
Chapter 12

TEXTURE MAPPING

The shading equation contains several parameters referring to the optical

properties of the surface interacting with the light, including ka ambient,

kd di�use, ks specular, kr re
ective, kt transmissive coe�cients, � index

of refraction etc. These parameters are not necessarily constant over the

surface, thus allowing surface details, called textures, to appear on com-

puter generated images. Texture mapping requires the determination of

the surface parameters each time the shading equation is calculated for a

point on the surface. Recall that for ray tracing, the ray-object intersec-

tion calculation provides the visible surface point in the world coordinate

system. For incremental methods, however, the surfaces are transformed

to the screen coordinate system where the visibility problem is solved, and

thus the surface points to be shaded are de�ned in screen coordinates.

Recall, too, that the shading equation is evaluated in the world coordi-

nate system even if the visible surface points are generated in screen space,

because the world-screen transformation usually modi�es the angle vectors

needed for the shading equation. For directional and ambient lightsource

only models, the shading equation can also be evaluated in screen space, but

the normal vectors de�ned in the world coordinate system must be used.

The varying optical parameters required by the shading equation, on the

other hand, are usually de�ned and stored in a separate coordinate system,

called texture space. The texture information can be represented by some

data stored in an array or by a function that returns the value needed for

the points of the texture space. In order for there to be a correspondence

between texture space data and the points of the surface, a transformation

333

334 12. TEXTURE MAPPING

is associated with the texture, which maps texture space onto the surface

de�ned in its local coordinate system. This transformation is called pa-

rameterization.

Modeling transformation maps this local coordinate system point to the

world coordinate system where the shading is calculated. In ray tracing

the visibility problem is also solved here. Incremental shading models, how-

ever, need another transformation from world coordinates to screen space

where the hidden surface elimination and simpli�ed color computation take

place. This latter mapping is regarded as projection in texture mapping

(�gure 12.1).

Texture
 space

local modeling
 system

parametrization

world coordinate
 system pixel space

projection

texture order mapping

screen order mapping

u

v

x
y

z

X

Y

Figure 12.1: Survey of texture mapping

Since the parameters of the shading equation are required in screen space,

but available only in texture space, the mapping between the two spaces

must be evaluated for each pixel to be shaded.

Generally two major implementations are possible:

1. Texture order or direct mapping which scans the data in texture

space and maps from texture space to screen space.

2. Screen order or inverse mapping which scans the pixels in screen

space and uses the mapping from screen space to texture space.

12. TEXTURE MAPPING 335

Texture order mapping seems more e�ective, especially for large textures

stored in �les, since they access the texture sequentially. Unfortunately,

there is no guarantee that, having transformed uniformly sampled data

from texture space to screen space, all pixels belonging to a given sur-

face will be produced. Holes and overlaps may occur on the image. The

correct sampling of texture space, which produces all pixels needed, is a

di�cult problem if the transformation is not linear. Since texture order

methods access texture elements one after the other they also process sur-

faces sequentially, making themselves similar to and appropriate for object

precision hidden surface algorithms.

Image precision algorithms, on the other hand, evaluate pixels sequen-

tially and thus require screen order techniques and random access of tex-

ture maps. A screen order mapping can be very slow if texture elements are

stored on a sequential medium, and it needs the calculation of the inverse

parameterization which can be rather di�cult. Nevertheless, screen order is

more popular, because it is appropriate for image precision hidden surface

algorithms.

Interestingly, although the z-bu�er method is an image precision tech-

nique, it is also suitable for texture order mapping, because it processes

polygons sequentially.

The texture space can be either one-dimensional, two-dimensional or

three-dimensional. A one-dimensional texture has been proposed, for ex-

ample, to simulate the thin �lm interference produced on a soap bubble, oil

and water [Wat89].

Two-dimensional textures can be generated from frame-grabbed or com-

puter synthesized images and are glued or \wallpapered" onto a three-

dimensional object surface. The \wallpapers" will certainly have to be

distorted to meet topological requirements. The 2D texture space can gen-

erally be regarded as a unit square in the center of a u; v texture coordinate

system. Two-dimensional texturing re
ects our subjective concept of sur-

face painting, and that is one of the main reasons why it is the most popular

texturing method.

Three-dimensional textures, also called solid textures, neatly circum-

vent the parameterization problem, since they de�ne the texture data in the

3D local coordinate system| that is in the same space where the geometry

is de�ned | simplifying the parameterization into an identity transforma-

tion. The memory requirements of this approach may be prohibitive, how-

336 12. TEXTURE MAPPING

ever, and thus three-dimensional textures are commonly limited to func-

tionally de�ned types only. Solid texturing is basically the equivalent of

carving the object out of a block of material. It places the texture onto the

object coherently, not producing discontinuities of texture where two faces

meet, as 2D texturing does. The simulation of wood grain on a cube, for

example, is only possible by solid texturing in order to avoid discontinuities

of the grain along the edges of the cube.

12.1 Parameterization for two-dimensional

textures

Parameterization connects the unit square of 2D texture space to the 3D

object surface de�ned in the local modeling coordinate system.

12.1.1 Parameterization of parametric surfaces

The derivation of this transformation is straightforward if the surface is

de�ned parametrically over the unit square by a positional vector function:

~r(u; v) =

2
64 x(u; v)

y(u; v)

z(u; v)

3
75 : (12:1)

Bezier and bicubic parametric patches fall into this category. For other

parametric surfaces, such as B-spline surfaces, or in cases where only a

portion of a Bezier surface is worked with, the de�nition is similar, but

texture coordinates come from a rectangle instead of a unit square. These

surfaces can also be easily parameterized, since only a linear mapping which

transforms the rectangle onto the unit square before applying the parametric

functions is required.

For texture order mapping, these formulae can readily be applied in order

to obtain corresponding ~r(u; v) 3D points for u; v texture coordinates. For

scan order mapping, however, the inverse of ~r(u; v) has to be determined,

which requires the solution of a non-linear equation.

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 337

12.1.2 Parameterization of implicit surfaces

Parameterization of an implicitly de�ned surface means the derivation of

an explicit equation for that surface. The ranges of the natural parameters

may not fall into a unit square, thus making an additional linear mapping

necessary. To explain this idea, the examples of the sphere and cylinder are

taken.

Parameterization of a sphere

The implicit de�nition of a sphere around a point (xc; yc; zc) with radius r

is:

(x� xc)
2 + (y � yc)

2 + (z � zc)
2 = r2: (12:2)

An appropriate parameterization can be derived using a spherical coor-

dinate system with spherical coordinates � and �.

x(�; �) = xc + r � cos � � cos �;

y(�; �) = yc + r � cos � � sin�;

z(�; �) = zc + r � sin �:

(12:3)

The spherical coordinate � covers the range [0::2�], and � covers the range

[��=2::�=2], thus, the appropriate (u; v) texture coordinates are derived as

follows:

u =
�

2�
; v =

(� + �=2)

�
: (12:4)

The complete transformation from texture space to modeling space is:

x(u; v) = xc + r � cos �(v � 0:5) � cos 2�u;

y(u; v) = yc + r � cos �(v � 0:5) � sin 2�u;

z(u; v) = zc + r � sin�(v � 0:5):

(12:5)

For texture order mapping, the inverse transformation is:

u(x; y; z) =
1

2�
� arctan�(y � yc; x� xc);

v(x; y; z) =
1

�
� (arcsin

z � zc

r
+ �=2); (12:6)

where arctan�(a; b) is the extended arctan function, that is, it produces an

angle � in [0::2�] if sin � = a and cos � = b.

338 12. TEXTURE MAPPING

Parameterization of a cylinder

A cylinder of height H located around the z axis has the following implicit

equation:

X2 + Y 2 = r2; 0 � z � H: (12:7)

The same cylinder can be conveniently expressed by cylindrical coordi-

nates (� 2 [0::2�]; h 2 [0::H]):

X(�; h) = r � cos �;

Y (�; h) = r � sin �;

Z(�; h) = h:

(12:8)

To produce an arbitrary cylinder, this is rotated and translated by an

appropriate a�ne transformation:

[x(�; h); y(�; h); z(�; h); 1] = [X(�; h); Y (�; h); Z(�; h); 1] �

2
6664 A3�3

0

0

0

pT 1

3
7775

(12:9)

where A must be an orthonormal matrix; that is, its row vectors must be

unit vectors and must form a perpendicular triple. Matrices of this type do

not alter the shape of the object and thus preserve cylinders.

Since cylindrical coordinates � and h expand over the ranges [0::2�] and

[0;H] respectively, the domain of cylindrical coordinates can thus be easily

mapped onto a unit square:

u =
�

2�
; v =

h

H
: (12:10)

The complete transformation from texture space to modeling space is:

[x(u; v); y(u; v); z(u; v); 1] = [r � cos 2�u; r � sin 2�u; v �H; 1] �

2
6664 A3�3

0

0

0

pT 1

3
7775 :

(12:11)

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 339

The inverse transformation is:

[�; �; h; 1] = [x(u; v); y(u; v); z(u; v); 1] �

2
6664 A3�3

0

0

0

pT 1

3
7775
�1

u(x; y; z) = u(�; �) =
1

2�
� arctan�(�; �); v(x; y; z) =

h

H
(12:12)

where arctan�(a; b) is the extended arctan function as before.

12.1.3 Parameterization of polygons

Image generation algorithms, except in the case of ray tracing, suppose ob-

ject surfaces to be broken down into polygons. This is why texturing and

parameterization of polygons are so essential in computer graphics. The

parameterization, as a transformation, must map a 2D polygon given by

vertices v1(u; v); v2(u; v); :::; vn(u; v) onto a polygon in the 3D space, de-

�ned by vertex points ~V1(x; y; z); ~V2(x; y; z); :::; ~Vn(x; y; z). Let this trans-

formation be P. As stated, it must transform the vertices to the given

points:

~V1(x; y; z) = Pv1(u; v); ~V2(x; y; z) = Pv2(u; v); : : : ; ~Vn(x; y; z) = Pvn(u; v):

(12:13)

Since each vertex ~Vi is represented by three coordinates, equation 12.13

consists of 3n equations. These equations, however, are not totally inde-

pendent, since the polygon is assumed to be on a plane; that is, the plane

equation de�ned by the �rst three non-collinear vertices

(~r � ~V1) � (~V3 � ~V1)� (~V2 � ~V1) = 0

should hold, where ~r is any of the other vertices, ~V4, ~V5,...,~Vn. The number of

these equations is n�3. Thus, if P guarantees the preservation of polygons,

it should have 3n � (n � 3) free, independently controllable parameters in

order to be able to map a 2D n-sided polygon onto an arbitrary 3D n-sided

planar polygon. The number of independently controllable parameters is

also called the degree of freedom.

340 12. TEXTURE MAPPING

Function P must also preserve lines, planes and polygons to be suitable

for parameterization. The most simple transformation which meets this

requirement is the linear mapping:

x = Ax�u+Bx�v+Cx; y = Ay�u+By �v+Cy; z = Az �u+Bz �v+Cz: (12:14)

The degree of freedom (number of parameters) of this linear transformation

is 9, requiring 3n � (n � 3) � 9, or equivalently n � 3 to hold. Thus, only

triangles (n = 3) can be parameterized by linear transformations.

Triangles

[x; y; z] = [u; v; 1] �

2
64
Ax Ay Az

Bx By Bz

Cx Cy Cz

3
75 = [u; v; 1] �P: (12:15)

The unknown matrix elements can be derived from the solution of a 9 � 9

system of linear equations developed by putting the coordinates of ~V1, ~V2
and ~V3 into this equation.

For screen order, the inverse transformation is used:

[u; v; 1] = [x; y; z] �

2
64 Ax Ay Az

Bx By Bz

Cx Cy Cz

3
75
�1

= [x; y; z] �P�1: (12:16)

Quadrilaterals

As has been stated, a transformation mapping a quadrilateral from the 2D

texture space to the 3D modeling space is generally non-linear, because

the degree of freedom of a 2D to 3D linear transformation is less than

is required by the placement of four arbitrary points. When looking for

an appropriate non-linear transformation, however, the requirement stating

that the transformation must preserve polygons has also to be kept in mind.

As for other cases, where the problem outgrows the capabilities of 3D

space, 4D homogeneous representation can be relied on again [Hec86], since

the number of free parameters is 12 for a linear 2D to 4D transformation,

which is more than the necessary limit of 11 derived by inserting n=4 into

formula 3n � (n � 3). Thus, a linear transformation can be established

between a 2D and a 4D polygon.

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 341

From 4D space, however, we can get back to real 3D coordinates by a

homogeneous division. Although this division reduces the degree of freedom

by 1 | scalar multiples of homogeneous matrices are equivalent | the

number of free parameters, 11, is still enough. The overall transformation

consisting of a matrix multiplication and a homogeneous division has been

proven to preserve polygons if the matrix multiplication maps no part of the

quadrilateral onto the ideal points (see section 5.1). In order to avoid the

wrap-around problem of projective transformations, convex quadrilaterals

should not be mapped on concave ones and vice versa.

Using matrix notation, the parameterization transformation is:

[x � h; y � h; z � h; h] = [u; v; 1] �

2
64
Ux Uy Uz Uh

Vx Vy Vz Vh
Wx Wy Wz Wh

3
75 = [u; v; 1] �P3�4:

(12:17)

We arbitrarily choose Wh = 1 to select one matrix from the equivalent set.

After homogeneous division, we get:

x(u; v) =
Ux � u+ Vx � v +Wx

Uh � u+ Vh � v + 1
;

y(u; v) =
Uy � u+ Vy � v +Wy

Uh � u+ Vh � v + 1
;

z(u; v) =
Uz � u+ Vz � v +Wz

Uh � u+ Vh � v + 1
: (12:18)

The inverse transformation, assuming Dw = 1, is:

[u �w; v �w;w] = [x; y; z; 1] �

2
6664
Au Av Aw

Bu Bv Bw

Cu Cv Cw

Du Dv Dw

3
7775 = [x; y; z; 1] �Q4�3; (12:19)

u(x; y; z) =
Au � x+Bu � y + Cu � z +Du

Aw � x+Bw � y + Cw � z + 1
;

v(x; y; z) =
Av � x+Bv � y + Cv � z +Dv

Aw � x+Bw � y + Cw � z + 1
: (12:20)

342 12. TEXTURE MAPPING

General polygons

The recommended method of parameterization of general polygons subdi-

vides the polygon into triangles (or less probably into quadrilaterals) and

generates a parameterization for the separate triangles by the previously

discussed method. This method is pretty straightforward, although it maps

line segments onto staggered lines, which may cause noticeable artifacts on

the image. This e�ect can be greatly reduced by decreasing the size of the

triangles composing the polygon.

Polygon mesh models

The natural way of reducing the dimensionality of a polygon mesh model

from three to two is by unfolding it into a two-dimensional folding plane,

having separated some of its adjacent faces along the common edges [SSW86].

If the faces are broken down into triangles and quadrilaterals, the texture

space can easily be projected onto the folding space, taking into account

which texture points should correspond to the vertices of the 2D unfolded

object. The edges that must be separated to allow the unfolding of the

polygon mesh model can be determined by topological considerations. The

adjacency of the faces of a polyhedron can be de�ned by a graph where the

nodes represent the faces or polygons, and the arcs of the graph represent

the adjacency relationship of the two faces.

1
2

345

6

1

2

3

4

5

6

object adjacency graph

1

2

3

4

5 6

minimal spanning tree

Figure 12.2: Face adjacency graph of a polyhedron

Polygon mesh models whose adjacency graphs are tree-graphs can obvi-

ously be unfolded. Thus, in order to prepare for the unfolding operation,

those adjacent faces must be separated whose tearing will guarantee that

the resulting adjacency graph is a tree. A graph usually has many spanning

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 343

trees, thus the preprocessing step can have many solutions. By adding cost

information to the various edges, an \optimal" unfolding can be achieved.

There are several alternative ways to de�ne the cost values:

� The user speci�es which edges are to be preserved as the border of

two adjacent polygons. These edges are given 0 unit cost, while the

rest are given 1.

� The cost can be de�ned by the di�erence between the angle of the

adjacent polygons and �. This approach aims to minimize the total

rotations in order to keep the 2D unfolded model compact.

There are several straightforward algorithms which are suitable for the

generation of a minimal total cost spanning tree of a general graph [Har69].

A possible algorithm builds up the graph incrementally and adds that new

edge which has lowest cost from the remaining unused edges and does not

cause a cycle to be generated in each step.

The unfolding operation starts at the root of the tree, and the polygons

adjacent to it are pivoted about the common edge with the root polygon.

When a polygon is rotated around the edge, all polygons adjacent to it must

also be rotated (these polygons are the descendants of the given polygon in

the tree). Having unfolded all the polygons adjacent to the root polygon,

these polygons come to be regarded as roots and the algorithm is repeated

for them recursively. The unfolding program is:

UnfoldPolygon(poly, edge, �);

Rotate poly and all its children around edge by � � �;

for each child of poly

UnfoldPolygon(child, edge(poly; child), angle(poly; child));

endfor

end

Main program

for each child of root

UnfoldPolygon(child, edge(root; child), angle(root; child));

endfor

end

344 12. TEXTURE MAPPING

The information regarding the orientation and position of polygons is

usually stored in transformation matrices. A new rotation of a polygon

means the concatenation of a new transformation matrix to the already

developed matrix of the polygon. One of the serious limitations of this

approach is that it partly destroys polygonal adjacency; that is, the unfolded

surface will have a di�erent topology from the original surface. A common

edge of two polygons may be mapped onto two di�erent locations of the

texture space, causing discontinuities in texture along polygon boundaries.

This problem can be overcome by the method discussed in the subsequent

section.

General surfaces

A general technique developed by Bier and Sloan [BS86] uses an interme-

diate surface to establish a mapping between the surface and the texture

space. When mapping from the texture space to the surface, �rst the tex-

ture point is mapped onto the intermediate surface by its parameterization,

then some \natural" projection is used to map the point onto the target sur-

face. The texturing transformation is thus de�ned by a two-phase mapping.

object normal object centroid intermediate surface normal

Figure 12.3: Natural projections

The intermediate surface must be easy to parameterize and therefore

usually belongs to one of the following categories:

1. Planar polygon

2. Sphere

3. Cylinder

4. Faces of a cube.

12.2. TEXTURE MAPPING IN RAY TRACING 345

The possibilities of the \natural" projection between the intermediate

and target surfaces are shown in �gure 12.3.

12.2 Texture mapping in ray tracing

Ray tracing determines which surface points must be shaded in the world

coordinate system; that is, only the modeling transformation is needed to

connect the shading space with the space where the textures are stored. Ray

tracing is a typical image precision technique which generates the color of

pixels sequentially, thus necessitating a scan order texture mapping method.

Having calculated the object visible along either a primary or secondary

ray | that is, having found the nearest intersection of the ray and the

objects | the shading equation must be evaluated, which may require the

access of texture maps for varying parameters. The derivation of texture

coordinates depends not only on the type of texturing, but also on the

surface to be rendered.

For parametrically de�ned patches, such as Bezier and B-spline surfaces,

the intersection calculation has already determined the parameters of the

surface point to be shaded, thus this information is readily available to fetch

the necessary values from 2D texture maps.

For other surface types and for solid texturing, the point should be trans-

formed to local modeling space from the world coordinate system. Solid

texture value is generated here usually by calling a function with the local

coordinates which returns the required parameters. Two-dimensional tex-

tures require the inverse parameterization to be calculated, which can be

done by any of the methods so far discussed.

12.3 Texture mapping for incremental

shading models

In incremental shading the polygons are supposed to be in the screen coor-

dinate system, and a surface point is thus represented by the (X;Y) pixel

coordinates with the depth value Z which is only important for hidden sur-

face elimination, but not necessarily for texture mapping since the de�nition

of the surface, viewing, and the (X;Y) pair of pixel coordinates completely

346 12. TEXTURE MAPPING

identify where the point is located on the surface. Incrementalmethods deal

with polygon mesh approximations, never directly with the real equations

of explicit or implicit surfaces. Texturing transformations, however, may

refer either to the original surfaces or to polygons.

12.3.1 Real surface oriented texturing

If the texture mapping has parameterized the original surfaces rather than

their polygon mesh approximations, an applicable scan-order algorithm is

very similar to that used for ray tracing. First the point is mapped from

screen space to the local modeling coordinate system by the inverse of the

composite transformation. Since the composite transformation is homoge-

neous (or in special cases linear if the projection is orthographic), its inverse

is also homogeneous (or linear), as has been proven in section 5.1 on proper-

ties of homogeneous transformations. From the modeling space, any of the

discussed methods can be used to inversely parameterize the surface and to

obtain the corresponding texture space coordinates.

Unlike ray tracing, parametric surfaces may pose serious problems, when

the inverse parameterization is calculated, since this requires the solution

of a two-variate, non-linear equation ~r(u; v) = ~p, where ~p is that point in

the modeling space which maps to the actual pixel.

To solve this problem, the extension of the iterative root searching method

based on the re�nement of the subdivision of the parametric patch into

planar polygons can be used here.

Some degree of subdivision has also been necessary for polygon mesh ap-

proximation. Subdivision of a parametric patch means dividing it along its

isoparametric curves. Selecting uniformly distributed u and v parameters,

the subdivision yields a mesh of points at the intersection of these curves.

Then a mesh of planar polygons (quadrilaterals) can be de�ned by these

points, which will approximate the original surface at a level determined by

how exact the isoparametric division was.

When it turns out that a point of a polygon approximating the paramet-

ric surface is mapped onto a pixel, a rough approximation of the u; v surface

parameters can be derived by looking at which isoparametric lines de�ned

this polygon. This does not necessitate the solution of the non-linear equa-

tion if the data of the original subdivision which de�nes the polygon vertices

at the intersection of isoparametric lines are stored somewhere. The inverse

12.3. TEXTURE MAPPING FOR INCREMENTAL SHADING MODELS 347

problem for a quadrilateral requires the search for this data only. The search

will provide the isoparametric values along the boundaries of the quadrilat-

eral. In order to �nd the accurate u; v parameters for an inner point, the

subdivision must be continued, but without altering or further re�ning the

shape of the approximation of the surface, as proposed by Catmull [Cat74].

In his method, the re�nement of the subdivision is a parallel procedure in

parameter space and screen space. Each time the quadrilateral in screen

space is divided into four similar polygons, the rectangle in the parameter

space is also broken down into four rectangles. By a simple comparison it

is decided which screen space quadrilateral maps onto the actual pixel, and

the algorithm proceeds for the resulted quadrilateral and its corresponding

texture space rectangle until the polygon coming from the subdivision cov-

ers a single pixel. When the subdivision terminates, the required texture

value is obtained from the texture map. Note that it is not an accurate

method, since the original surface and the viewing transformation are not

linear, but the parallel subdivision used linear interpolation. However, if

the original interpolation is not too inexact, then it is usually acceptable.

12.3.2 Polygon based texturing

When discussing parameterization, a correspondence was established be-

tween the texture space and the local modeling space. For polygons subdi-

vided into triangles and quadrilaterals, the parameterization and its inverse

can be expressed by a homogeneous transformation. The local modeling

space, on the other hand, is mapped to the world coordinate system, then

to the screen space by modeling and viewing transformations respectively.

The concatenation of the modeling and viewing transformations is an a�ne

mapping for orthographic projection and is a homogeneous transformation

for perspective projection.

Since both the parameterization and the projection are given by homoge-

neous transformations, their composition directly connecting texture space

with screen space will also be a homogeneous transformation. The matrix

representation of this mapping for quadrilaterals and perspective transfor-

mation is derived as follows. The parameterization is:

[x � h; y � h; z � h; h] = [u; v; 1] �P3�4: (12:21)

348 12. TEXTURE MAPPING

The composite modeling and viewing transformation is:

[X � q; Y � q; Z � q; q] = [x � h; y � h; z � h; h] �TV(4�4): (12:22)

Projection will simply ignore the Z coordinate if it is executed in screen

space, and thus it is not even worth computing in texture mapping. Since

the third column of matrix TV(4�4) is responsible for generating Z, it can

be removed from the matrix:

[X �q; Y �q; q] = [x�h; y�h; z�h; h]�TV(4�3) = [u; v; 1]�P3�4�TV(4�3): (12:23)

Denoting P3�4 �TV(4�3) by C3�3, the composition of parameterization and

projection is:

[X � q; Y � q; q] = [u; v; 1] �C3�3: (12:24)

The inverse transformation for scan order mapping is:

[u � w; v � w;w] = [X;Y; 1] �C�1

3�3
: (12:25)

Let the element of C3�3 and C�1

3�3 in ith row and in jth column be cij
and Cij respectively. Expressing the texture coordinates directly, we can

conclude that u and v are quotients of linear expressions of X and Y , while

X and Y have similar formulae containing u and v.

The texture order mapping is:

X(u; v) =
c11 � u+ c21 � v + c31

c13 � u+ c23 � v + c33
; Y (u; v) =

c12 � u+ c22 � v + c32

c13 � u+ c23 � v + c33
: (12:26)

The screen order mapping is:

u(X;Y) =
C11 �X + C21 � Y + C31

C13 �X + C23 � Y + C33

; v(X;Y) =
C12 �X + C22 � Y + C32

C13 �X + C23 � Y + C33

:

(12:27)

If triangles are parameterized and orthographic projection is used, both

transformations are linear requiring their composite texturing transforma-

tion to be linear also. Linearity means that:

c13; c23 = 0; c33 = 1; C13; C23 = 0; C33 = 1 (12:28)

12.3. TEXTURE MAPPING FOR INCREMENTAL SHADING MODELS 349

Scan order polygon texturing

When pixel X;Y is shaded in screen space, its corresponding texture coor-

dinates can be derived by evaluating a rational equation 12.27. This can be

further optimized by the incremental concept. Let the numerator and the

denominator of quotients de�ning u(X) be uw(X) and w(X) respectively.

Although the division cannot be eliminated, u(X + 1) can be calculated

from u(X) by two additions and a single division if uw(X) and w(X) are

evaluated incrementally:

uw(X+1) = uw(X)+C11; w(X+1) = w(X)+C13; u(X+1) =
uw(X + 1)

w(X + 1)
:

(12:29)

A similar expression holds for the incremental calculation of v. In addition

to the incremental calculation of texture coordinates inside the horizontal

spans, the incremental concept can also be applied on the starting edge of

the screen space triangle. Thus, the main loop of the polygon rendering of

Phong shading is made appropriate for incremental texture mapping:

Xstart = X1 + 0:5; Xend = X1 + 0:5; ~Nstart = ~N1;

uws = uw1; vws = vw1; ws = w1;

for Y = Y1 to Y2 do

uw = uws; vw = vws; w = ws;
~N = ~Nstart;

for X = Trunc(Xstart) to Trunc(Xend) do

u = uw=w; v = vw=w;

(R;G;B) = ShadingModel(~N , u, v);

write(X;Y;Trunc(R);Trunc(G);Trunc(B));
~N += � ~NX;

uw += C11; vw += C12; w += C13;

endfor

Xstart += �Xs
Y ; Xend += �Xe

Y ;
~Nstart += � ~N s

Y ;

uws += �uws
Y ; vws += �vws

Y ; ws += �ws
Y ;

endfor

350 12. TEXTURE MAPPING

If the texturing transformation is linear, that is if triangles are parame-

terized and orthographic projection is used, the denominator is always 1,

thus simplifying the incremental formula to a single addition:

Xstart = X1 + 0:5; Xend = X1 + 0:5; ~Nstart = ~N1;

us = u1; vs = v1;

for Y = Y1 to Y2 do

u = us; v = vs;
~N = ~Nstart;

for X = Trunc(Xstart) to Trunc(Xend) do

(R;G;B) = ShadingModel(~N , u, v);

write(X;Y;Trunc(R);Trunc(G);Trunc(B));
~N += � ~NX;

u += C11; v += C12;

endfor

Xstart += �Xs
Y ; Xend += �Xe

Y ;
~Nstart += � ~N s

Y ;

us += �usY ; vs += �vsY ;

endfor

Texture order polygon texturing

The inherent problem of texture order methods | i.e., that the uniform

sampling of texture space does not guarantee the uniform sampling of screen

space, and therefore may leave holes in the image or may generate pixels

redundantly in an unexpected way | does not exist if the entire texture

mapping is linear. Thus, we shall consider the simpli�ed case when triangles

are parameterized and orthographic projection is used, producing a linear

texturing transformation.

The isoparametric lines of the texture space may be rotated and scaled

by the texturing transformation, requiring the shaded polygons to be �lled

by possibly diagonal lines. Suppose the texture is de�ned by an N �M

array T of \texture space pixels" or texels, and the complete texturing

transformation is linear and has the following form:

X(u; v) = c11 � u+ c21 � v + c31; Y (u; v) = c12 � u+ c22 � v + c32: (12:30)

12.3. TEXTURE MAPPING FOR INCREMENTAL SHADING MODELS 351

The triangle being textured is de�ned both in 2D texture space and in

the 3D screen space (�gure 12.4). In texture order methods those texels

must be found which cover the texture space triangle, and the correspond-

ing screen space pixels should be shaded using the parameters found in the

given location of the texture array. The determination of the covering texels

in the texture space triangle is, in fact, a two-dimensional polygon-�ll prob-

lem that has straightforward algorithms. The direct application of these

algorithms, however, cannot circumvent the problem of di�erent texture

and pixel sampling grids, and thus can produce holes and overlapping in

screen space. The complete isoparametric line of v from u = 0 to u = 1 is

v

u

Y

X

texture space screen space

Figure 12.4: Texture order mapping

a digital line consisting of du = Trunc(max[c11; c12]) pixels in screen space.

Thus, the N number of texture pixels should be re-distributed to du screen

pixels, which is equivalent to obtaining the texture array in �u = du=N

steps. Note that �u is not necessarily an integer, requiring a non-integer

U coordinate which accumulates the �u increments. The integer index to

the texture array is de�ned by the integer part of this U value. Neverthe-

less, U and �u can be represented in a �xed point format and calculated

only by �xed point additions. Note that the emerging algorithm is similar

to incremental line drawing methods, and eventually the distribution of N

texture pixels onto du screen pixels is equivalent to drawing an incremental

line with a slope N=du.

352 12. TEXTURE MAPPING

The complete isoparametric lines of u from v = 0 to v = 1 are similarly

dv = Trunc(max[c21; c22]) pixel long digital lines in screen space. The re-

quired increment of the v coordinate is �v = dv=M when the next pixel is

generated on this digital line. Thus, a modi�ed polygon-�lling algorithm

must be used in texture space to generate the texture values of the inner

points, and it must be one which moves along the horizontal and vertical

axes at du and dv increments instead of jumping to integer points as in

normal �lling.

isoparametric lines

wholes

Figure 12.5: Holes between adjacent lines

This incremental technique must be combinedwith the �lling of the screen

space triangle. Since the isoparametric lines corresponding to constant v val-

ues are generally not horizontal but can have any slant, the necessary �lling

algorithm produces the internal pixels as a sequence of diagonal span lines.

As in normal �lling algorithms, two line generators are needed to produce

the start and end points of the internal spans. A third line generator, on

the other hand, generates the pixels between the start and end points.

The main problem of this approach is that using all pixels along the two

parallel edges does not guarantee that all internal pixels will be covered

by the connecting digital lines. Holes may appear between adjacent lines

as shown in �gure 12.5. Even linear texture transformation fails to avoid

generating holes, but at least it does it in a well de�ned manner. Braccini

and Marino [BG86] proposed drawing an extra pixel at each bend in the

pixel space digital line to �ll in any gaps that might be present. This is

obviously a drastic approach and may result in redundancy, but it solves

the inherent problem of texture order methods.

12.4. FILTERING OF TEXTURES 353

12.3.3 Texture mapping in the radiosity method

The general radiosity method consists of two steps: a view-independent

radiosity calculation step, and a view-dependent rendering step where either

an incremental shading technique is used, such as Gouraud shading, or else

the shading is accomplished by ray-tracing. During the radiosity calculation

step, the surfaces are broken down into planar elemental polygons which are

assumed to have uniform radiosity, emission and di�use coe�cients. These

assumptions can be made even if texture mapping is used, by calculating the

\average" di�use coe�cient for each elemental surface, because the results

of this approximation are usually acceptable. In the second, view-dependent

step, however, textures can be handled as discussed for incremental shading

and ray tracing.

12.4 Filtering of textures

Texture mapping establishes a correspondence between texture space and

screen space. This mapping may magnify or shrink texture space regions

when they are eventually projected onto pixels. Since raster based systems

use regular sampling in pixel space, texture mapping can cause extremely

uneven sampling of texture space, which inevitably results in strong aliasing

artifacts. The methods discussed in chapter 11 (on sampling and quantiza-

tion artifacts) must be applied to �lter the texture in order to avoid aliasing.

The applicable �ltering techniques fall into two categories: pre-�ltering, and

post-�ltering with supersampling.

12.4.1 Pre-�ltering of textures

The di�culty of pre-�ltering methods is that the mapping between texture

and pixel spaces is usually non-linear, thus the shape of the convolution

�lter is distorted. The requirement for box �ltering, for example, is the

pre-image of a pixel, which is a curvilinear quadrilateral, and thus the tex-

els lying inside this curvilinear quadrilateral must be summed to produce

the pixel color. In order to ease the �ltering computation, this curvilinear

quadrilateral is approximated by some simpler geometric object; the pos-

sible alternatives are a square or a rectangle lying parallel to the texture

coordinate axes, a normal quadrilateral or an ellipse (�gure 12.6).

354 12. TEXTURE MAPPING

pixel spacetexture space texture space

ellipse

rectangle

square

quadrilateral

Y

X

v

u

v

u

v

v

u

u

pixel

Figure 12.6: Approximations of the pre-image of the pixel rectangle

Rectangle approximation of the pre-image

The approximation by a rectangle is particularly suited to the Catmull tex-

turing algorithm based on parallel subdivision in screen and texture space.

Recall that in his method a patch is subdivided until the resulting polygon

covers a single pixel. At the end of the process the corresponding texture do-

main subdivision takes the form of a square or a rectangle in texture space.

Texels enclosed by this rectangle are added up, or the texture function is

integrated here, to approximate a box �lter. A conical or pyramidal �lter

can also be applied if the texels are weighted by a linear function increasing

from the edges towards the center of the rectangle.

The calculation of the color of a single pixel requires integration or sum-

mation of the texels lying in its pre-image, and thus the computational

burden is proportional to the size of the pre-image of the actual pixel. This

can be disadvantageous if large textures are mapped onto a small area of

the screen. Nevertheless, texture mapping can be speeded up, and this

linear dependence on the size of the pixel's pre-image can be obviated if

pre-integrated tables, or so-called pyramids, are used.

12.4. FILTERING OF TEXTURES 355

The image pyramid of pre-�ltered data

Pyramids are multi-resolution data structures which contain the succes-

sively band-limited and subsampled versions of the same original image.

These versions correspond to di�erent sampling resolutions of the image.

The resolution of the successive levels usually decrease by a factor of two.

Conceptually, the subsequent images can be thought of as forming a pyra-

mid, with the original image at the base and the crudest approximation

at the apex, which provides some explanation of the name of this method.

Versions are usually generated by box �ltering and resampling the previous

version of the image; that is, by averaging the color of four texels from one

image, we arrive at the color of a texel for the subsequent level.

u

v

R G

B
R G

B R G

B

D

Figure 12.7: Mip-map organization of the memory

The collection of texture images can be organized into amip-map scheme,

as proposed by Williams [Wil83] (�gure 12.7). (\mip" is an acronym of

\multum in parvo" | \many things in a small space".) The mip-map

scheme has a modest memory requirement. If the size of the original image

is 1, then the cost of the mip-map organization is 1+2�2+2�4+ ::: � 1:33.

The texture stored in a mip-map scheme is accessed using three indices:

u; v texture coordinates and D for level of the pyramid. Looking up a

texel de�ned by this three-index directory in the two-dimensional M �M

mip-map array (MM) is a straightforward process:

R(u; v;D) = MM [(1 � 2�D) �M + u � 2�D; (1 � 2�D) �M + v � 2�D];

G(u; v;D) = MM [(1 � 2�(D+1)) �M + u � 2�D; (1� 2�D) �M + v � 2�D];

B(u; v;D) = MM [(1 � 2�D) �M + u � 2�D; (1 � 2�(D+1)) �M + v � 2�D]:
(12:31)

356 12. TEXTURE MAPPING

The application of the mip-map organization makes it possible to calcu-

late the �ltered color of the pixel in constant time and independently of the

number of texels involved if D is selected appropriately. Level parameter D

must obviously be derived from the span of the pre-image of the pixel area,

d, which can be approximated as follows:

d = maxfj[u(x+1); v(x+1)]�[u(x); v(x)]j; j[u(y+1); v(y+1)]�[u(y); v(y)]jg

� maxf

vuut @u
@x

!2

+

@v

@x

!2

;

vuut @u
@y

!2

+

@v

@y

!2

g: (12:32)

The appropriate image version is that which composes approximately d2

pixels together, thus the required pyramid level is:

D = log2(maxfd; 1g): (12:33)

The minimum 1 value in the above equation is justi�ed by the fact that

if the inverse texture mapping maps a pixel onto a part of a texel, then no

�ltering is necessary. The resultingD parameter is a continuous value which

must be made discrete in order to generate an index for accessing the mip-

map array. Simple truncation or rounding might result in discontinuities

where the span size of the pixel pre-image changes, and thus would require

some inter-level blending or interpolation. Linear interpolation is suitable

for this task, thus the �nal expression of color values is:

R(u; v;Trunc(D)) � (1� Fract(D)) +R(u; v;Trunc(D) + 1) � Fract(D);

G(u; v;Trunc(D)) � (1� Fract(D)) +G(u; v;Trunc(D) + 1) � Fract(D);

B(u; v;Trunc(D)) � (1� Fract(D)) +B(u; v;Trunc(D) + 1) � Fract(D):
(12:34)

The image pyramid relies on the assumption that the pre-image of the

pixel can be approximated by a square in texture space. An alternative

discussed by the next section, however, allows for rectangular areas oriented

parallel to the coordinate axes.

Summed-area tables

A summed-area table (SA) is an array-like data structure which contains

the running sum of colors as the image is scanned along successive scan-

lines; that is, at [i; j] position of this SA table there is a triple of R;G;B

12.4. FILTERING OF TEXTURES 357

values, each of them generated from the respective T texel array as follows:

SAI[i; j] =
iX

u=0

jX
v=0

T [u; v]I (12:35)

where the subscript I stands for any of R, G or B.

This data structure makes it possible to calculate the box �ltered or area

summed value of any rectangle oriented parallel to the axes, since the sum

of pixel colors in a rectangle given by corner points [u0; v0;u1; v1] is:

I([u0; v0;u1; v1]) =
u1X

u=u0

v1X
v=v0

T [u; v]I =

SAI[u1; v1]� SAI[u1; v0]� SAI[u0; v1] + SAI[u0; v0]: (12:36)

Image pyramids and summed-area tables allow for constant time �ltering,

but require set-up overhead to build the data structure. Thus they are

suitable for textures which are used many times.

Rectangle approximation of the pixel's pre-image

Deeming the curvilinear region to be a normal quadrilateral provides a more

accurate method [Cat74]. Theoretically the generation of internal texels

poses no problem, because polygon �lling algorithms are e�ective tools for

this, but the implementation is not so simple as for a square parallel to

the axes. Pyramidal �lters are also available if an appropriate weighting

function is applied [BN76].

EWA | Elliptical Weighted Average

Gangnet, Perny and Coueignoux [GPC82] came up with an interesting idea

which considers pixels as circles rather than squares. The pre-image of a

pixel is then an ellipse even for homogeneous transformations, or else can

be quite well approximated by an ellipse even for arbitrary transforma-

tions. Ellipses thus form a uniform class of pixel pre-images, which can

conveniently be represented by few parameters. The idea has been further

re�ned by Greene and Heckbert [GH86] who proposed distorting the �lter

kernel according to the resulting ellipse in texture space.

358 12. TEXTURE MAPPING

Let us consider a circle with radius r at the origin of pixel space. Assuming

the center of the texture coordinate system to have been translated to the

inverse projection of the pixel center, the pre-image can be approximated

by the following ellipse:

F (r) = Au2 +Buv + Cv2: (12:37)

Applying Taylor's approximation for the functions u(x; y) and v(x; y), we

get:

u(x; y) �
@u

@x
� x+

@u

@y
� y = ux � x+ uy � y;

v(x; y) �
@v

@x
� x+

@v

@y
� y = vx � x+ vy � y: (12:38)

Substituting these terms into the equation of the ellipse, then:

F = x2 � (u2xA+ uxvxB + v2xC) + y2 � (u2yA+ uyvyB + v2yC)+

xy � (2uxuyA+ (uxvy + uyvx)B + 2vxvyC): (12:39)

The original points in pixel space are known to be on a circle; that is

the coordinates must satisfy the equation x2 + y2 = r2. Comparing this to

the previous equation, a linear system of equations can be established for

A;B;C and F respectively. To solve these equations, one solution from the

possible ones di�ering in a constant multiplicative factor is:

A = v2x + v2y;

B = �2(uxvx + uyvy);

C = u2x + u2y;

F = (uxvy � uyvx)
2 � r2:

(12:40)

Once these parameters are determined, they can be used to test for point-

inclusion in the ellipse by incrementally computing

f(u; v) = A � u2 +B � u � v + C � v2

and deciding whether its absolute value is less than F . If a point satis�es

the f(u; v) � F inequality | that is, it is located inside the ellipse | then

the actual f(u; v) shows how close the point is to the center of the pixel,

or which concentric circle corresponds to this point as shown by the above

12.4. FILTERING OF TEXTURES 359

expression of F . Thus, the f(u; v) value can be directly used to generate

the weighting factor of the selected �lter. For a cone �lter, for example, the

weighting function is:

w(f) =

q
f(u; v)

juxvy � uyvxj
: (12:41)

The square root compensates for the square of r in the expression of F .

Apart from for cone �lters, almost any kind of �lter kernel (Gaussian, B-

spline, sinc etc.) can be realized in this way, making the EWA approach a

versatile and e�ective technique.

12.4.2 Post-�ltering of textures

Post-�ltering combined with supersampling means calculating the image at

a higher resolution. The pixel colors are then computed by averaging the

colors of subpixels belonging to any given pixel. The determination of the

necessary subpixel resolution poses a critical problem when texture mapped

surfaces are present, because it depends on both the texel resolution and the

size of the areas mapped onto a single pixel, that is on the level of compres-

sion of the texturing, modeling and viewing transformations. By breaking

down a pixel into a given number of subpixels, it is still not guaranteed

that the corresponding texture space sampling will meet, at least approx-

imately, the requirements of the sampling theorem. Clearly, the level of

pixel subdivision must be determined by examination of all the factors in-

volved. An interesting solution is given to this problem in the REYES Image

Rendering System [CCC87] (REYES stands for \Renders Everything You

Ever Saw"), where supersampling has been combined with stochastic sam-

pling. In REYES surfaces are broken down into so-called micropolygons

such that a micropolygon will have the size of about half a pixel when it

goes through the transformations of image synthesis. Micropolygons have

constant color determined by evaluation of the shading equation for co-

e�cients coming from pre-�ltered textures. Thus, at micropolygon level,

the system applies a pre-�ltering strategy. Constant color micropolygons

are projected onto the pixel space, where at each pixel several subpixels

are placed randomly, and the pixel color is computed by averaging those

subpixels. Hence, on surface level a stochastic supersampling approach is

used with post-�ltering. The adaptivity of the whole method is provided

360 12. TEXTURE MAPPING

by the subdivision criterion of micropolygons; that is, they must have ap-

proximately half a pixel size after projection. The half pixel size is in fact

the Nyquist limit of sampling on the pixel grid.

12.5 Bump mapping

Examining the formulae of shading equations we can see that the surface

normal plays a crucial part in the computation of the color of the surface.

Bumpy surfaces, such as the moon with its craters, have darker and brighter

patches on them, since the modi�ed normal of bumps can turn towards or

away from the lightsources. Suppose that the image of a slightly bumpy

surface has to be generated, where the height of the bumps is considerably

smaller than the size of the object. The development of a geometric model

to represent the surface and its bumps would be an algebraic nightmare,

not to mention the di�culties of the generation of its image. Fortunately,

we can apply a deft and convenient approximation method called bump

mapping. The geometry used in transformations and visibility calculations

is not intended to take the bumps into account | the moon, for example,

is assumed to be a sphere | but during shading calculations a perturbed

normal vector, taking into account the geometry and the bumps as well, is

used in the shading equation. The necessary perturbation function is stored

in texture maps, called bump maps, making bump mapping a special type

of texture mapping. An appropriate perturbation of the normal vector

gives the illusion of small valleys, providing the expected image without the

computational burden of the geometry of the bumps. Now the derivation

of the perturbations of the normal vectors is discussed, based on the work

of Blinn [Bli78].

Suppose that the surface incorporating bumps is de�ned by a function

~r(u; v), and its smooth approximation is de�ned by ~s(u; v), that is, ~r(u; v)

can be expressed by adding a small displacement d(u; v) to the surface

~s(u; v) in the direction of its surface normal (�gure 12.8). Since the surface

normal ~ns of ~s(u; v) can be expressed as the cross product of the partial

derivatives (~su; ~sv) of the surface in two parameter directions, we can write:

~r(u; v) = ~s(u; v)+d(u; v)�[~su(u; v)�~sv(u; v)]
0 = ~s(u; v)+d(u; v)�~n0s (12:42)

(the 0 superscript stands for unit vectors).

12.5. BUMP MAPPING 361

n

s(u,v)

r(u,v)

d(u,v)

s

Figure 12.8: Description of bumps

The partial derivatives of ~r(u; v) are:

~ru = ~su + du � ~n
0
s + d �

@~n0s
@u

;

~rv = ~sv + dv � ~n
0
s + d �

@~n0s
@v

: (12:43)

The last terms can be ignored, since the normal vector variation is small

for smooth surfaces, as is the d(u; v) bump displacement, thus:

~ru � ~su + du � ~n
0
s;

~rv � ~sv + dv � ~n
0
s: (12:44)

The surface normal of r(u; v), that is the perturbed normal, is then:

~nr = ~ru� ~rv = ~su � ~sv + du � ~n
0
s � ~sv + dv � ~su � ~n0s + dudv � ~n

0
s � ~n0s: (12:45)

Since the last term of this expression is identically zero because of the axioms

of the vector product, and

~ns = ~su � ~sv; ~su � ~n0s = �~n0s � ~su;

thus we get:

~nr = ~ns + du � ~n
0
s � ~sv � dv � ~n

0
s � ~su: (12:46)

This formula allows for the computation of the perturbed normal using

the derivatives of the displacement function. The displacement function

d(u; v) must be de�ned by similar techniques as for texture maps; they

362 12. TEXTURE MAPPING

can be given either by functions or by pre-computed arrays called bump

maps. Each time a normal vector is needed, the (u; v) coordinates have to

be determined, and then the derivatives of the displacement function must

be evaluated and substituted into the formula of the perturbation vector.

The formula of the perturbated vector requires the derivatives of the

bump displacement function, not its value. Thus, we can either store the

derivatives of the displacement function in two bump maps, or calculate

them each time using �nite di�erences. Suppose the displacement function

is de�ned by an N �N bump map array, B. The calculated derivatives are

then:

U = Trunc(u �N); V = Trunc(v �N);

if U < 1 then U = 1; if U > N � 2 then U = N � 2;

if V < 1 then V = 1; if V > N � 2 then V = N � 2;

du(u; v) = (B[U + 1; V]�B[U � 1; V]) �N=2;

dv(u; v) = (B[U; V + 1]�B[U; V � 1]) �N=2;

The displacement function, d(u; v), can be derived from frame-grabbed

photos or hand-drawn digital pictures generated by painting programs, as-

suming color information to be depth values, or from z-bu�er memory values

of computer synthesized images. With the latter method, an arbitrary ar-

rangement of 3D objects can be used for de�nition of the displacement of

the bump-mapped surface.

Blinn [Bli78] has noticed that bump maps de�ned in this way are not

invariant to scaling of the object. Suppose two di�erently scaled objects

with the same bump map are displayed on the screen. One might expect

the bigger object to have bigger wrinkles proportionally to the size of the

object, but that will not be the case, since

j~nr � ~nsj

j~nsj
=
jdu � ~n

0
s � ~sv � dv � ~n

0
s � ~suj

j~su � ~svj

is not invariant with the scaling of ~s(u; v) and consequently of ~ns, but it is

actually inversely proportional to it. If it generates unwanted e�ects, then

a compensation is needed for eliminating this dependence.

12.6. REFLECTION MAPPING 363

12.5.1 Filtering for bump mapping

The same problems may arise in the context of bump mapping as for tex-

ture mapping if point sampling is used for image generation. The applicable

solution methods are also similar and include pre-�ltering and post-�ltering

with supersampling. The pre-�ltering technique | that is, the averaging

of displacement values stored in the bump map | contains, however, the

theoretical di�culty that the dependence of surface colors on bump displace-

ments is strongly non-linear. In e�ect, pre-�ltering will tend to smooth out

not only high-frequency aliases, but also bumps.

12.6 Re
ection mapping

Reading the section on bump mapping, we can see that texture mapping is

a tool which can re-introduce features which were previously eliminated be-

cause of algorithmic complexity considerations. The description of bumps

by their true geometric characteristics is prohibitively expensive compu-

tationally, but this special type of texture mapping, bump mapping, can

provide nearly the same e�ect without increasing the geometric complexity

of the model. Thus it is no surprise that attempts have been made to deal

with other otherwise complex phenomena within the framework of texture

mapping. The most important class of these approaches addresses the prob-

lem of coherent re
ection which could otherwise be solved only by expensive

ray tracing.

A re
ective object re
ects the image of its environment into the direction

of the camera. Thus, the pre-computed image visible from the center of the

re
ective object can be used later, when the color visible from the camera

is calculated. These pre-computed images with respect to re
ective objects

are called re
ection maps [BN76]. Originally Blinn and Newell proposed

a sphere as an intermediate object onto which the environment is projected.

Cubes, however, are more convenient [MH84], since to generate the pictures

seen through the six sides of the cube, the same methods can be used as for

computing the normal images from the camera.

Having generated the images visible from the center of re
ective objects,

a normal image synthesis algorithm can be started using the real camera.

Re
ective surfaces are treated as texture mapped ones with the texture

364 12. TEXTURE MAPPING

reflective
object

environment maps

Figure 12.9: Re
ection mapping

coordinates calculated by taking into account not only the surface point,

but the viewing direction and the surface normal as well. By re
ecting the

viewing direction | that is, the vector pointing to the surface point from

the camera | onto the surface normal, the re
ection direction vector is

derived, which unambiguously de�nes a point on the intermediate cube (or

sphere), which must be used to provide the color of the re
ection direction.

This generally requires a cube-ray intersection. However, if the cube is

signi�cantly greater than the object itself, the dependence on the surface

point can be ignored, which allows for the access of the environment map

by the coordinates of the re
ection vector only.

Suppose the cube is oriented parallel to the coordinate axes and the im-

ages visible from the center of the object through its six sides are stored

in texture maps R[0; u; v]; R[1; u; v]; : : : ; R[5; u; v]. Let the re
ected view

vector be ~Vr = [Vx; Vy; Vz].

The color of the light coming from the re
ection direction is then:

if jVxj = maxfjVxj; jVyj; jVzjg then

if Vx > 0 then color = R[0; 0:5 + Vy=Vx; 0:5 + Vz=Vx];

else color = R[3; 0:5 + Vy=Vx; 0:5 + Vz=Vx];

if jVyj = maxfjVxj; jVyj; jVzjg then

if Vy > 0 then color = R[1; 0:5 + Vx=Vy ; 0:5 + Vz=Vy];

else color = R[4; 0:5 + Vx=Vy ; 0:5 + Vz=Vy];

if jVzj = maxfjVxj; jVyj; jVzjg then

if Vz > 0 then color = R[2; 0:5 + Vx=Vz ; 0:5 + Vy=Vz];

else color = R[5; 0:5 + Vx=Vz ; 0:5 + Vy=Vz];

