sources that are associated with the
given patch.

5. Radiance updates during walk-through animation

In general animations both the objects and the camera may
move. Walk-through animations represent an important spe-
cial case when the objects are still but the camera may follow
an arbitrary path. Walk-through involves a higher level of co-
herence among frames, thus more speed-ups can be expected
from its proper utilization.

Let us now examine what happens if the eye position
changes during the walkthrough animation. After first-shot,
the decomposed radiance is

L = Le
+Ldirect+ L̃r

+∆Lr :

The projected reflected radianceL̃r is view independent thus
remains valid for the new viewpoint. The emission function
Le should be re-evaluated at each sample point. The update
of Ldirect is also easy since the incoming radiance from the
light source samples are stored. Using these incoming radi-
ances and the BRDF function for the incoming directions
and for the new view direction, the new values can be ob-
tained quickly. The only term which poses difficulties is the
Monte-Carlo component∆Lr .

One way of handling this is to continue the stochastic it-
eration having altered the eye position. If the surfaces are
not highly specular and the change of the view direction is
small, then the sum of the emission, the direct reflection and
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the finite-element approximation of the indirect reflection is
a good approximation also for the next viewpoint, thus the
iteration will converge quickly. If the sub-patch representa-
tion is used, then the Monte-Carlo component can also be
reused in the next viewpoint. This requires an additional
variable on each patch that stores the output radiance to-
wards the eye due to the average Monte-Carlo component.
When the view position changes, this value becomes an ap-
proximation, but it is usually better to start from this value
than from zero. Clearly, starting from solution in the previ-
ous frame makes the errors of subsequent frames correlated.
If the finite-element component is well adapted, the Monte-
Carlo component represents just a small fraction of the total
power in the scene, thus its inaccuracy does not create vis-
ible artifacts. The progressive nature of the algorithm and
the fact that the error is correlated in different frames can
be regarded as advantages in interactive applications. When
the user moves quickly in the scene, although the computed
image sequence becomes gradually inaccurate, but does not
not exhibit flickering. When the user slows down at more
interesting places, the algorithm has more time to refine the
results, thus accurate images can be computed.

6. Simulation results

The presented algorithms have been implemented in C++ in
OpenGL environment. The images have been rendered with
500�500 resolution. The transillumination buffer contained
1000�1000 pixels. The running times given in the following
sections are measured on a laptop with 500 MHz Pentium III
processor and with no graphics accelerator.

Concerning the refinement of the finite-element frame-
work, practical experiences showed that it is usually not
worth subdividing the directional sphere in scenes where the
surfaces are not highly specular and therefore are the pri-
mary candidates for ray-bundle tracing. Thus it is enough to
decide whether or not the surface triangles should be broken
down.

Figure 7 shows a scene of a 3D Sierpinski set, that has
4479 patches. The diffuse albedo of the patches in this set is
(0:09;0:03;0:06) on the wavelengths 400 nm, 552 nm and
on 700 nm, respectively. The specular albedo is wavelength
independent and is between 0.8 and 0.4 depending on the
viewing angle. The “shine” parameter of the max-Phong re-
flection model is 3. The walls are diffuse. The area light-
soure is sampled at 18 discrete points. The image was ren-
dered with the wavefront method in 6 minutes. In addition
to the rendered scene, the finite-element reflected compo-
nent L̃r visualized by Gouraud shading and the direct illu-
mination Ldirect are also shown. Note that these two com-
ponents really represent the major part of the radiance. On
the other hand, the incorrect shadow smearing of the finite-
element component in the ceiling is completely removed by
the Monte-Carlo component in the final image.

The “Cornell chickens” scene of figure 8 was rendered

with the sub-patch representation using 15082 sub-patches.
The egg is purely specular and has albedo 0.9, the chickens
have 0.5 specular albedo and about 0: : :0:4 wavelength de-
pendent diffuse albedo, and the walls have 0: : :0:6 diffuse
and 0.2 specular albedo. The shine parameter of all surfaces
is 10. Note that non-diffuse global illumination of moder-
ately complex scenes (15 K patches) becomes possible in
about a minute.

Figures 9 and 10 are snap-shots of an interactive walk-
through in a virtual house. The model consists of 31:000
polygons that are tessellated to 241:000 sub-patches. A sin-
gle iteration requires about 1 second. The user can expect a
new frame in half a second, which is needed for the recalcu-
lation of the direct illumination, but in this case the glossy
reflections of the indirect light become gradually inaccu-
rate. Stopping for about 15 seconds, the algorithm quickly
restores the accuracy.

7. Conclusions

This paper proposed the combination of continuous ran-
dom walk and finite-element based iteration in a way that
the asymptotic accuracy of the random walk and the high
speed of iteration could be preserved. In addition to a gen-
eral framework of combined algorithms, a particular method
using ray-bundles has also been presented. Compared to pre-
vious ray-bundle tracing algorithms22, the application of the
combined method and the first-shot resulted in a speed-up
factor of 10. This method applies a brute force strategy,
which generates a large number of ray-paths exploiting co-
herence principles, but without taking into account local
importance. Consequently, the method is particularly effi-
cient for scenes of glossy reflection, and moderately com-
plex models of tens of thousands of patches can be rendered
in about a minute. If the solution is available, walk-through
with close to interactive speed is possible. Due to the global
nature of the algorithm, it cannot incorporate local impor-
tance sampling, thus it is strong for diffuse and glossy ma-
terials but weak for highly specular materials. The proposed
method is worth being complemeted by bi-directional path-
tracing algorithm governed by Metropolis sampling, which
is particularly good for highly specular cases. The combi-
nation of the two methods is under development using the
concepts of multi-pass rendering.
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L global illumination solution L̃r finite-element component Ldirect direct illumination

Figure 7: Sierpinski set rendered with the wavefront approach

21 secs, first-shot 36 secs, 20 iterations 51 secs, 40 iterations

Figure 8: The “Cornell chickens” after the first-shot and after 20, 40 iterations rendered with sub-patch representation

Figure 9: Shap-shots of a walk-through in a house modelled in ArchiCAD
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Figure 10: A picture of the kitchen
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