
PHOTOREALISTIC IMAGE SYNTHESIS

USING RAY-BUNDLES

A dissertation submitted to

the Hungarian Academy of Sciences

in fulfillment of the requirements

for the degree of Doctor of Science

(Doctor Academiae Scientiarum Hungaricae)

by

Szirmay-Kalos Lászĺo

Department of Control Engineering and Information Technology
Technical University of Budapest

Year 2000

Contents

1 Introduction 1
1.1 Global pass . 2
1.2 Local pass . 2
1.3 Tone mapping . 3

2 Global illumination problem 5
2.1 The rendering equation . 5
2.2 Measuring the radiance . 9
2.3 The potential equation . 9
2.4 Measuring the potential . 10
2.5 The rendering problem . 10

2.5.1 Geometry of the surfaces. 11
2.5.2 Bi-directional Reflection Distribution Functions 12
2.5.3 Lightsources . 12
2.5.4 Measuring devices . 13

2.6 Numerical solution of the rendering equation . 15
2.6.1 Error measures for numeric techniques . 15
2.6.2 Properties of the rendering equation 16

2.7 Classification of the solution techniques . 16

3 Solution strategies for the global illumination problem 20
3.1 Inversion . 20
3.2 Expansion . 20

3.2.1 Expansion of the rendering equation: gathering walks 21
3.2.2 Expansion of the potential equation: shooting walks 22
3.2.3 Merits and disadvantages of expansion methods 24

3.3 Iteration . 24
3.3.1 Analysis of the iteration . 25

3.4 Analytical solution of the rendering equation . 26
3.4.1 Scenes with constant radiance . 26
3.4.2 Scenes with constant reflected radiance . 27

4 Finite-element methods for the global illumination problem 28
4.1 Galerkin’s method . 30
4.2 Point collocation method . 30
4.3 Finite-element methods for the diffuse global illumination problem 31

4.3.1 Geometric methods for form factor computation 32

5 Numerical quadrature for high dimensional integrals 34
5.1 Monte-Carlo quadrature . 35
5.2 Quasi-Monte Carlo quadrature . 36

5.2.1 Error analysis for integrands of finite variation: Koksma-Hlawka inequality . . . 37

i

CONTENTS ii

5.2.2 Generation of the sample points . 40
5.2.3 Generation of low-discrepancy sequences . 41

5.3 Importance sampling . 43
5.3.1 Generation of a random variable with a prescribed probability density 43
5.3.2 Importance sampling in quasi-Monte Carlo integration 44
5.3.3 Metropolis sampling . 45

6 Random walk solution of the global illumination problem 47
6.1 Why should we use Monte-Carlo expansion methods?. 47
6.2 Quasi-Monte Carlo quadrature for the rendering equation 48

6.2.1 Integrating functions of unbounded variation. 48
6.3 Importance sampling for the rendering equation . 51

6.3.1 BRDF sampling . .. 53
6.3.2 Lightsource sampling . 55
6.3.3 Sampling the lightsources in gathering random walks. 55
6.3.4 Importance sampling in colored scenes . 56
6.3.5 Multiple importance sampling .. 56

6.4 Handling infinite-dimensional integrals . 57
6.4.1 Russian-roulette . 57
6.4.2 Russian-roulette in quasi-Monte Carlo quadrature 57

6.5 Review of random walk algorithms 61
6.5.1 Gathering-type random walk algorithms .. 61
6.5.2 Shooting-type walk methods . .. 65
6.5.3 Bi-directional random walk algorithms .. 69

7 Stochastic iteration solution of the global illumination problem 74
7.1 Why should we use Monte-Carlo iteration methods?. 74
7.2 Formal definition of stochastic iteration. 74

7.2.1 Other averaging techniques . 77
7.3 Stochastic iteration for the diffuse radiosity . 77

7.3.1 Stochastic radiosity . 78
7.3.2 Transillumination radiosity 78
7.3.3 Randomly placed hemicubes . .. 79
7.3.4 Stochastic ray-radiosity . 79

7.4 Definition of the random transport operator for the non-diffuse finite-element case. . . . 79
7.4.1 Single ray based transport operator . 80

8 Simulating light transport using ray-bundles 83
8.1 Reformulation of the rendering equation using finite-elements 83
8.2 Stochastic expansion using ray bundles .. 84

8.2.1 Generating uniformly distributed points on the sphere. 86
8.2.2 Simple Monte-Carlo, or quasi-Monte Carlo walks 87
8.2.3 Calculation of the image estimate . 87
8.2.4 Improved walking techniques . 89
8.2.5 D-step iteration . 91

8.3 Importance sampling for the evaluation of directional integrals 91
8.3.1 Application of the VEGAS algorithm . .. 91
8.3.2 Application of Metropolis sampling . 92
8.3.3 Evaluation of the performance of the Metropolis method 94

8.4 Stochastic iteration using ray-bundles .. 98
8.4.1 Can we use quasi-Monte Carlo techniques in iteration? 99

8.5 Calculation of the radiance transport in a single direction 101
8.5.1 Galerkin’s method with piece-wise constant basis functions 102

CONTENTS iii

8.5.2 Analysis of the finite resolution problem of discrete methods 109
8.5.3 Point collocation method with piece-wise linear basis functions. 110

8.6 Handling sky-light illumination. 111
8.7 Improving the efficiency . 112

8.7.1 Self-correcting iteration. 112
8.7.2 Preprocessing the small lightsources . 113
8.7.3 Adaptive importance sampling and resolution control in iteration 120
8.7.4 Reducing the power defect of the iteration . 120
8.7.5 Constant radiance step . 121

9 Simulation results 122
9.1 Testing the walk method . 122
9.2 Testing stochastic iteration and self-correcting iteration 125

9.2.1 Self-correcting stochastic iteration. 125
9.2.2 Self-correcting stochastic iteration with incoming first-shot 125

10 Conclusions 131
10.1 Future improvements . 134

BIBLIOGRAPHY 139

SUBJECT INDEX 144

Chapter 1

Introduction

The ultimate objective ofimage synthesisor rendering is to provide the user with the illusion of watch-
ing real objects on the computer screen (figure 1.1). The image is generated from an internal model
which is called thevirtual world . To provide the illusion of watching the real world, the color sensation
of an observer looking at the artificial image generated by the graphics system must be approximately
equivalent to the color perception which would be obtained in the real world. The color perception of
humans depends on thelight power reaching the eye from a given direction and on the operation of the
eye. The power, in turn, is determined from theradianceof the visible points. The radiance depends on
the shape and optical properties of the objects and on the intensity of the lightsources. In order to model
this complex phenomenon, both the physical-mathematical structure of the light-object interaction and
the operation of the eye must be understood.

Tone
mapping

R

G

B

radiance

power

radiance

power

λ

λ

λ

λ

power

λ

color perception
in the nerve cells

real world

windowmeasuring
device

monitor virtual world

rendering
observer of the
computer screen

observer of the
real world

Figure 1.1: Tasks of rendering

The image synthesis uses an internal model consisting of thegeometry of the virtual world, optical
material properties and the description of thelighting in the scene (figure 1.2). From these, applying
the laws of physics (e.g. Maxwell equations) the real world optical phenomena can be simulated to find
the light distribution in the scene. This step is called the view-independent step or theglobal passof

1

1.1. GLOBAL PASS 2

rendering. Then ameasurement device, called theeyeor camera, is placed into the scene and the light
distribution is measured from a given location and orientation. This is called the view-dependent step or
thelocal pass. Note that not all rendering algorithms make a clear distinction between the determination
of the view-independent light distribution and the measurement of this distribution by the camera, but
simultaneously compute the light distribution and its effect on the camera.

Rendering results in a representation of the perceived image, which is usually the collection of pixel
colors or some discrete sampling of the radiance function. The exact simulation of the light perceived
by the eye is impossible, since it would require endless computational process. On the other hand, it is
not even worth doing since the possible distributions which can be produced by computer screens are
limited in contrast to the infinite variety of real world light distributions. Consequently, color perception
is approximated instead of having a completely accurate simulation. The accuracy of this approximation
is determined by the ability of the eye to make a distinction between two light distributions.

Computer screens can produce controllable electromagnetic waves, or colored light, mixed from
three separate wavelengths for their observers. Thus in the final step of image synthesistone mapping
is needed which converts the computed color or radiance information to theR,G,B intensities that can
be produced by the color monitor.

geometry of
the virtual world

material
properties

lighting

global
rendering
(global pass)

image
calculation
(local pass)

radiance of
surface points

radiance of
pixels

tone
mapping R,G,B of pixels

camera

Figure 1.2: Dataflow of rendering

1.1 Global pass

Theglobal passdetermines the light reflected off the surface points at different directions. Since light
is an electromagnetic wave, light distribution in a point and at a given direction can be represented by
a wavelength-dependent function [Ábr97, Ant80]. Rendering algorithms usually evaluate this functions
at a few representative wavelengths. On a given wavelength the intensity of the light is described by
the radiance. In scenes not incorporatingparticipating media it is enough to calculate the radiance
at surface points. The radiance reflected off a surface point is affected by the emission of this point
(lighting), the illumination provided by other surface points and the optical properties of the material at
this point (material properties). Formally this dependence is characterized by a Fredholm type integral
equation of the second kind, which is called therendering equation. From mathematical point of view,
global pass is the solution of this integral equation for the representative wavelengths.

1.2 Local pass

The local passmeans the measurement of the global radiance function by a camera. A camera is a col-
lection of light measuring devices which usually correspond to pixels in the image. A certain measuring
device is characterized by a sensitivity function that describes which points and directions may affect the
device.

1.3. TONE MAPPING 3

1.3 Tone mapping

Light is an electromagnetic wave, and itscolor is determined by the eye’s perception of its spectral
energy distribution. Due to its internal structure, the eye is a very poor spectrometer since it actually
samples and integrates the energy in three overlapping frequency ranges by three types of photopigments
according to a widely accepted (but also argued) model. As a consequence of this, any color perception
can be represented by three scalars (calledtristimulus values) instead of complete functions [Ábr97,
Ant80, Nem90].

A convenient way to define the axes of a coordinate system in the three-dimensional space of color
sensations is to select three wavelengths where one type of photopigments is significantly more sensitive
than the other two [SK99d]. This method has been devised by Grassmann, who also specified a criterion
for separating the three representative wavelengths.Grassmann lawsstate that the representative wave-
lengths should be selected such that no one of them can be matched by the mixture of the other two in
terms of color sensation (this criterion is similar to the concept of linear independence.) An appropriate
collection of the representative wavelengths is:

�red = 645 nm; �green = 526 nm; �blue = 444 nm: (1.1)

Now let us suppose that monochromatic light of wavelength� is perceived by the eye. The equivalent
portions of red, green and blue light, or (r, g, b) tristimulus values, can be generated by threecolor
matching functions (r(�), g(�) andb(�)) which are based on physiological measurements. Note the
negative section ofr(�) (and to a less extent ing(�)) in figure 1.3. It means that not all colors can be
represented by positive (r, g, b) values.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

400 450 500 550 600 650 700

r,
g,

b

lambda[nm]

R=645nm, G=526nm, B=444nm matching functions

r(lambda)
g(lambda)
b(lambda)

Figure 1.3: Mean 10-deg color matching functions of Stiles and Burch:r(�), g(�), b(�).

If the perceived color is not monochromatic, but is described by anL(�) distribution, the tristimulus
coordinates are computed using the assumption that the sensation is produced by an additive mixture of
the perceptions of elemental monochromatic components:

r =

Z
�

L(�) � r(�) d�; g =

Z
�

L(�) � g(�) d�; b =

Z
�

L(�) � b(�) d�: (1.2)

For computer generated images, the color sensation of an observer watching a virtual world on the
screen must be approximately equivalent to the color sensation obtained in the real world. Since color
sensations are represented by (r, g, b), it means that the tristimulus values should be identical. If two

1.3. TONE MAPPING 4

energy distributions are associated with the same tristimulus coordinates, they produce the same color
sensation, and are calledmetamers.

In computer monitors and in television screens three phosphor layers can be stimulated to produce
red, green and blue light. The objective, then, is to find the necessary stimulus to produce a metamer of
the real energy distribution of the light [Sch96, BS95]. This stimulus can be controlled by the (R,G,B)
values of the actual pixel. The (r, g, b) matching functions of figure 1.3 depend on the wavelength of the
selected primaries, which are not necessarily identical to the wavelengths on which our monitor can emit
light. This requires the conversion of tristimulus values by a linear transformation.

The calculation of pixelR;G;B values thus consists of the following steps. First the spectrum
associated with the pixel is computed. Then the spectrum is matched by three standard color matching
functions defined by three primaries. Finally, the standard color coordinates are transformed to the
monitor color coordinates taking into account the monitor properties. In practice, the standard color
system is usually theCIE XYZ system [WS82] which uses three hypothetical primaries to allow the
definition of any color by positive weights.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

400 450 500 550 600 650 700

X
,Y

,Z

lambda[nm]

X,Y,Z matching functions

X(lambda)
Y(lambda)
Z(lambda)

Figure 1.4: Mean 10-deg colorXY Z matching functions of Stiles and Burch:X(�), Y (�), Z(�)

The linear transformation that converts from theXYZ system to the monitorRGB system can be ob-
tained from theX;Y;Z coordinates of the emissions of the three phosphors and of the white point of the
monitor. For a monitor withstandard NTSC phosphorsandwhite point, the following transformation
can be used [Gla95]: 2

64 R

G

B

3
75 =

2
64 1:967 �0:548 �0:297
�0:955 1:938 �0:027
0:064 �0:130 0:982

3
75 �
2
64 X

Y

Z

3
75 : (1.3)

The whole computation of the (R,G,B) values in order for the monitor color to be a metamer of the
calculated spectrum is calledtone mapping. The (R, G, B) values are positive numbers usually in the
range of [0...255] if 8 bits are available to represent them. Unfortunately, not all colors can be reproduced
on the computer screen, because of the negative sections of the color matching functions and due to the
fact that the number of available intensity levels is usually much less than can be perceived in the real
world. Thus tone mapping is also responsible for optimally selecting from the available intensity levels
for color reproduction. The mapping from the computed levels to the available ones can be either linear
or logarithmic. The latter takes advantage of the logarithmic characteristics of the human perception
system [PP98].

Chapter 2

Global illumination problem

In this chapter the mathematical model of the light-surface interaction is presented. This mathematical
model is an integral equation, which has to be solved to obtain physically accurate images.

2.1 The rendering equation

Hereinafter, monochromatic light of a representative wavelength� will be assumed, since the complete
color calculation can be broken down to these representative wavelengths. The parameters of the equa-
tions usually depend on the wavelength, but for notational simplicity, we do not always include the�

variable in them.
In this section, we briefly review the measures of the light transport and the mathematical formulation

that can compute them.

θ

φ

x

y

z ω

θ

φ
x

y

z ω

d

d

sin dθ φ

θd

Figure 2.1: Definition of directions in a spherical coordinate system (left) and calculation of differential solid
angles (right)

The directional property of the light energy emission is described in a so-calledillumination sphere

 or in illumination hemisphere
H which contain those solid angles to where the surface point can
emit energy. The surface of transparent materials can emit in any directions of a sphere, while the surface
of opaque materials can transfer energy only to the hemisphere that is “above” the surface.

Setting up aspherical coordinate system(figure 2.1), a direction! can be defined by two angles
�; �, where� is the angle between the given direction and thez-axis, and� is the angle between the
projection of the given direction onto thex; y plane and thex-axis.

Sets of directions are defined by solid angles. By definition, asolid angle is a cone or a pyramid,
with its size determined by its subtended area of a unit sphere centered around the apex (figure 2.2).
A differential (infinitesimal) solid angle can also be given by a vectord~!, where the vector equals to a
direction of the differential set.

A differential solid angle can also be expressed by the�; � angles. Suppose that� is modified by
d� and� is byd�. During this the directional vector scans a differential rectangle havingd� vertical and

5

2.1. THE RENDERING EQUATION 6

dA

ωd

r

θ

Figure 2.2: Definition of the solid angle

sin � � d� horizontal sizes (right of figure 2.1), thus the size of the solid angle is

d! = sin � � d�d�: (2.1)

The solid angle, in which a differentialdA surface can be seen from point~p, is the projected (visible)
area per the square of the distance of the surface (figure 2.2). If the angle between the surface normal of
dA and the directional vector fromdA to ~p is �, and the distance fromdA to ~p is r, then this solid angle
is:

d! =
dA � cos �

r2
: (2.2)

The intensity of the energy transfer is characterized by several metrics in computer graphics depend-
ing on whether or not the directional and positional properties are taken into account.

The lightpower or flux � is the energy radiated through a boundary per unit time over a given range
of the spectrum (say[�; � + d�]). Since aphoton has�h=� energy where�h is the Planck-constant, the
power can be supposed to be propotional to the number of photons that go through the boundary in a unit
time. The power is not always a convenient measure since it also needs the definition of a boundary. We
can get rid of this additional information if the boundary is defined in a differential way focusing on a
single surface point and a single direction. The resulting measure is called the radiance.

The radiance or intensity L(~x; !) is the differential light flux�(~x; dA; !; d!) leaving a surface
elementdA around~x in a differential solid angled! around! per the projected area of the surface
elementdA and the size of the solid angled!. If the angle of the surface normal and the direction of
interest is�, then the projected area isdA � cos �, hence the radiance is:

L(~x; !) =
d�(~x; dA; !; d!)

dA � d! � cos � : (2.3)

Since a differential surface area can also be seen as a vectord ~A, which is parallel to the surface normal
at the given point, the radiance can also be obtained in a simpler form

L(~x; !) =
d�(~x; dA; !; d!)

d ~A � d~!
: (2.4)

Having introduced the most important metrics, we turn to their determination in the simplest case,
where there are only two differential surface elements in the 3D space, one (dA) emits light energy and
the other (dA0) absorbs it (figure 2.3). According to the definition of the radiance (equation (2.3)), ifdA0

is visible fromdA in solid angled! and the radiance of the surface elementdA is L in this direction,
then the flux leavingdA and reachingdA0 is:

d� = L � dA � d! � cos �: (2.5)

Using equation (2.2), the solid angle can be expressed from the projected area ofdA0, thus we get:

d� = L � dA � cos � � dA
0 � cos �0

r2
: (2.6)

2.1. THE RENDERING EQUATION 7

dA

ωθ θ’
d

r

dA’

..

Figure 2.3: Energy transfer between two differential surface elements

This formula is called thefundamental law of photometry.
Note that if equation (2.2) is used again for the emitter, the transferred power can also be written in

the following form:

d� = L � dA � cos � � dA
0 � cos �0

r2
= L � dA0 � d!0 � cos �0: (2.7)

Thus similar formula applies for the patch that receives the power as for the patch that emits it.
In light-surface interaction the surface illuminated by an incident beam may reflect a portion of the

incoming energy in various directions or it may absorb the rest. It has to be emphasized that a physically
correct model must maintain energy equilibrium, that is, the reflected and the transmitted (or absorbed)
energy must be equal to the incident energy.

Optically perfect or smooth surfaces will reflect or transmit onlycoherent components governed by
the laws of geometric optics, including the law of reflection and the Snellius–Descartes law of refraction.
The surface irregularities, however, reflect or refract the incident light incoherently in any direction.
Since the exact nature of these irregularities is not known, light-surface interaction is modeled by means
of probability theory.

Assume that a photon comes from the direction denoted by!0 to point~x. The probability of reflection
or refraction at~x into solid angled! around! is expressed by the following probability density function,
also called astransfer probability density :

w(!0; ~x; !) � d! = Prfphoton is reflected or refracted tod! around! j coming from!0g: (2.8)

Note that this probability distribution is a mixed, discrete-continuous distribution, since the proba-
bility that the light is reflected exactly to the ideal reflection direction may be non-zero.

x

h(x, -

L(x,)

ω

ω

ω

’

θ

’

’
ω

L(h(x, - ω ω’ ’

’

,

)

))

Figure 2.4: Geometry of the rendering equation

The light flux (�out) leaving the surface at solid angled! around! consists of the emission and
reflected (or refracted) components.

2.1. THE RENDERING EQUATION 8

In order to obtain thereflected/refracted component, let us assume that photons are coming to area
dA around~x from solid angled!0 around!0 and their total represented power is�in(~x; dA; !0; d!0).
The probability that a photon is reflected tod! is w(!0; ~x; !) � d! thus the expected power leaving the
surface element after reflection or refration is:

w(!0; ~x; !) d! � �in(~x; !0; d!0):

To obtain the total reflected/refracted power, all the possible incoming directions!0 should be taken
into account and their contributions should be integrated:Z

(w(!0; ~x; !) d!)�in(~x; !0; d!0): (2.9)

If the surface itself emits energy, i.e. if it is a lightsource, then theemissionalso contributes to the
output flux:

�e(~x; !) = Le(~x; !) � dA � cos � � d!: (2.10)

Adding the possible contributions we obtain:

�out(~x; !) = �e(~x; !) +

Z

(w(!0; ~x; !) d!)�in(~x; !0; d!0): (2.11)

The fluxes can be expressed by the radiant intensities according to equations (2.5) and (2.7), thus:

�in(~x; !0; d!0) = Lin(~x; !0) � dA � cos �0 � d!0;
�out(~x; !; d!) = L(~x; !) � dA � cos � � d!: (2.12)

Substituting these terms into equation 2.11 and dividing both sides bydA � d! � cos � we get:

L(~x; !) = Le(~x; !) +

Z

Lin(~x; !0) � cos �0 � w(!
0; ~x; !)

cos �
d!0: (2.13)

Let us realize thatLin(~x; !0) is equal toL(~y; !0) if ~y is the point that is visible from~x at direction
�!0, usually expressed by the so calledvisibility function h (i.e. ~y = h(~x;�!0)).

Using these equations and introducing thebi-directional reflection/refraction function — orBRDF
for short — as defined by the following formula

fr(!
0; ~x; !) =

w(!0; ~x; !)

cos �
; (2.14)

we obtain the following fundamental law, called therendering equation:

L(~x; !) = Le(~x; !) +

Z

L(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0: (2.15)

Introducing the following notation for the integral operator

(T L)(~x; !) =
Z

L(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0; (2.16)

the short form of the rendering equation can also be established:

L = Le + T L: (2.17)

In fact, every color calculation problem consists of several rendering equations, one for each rep-
resentative wavelength. Optical parameters (Le; fr) obviously vary in the different equations, but the
geometry represented by functionh does not.

2.2. MEASURING THE RADIANCE 9

2.2 Measuring the radiance

Having solved the rendering equation, the radiance can be determined for any point and direction. To
obtain an image, the power that affect different parts of light sensitive material (retina or the film of a
camera) must be determined. Mathematically each distinct part is associated with a measuring device,
thus the collection of these devices is, in fact, the model of the human eye or cameras.

A measuring device is characterized by asensitivity function W e(~y; !0), which gives ascaling
valueC if a light-beam of unit power leaving~y in direction!0 contributes to the measured value and 0
otherwise (for example, this device can measure the power going through a single pixel of the image and
landing at the eye, or leaving a surface element at any direction).

Since the power leaving surface aread~y around~y in solid angled! around! is L(~y; !)d~y cos �d!,
the measured value by a certain device is:Z

Z
S

d�(~y; !) �W e(~y; !) =

Z

Z
S

L(~y; !) cos � �W e(~y; !) d~y d! =ML: (2.18)

OperatorM is called theradiance measuring operator.

2.3 The potential equation

Looking at the light propagation as an interaction between an emitter and a receiver, the radiance de-
scribes this interaction from the point of view of the emitter. The same phenomenon can also be ex-
plained from the point of view of the receiver, when the appropriate measure is called thepotential.
By definition, the potentialW (~y; !0) expresses the effect of that portion of the unit power light-beam
emitted by point~y in direction!0, which actually lands at a given measuring device either directly or
indirectly after some reflections or refractions. Using probabilistic terms the potential is the product of
the scaling valueC and the probability that a light-beam emitted by a point in a given direction reaches
the measuring device.

h(y,

W(y,)

ω

ω

ω

’

’

’
ω

W(h(y, ω ω’ ,

)

))

y

θ

Figure 2.5: Geometry of the potential equation

If only direct contribution is considered, thenW (~y; !0) = W e(~y; !0). To take into account light
reflections, we can establish thepotential equation [PM95]:

W =W e + T 0W: (2.19)

In this equation integral operatorT 0 — which is the adjoint ofT — describes the potential transport

(T 0W)(~y; !0) =

Z

W (h(~y; !0); !) � fr(!0; h(~y; !0); !) � cos � d!; (2.20)

2.4. MEASURING THE POTENTIAL 10

where� is the angle between the surface normal and the outgoing direction!.
To prove this equation, we can use the probabilistic interpretation of the potential. Denoting the “unit power

light-beam that is leaving~x at direction!” by �(~x; !), we can write:

W (~y; !0) = C � Prf�(~y; !0) lands at the deviceg =

C � Prf�(~y; !0) goes directly to the deviceg+ C � Prf�(~y; !0) lands at the device after at least one reflectiong:
(2.21)

The first term is equal to the sensitivity function. Considering the second term, we can obtain:

C � Prf�(~y; !0) lands at the device after at least one reflectiong =Z

C � Prf�(h(~y; !0); !) lands at the deviceg � Prf�(~y; !0) is reflected tod! around! ath(~y; !0)g =

Z

W (h(~y; !0); !) � fr(!0; h(~y; !0); !) � cos � d!: (2.22)

2.4 Measuring the potential

Alternatively to the radiance, the power arriving at the measuring device can also be computed from the
potential. Since

d�e(~y; !0) = Le(~y; !0) � cos � d~y d!0

is proportional to the power of the light-beam emitted byd~y in d!0 and the probability that the photons
of this beam really go either directly or indirectly to the measuring device isW (~y; !0)=C, the total
measured value that takes into account all possible emission points and directions is

C �
Z

Z
S

d�e(~y; !0) � W (~y; !0)

C
=

Z

Z
S

W (~y; !0) � Le(~y; !0) � cos � d~y d!0 =M0W; (2.23)

whereM0 is thepotential measuring operator. Note that unlike the radiance measuring operator, the
potential measuring operator integrates on the lightsource.

2.5 The rendering problem

Generally, therendering problem is a quadruple [Kel97]:

hS; fr(!0; ~x; !); Le(~x; !);We(~x; !)i

whereS is the geometry of surfaces,fr is the BRDF of surface points,Le is the emitted radiance of sur-
face points at different directions andWe is a collection of measuring functions. Rendering algorithms
aim at modeling and simulation of light-surface interactions to find out the power emitted by the surfaces
and landing at the measuring devices. The light-surface interaction can be formulated by therendering
equationor alternatively by thepotential equation. Since according to the definition of the radiance the
total power of the scene is the integral of the radiance function

� =

Z

Z
S

L(~y; !) d~y d~!;

we are interested only in those solutions where the total integral of the radiance function is finite. For-
mally the solution is searched in theL1 function space.

Recall that the measured value can be computed by the measuring function from the radianceZ

Z
S

L(~y; !) cos � �W e(~y; !) d~y d! =ML; (2.24)

2.5. THE RENDERING PROBLEM 11

whereM is theradiance measuring operator. Let us introduce thescalar product hu; vi

hu; vi =
Z

Z
S

u(~y; !) � v(~y; !) d~y d~! =

Z

Z
S

u(~y; !) � v(~y; !) d~y cos � d!;

where� is the angle between the surface normal and direction! and thusd~y cos � is the infinitesimal vis-
ible area from direction!. Using this scalar product, we can obtain an alternative form of the measuring
operator:

ML = hL;W ei:
Thepotential measuring operatorcan also be given in a scalar product form:

M0W = hLe;W i: (2.25)

Let us examine a single reflection of the light. The measured value taking into account a single reflection
can be expressed in two ways:

hT Le;W ei = hLe;T 0W ei: (2.26)

Thus the radiance and potential transport operators areadjoint operators [Mát81].

2.5.1 Geometry of the surfaces

A surface is a set of 3D points which are defined by an equation [SK99d]. Those points are said to be in
this set, which satisfy the definition equation. The equation can produce the points on the surface either
implicitly, when the general form is

F (x; y; z) = 0;

or explicitly, which is preferred in rendering algorithms. The general form of an explicit surface definition
is:

~r = ~r(u; v); u 2 [0; 1]; v 2 [0; 1]: (2.27)

Points on the surface can be generated by selectingu; v parameters from the unit interval and substituting
their values into the function~r(u; v). For example, a sphere of radiusR and of center(x0; y0; z0) can be
defined either by the followingexplicit equation:

x = x0 +R � cos 2�u � sin�v; y = y0 +R � sin 2�u � sin�v; z = z0 +R � cos �v; u; v 2 [0; 1];

or by animplicit equation :

(x� x0)
2 + (y � y0)

2 + (z � z0)
2 �R2 = 0:

original surface with isolines selecting points and triangles result of tessellation

Figure 2.6: Tessellation process

Some rendering algorithms do not work with the original geometry but approximate the surfaces
by triangle meshes. This approximation — also called thetessellation— can be realized by selecting
n�m points in parameter spaceu 2 [0; 1]; v 2 [0; 1] and adding the

[~r(ui; vj); ~r(ui+1; vj); ~r(ui+1; vj+1)] and [~r(ui; vj); ~r(ui+1; vj+1); ~r(ui; vj+1)]

triangles for alli = 1 : : : n � 1 andj = 1 : : : m � 1 indices to the resulting list (figure 2.6). For the
discussion of surface definition methods using forward and reverse engineering and of transformations
refer to [SK99d, Chi88, VMC97, RVW98] and to [SKe95, Kra89, Her91, Lan91], respectively.

2.5. THE RENDERING PROBLEM 12

2.5.2 Bi-directional Reflection Distribution Functions

The Bi-directional Reflection Distribution Functions (or BRDFs) characterize the optical material
properties. Photorealistic rendering algorithms require the BRDFs not to violate physics. Such BRDF
models must satisfy both reciprocity and energy balance, and are calledphysically plausible[Lew93].

Reciprocity that was recognized by Helmholtz is the symmetry property of the BRDF characterizing
reflections, which is defined by the following equation [Min41]:

fr(!; ~x; !
0) = fr(!

0; ~x; !); (2.28)

where!0 is the vector pointing towards the incoming light and vector! defines the viewing direction.
Reciprocity is important because it allows for the backward tracing of the light as happens in visibility
ray-tracing algorithms. Note that reciprocity is valid if the incoming and outgoing beams are in the same
material, that is, reflection BRDFs are expected to be reciprocal but refraction BRDFs are not.

Suppose that the surface is illuminated by a beam from direction!0. Energy balancemeans that
the number of outgoing photons cannot be more than how many were received. To examine it formally,
we can introduce thealbedo [Lew93] that is the ratio of the total reflected power and incoming power,
or equivalently, the probability of the reflection to any direction. Energy balance means that the albedo
cannot be greater than 1:

a(~x; !0) = Prfphoton is reflectedj coming from!0g =
Z

H

w(!0; ~x; !) d! =

Z

H

fr(!
0; ~x; !) � cos � d! � 1: (2.29)

If the BRDF is reciprocal, then the albedo can also be interpreted as the optical response of the
surface to homogeneous sky-light illumination of unit intensity:

T 1 =
Z

H

1 � fr(!0; ~x; !) � cos �0 d!0 = a(~x; !): (2.30)

Using the definition of the transfer probability densityw in equation (2.8), we can obtain the follow-
ing probabilistic interpretation of the BRDF:

fr(!
0; ~x; !) � cos � = 1

d!
� Prfphoton is reflected or refracted tod! around! j it comes from!0g:

Different BRDF models are discussed in [SKe95, SK99d, SK99b, Pho75, Bli77, CT81, War92,
HTSG91, ON94, Sch93, NNSK99c, NNSK99a, CSK98].

2.5.3 Lightsources

The lightsources are surfaces that have non-zeroLe emission. Rendering algorithms also use abstract
lightsources that are not associated with surfaces [SKe95]. The most important types of theseabstract
lightsource models are the following:

� apoint-lightsource is located at a given point of the virtual world and its size is zero. The direction
of the illumination provided by this lightsource at a point is the vector from the point to the location
of the lightsource and the intensity of the illumination decreases with the square of the distance.
An example of this category is an electric bulb.

� adirectional-lightsource is located at infinity in a given direction. The direction and the intensity
of its illumination are constant everywhere. A directional-lightsource is, in fact, equivalent to an
infinitely distant plane emitter. The sun can be considered as a directional-lightsource.

� sky-light illumination provides constant illumination at any point and at any direction.

2.5. THE RENDERING PROBLEM 13

2.5.4 Measuring devices

In order to establish models for thecamera, the operation of thehuman eyecan be analyzed when the
human is looking at the real world and when he is watching the computer screen.

e∆
ω

y
Ωp

p

Ωp

y - e
watching the real world watching the computer screen

e

pixel

Φ

θ Lp

Φp
e∆

||

Figure 2.7: A model of the human eye

The human eye contains a lens called thepupil of size�e (figure 2.7). We shall assume that the
pupil is small, which is often referred as thepinhole camera model. When the human is watching the
computer screen, a pixelp is visible in a small solid angle
p. To provide the illusion that the screen is
a replacement of the real world, the�p power emitted by the pixel towards the eye should be similar to
that� power which would come from the real world and would land at the pupil from solid angle
p. If
the emission intensity of the pixel isLp, then the power landing at the eye from this pixel is

�p = Lp ��e � cos �e �
p;

where�e is the angle between the surface normal on the pupil and the direction of the pixel.
We have to find a camera model that computes a measured valueP which is stored in theimage-

buffer to control the monitor. The response ofmonitors can be characterized by a functionB � R,
whereB represents a scaling according to the brightness settings andRmight be non-linear. In order to
compensate the monitor’s non-linearity, thelook-up table is set to distort the values of the image-buffer
with the inverse of this non-linear mapping, that is byR�1. This distortion is calledgamma-correction.
Using gamma-correction, the radiant intensity of the pixel is:

Lp = B � R(R�1(P)) = B � P:

Since we require that�p = �, our model camera is expected to provide the following measured value:

P = R
�
R�1

�
Lp

B

��
=
Lp

B
=

�

�e � cos �e �
p �B
: (2.31)

Let us assign a measuring device for this pixel. This device is sensitive to those surface points that
are visible in this pixel — i.e. in
p — and to those directions that point from the surface points to the
pupil. Mathematically, this can be represented by the following measuring function

W e(~y; !) =

8<
:
C if ~y is visible in
p and! points from~y through�e;

0 otherwise,
(2.32)

where
C =

1

�e � cos �e �
p �B
:

The measuring device provides the following value:

P =ML =

Z

Z
S

L(~y; !) �W e(~y; !) � cos � d~yd!: (2.33)

2.5. THE RENDERING PROBLEM 14

Applying equation (2.2), we can use the following substitutions:

d! = d~e � cos �e

j~y � ~ej2 ; d~y =
j~y � ~ej2
cos �

� d!p;

whered~e is a differential area on the pupil andj~y � ~ej is the distance between the pupil and the visible
surface. Substituting these and taking advantage that the pupil�e is small, we obtain

P =

Z

p

Z
�e

L(h(~e;�!p); !p) �C �
cos �e

j~y � ~ej2 �
j~y � ~ej2
cos �

� cos � d~ed!p =
Z

p

Z
�e

L(h(~e;�!p); !p) �C � cos �e d~ed!p �

Z

p

L(h(~eye;�!p); !p) � C � cos �e ��e d!p =
Z

p

L(h(~eye;�!p); !p) �
1

p �B
d!p; (2.34)

where ~eye is the position of the very small pupil, and!p is the direction which points from~y to the eye
position.

Note that the measured value is independent of both the distance and the orientation of the visible
surface! This is explained by the fact that as we move farther from a surface, although the power coming
from a unit surface area decreases with the square of the distance, the area that can be visible in a given
solid angle increases with the same speed. The two factors compensate each other. Similarly, when we
look at a surface from a non perpendicular direction, the radiance is weighted by the cosine of this angle
in the power, but the surface area that can be seen is inversely proportional to the cosine of the same
angle.

ω
p

Ωp

f

eye

θ

d p

window

pixel

p

: focal distance

ω
y

Ωp

y - eye

eye

θ

||

d p

Figure 2.8: Evaluation of the measured value as an integral on the pixel (left) and on the surface (right)

Since
p is the collection of those directions that go through the pixel, the measured value can also
be expressed as an integral over the pixel areaSp (figure 2.8). Let~p be the running point on the pixel,
�p be the angle between the pixel normal and vector~p� ~eye, and�pix be equal to�p in the center of the
pixel. Sincej~p � ~eyej = f= cos �p wheref is thefocal distance, i.e. the distance between the eye and
the plane of the window, we can establish the following correspondance:

d!p =
d~p � cos �p
j~p� ~eyej2 =

d~p � cos3 �p
f2

: (2.35)

Substituting this to equation (2.34), the measured value becomes

P =

Z
Sp

L(h(~p;�!~p); !~p) �
1

p � B
� cos

3 �p

f2
d~p: (2.36)

Let us introducecamera parameterc(~p) by

c(~p) =
Sp

p �B
� cos

3 �p

f2
: (2.37)

2.6. NUMERICAL SOLUTION OF THE RENDERING EQUATION 15

Since

p =

Z

p

d!p =

Z
Sp

cos3 �p

f2
d~p � Sp � cos3 �pix

f2
; (2.38)

the camera parameter can also be expressed in the following exact and approximating forms:

c(~p) =
Sp � cos3 �p

B � R
Sp

cos3 �p d~p
� cos3 �p

B � cos �3
pix

� 1

B
: (2.39)

The approximations are accurate if the pixel is small compared to the focal distance. If image space
filtering is also applied, thenSp may be greater than the pixel and the camera parameter is not necessarily
constant but follows the shape of a reconstruction filter [SKe95, SK95]. Summarizing the measured value
is an integral on the pixel:

P =

Z
Sp

L(h(~p;�!~p); !~p) �
c(~p)

Sp
d~p: (2.40)

Equation (2.34) can also be evaluated on object surfaces. Using the notations of figure 2.8, we can
obtain:

d!p =
d~y � cos �
j~y � ~eyej2 (2.41)

where~y is a surface point visible in the pixel. Let the indicator function of those points that are visible
in
p beV
p(~y). The measured value is then:

P =

Z
S

L(~y; !~y! ~eye) � V
p(~y) �
1

p � B
� cos �

j~y � ~eyej2 d~y: (2.42)

Let us introducesurface dependent camera parameterg(~y) by

g(~y) =
1

p � B � j~y � ~eyej2 =
f2

B � j~y � ~eyej2 � R
Sp

cos3 �p d~p
� f2

B � j~y � ~eyej2 � Sp � cos3 �pix
(2.43)

using formula (2.38) that expresses
p. Thus the final form of the measured value is:

P =

Z
S

L(~y; !~y! ~eye) � V
p(~y) � g(~y) � cos � d~y: (2.44)

Comparing this formula with equation (2.33), the following sensitivity function can be derived:

W e(~y; !) =

8<
:
�(! � !~y! ~eye) � g(~y) if ~y is visible through the pixel;

0 otherwise.
(2.45)

2.6 Numerical solution of the rendering equation

2.6.1 Error measures for numeric techniques

When solving the rendering problem numerically, the required radiance, potential or measured power can
only be approximated. To characterize the accuracy of the approximation,error measures are needed.
The errors of radiance or potential are calledobject-space error measures. The error of the measured
power is calledimage-space error measure. A good error measure should be invariant to changes
that modify neither the object space nor the camera. Particularly, the error should not change when a
surface is subdivided to two surfaces or the complete scene is scaled — i.e. it should be tessellation and

2.7. CLASSIFICATION OF THE SOLUTION TECHNIQUES 16

scaling independent —, or when a pixel is subdivided to increase the image resolution — i.e. it should
be resolution independent.

Tessellation and scaling independent measures can be defined if the norm of the error function is
divided by the total surface area. Thenorm [Mát81, ST93] is selected from the following possibilities:

jjf jj1 =
Z

Z
S

jf(~x; !)j d~x d~!; jjf jj2 =
vuutZ

Z
S

(f(~x; !))2 d~x d~!; jjf jj1 = max
~x;!

jf(~x; !)j: (2.46)

Using any of these, ifL is the calculated radiance and~L is the real radiance, then an absolute object-space
error�a and a relative object-space error�r are

�a =
jjL� ~Ljj

S
; �r =

jjL� ~Ljj
jj~Ljj

: (2.47)

Image space norms are based on the powers that go through different pixelsp = 1; 2; : : : ; NP .

jj�jj1 =
NPX
p=1

j�pj; jj�jj2 =

vuuutNPX
p=1

j�pj2; jj�jj1 = max
p
j�pj: (2.48)

Resolution independent measures divide the total error of pixels by the number of pixels (P). If the
calculated and real powers that go through pixelp are�p and ~�p, respectively, then an absolute and a
relative image space error measures are

�a =
jj�� ~�jj
NP

; �r =
jj�� ~�jj
jj~�jj

: (2.49)

2.6.2 Properties of the rendering equation

The integral operators of both the rendering and the potential equations arecontractions. This statement
can be proven from the fact that for physically plausible models, the albedo is less than 1. Here, the
1-norm is used:

kT Lk1 = max jT Lj � max jLj �max jT 1j = max jLj �max ja(~x; !)j = kLk1 �max ja(~x; !)j:

For the potential, similar results can be obtained:

kT 0Wk1 = max jT 0W j � max jW j �max jT 01j = max jW j �max ja(h(~y; !0); !0)j =

kWk1 �max ja(~x; !)j:

2.7 Classification of the solution techniques

In order to find the color of a pixel, the radiance has to be evaluated for that surface which is visible
through the given pixel. The determination of this surface is called thehidden surface problemor
visibility calculation . Having solved the visibility problem, the surface visible in the given pixel is
known, and the radiance may be calculated on the representative wavelengths by the rendering equation.

Due to multiple reflections of light beams, the calculation of the radiance of the light leaving a
point on a surface in a given direction requires the radiances of other surfaces visible from this point,
which generates new visibility and shading problems to solve (figure 2.9). To calculate those radiances,
other surfaces should be evaluated, and our original point on the given surface might contribute to those
radiances. As a consequence of that, the rendering equation has complicated coupling between its left
and right sides, making the evaluation difficult.

There are three general and widely accepted approaches to attack this coupling:

2.7. CLASSIFICATION OF THE SOLUTION TECHNIQUES 17

eye

pixel

surface 1

surface 2

surface 3

Figure 2.9: Multiple reflections of light

1. Local illumination methods

Local illumination methods take a drastic approach and simplify or disregard completely all the
terms causing problems. The unknown radiance inside the integral of the rendering equation is
replaced by some approximation of the emission function. Formally, these methods evaluate the
following simplified rendering equation to obtain the radiance:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0; (2.50)

whereLlightsource may be a simplification of the emission functionLe. Abstract lightsources, such
as point or directional lightsources are preferred here, since their radiance is a Dirac-delta like
function, which simplifies the integral of equation (2.50) to a sum.

These methods take into account only a single reflection of the light coming from the abstract
lightsources. Ideal mirrors and refracting objects cannot be rendered with these methods.

2. Recursive ray-tracing

Another alternative is to eliminate from the rendering equation those energy contributions which
cause the difficulties, and thus give ourselves a simpler problem to solve. For example, if limited
level, sayn, coupling caused by ideal reflection and refraction were allowed, and we were to ignore
the other non-ideal components coming from non-abstract lightsources, then the number of surface
points which would need to be evaluated to calculate a pixel color can be kept under control. Since
the illumination formula contains two terms regarding the coherent components (reflective and
refracting lights), the maximum number of surfaces involved in the color calculation of a pixel is
two to the power of the given depth, i.e.2n. An implementation of this approach is calledvisibility
ray-tracing which uses the following illumination formula:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0+

kr(!r; ~x; !) � L(h(~x;�!r); !r) + kt(!t; ~x; !) � L(h(~x;�!t); !t); (2.51)

where!r and!t are the ideal reflection and refraction directions, andkr andkt are the integrated
BRDF components representing the ideal reflection and refraction, respectively.

3. Global illumination solution

Local illumination and recursive ray-tracing apply brutal simplifications and thus provide physi-
cally inaccurate images. Thus these methods cannot be reliably used in engineering applications,
such as in lighting design. These application areas require the rendering equation to be solved
without relevant simplifications, that leads to the family ofglobal illumination methods. Global
illumination methods rely on numerical techniques to resolve the coupling in the rendering or
potential equations and to solve the integral equation without unacceptable simplifications.

2.7. CLASSIFICATION OF THE SOLUTION TECHNIQUES 18

local illumination method local illumination method with shadow computation

recursive ray-tracing global illumination method

Figure 2.10: Comparison of local illumination method, recursive ray-tracing and global illumination method.
Ambient light was also added when the local illumination method and recursive ray-tracing were computed. The
images have been generated by a path tracing program [SK99d]. Note that local illumination methods cannot

render ideal reflection or refraction, thus there are no transparent and mirror like objects. Recursive ray-tracing,
on the other hand, is unable to follow multiple non-ideal reflections, thus the illumination diffusely reflected from

the back wall is missing on the spheres. The running times are 90 seconds, 95 seconds, 135 seconds, 9 hours,
respectively, which clearly shows the price we should pay for a physically accurate simulation.

2.7. CLASSIFICATION OF THE SOLUTION TECHNIQUES 19

The three different approaches represent three levels of the compromise between image generation
speed and quality. By ignoring more and more terms in the illumination formula, its calculation can be
speeded up, but the result inevitably becomes more and more artificial.

The ignoration of the terms, however, violates the energy equilibrium, and causes portions of objects
to come out extremely dark, sometimes unexpectedly so. These artifacts can be reduced by reintroducing
the ignored terms in simplified form, calledambient light. The ambient light represents the ignored
energy contribution in such a way as to satisfy the energy equilibrium. Since this ignored part is not
calculated, nothing can be said of its positional and directional variation, hence it is supposed to be
constant in all directions and everywhere in the 3D space. From this aspect, the role of ambient light also
shows the quality of the shading algorithm. The more important a role it has, the poorer quality picture
it will generate.

In order to formally express the capabilities of a certain algorithm, Heckbert has developed a notation
that is based on the regular expressions originally proposed for the syntax of formal languages [Hec91].
The elements of the notation are as follows:

� E is the eye,

� L is the lightsource,

� D is a non-ideal — i.e. incoherent — reflection or refraction,

� S is an ideal reflection or refraction,

� � is the sign of iteration, that is, it can mean0; 1; 2; : : : applications of the given operator,

� [] represents optionality,

� j means selection.

A global illumination algorithm is expected to model all types of lightpaths, that is, it must have
L[DjS]�E type. Visibility ray-tracing allows multiple steps only for the ideal reflection or refraction,
thus it can model onlyL[DS�]E path. Finally, local illumination models simulate only a single non-
ideal reflection and fall into theL[D]E category.

Chapter 3

Solution strategies for the global
illumination problem

Since the rendering or the potential equations contain the unknown radiance function both inside and
outside the integral, in order to express the solution, this coupling should be resolved. The possible
solution techniques fall into one of the following three categories:inversion, expansionanditeration .

OperatorT represents light-surface interaction, thus each of its application generates a higher-bounce
estimate of the light transport (or alternativelyT 0 represents potential-surface interaction). For physically
plausible optical material models, a reflection or refraction always decreases the total energy, thus the
integral operator is always a contraction. However, when the transport is evaluated numerically, compu-
tation errors may pose instability problems if the scene is highly reflective. As we shall see, expansion
and iteration exploit the contractive property of the transport operator, but inversion does not.

3.1 Inversion

Inversion groups the terms that contain the unknown function on the same side of the equation and
applies formally an inversion operation:

(1� T)L = Le =) L = (1� T)�1Le: (3.1)

Thus the measured power is
ML =M(1� T)�1Le: (3.2)

However, sinceT is infinite dimensional, it cannot be inverted in closed form. Thus it should be ap-
proximated by a finite dimensional mapping, that is usually given as a matrix. This kind of approximation
is provided byfinite-element methods that project the problem into a finite dimensional function space,
and approximate the solution here. This projection converts the original integral equation to a system of
linear equations, which can be inverted, for example, by Gaussian elimination method. This approach
was used in early radiosity methods, but have been dropped due to the cubic time complexity and the
numerical instability of the matrix inversion.

Inversion has a unique property that is missing in the other two methods. Its efficiency does not
depend on the contractivity of the integral operator, neither does it even require the integral operator to
be a contraction.

3.2 Expansion

Expansion techniques eliminate the coupling by obtaining the solution in the form of an infinite Neumann
series.

20

3.2. EXPANSION 21

3.2.1 Expansion of the rendering equation: gathering walks

Substituting the right side’sL byLe + T L, which is obviouslyL according to the equation, we get:

L = Le + T L = Le + T (Le + T L) = Le + T Le + T 2L: (3.3)

Repeating this stepn times, the original equation can be expanded into a Neumann series:

L =
nX
i=0

T iLe + T n+1L: (3.4)

If integral operatorT is a contraction, thenlimn!1 T n+1L = 0, thus

L =
1X
i=0

T iLe: (3.5)

The measured power is

ML =
1X
i=0

MT iLe: (3.6)

The terms of this infinite Neumann series have intuitive meaning as well:MT 0Le = MLe comes
from the emission,MT 1Le comes from a single reflection,MT 2Le from two reflections, etc.

x

x

L(x,)
ω

ω

ω

1

2

1

2θ

θ
p

1

x

2

ωp

p
3

’

’

’

’

Figure 3.1: The integrand ofMT 2Le is a two-step gathering walk

In order to understand how this can be used to determine the power going through a single pixel, let
us examine the structure ofMT iLe as a single multi-dimensional integral for thei = 2 case:

M(T 2Le) =

Z
Sp

Z

0

1

Z

0

2

c(~p)

Sp
� w1(~x1) � w2(~x2) � Le(~x3; !02) d!02d!01d~p: (3.7)

whereSp is the pixel area,c(~p) is the camera parameter,~p is a running point on this pixel,!01 and!02 are
the directions of the first and second reflections, respectively (figure 3.1) and

~x1 = h(~p;�!~p);
~x2 = h(~x1;�!01);
~x3 = h(~x2;�!02) = h(h(~x1;�!01);�!02); (3.8)

and the weights are

w1 = fr(!
0
1; ~x1; !~p) � cos �01;

w2 = fr(!
0
2; ~x2; !

0
1) � cos �02: (3.9)

3.2. EXPANSION 22

Thus to evaluate the integrand at point(~p; !01; !
0
2
), the following algorithm must be executed:

1. Point~x1 = h(~p;�!~p) that is visible through the point~p of the pixel from the eye should be found.
This can be done by sending a ray from the eye into the direction of~p and identifying the surface
that is first intersected.

2. Surface point~x2 = h(~x1;�!01) — that is the point which is visible from~x1 at direction�!01 —
must be determined. This can be done by sending another ray from~x1 into direction�!01 and
identifying the surface that is first intersected.

3. Surface point~x3 = h(h(~x1;�!01);�!02) — that is the point visible from~x2 at direction�!0
2

— is
identified. This means the continuation of the ray tracing at direction�!02.

4. The emission intensity of the surface at~x3 in the direction of!02 is obtained and is multiplied with
the cosine terms and the BRDFs of the two reflections.

This algorithm can easily be generalized for arbitrary number of reflections. A ray is emanated
recursively from the visible point at direction!0

1
then from the found surface at!0

2
, etc. until!0n. The

emission intensity at the end of the walk is read and multiplied by the BRDFs and the cosine terms of
the stages of the walk. These walks provide the value of the integrand at “point”~p; !01; !

0
2; : : : ; !

0
n. Note

that a single walk of lengthn can be used to estimate the 1-bounce, 2-bounce, etc.n-bounce transfer
simultaneously, if the emission is transferred not only from the last visited point but from all visited
points.

The presented walking technique starts at the eye andgathers the illumination encountered during
the walk. The gathered illumination is attenuated according to the cosine weighted BRDFs of the path.

So far, we have examined the structure of the terms of the Neumann series as a single multi-
dimensional integral. Alternatively, it can also be considered as recursively evaluating many directional
integrals. For example, the two-bounce transfer is:

MT 2Le =

Z
Sp

w0 �

2
64Z

0

1

w1 �

2
64Z

0

2

w2 � Le d!02

3
75 d!01

3
75 d~p: (3.10)

In order to estimate the outer integral of variable~p, the integrand is needed in sample point~p. This,
in turn, requires the estimation of the integral of variable!01 at ~p, which recursively needs again the
approximation of the integral of variable!02 at (~p; !01).

If the same number — saym — of sample points are used for each integral quadrature, then this
recursive approach will usem points for the 1-bounce transfer,m2 for the two-bounces,m3 for the
three-bounces, etc. This kind of subdivision of paths is calledsplitting [AK90]. Splitting becomes
prohibitive for high-order reflections and is not even worth doing because of the contractive property of
the integral operator. Due to the contraction, the contribution of higher-order bounces is less, thus it is
not very wise to compute them as accurately as low-order bounces.

3.2.2 Expansion of the potential equation: shooting walks

The potential equation can also be expanded into a Neumann series similarly to the rendering equation:

W =
1X
i=0

T 0iW e; (3.11)

which results in the following measured power

M0W =
1X
i=0

M0T 0iW e: (3.12)

3.2. EXPANSION 23

y

y

ωω

ω

2

1

2

1

θ

θ
p

2

y

3

Φ(dy , d)

ωp

1

θ1

3

1

Figure 3.2: The integrand ofM0T 02W e is a two-step shooting walk

M0W e is the power measured by the device from direct emission,M0T 0W e is the power after a
single reflection,M0T 02W e is after two reflections, etc.

Let us again consider the structure ofM0T 02W e:

M0T 02W e =

Z
S

Z

1

Z

2

Z

3

Le(~y1; !1) � w0(~y1) � w1(~y2) � w2(~y3) �W e(~y3; !3) d!3d!2d!1d~y1; (3.13)

where

~y2 = h(~y1; !1);

~y3 = h(~y2; !2) = h(h(~y1; !1); !2) (3.14)

and the weights are

w0 = cos �1;

w1 = fr(!1; ~y2; !2) � cos �2;
w2 = fr(!2; ~y3; !3) � cos �3: (3.15)

Substituting the measuring function of the pin-hole camera (equation (2.45)), we can conclude that
M0T 02W e can be non-zero only if~y3 is visible through the given pixel, and the integral over
3 is
simplified to a single value by the Dirac-delta function, thus the final form of the two-bounce reflection
is: Z

S

Z

1

Z

2

Le(~y1; !1) � w0(~y1) � w1(~y2) � w2(~y3) � g(~y3) d!2d!1d~y1: (3.16)

if ~y3 is visible though the given pixel and 0 otherwise, whereg(~y3) is the surface dependent camera
parameter.

Thus to evaluate the integrand at point(~y1; !1; !2), the following algorithm must be executed:

1. The cosine weighted emission of point~y1 in direction !1 is computed. Surface point~y2 =

h(~y1; !1) — that is the point which is visible from~y1 at direction!1 — must be determined.
This can be done by sending a ray from~y1 into direction!1 and identifying the surface that is first
intersected. This point “receives” the computed cosine weighted emission.

2. Surface point~y3 = h(h(~y1; !1); !2) — that is the point visible from~y2 at direction!2 — is
identified. This means the continuation of the ray tracing at direction!2. The emission is weighted
again by the local BRDF and the cosine of the normal and the outgoing direction.

3.3. ITERATION 24

3. It is determined whether or not this point~y3 is visible from the eye, and through which pixel. The
contribution to this pixel is obtained by weighting the transferred emission by the local BRDF,
cosine angle and the surface dependent camera parameter.

This type of walk, calledshooting, starts at a known point~y1 of a lightsource and simulates the
photon reflection for a few times and finally arrives at a pixel whose radiance this walk contributes to.

Note that in gathering walks the BRDF is multiplied with the cosine of the angle between the normal
and the incoming direction, while in shooting walks with the cosine of the angle between the normal and
the outgoing direction.

3.2.3 Merits and disadvantages of expansion methods

The main problem of expansion techniques is that they require the evaluation of very high dimensional
integrals that appear as terms in the infinite series. Practical implementations usually truncate the infinite
Neumann series, which introduces some bias, or stop the walks randomly, which significantly reduces
the samples of higher order interreflections. These can result in visible artifacts for highly reflective
scenes.

On the other hand, expansion methods also have an important advantage. Namely, they do not require
temporary representations of the complete radiance function, thus do not necessitate finite-element ap-
proximations. Consequently, these algorithms can work with the original geometry without tessellating
the surfaces to planar polygons.

Expansion techniques generate random walks independently. It can be an advantage, since these
algorithms are suitable forparallel computing. However, it also means that these methods “forget” the
previous history of walks, and they cannot reuse the visibility information gathered when computing the
previous walks, thus they are not as fast as they could be.

3.3 Iteration

Iteration techniquesrealize that the solution of the rendering equation is the fixed point of the following
iteration scheme

Ln = Le + T Ln�1; (3.17)

thus if operatorT is a contraction, then this scheme will converge to the solution from any initial function
L0. The measured power can be obtained as a limiting value

ML = lim
n!1

MLn: (3.18)

In order to store the approximating functionsLn, usuallyfinite-element methods are applied, as
for example, indiffuse radiosity [SC94], or in non-diffuse radiosity usingpartitioned hemisphere
[ICG86], directional distributions [SAWG91] or illumination networks [BF89].

There are two critical problems here. On the one hand, since the domain ofLn is 4 dimensional
andLn has usually high variation, an accurate finite-element approximation requires very many basis
functions, which, in turn, need a lot of storage space. Althoughhierarchical methods[HSA91, AH93],
wavelet or multiresolution methods [CSSD96, SGCH94] andclustering [SDS95, CLSS97, SPS98]
can help, the memory requirements are still prohibitive for complex scenes. This problem is less painful
for the diffuse case since here the domain of the radiance is only 2 dimensional.

On the other hand, when finite element techniques are applied, operatorT is only approximated,
which introduces some non-negligible error in each step. If the contraction ratio of the operator is�, then
the total accumulated error will be approximately1=(1� �) times the error of a single step [SKFNC97].
For highly reflective scenes — i.e. when� is close to 1 — the iteration is slow and the result is inaccurate
if the approximation of the operator is not very precise. Very accurate approximations of the transport
operator, however, require a lot of computation time and storage space.

In the diffuse radiosity setting several methods have been proposed to improve the quality of the
iteration. For example, we can use Chebyshev iteration instead of the Jacobi or the Gauss-Seidel method

3.3. ITERATION 25

for such ill conditioned systems [BBS96]. On the other hand, realizing that the crucial part of designing
such an the algorithm is finding a good and “small” approximation of the transport operator, the method
calledwell-distributed ray-sets [NNB97, BNN+98] proposes the adaptive approximation of the trans-
port operator. This approximation is a set of rays selected carefully taking into account the important
patches and directions. In [BNN+98], the adaptation of the discrete transport operator is extended to
include patch subdivision as well, to incorporate the concepts ofhierarchical radiosity [HSA91]. The
adaptation strategy is to refine the discrete approximation (by adding more rays to the set), when the
iteration with the coarse approximation is already stabilized. Since the discrete approximation of the
transport operator is not constant but gets finer in subsequent phases, the error accumulation problem
can be controlled but is not eliminated.

This thesis proposes a new method called thestochastic iteration to attack both the problem of
prohibitive memory requirements and the problem of error accumulation.

Compared to expansion techniques, iteration has both advantages and disadvantages. Its important
advantage is that it can potentially reuse all the information gained in previous computation steps and
can exploit the coherence of the radiance function, thus iteration is expected to be faster than expansion.
Iteration can also be seen as a single infinite length random walk. If implemented carefully, iteration
does not reduce the number of estimates for higher order interreflections, thus it is more robust when
rendering highly reflective scenes than expansion.

The property that iteration requires tessellation and finite-element representation is usually consid-
ered as a disadvantage. And indeed, sharp shadows and highlights on highly specular materials can be
incorrectly rendered and light-leaks may appear, not to mention the unnecessary increase of the com-
plexity of the scene description (think about, for example, the definition of an original and a tessellated
sphere). However, finite-element representation can also provide smoothing during all stages of render-
ing, which results in more visually pleasing and dot-noise free images. Summarizing, iteration is the
better option if the scene is not highly specular.

3.3.1 Analysis of the iteration

In order to find necessary conditions for the convergence, let us examine two subsequent iteration steps:

Ln = Le + T Ln�1;
Ln�1 = Le + T Ln�2: (3.19)

Substracting the two equations and assuming thatL0 = 0, we can obtain:

Ln � Ln�1 = T (Ln�1 � Ln�2) = T n�1(L1 � L0) = T n�1Le: (3.20)

If operatorT is a contraction, that is if

jjT Ljj < � � jjLjj; � < 1; (3.21)

with some function norm, then

jjLn � Ln�1jj = jjT n�1Lejj < �n�1 � jjLejj: (3.22)

Thus iteration converges to the real solution at least with the speed of a geometric series. The contraction
ratio� depends on both the geometry and the average reflectivity of the scene. From the point of view of
the geometry, the contraction ratio is maximum if the environment is closed, when� corresponds to the
average albedo.

Error caused by the approximation of the transport operator

In practice operatorT cannot be evaluated exactly, which introduces some error in each step of the
iteration. The errors may accumulate in the final solution. This section examines this phenomenon.

3.4. ANALYTICAL SOLUTION OF THE RENDERING EQUATION 26

Assume that an operatorT � which is only an approximation ofT is used in the iteration. Suppose
that both operators are contractions, thus both iterations will converge from any initial function.

Let the radiance aftern iterations of operatorT � beLn and let us assume that the iteration starts at
the solution of the exact equation, that isL0 = L (since the iteration converges to the same limit from any
initial function, this assumption can be made). The solution of the approximated equation isL� = L1.
The error at stepn is

jjLn � Ljj = jjLn � Ln�1 + Ln�1 � :::+ L1 � Ljj �
nX
i=1

jjLi � Li�1jj: (3.23)

Since ifi > 1, then

jjLi�Li�1jj = jjT �Li�1�T �Li�2jj = jjT �(Li�1�Li�2)jj � � � jjLi�1�Li�2jj � �i�1 � jjL1�L0jj

we have
nX
i=1

jjLi � Li�1jj � jjL1 � L0jj � (1 + �+ �2 + : : : �n�1): (3.24)

Lettingn go to infinity, we obtain the error between the fixed points of the original and the approxi-
mated equations

jjL� � Ljj � jjL1 � L0jj � (1 + �+ �2 + : : :) =
jjL1 � L0jj

1� �
: (3.25)

On the other hand, subtracting the real solution defined as the fixed point of the exact equation
L = Le + T L from the first iteration of the approximated operator

L1 = Le + T �L;

we obtain
L1 � L = T �L� T L: (3.26)

Thus the final error formula is

jjL� � Ljj � jjT �L� T Ljj
1� �

: (3.27)

3.4 Analytical solution of the rendering equation

In order to test the error and convergence of global illumination algorithms, we need scenes for which
the exact solution is known. Generally, there are two alternatives. Either we use simple scenes for
which analytical solution is possible, or numerical methods are applied using so many samples that the
approximate solution can be accepted as a reference.

In order to find analytically solvable scenes, we use a reverse approach. Normally, a scene is analyzed
to find the radiance distribution. Now, we start with a prescribed radiance distribution and search for
scenes where the radiance would be identical to the given radiance. Two special cases are examined. In
the first case we are looking for scenes where the radiance is constant everywhere and at every direction.
In the second case we establish criteria for making only the reflected radiance constant.

3.4.1 Scenes with constant radiance

Suppose that the constant radiance is~L and also that the scene is aclosed environment, i.e. looking at
any direction we can see a surface, thus the incoming radiance is also constant. Substituting this to the
rendering equation we get:

~L = Le(~x; !) + (T ~L)(~x; !) = Le(~x; !) + ~L � (T 1)(~x; !) = Le(~x; !) + ~L � a(~x; !); (3.28)

3.4. ANALYTICAL SOLUTION OF THE RENDERING EQUATION 27

since the albedo is the response to homogeneous unit illumination. According to this equation, the
radiance will be constant for scenes of arbitrary geometry and of arbitrary emission function if the albedo
function is:

a(~x; !) = 1� Le(~x; !)

~L
: (3.29)

If Le is constant, then the required albedo will also be constant. In this special case — called the
homogeneous diffuse environment — the geometry is arbitrary, but all surfaces have the same diffuse
reflection and emission [Shi91b, Kel95].

3.4.2 Scenes with constant reflected radiance

Let us assume that the reflected radiance — i.e. the radiance without the emission — is~Lr and assume
again that the scene is closed. Substituting this into the rendering equation, we obtain:

L(~x; !) = Le(~x; !) + ~Lr = Le(~x; !) + (T (Le+ ~Lr))(~x; !) = Le(~x; !) + (T Le)(~x; !) + ~Lr � a(~x; !):
(3.30)

This imposes the following constraint on the albedo function:

a(~x; !) = 1� (T Le)(~x; !)
~Lr

: (3.31)

Note that if the reflected radiance is constant, then the albedo is also constant, which is guaranteed if
the BRDF is diffuse and has the samefr value everywhere. An appropriate geometry, which makesT Le
constant for arbitrary diffuse emission if the BRDF is diffuse and constant, is the internal surface of the
sphere as proposed originally by [HMF98]. Formally, let the scene be an inner surfaceS of a sphere of
radiusR, the BRDF be constantfr = a=� and the emission be diffuse and defined byLe(~x). Using the

d!0 =
cos �~y � d~y
j~y � ~xj2

substitution for the solid angle (equation (2.2)), we obtain the following form of the light transport
operator:

(T Le)(~x; !) =
Z
S

fr � cos �~x � Le(~y) �
cos �~y

j~y � ~xj2 d~y: (3.32)

R
R

x

x

y
yθ θ

Figure 3.3: Geometry of the reference scene

Looking at figure 3.3, we can see that inside a spherecos �~x = cos �~y =
j~y�~xj
2R

; thus we can obtain
the following final form:

(T Le)(~x; !) =
Z
S

fr � Le(~y) �
cos �~x � cos �~y
j~y � ~xj2 d~y =

fr

4R2
�
Z
S

Le(~y) d~y = a �

R
S

Le(~y) d~y

4R2�
: (3.33)

The response is equal to the product of the albedo and the average emission of the total spherical surface.

Chapter 4

Finite-element methods for the global
illumination problem

Iteration requires the representation of the temporary radiance functionLn. So does expansion if view-
independent solution is needed since the final radiance distribution must be represented in a continuous
domain. The exact representation of such functions might need infinite data, which is not available for
practical algorithms. Thus finite approximations are required.

To represent a function over a continuous domain,finite-element methods [Pop87] can be used,
which approximate the function in a finite function series form:

L(~x; !) � L(n)(~x; !) =
nX
j=1

Lj � bj(~x; !) = bT (~x; !) � L (4.1)

wherebj(~x; !) is a system of predefined basis functions, andLj factors are unknown coefficients.
This representation can also be seen as projecting the infinite dimensional space of the possible

radiance functions into a finite-dimensional function space defined by the basis functions.

L

L

b

b

1

2

n

b1 b2 b3 b4

L

L
n

Figure 4.1: Finite-element approximation

L

L +

b1

e

~

b2

~

L f cosθ ωd’
r

n

n

Figure 4.2: Projection to the adjoint base

28

4. FINITE-ELEMENT METHODS FOR THE GLOBAL ILLUMINATION PROBLEM 29

Substituting this approximation into the rendering equation we can obtain:

nX
j=1

Lj �bj(~x; !) �
nX
j=1

Lej �bj(~x; !)+T
nX
j=1

Lj �bj(~x; !) =
nX
j=1

Lej �bj(~x; !)+
nX
j=1

Lj �T bj(~x; !): (4.2)

Note that equality cannot be guaranteed, since even if
Pn
j=1 Lj � bj(~x; !) is in the subspace defined by

the basis functions, the integral operatorT may result in a function that is out of this space. Instead,
equality is required in an appropriate subspace defined byadjoint basis functions~b1(~x);~b2(~x); : : : ~bn(~x)
(figure 4.2). This set is required to be orthogonal to the original baseb1(~x); b2(~x); : : : bn(~x) in the
following sense:

hbi(~x);~bj(~x)i =
8<
:
1 if i = j,

0 otherwise.
(4.3)

Having projected equation 4.2 to the adjoint base — i.e. multiplying it by each adjoint basis functions~bi
— we obtain the following system of linear equations:

Li = Lei +
nX
j=1

hT bj ; bii � Lj : (4.4)

This system of linear equations can also be presented in a vector form:

L = Le +R � L; Rij = hT bj ;~bii: (4.5)

An adjoint of this linear equation can be derived by selecting the adjoint base as the normalization of
the measuring functions. Suppose that each basis functionbi is associated with a measuring deviceW e

i

that measures the powerPi leaving the support of the basis function, thus the appropriate adjoint basis
function is~bi =W e

i =hbi;W e
i i. Thus the measured radiance is

h
nX
j=1

Lj � bj;W e
i i = hbi;W e

i i � Li = Pi:

Similarly, the measured emission is

h
nX
j=1

Lej � bj ;W e
i i = hbi;W e

i i � Lei = Pei :

Applying measuring operatorW e
i for equation (4.2), we can obtain the following equation:

hbi;W e
i i � Li = hbi;W e

i i � Lei +
nX
j=1

hT bj ;W e
i i � Lj: (4.6)

Replacing the radiances by measured values, we get

Pi = Pei +
nX
j=1

hT bj ;W e
i i

hbj ;W e
j i

�Pj : (4.7)

This can also be presented in a matrix form

P = Pe +H �P; (4.8)

where

Hij =
hT bj ;W e

i i
hbj ;W e

j i
= hT bj;~bii �

hbi;W e
i i

hbj ;W e
j i

= Rij �
hbi;W e

i i
hbj ;W e

j i
: (4.9)

When finite-element techniques are used together with expansion, finite-element representation can
either be used to represent the final result [Kel95], or even be involved in the random walk [PM95].

4.1. GALERKIN’S METHOD 30

The latter case may correspond either to the random-walk solution of the linear equation derived
by projecting the integral equation, or to the Monte-Carlo evaluation of the multi-dimensional integrals
containing both the transport and the projection operators. The second case is preferred, because it does
not require matrixR to be explicitly computed and stored.

The main problem of finite-element representations is that they require a lot of basis functions to ac-
curately approximate high-variation, high-dimensional functions. Not surprisingly, finite-element meth-
ods have become really popular only for the diffuse case, where the radiance depends on 2 scalars and
is relatively smooth. For solving the non-diffuse case, they are good only if the surfaces are not very
specular.

4.1 Galerkin’s method

Galerkin’s method finds an approximation of the solution by making the error orthogonal to the set of
basis functions. It means that the projection of error to the original base is zero. Formally, in Galerkin’s
method the set of basis functions is the same — except for normalization constants — as the set of
adjoint basis functions. A particularly important case is the piece-wise constant approximation, when the
surfaces and the directions are partitioned into patchesA1; A2; : : : ; An and solid angles
1;
2; : : : ;
m,
respectively. The basis functions are then:

bij(~x; !) =

8<
:
1 if ~x 2 Ai ^ ! 2
j;

0 otherwise.
(4.10)

The adjoint basis functions are:

~bij(~x; !) =

8<
:
1=(jAij � j
jj) if ~x 2 Ai ^ ! 2
j;

0 otherwise.
(4.11)

The system of linear equations determining the unknownLij values is

Lij = Leij +
nX
k=1

mX
l=1

Lkl �Rijkl; (4.12)

where

Rijkl = hT bkl(~x; !);~bij(~x; !)i =
1

jAij � j
jj
�
Z

j

Z
Ai

Z

bkl(h(~x;�!0); !0) �fr(!0; ~x; !) cos �0~x d!0 d~xd!:

(4.13)

4.2 Point collocation method

The point collocation method finds the unknown coefficients by requiring the finite-element approxi-
mation to be exact at the predefined knot points only. Formally, it uses Dirac-delta type adjoint basis
functions which emphasize these knot-points:

~bij(~x; !) = �ij(~x� ~xi; ! � !j): (4.14)

The coefficients of the linear equation can be expressed as follows:

Rijkl = hT bkl(~x; !);~bij(~x; !)i =
Z

bkl(h(~xi;�!0); !0) � fr(!0; ~xi; !j) cos �0~xi d!
0: (4.15)

4.3. FINITE-ELEMENT METHODS FOR THE DIFFUSE GLOBAL ILLUMINATION PROBLEM 31

4.3 Finite-element methods for the diffuse global illumination problem

If the surfaces have only diffuse reflection and emission — which is a general assumption of theradiosity
method [CG85] — then the rendering (or the potential) equation has a simplified form:

L(~x) = Le(~x) +

Z

H

L(h(~x;�!0)) � fr(~x) � cos �0~x d!0: (4.16)

In this case, the BRDF and the radiance depend on the surface point, but are independent of the direction,
which reduces the inherent dimensionality of the problem and simplifies the finite-element representa-
tion:

L(~x; !) �
nX
j=1

Lj � bj(~x): (4.17)

A widely used approach is the application of piece-wise constant basis functions for whichbj(~x) = 1

if ~x is on surface elementAj and 0 otherwise. An appropriate adjoint basis is~bj(~x) = 1=Aj if ~x is on
surface elementAj and 0 otherwise. Using this set of basis functions, the original rendering equation is
projected to the following linear equation:

L = Le +R � L (4.18)

where
Rij = hT bj;~bii =

1

Ai
�
Z
Ai

Z

bj(h(~x;�!0)) � fr(~x) � cos �0~x d!0 d~x: (4.19)

Let us replace the directional integral by a surface integral using equation (2.2):

d!0 =
d~y � cos �~y
j~x� ~yj2 :

This is true only when~x and~y are visible from each other, otherwise the solid angle of the visible surface
is obviously zero. In order to extent the formula to this case, avisibility indicator v(~x; ~y) is introduced,
which is 1 if the two points are visible from each other and zero otherwise. Using this substitution we
obtain

Rij =
1

Ai
�
Z
Ai

Z
S

bj(~y) � fr(~x) �
cos �0~x � cos �~y
j~x� ~yj2 � v(~x; ~y) d~y d~x: (4.20)

Taking advantage that the base functions are zero except for their specific domain,cos �~y = cos �j and
cos �0~x = cos �i are constant on these patches, and assuming that the BRDF on patchi is fi, we get

Rij =
fi

Ai
�
Z
Ai

Z
Aj

cos �i � cos �j
j~x� ~yj2 � v(~x; ~y) d~y d~x: (4.21)

Note thatRij is a product of two factors, the albedo of patchi — that isai = fi � � —, and a so called
form factor Fij which describes the geometry of the scene:

Fij =
1

Ai
�
Z
Ai

Z
Aj

cos �i � cos �j
� � j~x� ~yj2 � v(~x; ~y) d~y d~x: (4.22)

So far we have discussed the light propagation problem from the point of view of gathering. For
shooting, similar formulae can be produced if incoming direction!0 is replaced by the outgoing direction
! = �!0 in equation (4.19):

Rij =
1

Ai
�
Z
Ai

Z

bj(h(~x; !)) � fr(~x) � cos �~x d! d~x: (4.23)

4.3. FINITE-ELEMENT METHODS FOR THE DIFFUSE GLOBAL ILLUMINATION PROBLEM 32

An adjoint equation can also be derived as a special case of equation (4.8). LetW e
i be1 in points of

Ai and at the directions of the hemisphere ofAi. Thepower equation is then

P = Pe +H �P; (4.24)

where the different forms ofHij are taken from equation (4.9):

Hij = Rij �
Ai

Aj
= Rji �

fi

fj
=

fi

Aj
�
Z
Aj

Z

bi(h(~y; !)) � cos �j d! d~y: (4.25)

In order to solve the projected integral equation or the power equation, basically the same techniques
can be applied as for the original integral equation: inversion, expansion and iteration. Both the number
of unknown variables and the number of equations are equal to the number of surfaces (n). The calcu-
latedLi radiances represent the light density of the surface on a given wavelength. To generate color
pictures at least three independent wavelengths should be selected (say red, green and blue), and the
color information will come from the results of the three different calculations.

Thus, to sum up, the basic steps are these:

1. Fij form factor calculation.

2. Describe the light emission (Lei) on the representative wavelengths, or in the simplified case on the
wavelength of red, green and blue colors.

3. Solve the linear equation for the representative wavelengths.

4. Generate the picture taking into account the camera parameters by any known hidden surface
algorithm.

In practical circumstances the number of elemental surface patches can be very large, making the
form factor computation and the solution of the linear equation rather time consuming.

4.3.1 Geometric methods for form factor computation

Geometric form factor calculation methods approximate the outer integral of the double integral of the
form factor from a single value, thus they apply the following approximation:

Fij =
1

Ai
�
Z
Ai

Z
Aj

cos �i � cos �j
� � j~x� ~yj2 � v(~x; ~y) d~y d~x �

Z
Aj

cos �i � cos �j
� � j~xi � ~yj2 � v(~xi; ~y) d~y: (4.26)

where~xi is the center of patchi.
Nusselt [SH81] has realized that this formula can be interpreted as projecting the visible parts ofAj

onto the unit hemisphere centered above~xi, then projecting the result orthographically onto the base
circle of this hemisphere in the plane of~xi, and finally calculating the ratio of the doubly projected area
and the area of the unit circle (�). Due to the central role of the unit hemisphere, this method is called
thehemisphere algorithm.

This means that a single row of the form factor matrix can be determined by solving a visibility
problem, where the “window” is a half sphere and the “eye” is in the center of surfacei.

Discrete hemisphere algorithm and its variations

Discrete methods subdivide the hemisphere or its base circle into finite number of areas called “pixels”
and assume that what can be seen through these small areas is homogeneous (figure 4.3). Thus it is
enough to determine the visibility through a single point in each pixel.

The complicated form of the “hemispherical window” can be simplified if the hemisphere is re-
placed by other immediate surfaces, such as ahemicube[CG85] or acubic tetrahedron [BKP91]. In
these cases the modification of the geometry must be compensated by appropriate weighting functions in
area computation. For hemicube and hemishpere algorithms, the window surface consists of normal rect-
angles, which can be exploited by the built in transformation and scan-conversion hardware of graphics
workstations.

4.3. FINITE-ELEMENT METHODS FOR THE DIFFUSE GLOBAL ILLUMINATION PROBLEM 33

dy

1

N

A

dy
cos θ

θ

j

j

i

iθ

dy
cos cosθ j iθ

x - y 2

A j

N

A j

j

n pixelsF
n

P j=ij
j
2

y

x

resolutionP x Pi

i

A i

x - yi
2

Figure 4.3: Geometric interpretation of hemisphere form factor algorithm and the discrete algorithm for form
factor computation

Chapter 5

Numerical quadrature for high
dimensional integrals

The solution of the rendering equation requires the numerical evaluation of high-dimensional integrals.
Numerical quadrature formulae take finite samples from the domain, evaluate the integrand for these
samples and generate the integral as a weighted sum of the integrand values. The general form for the
solution is

I =

Z
V

f(z) dz �
NX
i=1

f(zi) � w(zi) (5.1)

wherezi is a sample point from thes-dimensional domainV , andw is the weighting function of the
given quadrature rule.

Classical quadrature rules usually trace back the computation of multi-dimensional integrals to a
series of one-dimensional integrals. Thus they select the coordinates of the sample points independently,
and the high-dimensional points are defined as the Cartesian product of the 1-dimensional sample sets.
The simplest techniques, including thebrick-rule , the trapezoidal-rule, Simpson-rule, etc. space the
abscissas equally, which results in a regular grid in the domain. More sophisticated techniques, such
as theGaussian quadrature, select the sample points non uniformly along each abscissa, giving more
freedom to decrease the error of the integral.

f∆

10
N points

/N1

N
f∆

n points

n points f∆

Figure 5.1: Error of the brick rule in one and two dimensional spaces

Let us evaluate the error of the brick rule in one and two dimensional spaces (figures 5.1). Suppose
thatN sample points are used in the domains of[0; 1] and[0; 1]2, respectively. In the one dimensional
space the error is the sum of the areas of triangles that are between the function and the series of bricks.
The average height of a triangle is�f=(2N) where�f is the variation of the integrand andN is the
number of bricks. Since the base of a triangle is1=N and the number of triangles isN , the error is:

�1 =
�f

2N
� 1
N
�N =

�f

2N
= O

�
1

N

�
: (5.2)

34

5.1. MONTE-CARLO QUADRATURE 35

In the two dimensional space theN sample points should be distributed along two coordinates, thus
we have justn =

p
N points in a single row and column. Now the error is the sum of the volume of the

roof-like objects that are between the function and the series of bricks. The average height of a volume
element is�f=(2n), its base has1=n2 area and there aren2 elements. Thus the error is

�2 =
�f

2n
� 1

n2
� n2 = �f

2
p
N

= O
�

1p
N

�
: (5.3)

This idea can be generalized to any dimensions and we can conclude that the integration error of
the brick rule in ans-dimensional space is proportional to�f=N1=s (�f is the total change, i.e. the
variation, of the integrand). From another point of view, it means that the required number of sample
points to find an estimate with error� is proportional to(�f=�)s, thus the computational efforts grow
exponentially with the dimension of the domain. This phenomenon is called as thedimensional ex-
plosion or dimensional core. Concerning other classical quadrature rules,�f measures higher order
changes, such as the distance from the piece-wise linear or polynomial functions, but they also exhibit
dimensional core.

The dimensional explosion can be avoided byMonte-Carlo [Sob91] orquasi-Monte Carlo [Nie92]
integration methods. Monte-Carlo methods trace back the estimation of an integral to the calculation of
an expected value, which is estimated by averaging random samples. Quasi-Monte Carlo techniques, on
the other hand, use deterministic samples that are uniformly distributed in the integration domain.

5.1 Monte-Carlo quadrature

Monte-Carlo integration converts the calculation of an integral to an equivalent expected value problem
[Sob91]. Assume that a random vector variablez is uniformly distributed inV , thus its probability
density isp(z) = 1=V . The expected value of random variablef(z) is

E[f(z)] =

Z
V

f(z) � p(z) dz =
Z
V

f(z) � 1
V
dz =

1

V
� I; (5.4)

thus the required integral can easily be found if this expected value is available. According to thetheo-
rems of large numbers, if independent random samplesz1; z2; : : : ; zN are generated using probability
densityp, then the expected value can be estimated by the averagef̂ :

E[f(z)] � f̂ =
1

N

NX
i=1

f(zi) (5.5)

thus we obtain the following quadrature formula:

Z
V

f(z) dz � V

N

NX
i=1

f(zi): (5.6)

Estimatorf̂ is also a random variable whose expected value is equal toE[f(z)] = I=V . Suppose that the
variance off(z) is �2. If the samples are independent random variables, then the variance of estimator
f̂ is:

D2
h
f̂
i
=

1

N2

NX
i=1

�2 =
�2

N
: (5.7)

Thus the standard deviation of the estimator isD
h
f̂
i
= �=

p
N . According to thecentral limit theo-

rem, estimatorf̂ will have normal distribution asymptotically, with meanE[f(z)] = I=V and standard
deviation�=

p
N . Examining the shape of the probability density of the normal distribution, we can

conclude that the probability that the distance between the variable and the mean is less than 3 times the

5.2. QUASI-MONTE CARLO QUADRATURE 36

standard deviation is 0.997. Thus with 0.997 confidence level we can say that the (probabilistic) error
bound is:

j
Z
V

f(z) dz� V

N

NX
i=1

f(zi)j <
3V �p
N
: (5.8)

Let us realize that this bound is independent of the dimension of the domain! This property means that
by Monte-Carlo quadrature the dimensional explosion can be avoided.

5.2 Quasi-Monte Carlo quadrature

In the previous section we concluded that randomly distributing the sample points solves the dimensional
core problem. We show that it is also possible with deterministically selected sample points. The result-
ing method is calledquasi-Monte Carlo quadrature [Sob91, Nie92]. For the sake of simplicity, assume
that ans-dimensional funcionf(z) needs to be integrated over the domain[0; 1]s. In order to guarantee
thatf is Riemann-integrable,f is assumed to be piece-wise continuous. This integral is approximated
by a finite sum as follows: Z

z2[0;1]s

f(z) dz � 1

N

NX
i=1

f(zi): (5.9)

The question is how the sequence of sample pointsz1; z2; : : : ; zN should be selected to minimize
the error of the integral quadrature. A minimal requirement is the stability of the sequence, which means
that in asymptotic sense the error is zero for any Riemann integrable function:

Z
z2[0;1]s

f(z)dz = lim
N!1

1

N

NX
i=1

f(zi): (5.10)

Sequences meeting this requirement are calleduniform or equidistribution (i.e. 1-equidistribution)
sequences [Nie92].

In order to find other necessary requirements for uniform sequences, let us consider the integration
of a very simple function which is 1 inside ad-dimensional “brick” originating at the center of the
coordinate system and 0 elsewhere:

L(z) =
8<
:
1 if 0 � zj1 � v1; 0 � zj2 � v2; : : : ; 0 � zjs � vs;

0 otherwise.
(5.11)

Let us denote the volume of this brick byV (A) =
Qs
j=1 vj : Integrating this function we have:

Z
z2[0;1]s

L dz =
sY
j=1

vj = V (A): (5.12)

If the number of sample points that are inside thes-dimensional “brick”A is m(A), then the finite
approximation sum is

1

N

NX
i=1

f(zi) =
m(A)

N
: (5.13)

Since the exact value of the integral isV (A) now, for uniform sequences, the average number of
sample points that are located inside a volume should be proportional to the size of this volume:

lim
N!1

m(A)

N
= V (A): (5.14)

5.2. QUASI-MONTE CARLO QUADRATURE 37

If the size of the sequence of the sample points is not infinite, then the proportionality requirement
can only be approximately met. The maximal error in this approximation is called thediscrepancy(or
thestar-discrepancy) of the sequence:

D�(z1; z2; : : : zN) = sup
A
jm(A)

N
� V (A)j: (5.15)

If a sequence is appropriate for integral-quadrature, then the approximation sum is expected to con-
verge to the real value of the integral, which requires the discrepancy to converge to 0. This is another
necessary requirement which is derived from the examination of a very simple function. Note that this
requirement also emphasizes the uniformness of those sequences that can be used for numerical integra-
tion.

However, this requirement is not only necessary, but also sufficient, since any Riemann-integrable
function can be approximated by piece-wise constant step-functions with arbitrary precision. To show
how step-functions can do this, an example of a 2-dimensional function is shown in figure 5.2.

f1

f3

f4
f2

b1=f1-f2-f3+f4

b2=f2-f4 b3=f3-f4
b4=f4= + + +

Figure 5.2: Definition of functions from bricks originating at the center of the coordinate system

5.2.1 Error analysis for integrands of finite variation: Koksma-Hlawka inequality

In this section, an upper-bound is given to the error of the quasi-Monte Carlo quadrature for functions
that have bounded and piece-wise continuous mixed derivatives.

The error of the quadrature is shown below:

j
Z

z2[0;1]s

f(z) dz� 1

N

NX
i=1

f(zi)j: (5.16)

Intuitively this error must depend on two independent factors. On the one hand, if the discrepancy of the
sequence of sample points is high, then there are large regions where there are no sample point at all,
which increases the error. This means that the error is expected to be proportional to the discrepancy of
the sequence of sample locations.

On the other hand, the error also depends on how quickly the function changes between the sample
points. If the function can change significantly in a small domain, then the error can be quite large.
However, if the slope of the function is small, then nothing dramatic happens between the sample points
thus the error will be small.

Measures describing how rapidly a function can change are calledvariations. For a 1-dimensional
function thevariation in the sense of Vitali [Deá89] is defined as:

VV(f(x)) = lim sup
NX
i=1

jf(xi+1)� f(xi)j: (5.17)

For a 2-dimensional function, the definition is analogous:

VV(f(x; y)) = limsup
NX
i=1

MX
j=1

jf(xi+1; yj+1)� f(xi+1; yi)� f(xi; yi+1) + f(xi; yi)j: (5.18)

5.2. QUASI-MONTE CARLO QUADRATURE 38

Note that for higher dimensions, the variation of Vitali does not provide a good measure: if the function
is constant inx, for instance, then the variation is zero, regardless how the function changes depending
ony.

Thus, it is worth introducing a somehow more stronger variation type, called theHardy-Krause
variation . The variation in the sense of Hardy-Krause is the sum of the variations of the function and of
its restrictions to the end of the domain. For the two-dimensional case, the new variation is:

VHK(f(x; y)) = VVf(x; y) + VVf(x; 1) + VVf(1; y): (5.19)

If a function has bounded and piece-wise continuous mixed derivatives, then its variation is finite. For
a 2-dimensional function meeting this requirement, the variation can be given by the following formula:

VHK(f(u; v)) =
1Z

0

1Z
0

�����@
2f(u; v)

@u@v

����� du dv +
1Z
0

����@f(u; 1)@u

���� du+
1Z
0

����@f(1; v)@v

���� dv: (5.20)

The property that a function is not continuous does not necessarily mean that the variation is infinite.
If at most finite or countable infinite discontinuities occur at hyper-planes parallel to the coordinate axes,
then the variation is still finite. An example of a discontinuous function that have finite variation is

f(x; y) =

8<
:
1 if x > x0;

0 otherwise.
(5.21)

However, when the discontinuity is not parallel to the coordinate axes, then the variation is infinite.
A simple function of infinite variation is [De´a89]:

f(x; y) =

8<
:
1 if x > y;

0 otherwise.
(5.22)

Now, let us turn to the error of quasi-Monte Carlo integration. The following formula, which ex-
presses the previous intuition that the error depends on the uniformness of the sample points and on the
variation of the integrand, is called theKoksma-Hlawka inequality:

j
Z

z2[0;1]s

f(z) dz� 1

N

NX
i=1

f(zi)j � VHK � D�(z1; z2; : : : zN): (5.23)

For the sake of notational simplicity, the Koksma-Hlawka inequality is proven here only for the two-dimensional
case (s = 2). The outline of the proof is as follows. We start with the assumption that the function has piece-wise
continuous and bounded mixed derivatives, thus the mixed derivatives are Riemann-integrable and their integration
gives back the original function. First the function is expressed as the integral of its derivatives, and the function
values in the approximation sum are converted accordingly. On the other hand, the integral off is converted to a
similar form using partial integration. Finally the difference of the approximating sum and the integral is examined
and upperbounded.

First, the value of functionf(u; v) is expressed by its derivatives at pointx; y:

f(x; y) = f(1; 1) + [f(1; 1)� f(x; 1)� f(1; y) + f(x; y)]� [f(1; 1)� f(x; 1)]� [f(1; 1)� f(1; y)] =

f(1; 1) +

1Z
x

1Z
y

fuv(u; v) du dv �
1Z

x

fu(u; 1) du�
1Z

y

fv(1; v) dv:

where

fuv(u; v) =
@2f(u; v)

@u@v
; fu(u; v) =

@f(u; v)

@u
; fv(u; v) =

@f(u; v)

@v
:

Let us introduce the step function�:

�(u; v) =

(
1 if u � 0; v � 0;

0 otherwise.

5.2. QUASI-MONTE CARLO QUADRATURE 39

Using this step function, the domains of the integrals can be extended to[0; 1], as follows:

f(x; y) = f(1; 1)+

1Z
0

1Z
0

fuv(u; v) ��(u�x; v�y) du dv�
1Z
0

fu(u; 1) ��(u�x; 1) du�
1Z
0

fv(1; v) ��(1; v�y) dv:

Substitutingzi = (xi; yi) into this formula we have:

f(zi) = f(1; 1) +

1Z
0

1Z
0

fuv(u; v) � �(u� xi; v � yi) du dv �
1Z

0

fu(u; 1) � �(xi; 1) du�
1Z

0

fv(1; v) � �(1; yi) dv:

Averaging these formulae fori = 1; 2; : : :N , the approximating sum has the following form:

1

N

NX
i=1

f(zi) = f(1; 1)+
1

N

1Z
0

1Z
0

fuv(u; v)�m(u; v) du dv� 1

N

1Z
0

fu(u; 1)�m(u; 1) du� 1

N

1Z
0

fv(1; v)�m(1; v) dv:

where

m(u; v) =

NX
i=1

�(u� xi; v � yi);

which is the number of points located in the rectangle[(0; 0); (u; v)]. The integral

Z
z2[0;1]2

f(z) dz =

1Z
v=0

1Z
u=0

f(u; v) du dv

can also be converted to a similar form, if partial integration is applied. First the inner integral is considered:

1Z
u=0

f(u; v) du =

1Z
u=0

f(u; v) � 1 du = f(1; v)�
1Z

u=0

fu(u; v) � u du = F (v)

Then the outer integral is processed in a similar way:

1Z
v=0

1Z
u=0

f(u; v) du dv =

1Z
v=0

F (v) dv =

1Z
v=0

F (v) � 1 dv = F (1)�
1Z

v=0

Fv(v) � v dv

Substituting the definition ofF (v) we get:

1Z
v=0

1Z
u=0

f(u; v) du dv = f(1; 1) +

1Z
0

1Z
0

fuv(u; v) � uv du dv �
1Z

0

fu(u; 1) � u du�
1Z
0

fv(1; v) � v dv:

Thus the error of quadrature is then:

j
1Z

v=0

1Z
u=0

f(u; v) du dv � 1

N

NX
i=1

f(zi)j =

j
1Z

0

1Z
0

fuv(u; v)�
�
m(u; v)

N
� uv

�
du dv�

1Z
0

fu(u; 1)�
�
m(u; 1)

N
� u

�
du�

1Z
0

fv(1; v)�
�
m(1; v)

N
� v

�
dvj �

0
@ 1Z

0

1Z
0

jfuv(u; v)j � du dv +
1Z

0

jfu(u; 1)j du+

1Z
0

jfv(1; v)j dv

1
A � sup

u;v

����
�
m(u; v)

N
� uv

����� =
VHK � D�(z1; z2; : : : zN):

This is exactly what we wanted to prove.

5.2. QUASI-MONTE CARLO QUADRATURE 40

According to this inequality, the error can be upperbounded by the product of two independent fac-
tors, the variation of the integrand and the discrepancy of the used sample set. The discrepancy shows
how uniformly the set is distributed [Shi91a]. This immediately presents two orthogonal strategies to
improve the quality of quadratures. Either we try to make the function flat by appropriate variable trans-
formations, or use very uniformly distributed sample sets. The first technique is calledimportance
sampling [Sob91], while the second involves thestratification [Sob91, Mit96, Arv95] of random points
or the application oflow-discrepancy series[Nie92, War95, PFTV92, Knu81, Sob91].

If the integrand has finite variation, then the error is proportional to the discrepancy of the sequence
of sample locations. For carefully selected sample points the discrepancy can converge to zero with
almost linear speed. Thus, quadratures having almost linear convergence can be obtained in this way,
which is better than theO(1=

p
N) speed of Monte-Carlo quadratures.

Note, on the other hand, that functions having infinite variation can also be integrated by quasi-Monte
Carlo quadrature. The quadrature will be asymptotically exact for any uniform sequence and for any
Riemann integrable function. The fact that the Koksma-Hlawka inequality cannot be applied means that
it cannot be used to provide a qualitative measure for the speed of the convergence. Practical experience
shows that quasi-Monte Carlo integration outperforms the classical Monte-Carlo integration even for
discontinuous functions [SKDP99]. However, the difference in the effectiveness becomes significantly
less when the integrand has infinite variation. This phenomenon will be investigated in the subsequent
sections. Since the integrand of the rendering and potential equations is usually discontinuous, this case
is very important for computer graphics applications.

5.2.2 Generation of the sample points

As a conclusion of error analysis we can state that we need very uniform sequences for quasi-Monte Carlo
quadrature. Regular grids should be rejected because of theirO(1=N1=s) discrepancy which results in
dimensional explosion.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Regular grid

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Random points

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 100 Halton points of base (2, 3)

Figure 5.3: 100 points distributed by a regular grid (left), random distribution (middle) and Halton
low-discrepancy sequence (right)

Monte-Carlo method proposed the application of random samples to avoid dimensional explosion.
This can also be justified by analyzing the discrepancy. In fact, the discrepancy of a uniformly distributed
random series is

O
0
@
s
log logN

2N

1
A

asymptotically with probability 1.
In order to prove this, let us define a new random variable�i from uniformly distributed random samplezi in

the following way:

�i =

(
1 if zi is in ans-dimensional brickA that originates at the center,

0 otherwise.

5.2. QUASI-MONTE CARLO QUADRATURE 41

Note that ifzi is uniformly distributed in[0; 1]s, then the expected value and the variance of�i are

E[�i] = V (A); D2[�i] = V (A)� V 2(A) � 1

4
;

whereV (A) is the volume of brickA. If the samples are independent random variables, the generated�1; �2; : : : ; �N
random variables will also be independent, and of the same distribution having meanE[�] and varianceD2[�].

According to thetheorem of iterated logarithm [Rén62], the difference between the average of independent
random variables�1; �2; : : : ; �N of the same distribution and their meanE[�] can be upperbounded in the following
way:

Pr

(
lim sup

����X �i

N
�E[�]

���� �
r
D2[�] � 2 log logN

N

)
= 1:

In our case the varianceD2[�] cannot exceed1=4 and

sup

����X �i

N
�E[�]

���� = sup
A

����m(A)

N
� V (A)

���� = D�(z1; z2; : : : zN);

thus the theorem of iterated logarithm becomes what we want to prove:

Pr

(
limD�(z1; z2; : : : zN) �

r
log logN

2N

)
= 1:

5.2.3 Generation of low-discrepancy sequences

Beyond random sequences, however, there are deterministic sequences that have even better discrep-
ancy. The discrepancy of the best sequences known is in the order ofO(logsN=N) or even in the
order ofO(logs�1N=N) if N is known before starting the sequence. These sequences are calledlow-
discrepancysequences. There are many sequences published in the literature [Nie92, War95, De´a89,
Knu81]. The most famous one is probably theHalton-sequence(its one-dimensional version is also
calledVan der Corput sequence).

The elementi of the one-dimensional Halton sequence of baseb is defined as the radical inverse of
the expansion ofi in baseb. This means that numberi is expanded in radixb, then the number is mirrored
onto the “radix” point. The first few points in base 2 are shown in table 5.1.

i binary form ofi radical inverse Hi

1 1 0.1 0.5
2 10 0.01 0.25
3 11 0.11 0.75
4 100 0.001 0.125
5 101 0.101 0.625
6 110 0.011 0.375
7 111 0.111 0.875

Table 5.1: The calculation of theith Halton pointHi in base 2

Why is this sequence uniform? Note that the construction algorithm generates as binary form ofi all
binary combinations of lengthk before producing a combination of lengthk + 1. This means that after
the radical inverse the sequenceHi will visit all intervals of length2�k before putting a second point in
an interval already visited. Thus the sequence is really uniform.

On the other hand, ask increases, the algorithm produces a single point in each interval of length
1=2, then in each interval of length1=4, etc. thus the sequence is not only asymptotically uniform, but
also the firstN points are fairly uniformly distributed (this is guaranteed by the property that the radical
inverse makes the most significant bit the most rapidly changing bit). This is also true in other radix

5.2. QUASI-MONTE CARLO QUADRATURE 42

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 10 Halton points of base (2, 3)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 100 Halton points of base (2, 3)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

First 1000 Halton points of base (2, 3)

Figure 5.4: The distribution of the first 10,100 and 1000 Halton points in 2 dimensions

systems as well. If the base isb, then the Halton sequence will place a sample point in all intervals of
sizeb�k before putting a new point into any intervals.

A Halton sequence is able to generate points that are uniformly distributed in the 1-dimensional[0; 1]

interval. If higher dimensional regions, such as rectangles, cubes, etc. should be filled uniformly, then
different coordinates of the sample vectors can be generated from Halton sequences of different base
numbers. In order for these vectors to uniformly fill the whole region, the “interdependence” of different
coordinates should be as little as possible. To examine this, let us assume that a two-dimensional Halton
sequence is generated with base numbersb1 andb2. According to the behavior of the Halton sequence,
the generation algorithm would visit all columns of widthb�k1

1
before visiting a column again, and

similarly it would visit all rows of heightb�k2
2

before putting a new point into a row. The columns and
rows formbk1

1
�bk2

2
cells. Uniformness in the two-dimensional space means that the algorithm is expected

to put a point in each cell before putting a second point in any cells. Since the periodicity of the columns
and rows arebk1

1
andbk2

2
, respectively, the periodicity of the cells is the smallest common multiple ofbk1

1

andbk2
2

. This equals to the their product, that is total number of cells, ifb1 andb2 are relative primes.
This can also be stated in a general way. If a multi-dimensional Halton sequence is to be constructed,

then the base numbers of different coordinates must be relative primes.
A C++ class that can initialize an arbitrary Halton point and then it can generate incrementally all

subsequent points using a very fast algorithm [Kel96b] is presented in the following:

class Halton {
double value, inv_base;

Number(long i, int base) {
double f = inv_base = 1.0/base;
value = 0.0;
while (i > 0) {

value += f * (double)(i % base);
i /= base; f *= inv_base;

}
}
double Next() {

double r = 1.0 - value - 0.0000000001;
if (inv_base < r) value += inv_base;
else {

double h = inv_base, hh;
do {

hh = h; h *= inv_base;
} while (h >= r);
value += hh + h - 1.0;

}
return value;

}
};

5.3. IMPORTANCE SAMPLING 43

5.3 Importance sampling

Importance sampling is a well-known method of Monte-Carlo integration to reduce variance. The basic
idea is to use non-uniform distribution to find sample points, which places more samples where the
function is large. More specifically it means that

I =

Z
V

f(z) dz =

Z
V

f(z)

p(z)
� p(z) dz = E

�
f(z)

p(z)

�
� 1

N
�
NX
i=1

f(zi)

p(zi)
� 3V �p

N
; (5.24)

wherep(z) is a probability density inV , thezi points are selected according to this probability density,
and the variance�2 is defined by

�2 = D2

�
f(z)

p(z)

�
= E

"�
f(z)

p(z)
� I

�2#
=

Z
V

�
f(z)

p(z)
� I

�2
� p(z) dz: (5.25)

The probability densityp(z) should be selected to minimize the variance. As can be shown easily, the
variance can be minimized ifp(z) is proportional to the integrandf(z). In order to demonstrate this, let
us express the ratio of the integrand and the probability density in the following way:

f(z)

p(z)
= I + � � �(z); (5.26)

whereI = E[
f(z)
p(z)

] and� is a normalization constant to allow
R
V

(�(z))2 � p(z) dz = 1. The variance of

the integral quadrature is then:

�2 = E[(I + � � �(z) �E[I + � � �(z)])2] = �2 �E[(�(z))2] = �2: (5.27)

This is obviously minimal if� = 0, when the variance is also zero.
Thus in Monte-Carlo integration it is worth applying probability distributions that are large where

the integrand is large and small where the integrand is negligible.

5.3.1 Generation of a random variable with a prescribed probability density

We concluded that importance sampling requires random samples generated from a probability density
which is proportional — at least approximately — to the integrand. This section examines how such
samples can be found. First, let us consider the 1-dimensional case and assume that the domain of the
integration is an interval[a; b].

Suppose that we want samples with a probability density that is proportional to a functiong(z). This
function is an approximation of the integrandf . If this function is different from the integrand, then
the importance sampling is not optimal. The needed probability densityp(z) can be obtained by scaling
functiong to integrate to 1 as probability densities do:

p(z) =
g(z)

bR
a
g(z)dz

: (5.28)

Note that this gives us a clear explanation why we should use non-optimal densities. Ifg were equal to
f , then the construction of the probability density would require the integral off .

From the probability densityp, probability distribution functionP is obtained:

P (z) =

zZ
a

p(Z) dZ: (5.29)

A random variable� having probability distributionP can be constructed by transforming another
random variabler, which is uniformly distributed in the[0; 1] interval, with the� = P�1(r) transforma-
tion.

5.3. IMPORTANCE SAMPLING 44

To prove this, the probability distribution of� is examined:

Prf� < zg = PrfP�1(r) < zg = Prfr < P (z)g = P (z): (5.30)

sinceP (z) is not decreasing and the probability thatr is in an interval of[0; 1] equals to the size of this
interval.

The multi-dimensional case can be traced back to a series of 1-dimensional constructions. After
normalization we have

p(z) =
g(z)R

V

g(z)dz
: (5.31)

The probability density is expressed as a product of 1-dimensional conditional densities:

p(z1; z2; : : : ; zs) = p1(z1jz2; : : : ; zs) � p2(z2jz3; : : : ; zs) � : : : � ps(zs): (5.32)

For these conditional densities the same method can be used recursively as for the 1-dimensional case.
If the different coordinates are independent random variables, then we obtain:

p(z1; z2; : : : ; zs) = p1(z1) � p2(z2) � : : : � ps(zs): (5.33)

5.3.2 Importance sampling in quasi-Monte Carlo integration

Classical Monte-Carlo integration places more samples where the integrand is large. The same basic
idea also makes sense in quasi-Monte Carlo integration. However, for formal analysis, we have to find
another approach since terms like probability density or variance cannot be applied in the deterministic
quasi-Monte Carlo framework.

The alternative formulation is the integration using variable transformation. Suppose that a function
f needs to be integrated in domainV and we have a monotonously increasing mappingT that maps this
domain ontoV 0. The integral can also be evaluated in the new domain using the following formula:

Z
V

f(z) dz =

Z
V 0

f(T�1(y))

�����@T
�1(y)

@y

����� dy; (5.34)

where
���@T�1(y)@y

��� is the Jacobi determinant of the inverse transformation.
If quasi-Monte Carlo integration is used, then domainV 0 is [0; 1]s. In order to quantify the error of

the quadrature, we can use the Koksma-Hlawka inequality which expresses the error-bound as a product
of the discrepancy of the sample points and the variation of the function. Since the discrepancy of the
sample points is independent of the function to be integrated, the error-bound can be controlled by the
appropriate transformation of the integrand to reduce variation. In order to reduce the variation, the
function should be flattened. In the ideal case when the integrand is constant, the variation is 0.

To make the transformed integrand constant, the Jacobi determinant should be inversely proportional
to f . Since the intuitive meaning of the Jacobi determinant is the compression or expansion ratio of the
two corresponding sub-cubes inV andV 0 respectively, this criterion states that if the sample points are
uniformly distributed inV 0, then the transformation will concentrate them around regions wheref is
high.

For the sake of simplicity, the details are discussed only for the 1-dimensional case, when the variable
transformation has the following form

zmaxZ
zmin

f(z) dz =

1Z
0

f(T�1(y)) � dT
�1(y)

dy
dy: (5.35)

In the ideal case mappingT makes the integrand have zero variation, that is constantC:

f(T�1(y)) � dT
�1(y)

dy
= C:

5.3. IMPORTANCE SAMPLING 45

From this we can have

T (z) =
1

C �
zZ

zmin

f(Z) dZ:

Since mappingT is expected to map to[0; 1], we require thatT (zmax) = 1. Thus the constantC should

be equal to
zmaxR
zmin

f(Z) dZ. Summarizing, the uniformly distributed pointy should be transformed by the

inverse of the following function

T (z) =

zR
zmin

f(Z) dZ

zmaxR
zmin

f(Z) dZ

: (5.36)

Note that this is the same transformation as has been derived for the random samples. It means that the
method of importance sampling is independent of whether random samples are transformed in Monte-
Carlo quadrature, or deterministic samples are transformed in quasi-Monte Carlo integration.

5.3.3 Metropolis sampling

Importance sampling requires a probability density that is proportional to a functiong which, in turn,
should mimic the integrand. In the previous section we discussed a random variable transformation
method that can generate samples with the required probability density. This method expects functiong

to be symbolically integrable and its primitive function to be invertible. This requirement often contra-
dicts the requirement of the good approximation of the original integrand.

This section discusses a different sampling strategy, proposed by Metropolis et. al [MRR+53], that
has less expectations towards functiong. In fact, it only supposes that the integral ofg can be determined
either symbolically or numerically.

The Metropolis method carries out sampling by establishing a discrete time Markov processzi,
i = 1; 2; : : : in the space of samples, whose limiting distribution is proportional to the selected function.
A discrete time Markov process visits states which correspond to samples. The Metropolis algorithm
constructs this process such that the probability of being in a given state converges to a limiting value
and in the limiting caseg(z) = b � p(z), whereb =

R
V g(z) dz.

A Markov process can be defined by the state transition probabilities, that is by the conditional
probability of the next state provided that the current state is known. In Metropolis method, the next state
zi+1 of this process is found by letting an almost arbitrarytentative transition function T (zi ! zt)

generate atentative samplezt which is either accepted as the real next state or rejected making the next
state equal to the actual state using anacceptance probabilitya(zi ! zt). Thus the state transition
probability density from statex to a different statey is:

P (x! y) dy = T (x! y) dy � a(x! y): (5.37)

The event that the process remains in the same state is the complement of moving to any other state, thus
the probability of no state transition happening is:

1�
Z

x2V;x6=y

P (x! y) dy = 1�
Z

x2V;x6=y

T (x! y) � a(x! y) dy: (5.38)

Let us denote the probability density of being in statex at stepn bypn(x). Using the total probability
theorem and taking advantage that in Markov processes the future depends only on the present state and
is independent of the past, the following recursion can be established for these state probabilities:

pn+1(y) =

Z
x2V;x6=y

pn(x) � P (x! y) dx+

0
B@1� Z

x6=y

P (y! x) dx

1
CA � pn(y): (5.39)

5.3. IMPORTANCE SAMPLING 46

If the limiting probabilityp(y) = lim
n!1

pn(y) exists, then it should be the fixed point of this recursion,
that is:

p(y) = p(y) +

Z
x2V;x6=y

p(x) � P (x! y) � p(y) � P (y! x) dx: (5.40)

If the Markov process is ergodic, then the limiting distribution is unambigous and is independent of the
initial state of the process. The process is ergodic if after a given number of steps any state can be reached
from any other state with non-zero probability.

The core idea of Metropolis sampling is to construct acceptance probabilitya(x ! y) in such
a way that the limiting probability of the process will bep(z) = g(z)=b. Substituting this goal into
equation (5.40) we get:

g(y) = g(y) +

Z
x2V;x6=y

g(x) � P (x! y)� g(y) � P (y! x) dx: (5.41)

This holds when the total incoming and outgoing flows of statex are balanced. One way of ensuring this
is to require that:

g(x) � P (x! y) = g(y) � P (y! x): (5.42)

This condition — that is also called as thedetailed balance— means that the transitions between any
two states are balanced. Using the formulae (5.37) for state transition probabilities, we can further obtain:

g(x) � T (x! y) � a(x! y) = g(y) � T (y! x) � a(y! x): (5.43)

Thus the required ratio of the two acceptance probabilities is:

a(y! x)

a(x! y)
=
g(x) � T (x! y)

g(y) � T (y! x)
: (5.44)

Any acceptance probability satisfying this requirement makes the limiting distribution proportional
to g. Considering the speed of convergence, on the other hand, the state transition probabilities and
consequently the acceptance probabilities should be large. Since a probability cannot exceed 1, the
optimal acceptance probability is:

a(x! y) = min

�
g(y) � T (y! x)

g(x) � T (x! y)
; 1

�
:

The algorithm generating a trajectory of the Markov process to obtain samplesfz1; z2; : : : ; zNg is
as follows:

for i = 1 to N do
Based on the actual statezi, choose another random, tentative statezt usingT (zi ! zt)
a(zi ! zt) = (g(zt) � T (zt ! zi))=(g(zi) � T (zi ! zt))
if a(zi ! zt) � 1 then zi+1 = zt

else // accept with probabilitya(zi ! zt)
Generate uniformly distributed random numberr in [0; 1].
if r < a(zi ! zt) then zi+1 = zt

else zi+1 = zi

endif
endfor

Chapter 6

Random walk solution of the global
illumination problem

Recall that expansion obtains the measured power as a Neumann series:ML =
P1
i=0MT iLe. The

terms of this infinite Neumann series have intuitive meaning as well:MT 0Le =MLe comes from the
emission,MT 1Le comes from a single reflection,MT 2Le from two reflections, etc.

6.1 Why should we use Monte-Carlo expansion methods?

Expansion techniques require the evaluation of very high-dimensional — in fact, infinite dimensional —
integrals. When using classical quadrature rules for multi-dimensional integrals [PFTV92], such as for
example the trapezoidal rule, in order to provide a result with a given accuracy, the number of sample
points is in the order ofO(N s), wheres is the dimension of the domain. This phenomenon is called the
dimensional coreor dimensional explosionand makes classical quadrature rules prohibitively expen-
sive for higher dimensions.

However, Monte-Carlo or quasi-Monte Carlo techniques distribute the sample points simultaneously
in all dimensions, thus they can avoid dimensional explosion. For example, the probabilistic error bound
of Monte-Carlo integration isO(N�0:5), independently of the dimension of the domain.s-dimensional
low discrepancy series [Nie92] can even achieveO(logsN=N) = O(N�(1��)) convergence rates for
finite variation integrands.

Furthermore, classical quadrature cannot be used for infinite dimensional integrals, thus the Neumann
series should be truncated afterD terms. This truncation introduces a bias of order�D+1 � jjLejj=(1��),
where� is the contraction of the light transport operator. Using a Russian-roulette based technique, on
the other hand, Monte-Carlo methods are appropriate for even infinite dimensional integrals. Thus we
can conclude that the stochastic approach is indispensable for expansion methods.

In computer graphics the first Monte-Carlo random walk algorithm — calleddistributed ray-tracing
— was proposed by Cook et al. [CPC84], which spawned to a set of variations, includingpath-
tracing [Kaj86], light-tracing [DLW93], bi-directional path-tracing [LW93, VG95], Monte-Carlo
radiosity [Shi91b, Neu95, PM95], andtwo-pass methodswhich combine radiosity and ray-tracing
[Shi90, ZS95, WCG87].

The problem of naive generation of walks is that the probability that a shooting path finds the eye
is zero for a pin-hole camera or very small if a non-zero aperture camera model is used, while the
probability that a gathering random path ends in a lightsource may be very little if the lightsources are
small, thus the majority of the paths do not contribute to the image at all, and their computation is simply
waste of time. Note that shooting is always superior for view-independent algorithms since they do not
have to face the problem of small aperture. Thus, on the one hand, random walk must be combined with
a deterministic step that forces the walk to go to the eye and to find a lightsource. On the other hand,
importance sampling [Sob91] should be incorporated to prefer useful paths along which significant
radiance is transferred.

47

6.2. QUASI-MONTE CARLO QUADRATURE FOR THE RENDERING EQUATION 48

Steps of the walk transfer the radiance or the potential in the scene. The source and destination of the
transfer can be points in the case of continuous methods or patches in the case of finite-element meth-
ods. If the algorithm is such that it always selects a single source for shooting or single destination for
gathering, then the method is calledlocal method. On the other hand, if many sources and destinations
are taken into consideration simultaneously in each transfer, then the method is calledglobal methodor
multi-path method [Sbe96].

6.2 Quasi-Monte Carlo quadrature for the rendering equation

Quasi-Monte Carlo walk techniques mean that instead of generating the next direction randomly, the
direction is sampled from a low-discrepancy point set. Since the low-discrepancy sequences have better
asymptotic disrepancy than random sequences do, quasi-Monte Carlo methods are expected to provide
more accurate results. However, the integrand of the rendering equation is discontinuous where the
discontinuity is not aligned with the coordinate axes, thus its variation is infinite. These discontinuities
are usually produced by the projected object boundaries. This property makes the Koksma-Hlawka
inequality not appropriate for the error analysis and for the prediction of the convergence rates.

6.2.1 Integrating functions of unbounded variation

In this section the convergence speed is examined for functions which are generally smooth but have gen-
eral discontinuities of finite “length”. First the domain of the integration is assumed to be 2-dimensional,
then the results will be generalized to arbitrary dimensions.

discontinuity line

domain of discontinuity

1/ N

1/ N

grid lines

one sample point in each cell

Figure 6.1: A typical integrand of the rendering equation

Suppose thatN samples have been generated to estimate the integral of a function such as in fig-
ure 6.1 using a low-discrepancy sequence. In order to overcome the difficulty that the integrandf has
infinite variation, the function is decomposed into two functions, one is smooth~f having continuous
mixed derivatives and the other̂f inherits the discontinuity off (figure 6.2).

f f f~ ^

= +

Figure 6.2: Decomposition off into a smooth (~f) and a discontinuous (̂f) function

6.2. QUASI-MONTE CARLO QUADRATURE FOR THE RENDERING EQUATION 49

Low-discrepancy sequences generate points in a cellular grid in a way that the difference of the
number of points in two cells is at most 1. If there are alreadyN number of points, the size of a cell
on the finest, filled level is approximately1=

p
N � 1=

p
N . Let us define the domain of̂f as the set of

those cells that are intersected by the discontinuity. This domain is called thedomain of discontinuity.
The number of such cells is in the order of the “digital length” of the discontinuity curve, which is the
product of the maximum extentl and the resolution of the grid

p
N . Since each cell has at least 1 (and

at most 2) points, the number of points in this domain is at leastl
p
N .

The error of quadrature is as follows:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j � j
Z

z2[0;1]2

~f(z) dz� 1

N

NX
i=1

~f(zi)j+ j
Z

z2[0;1]2

f̂(z) dz� 1

N

NX
i=1

f̂(zi)j:

(6.1)
Since ~f has finite variation, the first term in the error is bounded byVHK(~f) � D�(z1; z2; : : : zN).

Concerning the second term, the integration off̂ is estimated takingl
p
N uniformly distributed

samples and averaging the result. Since the samples and the discontinuity are not related in any way,
we can suppose that this is a normal Monte-Carlo integration [PFTV92]. The uniform property of low-
discrepancy sequence guarantees that this pseudo-random set can be assumed to have uniform distribu-
tion. If �f is the difference between the maximum and minimum values in the domain of discontinuity,
then�2 � (�f)2. In our case the number of sample pointsN 0 is l

p
N and the size of the domainV is

l=
p
N , thus we obtain with 0.997 confidence level:

Z
V

f̂(z) dz =
V

N 0
�
N 0X
i=1

f̂(zi)� 3 � V � �fp
N 0

=
1

N 0
�
N 0X
i=1

f̂(zi)� 3 ��f �
p
l �N�3=4: (6.2)

Taking into account that̂f is zero outside the domain of discontinuity, equality 6.1 can be expressed as:

j
Z

z2[0;1]2

f(z) dz� 1

N

NX
i=1

f(zi)j � VHK(~f) � D�(z1; z2; : : : zN) + 3 ��f �
p
l �N�3=4: (6.3)

For largeN values the second term will be dominant, which results inO(N�3=4) error bound. This is
poorer than theO(log2N=N) bound suggested by the Koksma-Hlawka inequality assuming, for exam-
ple, the application of the Halton sequence. Note that the point from where the second term dominates
the first one depends on “intensity”�f and size of the discontinuity

p
l. The same analysis can be carried

out in higher dimensions as well. Ins dimensions a discontinuity of sizel would intersectV = l �N�1=s

volume of cells which would containN 0 = l �N (s�1)=s sample points. Thus the general error bound is:

j
Z

z2[0;1]s

f(z) dz� 1

N

NX
i=1

f(zi)j � VHK(~f) � D�(z1; z2; : : : zN) + 3 ��f �
p
l �N�

(s+1)

2s : (6.4)

Thus, for quasi-Monte Carlo integration of discontinuous functions, the order of the error bound will
be in between theO(N�(1��)) bound of finite variation functions and theO(N�0:5) bound of Monte-
Carlo quadrature. The higher the dimension of the integral, the closer the Monte-Carlo and quasi-Monte
Carlo techniques get in convergence speed. Thus it is still worth using quasi-Monte Carlo quadrature if
the size of the discontinuityl is not very large, since in this case the error could be significantly less then
for Monte-Carlo quadrature.

Numerical evidence using simple functions

In order to demonstrate the previous results, the convergences of a 2-dimensional and a 3-dimensional
functions are examined, that are simple enough to analytically compute their integrals.

The 2-dimensional function is:

f2(x; y) =

�
(x+ y) � a+ 1� 2 � a if x+ y > 1;

(x+ y) � a otherwise;
(6.5)

6.2. QUASI-MONTE CARLO QUADRATURE FOR THE RENDERING EQUATION 50

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

Errors of integrating function f2

MC: a=0 (infinite variation)
QMC: a=0 (infinite variation)

QMC: a=0.2 (infinite variation)
QMC: a=0.5 (finite variation)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06

Errors of integrating function f3

MC: a=1/3 (finite variation)
QMC: a=0 (infinite variation)

QMC: a=0.1 (infinite variation)
QMC: a=1/3 (finite variation)

Figure 6.3: Error of integratingf2 (left) andf3 (right)

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

samples

Error of single-ray based random walk in the reference sphere (D=1, light=25%)

Halton
random

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

samples

Error of single-ray based random walk in the reference sphere (D=10, light=25%)

Halton
random

Figure 6.4: Error measurements for 1 and 10 bounces in the spherical reference scene (section 3.4.2) where the
BRDF is diffuse, the albedo is 0.5, and 25 percents of the area is a diffuse lightsource

wherea is a free parameter in the range of[0; 0:5]. Note that by settinga appropriately, the intensity of
the discontinuity can be controlled without altering either the value of the integral or the variation of the
continuous part. Ifa = 0:5, then the function has finite variation, otherwise it has infinite variation. The
results of the simulation are shown in the left of figure 6.3. This figure shows the maximum error after a
given number of samples.

The 3-dimensional function is:

f3(x; y; z) =

�
(x+ y + z) � a+ 0:6� 1:8 � a if x+ y + z > 1;

(x+ y + z) � a otherwise;
(6.6)

wherea is a free parameter in the range of[0; 1=3]. If a = 1=3, thenf3 has finite variation, otherwise it
has not. The error of integration off3 is summarized in the right of figure 6.3.

Numerical evidence for the rendering equation

The efficiency of Monte-Carlo and quasi-Monte Carlo quadratures have been tested for the presented
spherical scene (section 3.4.2) assuming a single pixel camera. The error has been measured separately
for the different bounces.

6.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 51

Looking at the error measurements of figure 6.4, we can see that even for integrands of infinite
variation, quasi-Monte Carlo methods are still better but they lose their advantage when computing higher
bounces as predicted by the theoretical results. The other important problem in higher dimensions is that
although a low-discrepancy series has almost linearly decreasing discrepancy in the asymptotic sense,
this discrepancy can still be high for not very many points (in the solution of the rendering equation we
rarely use more than 1000 samples for the estimation of a single pixel). In the case of the Halton series,
for example, thebaseof the series strongly affects the initial behavior of the discrepancy. These base
numbers are different prime numbers for different dimensions, thus for high-dimensional integrals the
base numbers can be quite high, which results in degraded performance.

6.3 Importance sampling for the rendering equation

When solving the rendering equation, usually directional integrals (or surface integrals in other formula-
tion) should be evaluated. These directional integrals have the following form:

T Lin(~x; !) =

Z

Lin(~x; !0) � fr(!0; ~x; !) � cos �0 d!0: (6.7)

To allow the application of random or low-discrepancy point sets, the integration domain should be
transformed to the unit cube or square. To establish such a mapping, first direction!0 is expressed by
spherical coordinates�; �0, which converts the directional integral to the following form:

Z

Lin(~x; !0) � fr(!0; ~x; !) � cos �0 d!0 =
2�Z

�=0

�Z
�0=0

Lin(�; �0) � fr(�; �0) � cos �0 � sin �0 d�0d� (6.8)

sinced! = sin �0d�0d�. Let us denotefr(�; �0)�cos �0�sin �0 byw(�; �0), which is the transfer probability
density. Now we find a mappingT (�; �0) = z that emphasizes those directions where the integrand is
large and projects the domain of the spherical coordinates onto the unit square:

2�Z
�=0

�Z
�0=0

Lin(�; �0) � w(�; �0) d�0d� =

Z
[0;1]2

Lin(T�1(z)) � w(T�1(z)) �
�����dT

�1(z)

dz

����� dz =
Z

[0;1]2

Lin(T�1(z)) � w(T
�1(z))

t(z)
dz; (6.9)

where �����dT
�1(z)

dz

����� = 1

t(z)

is the Jacobi determinant of the inverse mapping. If the Jacobi determinant is large, then a small portion
of the unit square is mapped onto a large region. Thus sample points that are uniformly distributed in
the unit square will be quite rare in these regions. Alternatively, where the Jacobi determinant is small,
the sample points will be dense. Considering this, the meaning oft(z) is thedensityof sample points in
the neighborhood of! = (�; �0) = T�1(z). This has an illustrative content for the random case. Ifz is
uniformly distributed random variable, then the probability density of! = T�1(z) will be t(z).

The solution of the rendering equation for a given point(~x; !) requires the evaluation of the following
multi-dimensional integral (equation (3.5)):

L(~x; !) = Le+T Le+T 2Le+ : : : =

Z
[0;1]2

: : :

Z
[0;1]2

Le+
w1

t1
�Le+ w1

t1
� w2

t2
�Le+ : : : dz1dz2 : : : (6.10)

This can be estimated by Monte-Carlo or quasi-Monte Carlo quadratures which evaluate the integrand
in sample points and average the results. A crucial design decision of such an algorithm is the selection

6.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 52

of mappingsTi to have good importance sampling. Using probabilistic approach, it means that the
probability of selecting a walk is proportional to its contribution. Following the directions concluded
from the Koksma-Hlawka inequality, the mappings should make the integrand flat — that is of low
variation, or constant in the ideal case.

Looking at formula (6.10), which is the single multi-dimensional solution of the rendering equation,
this decision seems to be hard to make, since there are too many free parameters to control simultane-
ously. Fortunately, the solution can also be presented in the following recursive form:

L(~x; !) = Le +

Z
[0;1]2

w1

t1
� [Le +

Z
[0;1]2

w2

t2
� [Le + : : :] : : :] dz1dz2 : : : (6.11)

If we could ensure that each of the integrands of the formZ
[0;1]2

wi

ti
� [Le +

Z
[0;1]2

: : :] dzi

is constant (at least approximately), then the integrand of the single multi-dimensional integral will also
be constant [SKCP99]. An optimal importance sampling strategy thus requires densityti to be pro-
portional to the product of the incoming illuminationLe +

R
: : : and the cosine weighted BRDFwi.

Unfortunately, during random walks the incoming non-direct illumination is not known (the random
walk is just being done to estimate it).

Thus we have to use approximations for which we have three alternatives. Firstly, information about
the illumination in the space can be gathered in a preprocessing phase, then this information can be used
to obtain probability densities for importance sampling. This is called theglobal importance sampling.
These methods can be classified according to the data structure built in the preprocessing phase. Since
the ray-space is 5-dimensional, it is straightforward to apply a5D adaptive tree[LW96] that is similar
to the well-known octree to store radiance information. Jensen proposed the application of thephoton-
map as the basis of importance sampling [Jen95]. We assigned the power computed in the preprocessing
phase tolinks established between two interacting patches [SKCP98].

The second alternative is using the information gained during previous walks to approximate the
illumination. This strategy is calledadaptive importance sampling. Adaptive importance sampling
methods neither require the non-uniform probability densities to be constructed in advance, nor simplify
them to take into account only local properties, but converge to a desired probability density using the
knowledge of previous samples. Three techniques are particularly important, which have also been used
in rendering:genetic algorithms[LB94] theMetropolis sampling [MRR+53, VG97] and theVEGAS
method [Lep80, SK98a]. The first use of Metropolis sampling in rendering aimed at speeding up bi-
directional path tracing [VG97].

In the third alternative the problem is simplified and the indirect illumination is not considered in
importance sampling. When the directions are generated, we use only transfer probability densitywi and
Le representing the direct illumination of the actual point. This is called thelocal importance sampling.

It turns out that we have to encounter severe problems when we have to find a mapping which has a
density that is proportional to the product of the effects of the transfer probability density and the direct
lighting. Consequently, local importance sampling strategies usually use only eitherwi orLe to identify
important directions. The first alternative is called theBRDF sampling, while the second is called the
lightsource sampling.

6.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 53

6.3.1 BRDF sampling

BRDF based importance sampling means that at stepi the densityti is proportional to the transfer
probability densitywi, that is

ti / wi = fr(!in; ~x; !out) � cos � sin �: (6.12)

In gathering algorithms!out is known,� is the angle between!in and the surface normal, and!in should
be determined. In shooting algorithms, on the other hand,!in is known,� is the angle between!out and
the surface normal, and!out should be determined.

Due to the fact thatti represents density (probability density for Monte-Carlo methods), its integral
is 1. Thus for gathering walks and for non-transparent materials, the ratio of proportionality in equa-
tion (6.12) is Z

H

w d!in =

Z

H

fr(!in; ~x; !out) � cos �in d!in = a(~x; !out)

wherea(~x; !out) is thealbedoof the surface at point~x in the outgoing direction. Similarly, the propor-
tionality ratio for shooting walks isZ

H

w d!out =

Z

H

fr(!in; ~x; !out) � cos �out d!out = a(~x; !in):

Thus the weightsw� = wi=ti are the albedos at the visited points.

BRDF sampling for diffuse materials

Diffuse materials have constant BRDF, that is

ti(�; �) / wi = fr � cos � sin �:

The proportionality ratio is found to maketi to integrate to 1:

ti(�; �) =
wiR

H

wi d!
=

fr � cos � sin �
2�R
�=0

�=2R
�=0

fr � cos � sin � d�d�
=

cos � sin �

�
:

Assuming that the random variables used to produce the two coordinate samples are independent,
this density is obtained in a product form:

ti(�; �) =
1

2�
� [2 cos � sin �] ; (6.13)

where1=(2�) is the probability density of� and2 cos � sin � = sin 2� is the probability density of�.
The corresponding probability distribution functions are:

P (�) =

�Z
0

1

2�
d� =

�

2�
; P (�) =

�Z
0

sin 2� d� = sin2 �:

Thus the required� and� random variables can be found by the following transformations ofu; v vari-
ables that are uniformly distributed in[0; 1] (section 5.3.1):

� = 2� � u; � = arcsin
p
v:

The transformed weight after importance sampling is the albedo

w�i =
wi

ti
= fr � � = a: (6.14)

6.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 54

BRDF sampling for specular materials

Specular materials can be characterized by the reciprocal version of the Phong’s BRDF model, that is

fr(!in; ~x; !out) = ks � cosn � �(�=2� �);

where is the angle between!out and the mirror direction of!in onto the surface normal, which will be
referred to as!r, and�(�=2 � �) indicates that the outgoing direction cannot point into the object, i.e.
the angle� between the surface normal and the outgoing direction should be less than 90 degrees.

surface

r

N

ψ

φ

reference direction
on the plane perpendicular to

plane perpendicular to ω
ω

ωout

r

ωr

surface normal

ωin

Figure 6.5: Parameterization for the calculation of the albedo

In order to appropriately parameterize the directional sphere, now the north pole is selected by the
reflection direction!r (figure 6.5). Let us identify a direction by an angle from!r, that is by , and by
another angle� between its projection onto a plane perpendicular to!r and an arbitrary vector on this
plane.

BRDF sampling requires a density which satisfies the following criterion:

ti(�;) / wi = ks � cosn � cos �(; �) � �(�=2� �(; �)) � sin :

Unfortunately, thecos � � �(�=2� �) factor forbids the symbolic integration of this formula, thus we
will use a density that is proportional only to~wi = ks � cosn sin . The proportionality ratio is found
to maketi to integrate to 1:

ti(�;) =
ks � cosn sin

2�R
�=0

�=2R
 =0

ks � cosn sin d d�

=
n+ 1

2�
cosn sin :

Assuming that the random variables used for producing the two coordinate samples are independent,
this density is obtained in a product form:

ti(�;) =
1

2�
� [(n+ 1) cosn sin]; (6.15)

where1=(2�) is the probability density of� and(n+ 1) cosn sin is the probability density of .
The corresponding probability distribution functions are:

P (�) =
�

2�
; P () =

 Z
0

(n+ 1) cosn	sin	 d	 = 1� cosn+1 :

6.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 55

Thus the required� and� random variables can be found by the following transformations ofu; v vari-
ables that are uniformly distributed in[0; 1]:

� = 2� � u; = arccos(1� v)1=(n+1):

The transformed weight after importance sampling is

w�i =
wi

ti
=

2�ks

n+ 1
� cos �(; �) � �(�=2� �(; �)): (6.16)

Different other specular BRDF models are presented and their BRDF sampling is discussed in
[War92, NNSK98b, NNSK98a, NNSK99a].

6.3.2 Lightsource sampling

Lightsource sampling is used indirect lightsource calculations[SWZ96] and as a complementary sam-
pling strategy to BRDF sampling in random walks.

Since in this case, the samples are selected from a lightsource instead of the directional sphere, the
surface integral form of the transport operator is needed:

(T Le)(~x; !) =
Z

Le(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0 =

Z
Se

Le(~y; !~y!~x) � fr(!~y!~x; ~x; !) �
cos �0~x � cos �~y
j~x� ~yj2 � v(~y; ~x) d~y; (6.17)

wherev(~y; ~x) is 1 if points~x and~y are not occluded from each other and 0 otherwise, andSe is the
surface of non-zero emission. To obtain a Monte-Carlo estimate for this integral,N points~y1; : : : ~yN are
sampled uniformly on the lightsource and the following formula is used:

(T Le)(~x; !) � jSej
N

�
NX
i=1

Le(~yi; !~yi!~x) � v(~yi; ~x) � fr(!~yi!~x; ~x; !) �
cos �0i � cos �~yi
j~x� ~yij2

: (6.18)

If the scene has a single homogeneous lightsource which is relatively small and is far from the considered
point, then the integrand will be approximately constant on the lightsource surface, thus this estimator
has low variance.

6.3.3 Sampling the lightsources in gathering random walks

Since lightsource sampling generates samples only on the direct lightsources, it completely ignores indi-
rect illumination. Thus it cannot be used alone in global illumination algorithms, but only as a comple-
mentary part of, for example, BRDF sampling.

The simplest way to combine the two strategies is to generate all but the last directions of the gather-
ing walk by sampling the BRDF and to compute the last direction by sampling the lightsource. Note that
when stopping the walk, the indirect illumination is assumed to be zero, thus following the directions of
the lightsources is a reasonable approach.

Another combination strategy is to trace one or more shadow rays from each visited point of the walk
towards the lightsources, not only from the last of them.

Formally, this approach can be presented as a restructuring of the Neumann series

L = Le + T Le + T 2Le + T 3Le : : : = Le + (T Le) + T (T Le) + T 2(T Le) : : : (6.19)

and using lightsource sampling for theLe� = (T Le) integral while sampling the BRDFs when evaluating
theT iLe� integrals. Practically it means that having hit a surface, one or more shadow rays are traced
towards the lightsources and the reflection of the illumination of this point is estimated. This reflection
is used as if it were the emission of the surface. This method is particularly efficient if the scene consists
of point lightsources. Tracing a single ray to each point lightsource, the illumination due to the point
lightsources can be determined exactly (with zero variance).

6.3. IMPORTANCE SAMPLING FOR THE RENDERING EQUATION 56

6.3.4 Importance sampling in colored scenes

So far, we have assumed that the weights containing the BRDFs and the emissions are scalars thus the
densities can be made proportional to them. This is only true if the rendering equation is solved on a
single wavelength.

However, if color images are needed, the rendering equation should be solved on several (at least
3) different wavelengths. If the different wavelengths are handled completely independently, then the
proposed importance sampling strategy can be used without any modifications. However, this approach
carries out geometric calculations, such as tracing rays, independently and redundantly for different
wavelengths, thus it cannot be recommended. A better approach is using rays that transport light on all
wavelengths simultaneously. In this case the emission and the BRDF can be represented by vectors, thus
to allow importance sampling, we need a scalarimportance function I that is large when the elements
in the vector are large and small when the elements are small. The importance is a functional of the
spectrum. A straightforward way is using theluminance of the spectrum since it emphasizes those
wavelengths to which the eye is more sensitive.

6.3.5 Multiple importance sampling

So far, we mentioned two basic importance sampling strategies, the BRDF sampling and the lightsource
sampling, which are local in the sense that they focus on a single reflection. It is easy to imagine that if
the sampling considers simultaneously many reflections, then the number of possible strategies increases
dramatically.

Obviously, we desire to use the best sampling strategy. Unfortunately the performance of a sampling
strategy depends on the properties of the scene, which is usually not known a-priori, thus the best strategy
cannot be selected. Instead of selecting the best, Veach and Guibas [VG95] proposed to combine several
strategies in a way that the strengths of the individual sampling methods are preserved.

Suppose that we can usen different sampling techniques for generating random paths, where the
distribution of the samples is constructed from severalp1; :::; pn importance sampling distributions. The
number of samples taken frompi is denoted byMi, and the total number of samples byM =

P
iMi.

TheMi values are fixed in advance before any samples are taken. The “average probability density” of
selecting the samplez is then

p̂(z) =
nX
i=1

Mi

M
� pi(z): (6.20)

Thus the integral quadrature using these samples is

Z
[0;1]s

f(z) dz =

Z
[0;1]s

f(z)

p̂(z)
� p̂(z) dz � 1

M

nX
i=1

MiX
j=1

f(zi;j)

p̂(zi;j)
=

nX
i=1

1

Mi

MiX
j=1

wi(zi;j) �
f(zi;j)

pi(zi;j)
(6.21)

wherezi;j is thejth sample taken from theith distribution, and the weights are

wi(z) =
Mi � pi(z)Pn
k=1Mk � pk(z)

: (6.22)

Let us interpret this result when all methods use the same number of samples.pi(z) is the probability that
a samplez is generated by methodi. The samples are combined with this weight, which guarantees that
no sample will be accounted for twice. In order to have an unbiased estimation,

P
i wi(z) = 1 should

hold for allz.

6.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 57

6.4 Handling infinite-dimensional integrals

Walk methods require the evaluation of a series of integrals where the dimension goes to infinity. One
way of attacking the problem is truncating the Neumann series, but this introduces some bias which
can be quite high if the scene is highly reflective. Fortunately, there is another approach that solves the
infinite-dimensional integration problem through randomization. In the context of Monte-Carlo integra-
tion, this approach is called theRussian-roulette[AK90], but here a somewhat more general treatment
is also given that can also justify this approach for quasi-Monte Carlo quadratures.

6.4.1 Russian-roulette

Note that the Neumann series contains a sequence of the following integrals:

L =

Z
[0;1]2

w

t
� [Le + : : :] dz =

Z
[0;1]2

w�(z) � Lin(z) dz = E
h
w� � Lin

i

if z is uniformly distributed in[0; 1]2. A Monte-Carlo quadrature would generate random samples in
the domain and estimate the integral as an average of the integrand at these samples. Let us further
randomize this computation and before each sample let us decide randomly with probabilitys whether
we really evaluate the integrand at the sample point or simply assume that the integrand is zero without
any calculations. In order to compensate the not computed terms, when the integrand is really computed,
it is divided by probabilitys. This randomization introduces a new random variableLref which is equal to
w� �Lin=s if the integrand is evaluated and zero otherwise. The Monte-Carlo quadrature which provides
the estimate as an expected value will still be correct:

E[Lref] = s �E
h
Lref j sample is used

i
+ (1� s) � E

h
Lref j sample is not used

i
=

s � E
"
w� � Lin

s

#
+ (1� s) � 0 = E

h
w� � Lin

i
= L: (6.23)

The variance of the new estimator, on the other hand, is increased:

D2[Lref] = E[(Lref)2]�E2[Lref] = s � E
2
4 Lref

s

!2
3
5+ (1� s) � 0�E2[Lref] =

�
1

s
� 1

�
� E[(w� � Lin)2] +D2[w� � Lin]: (6.24)

6.4.2 Russian-roulette in quasi-Monte Carlo quadrature

In the context of quasi-Monte Carlo integration Russian-roulette should be explained differently because
there is no “randomization” in deterministic techniques. This discussion is also used to generalize the
basic concept and to show that termination decision can be made using the complete previous path not
only the actual state.

Instead of randomization, we can suppose that the domain of integration is extended by additional
variables on which a contribution indicator function is defined that will determine whether or not a
higher order term is included in the quadrature (interestingly, in order to get rid of high-dimensional
integrals, we increase the dimension of the integration). In order to compensate the missing terms in
the integral quadrature, the really computed terms are multiplied by an appropriate factor. If the used
contribution indicator is such that the domain where it is non-zero shrinks quickly, then the possibility of
evaluating samples of high-dimensional functions is rather low, which saves computation time. However,
the integral quadrature will still be correct asymptotically.

A term of the Neumann series has generally the following form

L =

Z
: : :

Z
W (z1; : : : ; zn) � Le(z1; : : : zn) dz1 : : : dzn; (6.25)

6.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 58

whereW (z1; : : : ; zn) is the product of the weightsw1(z1) � : : : � wn(zn) including the cosine functions
of the angles and the BRDFs, or the product of the ratios of weights and densitiesw�1 � : : : � w�n =

w1=t1 � : : : � wn=tn, depending whether or not BRDF sampling has already been applied.
Let us extend this by acontribution indicator function C(z1; r1; : : : zn; rn) that is constant1 if a

samplez1; : : : zn should be taken into account in the integral quadrature and 0 if it should not and its
contribution is assumed to be zero. Usually this function is in separable form

C(z1; r1; : : : zn; rn) =
nY
i=1

ci(zi; ri);

whereci(zi; ri) = 1 means that the walk must be continued at stepi andci(zi; ri) = 0 forces the walk
to stop. Functionci(zi; ri) can be defined, for instance, by a new weight function�(zi) in the following
way:

ci(zi; ri) =

8<
:
1 if �(zi) > ri,

0 otherwise.
The “possibility” of really computing a walkz1; : : : zn is

P (z1; : : : zn) =

1Z
r1=0

: : :

1Z
rn=0

C(z1; r1; : : : zn; rn) dr1 : : : drn:

We can define the following function of variablesr1; : : : ; rn,

Lr(r1; : : : ; rn) =

Z
: : :

Z
C(z1; r1; : : : zn; rn) � ~W � ~Le dz1 : : : dzn; (6.26)

where ~W and ~Le are appropriate modifications ofW andLe, which can compensate the missing terms.
The integral of this function is

1Z
r1=0

: : :

1Z
rn=0

Lr(r1; : : : ; rn) dr1 : : : drn =

1Z
r1=0

: : :

1Z
rn=0

Z
: : :

Z
C(z1; r1; : : : zn; rn) � ~W � ~Le dz1 : : : dzn dr1 : : : drn =

Z
: : :

Z
P (z1; : : : ; zn) � ~W � ~Le dz1 : : : dzn: (6.27)

A sufficient requirement for this integral to be equal to the original integralL is

P (z1; : : : ; zn) � ~W � ~Le =W � Le: (6.28)

There are many possible selections of the contribution indicator and the~W and ~Le functions, that
can satisfy this requirement, thus there are many different unbiased estimators. A widely used selection
is letting

~W = 1; ~Le = Le and �i(zi) = wi(zi):

which corresponds to continuing the walk after stepi only if w(zi) > ri. If importance sampling has
already been applied, then the walk is continued ifw� > ri. Sincew� approximates the albedo, this
strategy continues the walk with the probability of the albedo.

6.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 59

BRDF sampling for materials of multiple reflection type

Practical reflection models incorporate different simple BRDFs. For example, a lot of materials can be
well modeled by a sum of diffuse and specular reflections. So far, methods have been presented that are
good for either the diffuse or the specular reflection, but not for the sum of them.

Fortunately, Russian-roulette can also be extended to handle these cases. If the reflection model is a
sum of different BRDFs, then a random selection can be made from the different components. Suppose
that the transfer probability density is available in the form of a sum of the weights corresponding to
elementary BRDFs:

w = w1 + w2 + : : :+ wn:

Thus the radiance of a single reflection is:

L =

Z

w � Lin d! =

Z

w1 � Lin d! + : : :+

Z

wn � Lin d!:

Suppose that mappingsti can be found for each integral, that also mimics important directions:

L =

Z
[0;1]2

w1

t1
� Lin dz+ : : :+

Z
[0;1]2

wn

tn
� Lin dz = E

h
w�1 � Lin

i
+ : : :+E

h
w�n � Lin

i
:

Let us select theith BRDF with probabilitypi and weight the resulting radiance by1=pi or stop the
walk with probabilityp0 = 1 � p1 � : : : � pn. Thus the new random variableLref isw�i � Lin=pi if the
ith model is used, and 0 if no model is selected. The expected value ofLref will still be correct:

E[Lref] = p1 � E
"
w�1 � Lin

p1

#
+ : : : + pn �E

"
w�n � Lin

pn

#
+ (1� p1 � : : :� pn) � 0 =

E
h
(w�1 + : : : + w�n)L

in
i
= L: (6.29)

This is a Monte-Carlo estimation of the sum. According to importance sampling, the variance will
be small ifw�iL

in=pi can be made nearly constant. Since we usually do not have a-priori information
aboutLin,w�i =pi can be made a constant number. Thus to obtain a low-variance estimator, an elementary
BRDF should be selected with the probability of its transformed weightw�i . Note that the weightw�i may
either be equal or approximate the albedo, thus a low-variance estimator selects an elementary BRDF
with the probability of its albedo.

In order to generate an “out” direction from the “in” direction and the surface normal, the following
general BRDF sampling algorithm can be used:

BRDFSampling(in, normal, out)
prob = SelectBRDFModel(normal, in)
if prob = 0then return 0
prob *= Reflection(in, normal, out)
if prob = 0then return 0
return prob

end

In this program “SelectBRDFModel” randomly selects an elementary BRDF from those that com-
pose the given BRDF with a probability which approximates the albedo and also returns the selection
probability. If it returns 0, then it has decided that the walk has to be stopped because of Russian-roulette.
“Reflection” generates a new direction “out” with a probability density that is approximately proportional
to the transfer probability density of the selected reflection model and returns the selection probability.

6.4. HANDLING INFINITE-DIMENSIONAL INTEGRALS 60

Figure 6.6: Metallic spheres generated by gathering walks with 50 samples per pixel (top: importance sampling
according to the cosine angle only (51 min); middle: BRDF sampling with Russian-roulette (46 min); bottom:

BRDF sampling with truncating the Neumann series to 5 terms (54 min)

Figure 6.7: Left: Scene with metallic objects rendered by gathering walks using BRDF sampling with Russian
roulette. Right: Scene with metallic objects rendered by gathering walks using BRDF sampling without

Russian-roulette but truncating the Neumann series to 5 terms.

6.5. REVIEW OF RANDOM WALK ALGORITHMS 61

6.5 Review of random walk algorithms

In this chapter a number of practical random walk algorithms are reviewed and analyzed. For complete-
ness, non-random and non global illumination methods, such as ray-casting and recursive ray-tracing
are also included. The primary classification of random walk algorithms is based on the direction of
generated rays. If the walks are started at the eye and go opposite to the light, then the algorithm is called
gathering. On the other hand, if the walks originate at the lightsources and go in the direction of the
light, then the algorithm is calledshooting.

6.5.1 Gathering-type random walk algorithms

Gathering type random walks correspond to the Monte-Carlo solution of the rendering equations. They
start at the eye position and gather the emission of the visited points.

The general structure of these algorithms is as follows:

for each pixelp do
color =0
for i = 1 to N do

ray = sample ray randomly from the eye through pixelp

samplecolor =c � Trace(ray)
color += samplecolor=N

endfor
write(p, color)

endfor

Eye

window

Figure 6.8: Gathering-type random walks

In different gathering algorithms the “Trace” function is implemented differently. This function
returns the radiance carried by this ray to the eye. The radiance is then multiplied by valuec = (c=Sp)�Sp
wherec=Sp scaling is required by the measuring function (equation (2.39)) andSp is the size of the
integration domain (equation 5.6).

Ray-casting

Ray-castingis a local-illumination algorithm of typeLDE, which replaces the unknown radiance inside
the integral of the rendering equation by an approximation of the emission function. In its trace function
the following simplification is used to determine the radiance of a point:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0; (6.30)

whereLlightsource may be a simplification of the emission functionLe. The “Trace” function is:

6.5. REVIEW OF RANDOM WALK ALGORITHMS 62

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
return Le(~x, -ray.direction) + DirectLightsource(~x, -ray.direction)

end

Eye

window

normal ray
shadow ray detecting
visible lightsource
shadow ray detecting
occluded lightsource

Figure 6.9: Ray-casting

In this algorithmLsky is the radiance of background illumination (e.g. sky), “FirstIntersect” is re-
sponsible for finding that object which is first intersected by the ray and also the intersection point.
“DirectLightsource”, on the other hand, computes an estimate of the single reflection of the light from
the lightsources, which happens at point~x into the given direction.

Visibility ray-tracing

Visibility ray-tracing is a recursive ray-tracing like algorithm which can follow multiple light bounces
only for ideal reflection and refraction (it is ofL[D]S�E type).

Eye

window

normal ray
shadow ray detecting
visible lightsource
shadow ray detecting
occluded lightsource

Figure 6.10: Visibility ray-tracing

Formally, it simplifies the rendering equation to the following form:

L(~x; !) = Le(~x; !) +

Z

Llightsource(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0+

kr(!r; ~x; !) � L(h(~x;�!r); !r) + kt(!t; ~x; !) � L(h(~x;�!t); !t); (6.31)

where!r and!t are the ideal reflection and refraction directions, andkr andkt are the reflection and
refraction coefficients. The implementation of the “Trace” function of the visibility ray-tracing is:

6.5. REVIEW OF RANDOM WALK ALGORITHMS 63

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
color =Le(~x, -ray.direction) + DirectLightsource(~x, -ray.direction)
if kr > 0 then color +=kr� Trace(reflected ray)
if kt > 0 then color +=kt� Trace(refracted ray)
return color

end

This subroutine calls itself recursively to find the radiance of the illumination at the reflection and
refraction directions. In order to avoid infinite recursion, the algorithm is usually extended to limit the
maximum level of recursion.

Distributed ray-tracing

Distributed ray-tracing suggested by Cook [CPC84] is a global illumination algorithm, which can
model all the possible paths.

Eye

window

Figure 6.11: Distributed ray-tracing

In this method the ray tracing is not terminated when reaching a surface having neither ideal reflection
nor ideal refraction. After a ray has hit a surface, child rays are generated randomly according to the
BRDF characterizing the surface. For the appropriate estimation of the general interreflection, child rays
have to be traced and the average of their contributions have to be computed. This approach is based on
the recursive formulation of the integrals in the Neumann series (equation (3.10)). The implementation
of the “Trace” function of distributed ray-tracing is:

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
color =Le(~x, -ray.direction) + DirectLightsource(~x, -ray.direction)
for sample = 1to N do

prob = BRDFSampling(-ray.direction, normal, newray)
if prob> 0 then color += Trace(newray)� w(newray.direction, normal, -ray.direction) / prob /N

endfor
return color

end

In this program “BRDFSampling” — as defined in section 6.4.2 — finds a new ray to follow, which
is then traced recursively.

6.5. REVIEW OF RANDOM WALK ALGORITHMS 64

Path-tracing

Another Monte-Carlo approach proposed by Kajiya ispath-tracing [Kaj86], which is based on the
multi-dimensional integral formulation of the terms of the Neumann series (equation (3.7)).

normal ray
shadow ray detecting
visible lightsource
shadow ray detecting
occluded lightsource

Eye

window

Eye

window

Figure 6.12: Path tracing without (left) and with (right) direct lightsource computation

This method creates a path history for a single particle interacting with the environment until absorp-
tion using BRDF sampling and Russian-roulette. Rather than spawning new rays at each intersection,
a random direction is chosen according to a densityti which is approximately proportional towi. The
walk is continued with a probabilityai = wi=ti which is equal to the approximation of the albedo
(Russian-roulette). The measured value of a single path is

P = c � (Le1 + Le2 �
w1

t1 � a1
+ Le3 �

w2

t2 � a2
� w1

t1 � a1
+ : : :)

whereLei is the emission of the point visited at stepi of the path andwi is the transfer density of this
point, andc is the scaling factor of the measurement device. Note that if ideal BRDF sampling is used,
thenwi is proportional toti and bothwi=ti andai are equal to the albedo, which results in the following
estimate:

P = c � (Le1 + Le2 + Le3 + : : :):

This estimate has very high variation if the lightsources are small. This problem can be solved if light-
source sampling is combined with the gathering walk, which means that at each visited point the effects
of the lightsources are estimated. The implementation of the “Trace” function of path-tracing is:

Trace(ray)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return Lsky
color= Le(~x, -ray.direction)+ DirectLightsource(~x, -ray.direction)
prob = BRDFSampling(-ray.direction, normal, newray)
if prob = 0then return color
color += Trace(newray)� w(newray.direction, normal, -ray.direction) / prob
return color

end

In this program “BRDFSampling” finds a new direction or if it returns 0, then it has decided that
the walk has to be stopped because of Russian-roulette. Note that this algorithm generates all but the
last directions of the path by BRDF sampling and the last is obtained by lightsource sampling. Thus
if the surface at the light reflection is shiny (close to ideal mirror or ideal refractor), then the quality
of importance sampling can be quite bad. Since almost ideal surfaces close to the lightsources are
responsible forcaustics, path tracing as other gathering algorithms are poor in rendering caustics effects.

6.5. REVIEW OF RANDOM WALK ALGORITHMS 65

6.5.2 Shooting-type walk methods

Shootingwalks are based on the Monte-Carlo solution of the potential equation. They start at the eye,
go through the scene and try to find the eye.

The general structure of shooting algorithms is as follows:

Clear Image
DirectCamera
for i = 1 to N do

ray = Sample randomly from a lightsource with selection probabilitype

power =Le � cos �=pe=N
Shoot(ray, power)

endfor

Function “DirectCamera” calculates the direct contribution of the lightsources on the image by deter-
mining the points visible in each pixel and integrating theirLe emission. In different shooting algorithms
the “Shoot” function is implemented differently. This function is responsible for determining the power
carried to the eye by the complete path, for the identification of the pixel through which the path arrives
at the eye, and adding this contribution to the pixel color.

Eye

window

Figure 6.13: Shooting-type walks

Photon tracing

Photon tracing (forward ray-tracing) is the inverse of visibility ray-tracing and uses similar simplifying
assumptions.

Eye

window

particle path
contribution path
occluded contribution path

Figure 6.14: Photon tracing

6.5. REVIEW OF RANDOM WALK ALGORITHMS 66

It also stops tracing when hitting a surface that does not have coherent reflection or refraction. In
photon tracing the rays are emitted from the lightsources, and at each hit it is examined whether the
surface has ideal reflection, refraction and incoherent reflection or refraction. In the directions of ideal
reflection or refraction, the tracing is continued by starting new child rays. The implementation of its
Shoot function is:

Shoot(ray, power)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return
if ~x is visible from pixelp then

color[p] += power�w(ray.direction,~x, eye direction) � g(~x)
endif
if kr > 0 then Shoot(reflected ray,kr� power)
if kt > 0 then Shoot(refracted ray,kt� power)
return

end

The “eye direction” is a vector pointing from~x to the eye position. The algorithm is capable of
handlingLS�DE paths.

Light-tracing

In light-tracing [DLW93] photons perform random walk through the scene starting at the lightsources.
Whenever a surface is hit, a ray is traced from the intersection point to the eye and the contribution is
added to the selected pixel (if any).

Eye

window

particle path
contribution path
occluded contribution path

Figure 6.15: Light tracing

Light tracing is the direct implementation of the Monte-Carlo quadrature of the multi-dimensional
formulation of the potential equation. When the next direction is determined, BRDF based importance
sampling can be applied and combined with Russian-roulette. It chooses a random direction according
to a densityti which is approximately proportional towi (importance sampling). The walk is continued
with a probabilityai that is equal to the approximation of the albedo (Russian-roulette). The measured
value of a single step of the path is

P =
Le cos �

N � pe � w1

t1 � a1
� w2

t2 � a2
� : : : � w(eye) � g;

if this point is visible at the pixel and zero otherwise. HereLe is the emission of the starting point,� is
the angle between the surface normal of the lightsource and the first direction,pe is the probability of
selecting this lightsource point and starting direction,w(eye) is the cosine weighted BRDF at the given
point from the last direction to the eye, andg is the surface dependent camera parameter. Note that if
ideal BRDF sampling is used, i.e.wi is proportional toti and bothwi=ti andai are equal to the albedo,

6.5. REVIEW OF RANDOM WALK ALGORITHMS 67

and ideal lightsource sampling is used, i.e.pe is proportional toLe cos �, thusLe cos �=N � pe = �=N ,
then the following estimate can be obtained:

P =
�

N
� w(eye) � g:

This estimate has high variation if the camera is often hidden since if the point is not visible from the
camera, the contribution is zero. The implementation of the “Shoot” function of light tracing is:

Shoot(ray, power)
(object,~x) = FirstIntersect(ray)
if no intersectionthen return
if ~x is visible from pixelp then

color[p] += power�w(ray.direction,~x, eye direction) � g(~x)
endif
prob = BRDFSampling(-ray.direction, normal, newray)
if prob = 0then return
newpower = power *w(-ray.direction, normal, newray.direction) / prob
Shoot(newray, newpower)
return

end

This algorithm also applies BRDF sampling for all but the last steps. The direction of the last vis-
ibility ray might be far from the direction preferred by the BRDF. This degrades the performance of
importance sampling if the visible surface is very shiny. Thus visible mirrors or refractors (glass) pose
difficulties to shooting algorithms.

Random walks for the radiosity setting

Expansion expands the solution of equationL = Le +R � L (equation (4.5)) into a discrete Neumann
series

L = Le +R � Le +R2 � Le +R3 � Le + : : : (6.32)

Let us again examine theR2 � Le term. Using the definition of the matrixR, this can also be expressed
as a multi-dimensional integral:

(R2 � Le)ji =
nX
j=1

nX
k=1

Rij �Rjk � Lek =

Z
S

Z

Z
S

Z

~bi(~x1) �w1(i) �
nX
j=1

bj(h(~x1;�!01)) � ~bj(~x2) �w2(j) �
nX
k=1

bk(h(~x2;�!02)) �Lek d!02d~x2d!01d~x1;

where
w1(i) = fi � cos �01; w2(j) = fj � cos �02:

Considering the integrand,~x1 should be in patchi for ~bi to be non zero. Then, only a singlebj will
give non-zero value for the~y1 = h(~x1;�!01) point. To select this, a ray has to be traced from~x1 in
direction�!01 and the visible patch should be identified. Following this, another point on the identified
patchi should be selected, which is denoted by~x2, and a ray is traced in direction�!02 to obtain an
index k of a patch whose emission should be propagated back on the walk. During propagation, the
emission is multiplied by the BRDFs (fi; fj) and the cosine (cos �02; cos �

0
1) factors of the visited patches

(figure 6.16).
Note that this is basically the same walking scheme, as used to solve the original integral equation.

The fundamental difference is that when a patch is hit by the ray, the walk is not continued from the
found point but from another uniformly sampled point of the patch.

6.5. REVIEW OF RANDOM WALK ALGORITHMS 68

i

j

k
x

y

y

1

1

1 2

2

x

ω

ω2

’

’

Figure 6.16: Random walk solution of the projected rendering equation

The power equationP = Pe+H �P (equation (4.8)) can be treated similarly. Again, let us examine
the two-bounce case

(H2 �Pe)ji =
nX
j=1

nX
k=1

Rji �
fi

fj
�Rkj �

fj

fk
�Pek =

Z
S

Z

Z
S

Z

Pek �~bk(~y1) �w1(k) �
nX
j=1

bj(h(~y1; !1)) �~bj(~y2) �w2(j) �
nX
k=1

bi(h(~y2; !2)) �w3(i) d!2d~y2d!1d~y1;

where
w1(k) = cos �1; w2(j) = fj � cos �2; w3(i) = fi:

It means that the integrand in a single point can be obtained by selecting a point~y1 on patchk, then
tracing a ray in direction!1. Having identified the intersected patchj a new point~y2 is selected on this
patch and the ray-tracing is continued at direction!2. The patch which is hit by this ray receives the
power of patchk attenuated by the BRDFs and the cosine factors of the steps.

Thus, the projected rendering equation can also be solved by random walks [Shi91b, Sbe96]. The
basic difference is that when a patch is hit by a ray, then instead of initiating the next ray from this point,
another independent point is selected on the same patch.

Considering the concept of importance sampling and Russian-roulette, many different strategies
can be elaborated by appropriately defining theP , ~W and ~Le functions (recall that according to equa-
tion (6.28) the requirement of an unbiased estimate isP (z1; : : : ; zn) � ~W � ~Le = W � Le). For example,
let us use the following simulation [Shi91b, Sbe96] to obtain a radiance estimate of patchi1:

First a ray is found that starts on this patch. The starting point~x1 is sampled from a uniform
distribution, while the direction!0

1
is sampled from a cosine distribution, thus the probability density is

1=Ai1 � cos �01=�. This ray is traced and the next patch is identified. Let it be patchi2. At patchi2 it is
decided whether or not the walk should be stopped with probability of the albedo of the patch. Note that
for diffuse surfaces the albedo isa = f � �. If the walk has to be continued, then a new starting point~x2
is found on patchi2, and the same procedure is repeated recursively.

With this strategy, the probability density of completing ann step walk is

p(~x1; !
0
1; ~x2; !

0
2; : : : ~xn�1; !

0
n�1) =

1

Ai1
� cos �

0
1

�
� ai2
Ai2

� cos �
0
2

�
: : :

ain�1
Ain�1

� cos �
0
n�1

�
� (1� ain) =

fi1
Ai1

� cos �01 �
fi2
Ai2

� cos �02 : : :
fin�1
Ain�1

� cos �0n�1 �
1� ain
ai1

=W � 1� ain
ai1

: (6.33)

Thus the required weight~W of the walk is

~W =
ai1

1� ain
: (6.34)

Thus if the patch on which the walk is terminated is a source having emissionLen, then the estimator of
the radiance of patchi is

Len �
ai1

1� ain
:

6.5. REVIEW OF RANDOM WALK ALGORITHMS 69

6.5.3 Bi-directional random walk algorithms

Bi-directional algorithms are based on the combination of shooting and gathering walks, thus they can
combine the advantages of both techniques. Namely, they can effectively handle small lightsources and
small aperture cameras, and can render caustics and ideally refracting or reflecting visible objects.

Bi-directional path-tracing

Bi-directional path-tracing [LW93, VG95] initiates paths at the same time from a selected lightsource
and from the viewpoint. After some steps, either a single deterministic shadow ray is used to connect the
two types of walks [VG95], or all points of the gathering walk are connected to all points of the shooting
walk using deterministic rays [LW93]. If the deterministic shadow ray detects that the two points are
occluded from each other, then the contribution of this path is zero.

Note that gathering and shooting walks use different integration variables, namely a gathering walk
is specified by a point on the pixel area and a sequence of incoming directions, while a shooting walk
is defined by a point on the lightsource and a sequence of the outgoing directions. Thus when the two
walks are connected, appropriate transformations should take place.

r
r

d

d

d

dA

dy

ω

ω

ω

θ

θ θ

1
2

out in

1

2

2
’

θ1

Figure 6.17: Correspondence between the solid angles of incoming and outgoing directions

Let us first consider a walk of a single bounce (figure 6.17). According to the definition of the solid
angle, we obtain

d!01
d!2

=
dA � cos �out=r21
dA � cos �in=r22

=
r22
r2
1

� cos �out
cos �in

; (6.35)

and for the substitution of the surface integral on the lightsource

d!02 =
d~y � cos �

r2
2

: (6.36)

Thus the transformation rule is

cos �01 � cos �in d!01d!02 =
cos �01 � cos �out

r2
1

� cos � d!2d~y;

which means that when converting a shooting type walk to a gathering type walk, then the radiance
should be multiplied by

cos �01 � cos �out
r2
1

:

When the shooting walk consists of more than 1 steps, then formula (6.35) should be applied to each
of them, but formula (6.36) only to the last step. This conversion replaces the incoming directions by
the outgoing directions and the subsequent steps compensater2k+1=r

2

k scaling. Finally, we end up with a
formula which is similar to the 1-step case:

cos �0k � cos �0k+1 � : : : cos �0n d!0k : : : d!0n =
cos �0k � cos �n�k+1

r2k
� cos �n�k � : : : cos �1 d!n�k : : : d!1d~y:

6.5. REVIEW OF RANDOM WALK ALGORITHMS 70

window

x

x

y

y

y

eye path

deterministic step

light path

θ
θ θ θ θ θ

1

1

2

2
1

43

1

2

’

’

’
’

θ
3

3 2

Figure 6.18: Bi-directional path tracing with a single deterministic step

Figure 6.18 shows an example whenk = 2 andn = 4. This formula means that we can use the
rules of sections 3.2.1 and 3.2.2 to generate the shooting and gathering walks — gathering walks use
the cosine of the incoming angle, while shooting walks use the cosine of the outgoing angle — and the
transformation of the combined walk to a single gathering walk requires a multiplication by

cos �0k � cos �n�k+1
r2k

:

Formally, if the endpoints of the shooting and gathering walks are visible from each-other, then the
measured value of a single path is

P =
Le cos �

N � pe � ws1
ts
1
� as

1

� ws2
ts
2
� as

2

� : : : � f sr �
cos �s � cos �0g

r2
� fgr � : : : �

w
g
2

t
g
2
� ag

2

� w
g
1

t
g
1
� ag

1

� c

where superscriptss andg stand for shooting and gathering steps, respectively. Note that if ideal BRDF
sampling is used, then the estimate is:

P =
�

N
� f sr �

cos �s � cos �0g
r2

fgr � c:

Light Source

window

y0 y1

y2

x0

x1

x2

eye path

light path

shadow rays

Figure 6.19: Bi-directional path tracing with multiple deterministic steps

In Lafortune’s version of the bi-directional path tracing [LW93] not only the endpoints of the shooting
and gathering walks are connected, but all intersection points are linked by shadow rays.

Note that in bi-directional path-tracing a path of given lengthn can be generated by many ways, for
instance, by a gathering walk of lengthi combined with a shooting walk of lengthn � i, wherei =
0; : : : ; n. This creates a danger of accounting a walk more than one time. To eliminate this danger, the

6.5. REVIEW OF RANDOM WALK ALGORITHMS 71

result can be estimated by a weighted sum of the different walks as suggested by the concept of multiple
importance sampling. Other heuristic weight factors can also provide good results [LW93, Vea97]. For
example, when a gathering walk is computed, at each step the radiance coming from the continuation of
the walk is weighted byW and the radiance coming from deterministic connections to shooting walks is
weighted by1�W . Since for shiny surfaces the continuation of the walk by BRDF sampling is supposed
to be better,W may express how shiny the surface is.

Metropolis light transport

Random walk methods usually generate the ray-paths independently. Thus when a difficult path is found,
it is thrown away right after its application. Metropolis method, on the other hand, generates samples by
perturbing the previous path, thus they are expected to be better for difficult lighting conditions.

Recall that Metropolis method [MRR+53] offers samples with a probability density that is propor-
tional to a given “importance function” in an asymptotic case. Let this importance functionI be the
luminance of the light carried by a ray-path to the eye through any pixel. This selection is justified
by the fact that the eye is particularly sensitive to luminance variations and different pixels have equal
importance in the image. The integral of the importance function on the whole domain is denoted byb.

Eye

window

perturbation Eye

window

perturbation

Figure 6.20: Generating walks by mutations in Metropolis light transport

In order to generate samples according to probability densityI(z)=b, a Markov process is constructed
whose stationary distribution is just this (herez denotes a ray-path). Scalarb can be estimated in a
preprocessing phase using a normal random walk algorithm. The Metropolis algorithm generates a
sequence of ray-paths starting from an initial path. Veach and Guibas proposed bi-directional path tracing
[VG97] to find an initial path, although any random walk algorithm can be used for this. Generating a
new pathzi+1 after pathzi consists of two steps. First thetentative transition function T (zi ! zt)

produces atentative path zt by mutating pathzi a little, i.e. by changing directions and adding or
deleting steps. Then the tentative path is either accepted or rejected using anacceptance probability

a(zi ! zt) = min

�I(zt) � T (zt ! zi)

I(zi) � T (zi ! zt)
; 1

�

that expresses the increase of the importance. The definition of mutations is almost arbitrary if they make
the Markov process ergodic. Ergodic processes have stationary distribution, and this distribution is inde-
pendent of the starting state of the process. Practically it requires that any path of positive power could
be generated from any other path after a certain number of perturbations. Thus mutations should modify
all features, including directions (or visited points), starting point, length, etc. Furthermore, in order to
avoid situations when the process is stuck into a region which is surrounded by regions of zero impor-
tance, the tentative transition should take large enough steps to jump over these zero importance regions.
Veach [VG97], for example, proposed the generation of a completely new path when the contribution of
the tentative path is zero.

6.5. REVIEW OF RANDOM WALK ALGORITHMS 72

Summarizing, theMetropolis light-transport algorithm is:

Generate an initial ray-pathz1 using random walk, e.g. bi-directional path tracing
for i = 1 to N do

Based on the actual ray-path, find another, tentative pathzt mutatingzi with T (zi ! zt)
if I(zt) = 0 then Generate a completely new pathzi+1 from scratch using random walk
else

a(zi ! zt) = (I(zt) � T (zt ! zi))=(I(zi) � T (zi ! zt))
Generate uniformly distributed random numberr in [0; 1] // accept with “probability”a(zi ! zt)
if r < a(zi ! zt) then zi+1 = zt elsezi+1 = zi

endif
Compute the contribution of the ray-pathzi+1 to the affected pixel
Multiply this contribution byb=(I(zi+1) �N) and accumulate to the pixel

endfor

Photon-map

Bi-directional path tracing connects a single gathering walk to a single shooting walk. However, if the
effects of all shooting walks could be stored, then when a new gathering walk is computed, it could
be connected to all of the shooting walks simultaneously, which can significantly increase the number
of samples in the integral quadrature. This is exactly what Jensen [JC95, Jen96, JC98] proposed, also
giving the definition of a data structure, called thephoton-mapwhich can efficiently store the effects of
many shooting walks.

A photon map is a collection of photon hits at the end of the paths generated in the shooting phase
of the algorithm. The photon-map is organized in akd-tree to support efficient retrieval. A photon hit is
stored with the power of the photon on different wavelengths, position, direction of arrival and with the
surface normal.

Eye

window

shooting step gathering step

n =2

Figure 6.21: Rendering with photon-map

The gathering phase is based on the following approximation of the transport operator:

L(~x; !0) =

Z

L(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0 =
Z

d�(!0)

dA cos �0d!0
� fr(!0; ~x; !) � cos �0 d!0 �

nX
i=1

��(!0i)

�A
� fr(!0i; ~x; !); (6.37)

where��(!0i) is the power of a photon landing at the surface�A from direction!0i.
The�� and�A quantities are approximated from the photons in the neighborhood of~x in the

following way. A sphere centered around~x is extended until it containsn photons. If at this point the
radius of the sphere isr, then the intersected surface area is�A = �r2 (figure 6.22).

6.5. REVIEW OF RANDOM WALK ALGORITHMS 73

A = r∆ π 2

sphere containing n photon hits

surface

intersection of the surface and the sphere

Figure 6.22: Retrieving data from the photon-map

Instant radiosity

Instant radiosity [Kel97] elegantly subdivides the shooting walks into a view-independent walk and to
the last bounce which reflects the contribution to the eye. The view-independent walks are calculated in
the first phase of the algorithm and each walk results in a point-lightsource that represents the power at
the end of the walk. The view-independent walk is quite similar to the light-tracing algorithm, but the
new directions are sampled from the Halton sequence instead of a random distribution. In the radiosity
setting the reflection at the end of the walks is also diffuse, thus it can be stored as a point-lightsource of
homogeneous directional radiation.

Eye

window

shooting step gathering step

Figure 6.23: Instant radiosity

In the second phase of the algorithm the power of the diffuse lightsources are reflected towards the
eye. Since this is a simple, local illumination problem, the algorithm can take advantage of the rendering
hardware of advanced workstations which can render the effect of these lightsources on the scene and also
to compute shadows. If the number of lightsources is more than what can be handled by the hardware,
the computation is broken into different phases. Each phase uses just a few of the lightsources and the
final image is obtained as the average of the estimates of the phases, which is computed by the hardware
accumulation buffer.

Instant radiosity is quite similar to photon-map based techniques. However, instead of using ray-
tracing for final gather, the photons in the photon map are used as lightsources and fast and hardware
supported visibility and shadow algorithms are applied. The other fundamental difference is that instant
radiosity allows just a relatively low number of photons which therefore should be very well distributed.
The optimal distribution is provided by quasi-Monte Carlo light walks.

Chapter 7

Stochastic iteration solution of the global
illumination problem

7.1 Why should we use Monte-Carlo iteration methods?

Deterministic iteration has two critical problems. On the one hand, since the domain of the radiance
function is 4 dimensional and has usually high variation, an accurate finite-element approximation often
requires very many basis functions, which, in turn, need a lot of storage space. On the other hand, when
finite element techniques are applied, the transport operator is only approximated, which introduces
some non-negligible error in each step. As concluded in section 3.3.1, if the contraction ratio of the
operator is�, then the total accumulated error will be approximately1=(1 � �) times the error of a
single step [SKFNC97]. For highly reflective scenes, the iteration is slow and the result is inaccurate
if the approximation of the operator is not very precise. Very accurate approximations of the transport
operator, however, require a lot of computation time and storage space.

Both problems can be successfully attacked by randomizing the iteration, which is called thestochas-
tic iteration . The basic idea of stochastic iteration is that instead of approximating operatorT in a deter-
ministic way, a much simpler random operator is used during the iteration, which “behaves” as the real
operator just in the “average” case. When stochastic iteration is applied, the transport operator should
be like the real operator just in the average case. As we shall see, it is relatively easy to find random
operators whose expected case behavior matches exactly to that of the real operator. Thus the error
accumulation problem can be avoided.

On the other hand, if the operator is carefully randomized, it does not require the integrand every-
where in the domain, which allows us not to store the complete radiance function, thus a lot of storage
space can be saved. Compared to the astronomical storage requirements of non-diffuse radiosity meth-
ods, for example, with stochastic iteration we can achieve the same goal with one variable per patch
[SKP98a]. This argument loses some of its importance when view-independent solution is also required,
since the final solution should be stored anyway. This is not a problem if only the diffuse case is consid-
ered, since using a single radiosity value per patch the image can be generated from any viewpoint. For
the non-diffuse case, the reduced storage gets particularly useful when the image is to be calculated in
only a single, or in a few eye positions.

Summarizing, the advantages of stochastic iteration are the simplicity, speed, affordable storage
requirements and numerical stability even for very large systems containing highly reflective materials.

7.2 Formal definition of stochastic iteration

The concept of stochastic iteration has been proposed and applied for the diffuse radiosity problem in
[Neu95, NFKP94, NPT+95, SKFNC97], that is for the solution of finite-dimensional linear equations.
In this section we generalize the fundamental concepts to solve integral equations [SK98c, SK99c], then
the generalized method will be used for attacking non-diffuse global illumination problems.

74

7.2. FORMAL DEFINITION OF STOCHASTIC ITERATION 75

Suppose that we have a random linear operatorT � so that

E[T �L] = T L (7.1)

for any Riemann-integrable functionL.
During stochastic iteration a random sequence of operatorsT �1 ;T �2 ; : : : ; T �i ; : : : is generated, which

are instantiations ofT �, and this sequence is used in the iteration:

Lm = Le + T �mLm�1: (7.2)

Since in computer implementations the calculation of a random operator may invoke finite number
of random number generator calls, we are particularly interested in those random operators which have
the following construction scheme:

1. Random “point”pi is found from a finite dimensional set� using probability densityprob(p).
This probability density may or may not depend on functionL.

2. Usingpi a “deterministic” operatorT �(pi) is applied to radianceL.

Pointpi is called therandomization point since it is responsible for the random nature of operatorT �.
Using a sequence of random transport operators, the measured value

Pm =MLm (7.3)

will also be a random variable which does not converge but fluctuates around the real solution. However,
the solution can be found by averaging the estimates of the subsequent iteration steps:

P = lim
M!1

MX
m=1

Pm: (7.4)

Formally the sequence of the measured values during the iteration is the following:

P1 = ML1 =M(Le + T �
1 L

e);

P2 = ML2 =M(Le + T �2 Le + T �2 T �1 Le);
...

PM = MLM =M(Le + T �MLe + T �MT �M�1L
e + T �MT �M�1T �M�2L

e + : : :):

Averaging the firstM steps, we obtain:

~PM =
1

M

MX
i=1

MLi =M(Le +
1

M

MX
i=1

T �i Le +
1

M

M�1X
i=1

T �i+1T �i Le +
1

M

M�2X
i=1

T �i+2T �i+1T �i Le + : : :) =

M(Le+
1

M

MX
i=1

T �i Le+
M � 1

M
� 1

M � 1

M�1X
i=1

T �i+1T �i Le+
M � 2

M
� 1

M � 2

M�2X
i=1

T �i+2T �i+1T �i Le+ : : :): (7.5)

In order to prove that~PM really converges to the solution of the integral equation, first it is shown that the
expected value ofT �i+kT �i+k�1 : : : T �i+1T �i Le is T k+1Le. For k = 0, it comes directly from the requirement of
equation (7.1). Fork = 1, thetotal expected value theorem[Rén62] can be applied:

E[T �i+1T �i Le] =
Z
�

E[T �i+1T �i Lejpi+1 = p] � prob(p) dp: (7.6)

Since for a fixedpi+1 = p, operatorT �i+1 becomes a deterministic linear operator, its order can be exchanged with
that of the expected value operator:

E[T �i+1T �i Lejpi+1 = p] = T �i+1(p) (E[T �i Le]) : (7.7)

7.2. FORMAL DEFINITION OF STOCHASTIC ITERATION 76

Using requirement (7.1), the expected valueE[T �i Le] is T Le, thus we further obtain

E[T �i+1T �i Lejpi+1 = p] = T �i+1(p)(T Le): (7.8)

Substituting this to equation (7.6), we get

E[T �i+1T �i Le] =
Z
�

T �i+1(p)(T Le) � prob(p) dp = E[T �i+1(T Le)] = T (T Le) = T 2Le; (7.9)

which concludes our proof for thek = 1 case. The very same idea can be used recursively for more than two
terms.

Returning to the averaged solution~PM , its expected value is then

E[~PM] =M(Le + T Le + M � 1

M
T 2Le +

M � 2

M
T 3Le + : : :+

1

M
T MLe): (7.10)

Note also that there is some power “defect”�P between this expected value and the real solution

P =M(Le + T Le + T 2Le + T 3Le + : : :)

because of the missing higher order terms for finiteM values. Denoting the contraction ratio of the integral
operatorT by �, and assuming that the measuring device is calibrated to show valuec for unit homogeneous
radiance, this defect can be estimated as follows:

j�P j =
����M

�
1

M
T 2Le +

2

M
T 3Le + : : :

M � 1

M
T MLe + T M+1Le + T M+2Le + : : :

����� �
c�2

M
� jjLejj � (1 + 2�+ 3�2 + : : :+ (M � 1)�M�2 +M�M�1 +M�M + : : :) =

c�2

M
� jjLejj �

"
d

d�

M�1X
i=1

�i

!
+M � �

M�1

1� �

#
� c

M
� �2

(1� �)2
� jjLejj: (7.11)

This defect converges to zero if the operator is a contraction andM goes to infinity, thus we have

lim
M!1

E[~PM] =M(Le + T Le + T 2Le + T 3Le + : : :): (7.12)

Finally, it must be explained why and when random variable~PM converges to its expected value. Looking at
formula (7.5) we can realize that it consists of sums of the following form:

1

M � k
�
M�kX
i=1

T �i+kT �i+k�1 : : : T �i+1T �i Le:

According to the theorems of large numbers, and particularly to the Bernstein [R´en62] theorem, these averages
really converge to the expected value if the terms in the average are not highly correlated (note that here the terms
are not statistically independent as assumed by most of the laws of large numbers). It means that random variables
T �i+kT �i+k�1 : : : T �i Le andT �j+kT �j+k�1 : : : T �j Le should not have strong correlation ifi 6= j. This is always true
if the operators are generated from independent random variables. To show a negative example, let us assume that
there is a very strong correlation between the random operators, namely that differentT �i random operators use
exactly the same randomization point. When this randomization point is known, the iteration is fully deterministic
using operatorT �i = T �. The limiting value of this iteration will be a random variable

M(Le + (T �)Le + (T �)2Le + (T �)3Le + : : :);

which usually differs from the expected solution.
There is another danger that should be considered. Random variable~PM is a sum of random variables whose

number goes to infinity. Even if the variances of all single terms in this sum converge to zero, the variance of the
sum of these terms might still converge to a non-zero value. In the context of random walks, this phenomenon
is called “non-existing variance” [Sbe99, Erm75]. To avoid this case, random operators should not be “over-
randomized”, thus its variance must not exceed a certain limit which depends on the contraction ratio.

7.3. STOCHASTIC ITERATION FOR THE DIFFUSE RADIOSITY 77

7.2.1 Other averaging techniques

In the previous section we solved the problem that stochastic iteration is not convergent by simply aver-
aging the values generated during iteration. There are other averaging schemes, on the other hand, that
use even more combinations of the preceding random operators.

Self-correcting iteration

Self-correcting iteration [Neu95] uses the following formulae to derive a new value from the previous
one:

L0m = Le + T �mLm�1;
Lm = �m � L0m + (1� �m) � Lm�1;
~Pm = MLm; (7.13)

where�m is an appropriate sequence that converges to 0, as for example,�m = 1=m.
To allow comparison, the corresponding formulae of the normal iteration are also presented here:

Lm = Le + T �mLm�1;
~Pm = �m �MLm + (1� �m) � ~Pm�1: (7.14)

Note that the fundamental difference is that self-correction iteration uses the average of the previous
samples not only in the final estimate but also to continue iteration. Self-correcting iteration thus can use
all combinations of the preceding random operators to compute the actual result. However, it also has
energy defect.

7.3 Stochastic iteration for the diffuse radiosity

In the gathering type radiosity algorithms the projected rendering equation (formula (4.5)) has the fol-
lowing form

L = Le +R � L:
Alternatively, shooting radiosity algorithms are based on the projected potential equation (formula (4.8)):

P = Pe +H �P:

According to the basic requirement of stochastic iteration we need to find random operatorsT �F or
T 0�
F that behave as the real operator in average, that is

E[T �FL] = R � L;

E[T 0�
F P] = H �P: (7.15)

The evaluation of(R �L)ji or alternatively of(H �P)ji requires a surface and a directional integration
(or in other formulations two surface integrations).

The possible alternatives for the random transport operator are as follows:

1. Both integrals are explicitly computed but only for a randomly selected subset of the patches
(stochastic radiosity).

2. The surface integral explicitly computed but the directional integral implicitly (stochastic iteration
version of the transillumination radiosity).

3. Compute the surface integral implicitly but the directional integral explicitly (randomly placed
hemicubes).

4. Both integrals are computed implicitly (stochastic ray-radiosity).

7.3. STOCHASTIC ITERATION FOR THE DIFFUSE RADIOSITY 78

7.3.1 Stochastic radiosity

In stochastic radiosity[NFKP94], the randomized operator is simplified in a sense that it first selects
a single (or a few) patches with probability proportional to their power and then calculates the transfer
only from this important patch as if it had all the power� =

Pn
k=1Pk: Thus both integrals are explicitly

computed but only for a subset of patches.
To prove that it meets the requirement stated by equation (7.15), let us suppose that patchj has been selected

and let us examine the new power of patchi:

(T 0
�

F P)ji = Hij � �: (7.16)

Since the probability of selecting patchj isPj=�, the expectation of the new power is

E[(T 0
�

F P)ji] =
nX

j=1

Hij �� �
Pj

�
=

nX
j=1

Hij �Pj (7.17)

which we wanted to prove.

7.3.2 Transillumination radiosity

The transillumination radiosity method [Neu95, SKFNC97] has also a stochastic iteration version. It
defines the random transport operator by uniformly selectingD transillumination directions !01; : : : !

0
D

and allowing patches to interact only in these transillumination directions. In order to calculate these
interactions, a large discretized window is placed perpendicularly to each transillumination direction and
the radiance transfer to a patch is approximated by elementary transfers going through the pixels covering
the projection of the patch.

Let us consider a single transillumination direction. Projecting patchAi onto a plane that is perpen-
dicular to the transillumination direction and then approximating the integral of the incoming radiance
here by a discrete sum, we getZ

Ai

L(h(~x;�!0d)) � cos �0d d~x =

Z
A
p
i

L(h(~x0;�!0d)) � d~x0 �
X
P2A

p
i

Lbu�erd[P] � �P: (7.18)

wherebu�erd[P] stores the index of that patch which is visible in pixelP in the transillumination
direction!0d from patchi, and�P is the size of a pixel of the buffer (figure 7.1).

x A

L

 A

transillumination
plane

transillumination
direction

δ

i

i

pixelP

buffer[P]

d

p

ω
P

Figure 7.1: Integration on the transillumination plane

Thus the random transfer operator is

(T �FL)ji =
4� � fi � �P

D

DX
d=1

X
P2A

p
i

Lbu�erd[P]
: (7.19)

If the transillumination directions are uniformly distributed and the buffer is uniformly jittered, then the ex-
pected value of this operator is

E[(T �F L)ji] =
Z

Z
P

4� � fi � �P
D

DX
d=1

X
P2A

p

i

Lbu�erd[P]
dp

�P

d!0d
4�

=
1

D

DX
d=1

Z

Z
P

X
P2A

p

i

Lbu�erd[P] � fi dp d!0d:

7.4. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 79

If uniform jittering is applied, then we can usually assume that the discrete approximation of the positional radiance
distribution gives back the real distribution in the average case, that isZ

P

X
P2A

p

i

Lbu�erd[P] dp =

Z
A
p

i

L(h(~x0;�!0d)) d~x0: (7.20)

However, this statement is not always true if incremental polygon filling algorithms are applied [SK98a, SK98c].
Note, for example, that an incremental polygon filling algorithm always generates an approximation whose width
and height are at least 1. Thus this assumption is correct if the resolution of the discrete buffer is high enough to
project each polygon onto at least a few pixels. Substituting this to the expected value integral, we get

E[(T �F L)ji] =
1

D

DX
d=1

Z

Z
A
p

i

L(h(~x0;�!0d)) d~x0 � fi d!0d =
Z

Z
Ai

L(h(~x0;�!0)) � fi � cos �0 d~xd!0: (7.21)

UsingL(h(~x0;�!0)) =
Pn

j=1 bj(h(~x
0;�!0)) � Lj and equation (4.21), we can prove that the expectation really

gives back the real projected transport operator:

E[(T �F L)ji] =
nX

j=1

Z

Z
Ai

bj(h(~x
0;�!0)) � fi � cos �0d d~xd!0 � Lj =

nX
j=1

Rij � Lj : (7.22)

7.3.3 Randomly placed hemicubes

This method can evaluate the directional integral explicitely by hemicubes, for instance. To simulate
Monte-Carlo surface integration, the center of the hemicube is selected randomly on the patch using a
uniform distribution.

7.3.4 Stochastic ray-radiosity

Stochastic ray-radiosity [NPT+95] approximates the transport operator byM random rays that are
sampled proportionally to the power of the patches. On a patch the starting point of the ray is sampled
using a uniform distribution, while the direction follows a cosine distribution. A single ray carries�=M

power. Thus this method approximates both integrals implicitly.
Let us examine the case when a single ray is selected (since different rays are sampled from the same distri-

bution, the effect ofM rays will beM times the effect of a single ray in the expected value). Suppose that patch
j is selected as a shooting patch. The probability of the selection event isPj=�. Thus the probability density of
selecting a point~x of a patch and a direction! is

Pj

�
� 1

Aj

� cos �:

This transfers�=M power to the patch that is hit by the ray where the reflected power is computed. Thus the
random transport operator for a single ray is

E[(T 0
�

F P)ji] = M � fi �
nX

j=1

Z
Aj

Z

bi(h(~y; !)) �
�

M
� 1

Aj

� cos � d~yd! � Pj

�
=

nX
j=1

Hij �Pj : (7.23)

7.4 Definition of the random transport operator for the non-diffuse
finite-element case

When moving towards the non-diffuse case, another requirement should be imposed upon the random
transport operator. It must not only meet the requirement of equation (7.1) and be easy to compute, but
it must also allow the compact representation of theT �i L functions. This extra requirement is evident

7.4. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 80

if we take into account that unlike in the diffuse case, the domain ofL is a 4-dimensional continuous
space, so is the domain ofT �i L. From the point of view of compactness, what we have to avoid is the
representation of these functions over the complete domain.

Thus those transport operators are preferred, which require the value ofL just in a few “domain
points” (e.g. in a single “domain point”). Note that the evaluation ofT �i L now consists of the following
steps: first a randomization pointpi is found to define random operatorT �i , which in turn determines at
which domain point the value ofL is required. Up to now, we have had complete freedom to define the
set of randomization points. One straightforward way is defining this set to be the same as (or a superset
of) the domain of the radiance function and using random transport operators that require the value of
the radiance function at their randomization points. Although this equivalence is not obligatory, it can
significantly simplify the computations, since when the randomization point is generated, the required
domain point is also known.

Using random operators that evaluate the radiance in a single point is not enough in itself, since
even a single “point” can result in a continuousT �i L function, which must be stored and re-sampled
in the subsequent iteration step and also by the measurement. The solution is the postponing of the
complete calculation ofT �i L until it is known where its value is needed in the next iteration step and by
the measuring device. In this way, the random operator should be evaluated twice but just for two points.
Once for the actual and the previous “points” resulting in[T �(pi)L(pi)](pi+1), and once forpeye which
is needed by the measuring device and for previous point providing[T �(pi)L(pi)](peye). The complete
iteration goes as follows:

P = 0 // initialize the measured value to zero
Findp1 randomly //select the randomization point of the first iteration
L(p1) = Le(p1)
for i = 1 to M do

P new = Le(peye) + [T �(pi)L(pi)](peye) // measure the radiance
P =MP new � 1=i+ (1� 1=i) � P // average the measured value
Findpi+1 randomly //select the randomization point of the next iteration
L(pi+1) = Le(pi+1) + [T �(pi)L(pi)](pi+1) // a single step of stochastic iteration

endfor
Display final image

7.4.1 Single ray based transport operator

The continuous formulation has just a single directional integral, thus a random transport operator can
evaluate this single integral implicitly. This results in a method that uses a “single” random walk to
obtain the solution.

More specifically, let the random transport operator use a single ray having random origin~yi and
direction!i generated with a probability that is proportional to the cosine weighted radiance of this point
at the given direction.

This ray transports the whole power

� =

Z
S

Z

L(~y; !0) cos �~y d!
0 d~y

to that point~x which is hit by the ray. Formally, the random transport operator is

(T �L)(~x; !) = � � �(~x� h(~yi; !i)) � fr(!i; ~x; !): (7.24)

Let us prove that this random operator meets the requirement of equation (7.1). The probability density of
selecting surface point~y and direction!0 is

dPrf~y; !0g
d~y d!~y

=
L(~y; !0) � cos �~y

�
(7.25)

7.4. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 81

dx

dy
y

x

y

x

ω

θ

θ

d

ωd y

x

Figure 7.2: Symmetry of solid angles of shooting and gathering

Using the definition of the solid angled!~y = d~x � cos �0~x=j~y � ~xj2 we can obtain a symmetry relation (fig-
ure 7.2) for the shooting and gathering solid angles:

d~y � d!~y � cos �~y = d~y � d~x � cos �
0

~x

j~y � ~xj2 � cos �~y = d~x � d~y � cos �~yj~y � ~xj2 � cos �0~x = d~x � d!0~x � cos �0~x: (7.26)

Thus the probability of selecting~y; !0 can also be expressed in the following way:

dPrf~y; !0g = L(~y; !0) � cos �~y
�

� d~y d!~y =
L(h(~x;�!0); !0) � cos �~x

�
� d~x d!0~x: (7.27)

Now we can easily prove that the random transport operator meets requirement (7.1) since

E[(T �L)(~x; !)] =
Z
S

Z

� � �(~x � h(~y; !0)) � fr(!0; ~x; !) dPrf~y; !0g =

Z

L(h(~x;�!0); !0) � cos �0~x � fr(!0; ~x; !) d!0~x = (T L)(~x; !): (7.28)

Note that the result of the application of the random operator can be a single point that receives all
the power and reflects some part of it or the result can be no point at all if the ray leaves the scene.

Suppose that the first random operatorT �1 is applied toLe which may transfer all power

�1 =

Z
S

Z

Le(~y1; !1) cos �~y1 d!1 d~y1

to a single point~x1 = h(~y1; !1) using probability density

dPr1f~y1; !1g
d~y1d!1

=
Le(~y1; !1) � cos �~y1

�
:

Before continuing with the second step of the iteration, the radiance should be measured, that is,
an image estimate should be computed fromLe + T �1 Le. We can separately calculate the effect of the
lightsources on the image and then add the effect ofT �

1
Le. Note thatT �

1
Le is concentrated in a single

point, thus its contribution can be computed by tracing a ray from the eye to this point, and if this point
is not occluded, then addingfr(!1; ~x; !eye) � � to that pixel in which~x is visible.

The second operatorT �2 should be applied toL1 = Le + T �1 Le; thus both the total power and the
probability density have been modified:

�2 =

Z
S

Z

L1(~y2; !2) cos �~y2 d!2 d~y2 = �1 � (1 + a~x1(!1))

7.4. DEFINITION OF THE RANDOM TRANSPORT OPERATOR FOR THE NON-DIFFUSE FINITE-ELEMENT CASE 82

wherea~x1 is thealbedoat point~x1 defined bya~x(!) =
R

fr(!; ~x; !
0) cos �0~x d!

0; and the new probability

density is

dPr2f~y2; !2g
d~y2d!2

=
L1(~y2; !2) � cos �~y2

�
=
Le(~y2; !2) � cos �~y2 + fr(!1; ~y2; !2) cos �~y2 � �(~y2 � ~x1)

�1(1 + a~x1(!1))
:

Sampling according to this mixed, discrete-continuous probability density can be realized in the fol-
lowing way. First it is decided randomly whether we sampleLe or the newly generated point using
probabilities1=(1 + a~x1(!1)) anda~x1(!1)=(1 + a~x1(!1)), respectively. IfLe is selected, then the sam-
pling process is the same as before, i.e. a random point and a random direction are found with probability
density

Le(~y2; !2) cos �~y2
�1

:

However, if the new point is chosen, then the direction of the next transfer is found with probability
density

fr(!1; ~y2; !2) cos �~y2
a~x1(!1)

:

In either case, a ray defined by the selected point and direction is traced, and the complete power
�2 = �1 � (1 + a~x1(!

0
1)) is transferred to that point which is hit by the ray. The subsequent steps of the

iteration are similar.
Interestingly this iteration is a sequence of variable length random walks, since at each step the point

that is last hit by the ray is only selected with a given probability as the starting point of the next ray. To
understand how it works, first let us assume that the environment is closed, that is, rays always hit objects.
The algorithm selects a point from a lightsource and then starts a random walk. A step is computed by
sending a ray to the randomly selected direction. At the first hit the image contribution is computed.
To prepare for the next step, the power to be transferred is set to(1 + a1)�. The walk finishes after
the first step according to the powers, that is with probability1=(1 + a1) and continues with probability
a1=(1 + a1). If a walk finishes, another walk is initiated from the lightsource, if not, then the ray is
emanated from the previous hit point. The new ray is traced, the image contribution is computed, and
the power is set again to(1 + a2(1 + a1))�. Thus now the walk is continued with

a2 + a2a1

1 + a2 + a2a1

probability. Note that the limiting case of this continuation probability is a special average of the albedos:

Prfcontinue at stepng = ~a =
an + anan�1 + anan�1an�2 + : : :+ an � : : : � a1

1 + an + anan�1 + anan�1an�2 + : : :+ an � : : : � a1
If all points have the same albedoa, then in the limiting case~a = a, thus the continuation probability
is similar to what is usually used in expansion. However, a difference still remains. When expansion
continues a walk, it scales the power by1=ai according to Russian-roulette and resets the scaling factor
to 1 when a new walk is initiated. In iteration, however, the power is scaled only byai, but the emission
power is added at each reflection, and this is not reinitialized when a new lightsource point is sampled.

Now let us also consider open environments where a ray can leave the space with positive probability.
When this happens, the power will be the emission power and the algorithm starts to build up the walk
from scratch again. Generally, the continuation probability will be in between~a=(1+~a) and~a depending
on how open the scene is.

Note that even this simple example highlighted the fundamental difference between iteration and
expansion. Expansion — i.e. random walk — methods usually continue the walk with the probability
of the local albedo, that is, they make decisions based on local features. Iteration, on the other hand,
takes into account the available knowledge about the radiance function — it makes decision using global
information — which eventually results in a continuation probability which depends on the average
albedo and on how open the scene is. Since these factors determine the contraction of the light transport
operator, we can state that iteration uses a more precise approximation of the contraction to randomly
terminate the walk.

Chapter 8

Simulating light transport using
ray-bundles

This chapter proposes expansion and iteration solutions of the global illumination problem, in which
ray-bundles are used to simulate the radiance transport.

Walk methods proposed so far use individual ray-paths as samples of the integrand of the rendering
equation. However, ray-shooting may waste a lot of computation by ignoring all the intersections but
the one closest to the eye. Thus it seems worth using a set ofglobal directions [Sbe96, Neu95, SMP98,
Sbe97] for the complete scene instead of solving the visibility problem independently for different points
~x. Moreover, ray-shooting is a simple but by no means the most effective visibility algorithm since it is
unable to take advantage of image or object coherence. Other methods based on the exploitation of image
coherence, such as the z-buffer, painter’s, Warnock’s, etc. algorithms can be considered as handling a
bundle of parallel rays and solving the visibility problem for all of them simultaneously. Continuous
(also called object-precision) methods can even determine the visibility problem independently of the
resolution, which corresponds to tracing infinitely many parallel rays simultaneously.

The set of parallel global rays is called theray-bundle.
Using ray-bundles, we have to realize that even single-ray techniques use recursive ray-tracing to

simulate multiple interreflections. Thus ray-bundles should also be traced several times in different
directions to model multiple interreflections. This tracing composes awalk using ray-bundles in each
step.

In order to make this method work, three problems must be solved. Firstly, the radiance on the
wavefront of the ray-bundle must be represented, for which finite-elements are used. Secondly, the di-
rections should be selected in a way that all the possible light-paths are covered and the integral quadra-
ture should be accurately approximated. The application of random or low-discrepancy series on the
directional sphere is proposed to solve this problem. Thirdly, efficient algorithms are needed that can
compute the radiance transfer of all patches in a single direction, for which the generalization of discrete
and continuous visibility algorithms are applied.

8.1 Reformulation of the rendering equation using finite-elements

In order to represent the radiance that is transferred by a ray-bundle, a 2-dimensional function is needed,
which is defined by finite-elements. Using finite-element concepts, the radiance function is searched in
the following form:

L(~x; !) � L(n)(~x; !) =
nX
j=1

Lj(!) � bj(~x) (8.1)

whereL(n)(~x; !) is the approximating radiance andbj(~x) is a complete function system. In this function
space, the scalar product of two functionsf; g is defined as the integral of their products on the total

83

8.2. STOCHASTIC EXPANSION USING RAY BUNDLES 84

surfaceS:
hf; gi =

Z
S

f(~x) � g(~x) d~x: (8.2)

Since the radiance is approximated in a subspace, we cannot expect the radiance approximation to
satisfy the original rendering equation everywhere. Instead, equality is required in an appropriate sub-
space defined byadjoint basis functions~b1(~x);~b2(~x); : : : ;~bn(~x) (figure 4.1). This set is called adjoint
of b1(~x); b2(~x); : : : ; bn(~x) since we require thathbi(~x);~bj(~x)i = 1 if i = j and 0 otherwise. Projecting
the rendering equation into the subspace of~b1(~x);~b2(~x); : : : ;~bn(~x) we obtain

hL(n)(~x; !);~bi(~x)i = hLe(~x; !);~bi(~x)i+h
Z

L(n)(h(~x;�!0); !0)�fr(!0; ~x; !)�cos �0 d!0;~bi(~x)i: (8.3)

Using the orthogonal property of the basis and adjoint basis functions, we get

Li(!) = Lei (!) +
nX
j=1

Z

Lj(!
0) � hbj(h(~x;�!0)) � fr(!0; ~x; !) � cos �0;~bi(~x)i d!0: (8.4)

The same equation can also be presented in a matrix form:

L(!) = Le(!) +

Z

T(!0; !) � L(!0) d!0; (8.5)

whereL(!)ji = Li(!) is the vector of radiance values, and

T(!0; !)jij = hfr(!0; ~x; !) � bj(h(~x;�!0)) � cos �0;~bi(~x)i

is thebi-directional transport matrix .
Assume that the BRDF functionfr(!0; ~x; !) can be well approximated by~fi(!0; !) inside the sup-

port of ~bi (if the support of these basis functions is small, this is always possible). This allows for the
separation of the transport matrix to a diagonal matrixF(!0; !) of BRDF functions

F(!0; !)jii = ~fi(!
0; !);

and to ageometry matrixA(!0) that is independent of direction!:

A(!0)jij = hbj(h(~x;�!0)) � cos �0;~bi(~x)i: (8.6)

The geometry matrix contains a scalar product of basis functions at points that are visible from each-other
in direction!0. Thus it expresses the strength of coupling as the degree of visibility.

Using the geometry matrix, equation (8.5) can also be written as

L(!) = Le(!) +

Z

F(!0; !) �A(!0) � L(!0) d!0: (8.7)

This equation — that can be called as the projected rendering equation — is highly intuitive. The
radiance of a patch is the sum of the emission and the reflection of all incoming radiances. The role of
the patch-direction-patch “form-factor matrix” is played byA(!0).

8.2 Stochastic expansion using ray bundles

This section discusses an expansion algorithm for the solution of equation (8.7). The algorithm takes
samples of the global ray-bundle walks and uses them in the quadrature. A single walk starts by selecting
a direction either randomly or quasi-randomly, and the emission transfer of all patches is calculated
into this direction (figure 8.1). Then a new direction is found, and the emission is transferred and the
irradiance generated by the previous transfer is reflected from all patches into this new direction. The

8.2. STOCHASTIC EXPANSION USING RAY BUNDLES 85

image plane

direction 1

direction 2

direction 3

Figure 8.1: A path of ray-bundles

algorithm keeps doing this for a few times depending on how many bounces should be considered, then
the emission is sent and the irradiance caused by the last transfer is reflected towards the eye. Averaging
these contributions results in the final image. When the radiance reflection is calculated from the previous
direction to the current direction or to the direction of the eye, the radiance is attenuated by the BRDF of
the corresponding surface element.

Concerning the memory requirements of the method, each patch holds the irradiance of the last step
of the walk and the accumulated radiance towards the eye. Since the selected directions are the same for
all surfaces, they must be stored only once. Consequently the memory requirement is comparable to that
of the diffuse radiosity algorithms although it is also capable to handle specular reflections.

Now, let us formally examine the steps of the method. In order to simplify the notations, the integral
operator of the projected rendering equation is denoted byTF :Z

T(!0; !) � L(!0) d!0 = TFL(!): (8.8)

Thus the short form of the projected rendering equation is:

L(!) = Le(!) + TFL(!): (8.9)

In equation (8.9) the unknown radiance functionL(!) appears on both sides. Substituting the right
side’sL(!) by the complete right side, which is obviouslyL(!) according to the equation, we get:

L(!) = Le(!) + TF (Le(!) + TFL(!)) = Le(!) + TFLe(!) + T 2

FL(!): (8.10)

Repeating this stepm times, the original equation can be expanded into a Neumann series:

L(!) =
mX
i=0

T iFLe(!) + T m+1

F L(!): (8.11)

If integral operatorTF is a contraction, that is ifjjTFL(!)jj � � � jjL(!)jj, for some� < 1, thenT m+1

F L

converges to zero, thus

L(!) =
1X
i=0

T iFLe(!): (8.12)

The contractive property ofTF comes from the fact that a reflection or refraction always decreases the
energy. Using, for example, the infinite norm, we obtain

jjTFL(!)jj1 � max
~x

Z

fr(!
0; ~x; !) � cos �0 d!0 � jjL(!)jj1 = max

~x
a~x(!) � jjL(!)jj1;

8.2. STOCHASTIC EXPANSION USING RAY BUNDLES 86

wherea~x(!) is thealbedoof the material at point~x. For physically plausible material models, the albedo
must be less than 1.

The terms of this infinite Neumann series have intuitive meaning as well:T 0

FL
e(!) = Le(!) comes

from the emission,T 1

FL
e(!) comes from a single reflection (called 1-bounce),T 2

FL
e(!) from two reflec-

tions (called 2-bounces), etc. Using the definition of integral operatorTF , the full form of the Neumann
series is:

L(!) = Le(!)+

Z

T(!01; !) �Le(!01) d!01+
Z

Z

T(!01; !) �T(!02; !01) �Le(!02) d!02d!01+ : : : (8.13)

In practice the infinite sum of the Neumann series is approximated by a finite sum. The number of
required terms is determined by the contraction� of operatorTF — that is the overall reflectivity and the
openness of the scene. Let us denote the maximum number of calculated bounces byD. The truncation
of the Neumann series introduces a bias in the estimation, which can be tolerated ifD is high enough.
On the other hand, this bias can even be eliminated by randomly terminating the walk in the sense of
Russian-roulette.

In order to simplify the notations, we introduce thed-bounce irradiance Jd for d = 1; 2; : : : as
follows:

J0 = A(!0D) � Le(!0D);
Jd = 4� �A(!0D�d) � F(!0D�d+1; !0D�d) � Jd�1

whereJd is ad + 1 dimensional function of directions(!0D�d; !
0
D�d+1; : : : ; !

0
D). Thed-bounce irradi-

ance represents the irradiance arriving at each patch, that is emitted from a patch and is bounced exactly
d times.

Similarly, we can define themax d-bounce irradianceId for d = 1; 2; : : : as follows:

I0 = A(!0D) � Le(!0D);
Id = A(!0D�d) � (Le(!0D�d) + 4� � F(!0D�d+1; !0D�d) � Id�1)

whereId is ad + 1 dimensional function of directions(!0D�d; !
0
D�d+1; : : : ; !

0
D). The maxd-bounce

irradiance represents the irradiance arriving at each patch after completing a path of lengthd following
the given directions, and gathering and then reflecting the emission of the patches visited during the path.

Limiting the analysis to at mostD+1 bounces, the solution of the rendering equation can be obtained
as a2D-dimensional integral:

L(!) =

�
1

4�

�D
�
Z

: : :

Z

�
Le(!) + 4� � F(!01; !) � ID

�
d!0D : : : d!

0
1: (8.14)

This high-dimensional integral (2D is 10 to 20 in practical cases) can be evaluated by numerical
quadrature. The properties of the integrand and the dimension determine which quadrature rules are
applicable for the calculation. Since classical quadrature rules, such as the trapezoidal rule or Gaussian
quadrature, are not appropriate for the evaluation of high-dimensional integrals due to their dimensional
explosion, Monte-Carlo techniques are proposed. Since the integrand is square integrable (inL2), the
variance of the Monte-Carlo estimate will converge to zero. Furthermore, it is also continuous and is of
finite variation in the sense of Hardy and Krause, thus quasi-Monte Carlo techniques are also appropriate
[SKFNC97].

8.2.1 Generating uniformly distributed points on the sphere

Since random or low-discrepancy sequences are defined in the unit interval, the directional sphere must
be mapped into the unit square, or alternatively, the points in the unit square should be projected onto

8.2. STOCHASTIC EXPANSION USING RAY BUNDLES 87

the directional hemisphere. In order to generate a uniform distribution on the surface of the directional
sphere, the following transformation can be used [Sob91]:

� = 2�u; � = arccos(1� 2v): (8.15)

In this case

d! = det

2
64

@�
@u

@�
@v

@�
@u

@�
@v

3
75 � sin � du dv = 4� � du dv: (8.16)

thus the spatial distribution is uniform on the sphere if it was in the unit square.

8.2.2 Simple Monte-Carlo, or quasi-Monte Carlo walks

In order to evaluate formula (8.14),M random or quasi-random walks should be generated. When the
D-bounce irradiance is available, it is multiplied by the BRDF defined by last direction!1 and viewing
direction! to find a Monte-Carlo estimate of the radiance that is visible from the eye position. Note that
this step makes the algorithm view-dependent.

The final image is the average of these estimates. The complete algorithm — which requires just one
variable for each patchi, the maxd-bounce irradianceI[i] — is summarized in the following:

for m = 1 to M do // samples of global walks

Generate(!(m)

1
; !

(m)

2
; : : : ; !

(m)

D) // !(m)

i is a uniformly distributed direction
I = 0
for d = 0 to D � 1 do I =A(!0D�d) �

�
L
e(!0D�d) + 4� � F(!0D�d+1; !0D�d) � I

�
// a walk

Calculate the image estimate from the irradianceI

Divide the estimate byM and add to the Image
endfor
Display Image

8.2.3 Calculation of the image estimate

A walk generates a sample of the irradiance field on each patch of the scene. From this irradiance field
an image estimation can be obtained taking into account the position of the camera. There are basically
two different methods to calculate the image estimate. On the one hand, evaluating the BRDF once for
each patch, a radiance value is assigned to them, then in order to avoid “blocky” appearance, bi-linear
smoothing is applied. Using Phong interpolation, on the other hand, the radiance is evaluated at each
point visible through a given pixel using the irradiance field, the surface normal and the BRDF of the
found point. Phong interpolation is more time consuming but the generated image is not only numerically
precise, but is also visually pleasing.

Bi-linear interpolation

A simple way of the image generation is to assign a single radiance value to each patch using the normal
vector of the patch and the viewing direction that is computed for the center of the patch. Thus the image
estimate is calculated as follows:

for each patchp do // do it for each patch
Calculate viewing direction! from patchp
L[p] +=Le[p](!) + 4� � ~fp(!(m)

1
; !) � I[p]

endfor

However, the constant color of the surfaces results in the annoying effect of faceted objects, since the
eye psychologically accentuates the discontinuities of the color distribution. To create the appearance
of smooth surfaces, the tricks ofGouraud shading can be applied to replace the jumps of color by
linear changes. In contrast to Gouraud shading as used in incremental methods, in this case vertex

8.2. STOCHASTIC EXPANSION USING RAY BUNDLES 88

colors are not available to form a set of knot points for interpolation. These vertex colors, however,
can be approximated by averaging the colors of adjacent polygons (see figure 8.2). Assuming triangular
patches, the algorithm of image creation is:

for each vertexv do
Lv[v] = 0
adjacent patches[v] = 0

endfor
for each patchp do

for each vertexv of patchp do
Lv[v] +=L[p]
adjacent patches[v]++

endfor
endfor
for each vertexv doLv[v] /= adjacent patches[v]
for each patchp do

Find vertices of patchp: v1; v2; v3
GouraudShading(v1; v2; v3; Lv[v1]; Lv[v2]; Lv[v3])

endfor

L L L L2 3 41

L L

L
L

2

3
4

1

+ + +

4
Lv =

Figure 8.2: Bi-linear interpolation

Although bi-linear interpolation results in continuous color, but the derivative of the color is still
discontinuous. Unfortunately, the human eye is sensitive to these discontinuous derivatives, which leads
to Mach-banding. On the other hand, highly specular surfaces may have strongly non-linear color,
which can hardly be approximated by linear functions. This can produce noticeable artifacts and can
miss important highlights. The improved interpolation scheme proposed in the following section can
solve these problems.

Phong integpolation

In Phong interpolation, the surface normal inside the patches are interpolated from the surface normals
at the vertices and the BRDF is evaluated for every pixel using the irradiance information. If the normal
vectors are not available in the vertices, then they can be computed as an average normal vectors of
patches adjacent to this vertex. The algorithm of the image estimation is:

for each pixelP of the image
Find point~x which is visible in this pixel
Determine the viewing direction!, the visible patchs and the surface normal~N at this point~x
L[P] = L

e[s](!) + 4� � fr(!(m)

1
; ~x; ~N; !) � I[s]

endfor

This procedure can be speeded up if in the preprocessing phase the surface visible at each pixel and
its surface normal are determined and stored in a map.

8.2. STOCHASTIC EXPANSION USING RAY BUNDLES 89

8.2.4 Improved walking techniques

The walk algorithm that has been directly derived from the quadrature formulae uses direction!1 to
evaluate the contribution of 1-bounces, directions(!1; !2) for the 2-bounces,(!1; !2; !3) for the 3-
bounces, etc. This is just a little fraction of information what can be gathered during the complete walk.
Why do not we use the samples of!1, !2, !3, etc. to calculate the 1-bounce contribution,(!1; !2),
(!1; !3), : : :, (!2; !3), etc. combinations of directions for 2-bounces, etc. as shown in figure 8.3.
This is possible, since if the samples of(!1; !2; : : : ; !D) are taken from a uniform sequence, then all
combinations of its elements also form uniform sequences in lower dimensional spaces.

ω

ωω

ω

1 2

3

ω3
ω2

ω3
ω

ωω

ω

1 2

3

ω3
ω2

ω3-

ω3-
ω3-

ω3

ω2-

ω2-

ω1-ω

ωω

ω

1 2

3

normal combined bi-directional

Figure 8.3: Combined and bi-directional walks

If all possible combinations are used, then each walk generates
�D
k

�
number of samples for thek-

bounces, which can be used to increase the accuracy. Note that the increased accuracy is for free in terms
of additional visibility computation. However, due to the dependence of the BRDF functions onto two
directions and due to the fact that different bounces will be estimated by different number of samples
and thus cannot be summed, the required storage per patch is increased toD(D + 1)=2 + 1 number of
variables. SinceD is 5–8 in practical cases, this storage overhead is affordable.

Now each patch is represented by a triangle matrixI, where the(i; j) element stores the sum of
thosei-bounce irradiances where the last direction is!j. Table 8.1 shows an example forD = 3. The
complete algorithm ofcombined walking is shown below:

for m = 1 to M do
Generate(!(m)

1
; !

(m)

2
; : : : ; !

(m)

D) // !(m)

i is a uniformly distributed direction
I = 0
for d = 0 to D � 1 do // a walk

I[1][D � d] = A(!
(m)

D�d) � Le(!mD�d)
for b = 2 to d+ 1 do

I[b][D � d] = 0

for pd = 0 to d� 1 do I[b][D � d] += 4� �A(!
(m)

D�d) �F(!
(m)

D�pd; !
(m)

D�d) � I[b� 1][D � pd]

endfor
endfor
for each patchp do // accumulation of the contributions

Calculate viewing direction!
for d = 0 to D � 1 do

for b = 1 to d+ 1 doL[p] += (Le(!)[p] + 4� � ~fp(!(m)

D�d; !) � I[b][D � d]=
�
D

b

�
)=M

endfor
endfor

endfor
Render Image

8.2. STOCHASTIC EXPANSION USING RAY BUNDLES 90

last direction 1-bounce 2-bounce 3-bounce

3 J(!3)

2 J(!2) J(!3; !2)

1 J(!1) J(!3; !1) + J(!2; !1) J(!3; !2; !1)

Table 8.1: Irradiance matrix of a patch forD = 3

Bi-directional walking techniques are based on the recognition that when computing geometry ma-
trix A(!0) for some direction, the matrix for the reverse directionA(�!0) is usually also available
paying very little or no additional effort.

On the other hand, sinceA(!0)ij represents that ratio of the radiance emitted or reflected in direction
!0 by patchi which is actually received by patchj, A(!0)ij can be non zero only if patchi and patch
j are facing towards each other and patchi is facing in direction!0. Thus at most one value from the
A(!0)ij andA(�!0)ij can be non zero. It means that bi-directional techniques do not even require
additional storage and a single geometry matrix can be used to store the values for both!0 and�!0.
It can be decided whether a matrix element is valid for!0 or �!0 by inspecting the angle between its
normal vector and the given directions.

0.01

0.1

1

1 10 100

re
la

tiv
e

L1
 e

rr
or

global walks

Error of bundle tracing in a homogeneous room (D=5).

QMC normal
QMC combined

QMC bidirectional
MC normal

MC combined
MC bidirectional

Figure 8.4: Error of different walking techniques. The test scene was the homogeneous, closed Cornell-box,
where all surfaces have diffuse reflection of albedo 0.5 and diffuse emission of intensity 0.5 (section 3.4)

Formally, in bi-directional technique!1,�!1, !2,�!2, etc. are used to calculate the 1-bounce con-
tribution, (!1; !2), (!1;�!2), (�!1; !2), (�!1;�!2), (!1; !3), (!1;�!3), etc. combinations of direc-
tions for 2-bounces, etc. This multiplies the number of samples used for the computation of 1-bounces
by 2, for the 2-bounces by 4 and generally for theD bounces by2D, which can be quite significant. As
for the combined walking technique, these additional samples can be used in the numerical quadrature,
since if the samples of(!1; !2; : : : ; !D) are taken from a uniform sequence, then all combinations of its
elements and its inversions also form uniform sequences.

The improved walking techniques use more samples to estimate the 1-bounce, 2-bounce, etc. contri-
butions than the normal technique, thus we can expect an increase of the accuracy (figure 8.4). However,
if we use quasi-Monte Carlo integration, this increase is less than what could be observed for Monte-
Carlo quadrature. The reason is that low-discrepancy sequences are so “well-designed” to be as uniform
as possible, that mixing two different sequences cannot improve the discrepancy much further.

8.3. IMPORTANCE SAMPLING FOR THE EVALUATION OF DIRECTIONAL INTEGRALS 91

8.2.5 D-step iteration

The presented approach truncates the Neumann series afterD steps, which introduces some bias. This
bias can be eliminated using a simple correction of the emission functionLe when calculating higher
order interreflections.

Note that a global walk of lengthD provides the following terms:

Le + T �
1
Le + T �

(1;2)L
e : : :+ T �

(1;D)
Le;

where
T �
(i;j) = T �j T �j�1 : : : T �i+1T �i :

Thus having computed the first walk, we also have an estimate forT �
(1;D)

Le = T �DT �D�1 : : : T �2 T �1 Le.
Let us use this estimate to correct the emission function in the higher order terms when the second walk
is computed:

Le + T �D+1(L
e + T �

(1;D)
Le) + : : :+ T �

(D+1;2D)
(Le + T �

(1;D)
Le) =

Le + T �D+1L
e + : : :+ T �

(D+1;2D)
Le + T �

(1;D+1)
Le + : : : + T �

(1;2D)
Le: (8.17)

This gives us estimates not only for the bounces from 0 toD but also for the bounces fromD+1 to 2D.
Again the last-bounce will storeT �

(1;D)
Le + T �

(1;2D)
Le, which can be used to compensate the emission.

Thus after the second step we have estimates for the 0 to3D bounces. Asymptotically, this method
will generate estimates for all bounces. However, ifM global walks are generated, then the number of
estimates for bounces of 0 toD isM , for bounces ofD+ 1 to 2D isM � 1, for bounces2D + 1 to 3D

isM � 2 etc., which still results in some small energy defect.

8.3 Importance sampling for the evaluation of directional integrals

As for other Monte-Carlo methods, importance sampling is a primary candidate to improve the presented
methods. Importance sampling means that samples of the integral quadrature are selected from a non-
uniform probability density which emphasizes those samples that make significant contribution to the
integral.

Let us consider walks of length at mostD. In order to generate the resulting image, the radiance
of the visible surfaces should be evaluated for each pixelp. A single walk can be characterized by the
vector of the directions of individual steps, that is by

z = (!01; !
0
2; : : : ; !

0
D):

This vector can be regarded as a point in a space of walks and also as a sample in the domain of the
integration. A single walk can contribute to the powers of all pixels and at all representative wavelengths.
Thus the function is not scalar, but rather a vector. In order to establish an importance-driven algorithm,
first of all an importance function should be defined, which can rank different contributions made by
different walks.

Let theimportance function I be the sum of luminances of all pixels of the image estimate, resulting
from the walk. This importance function will really concentrate on those walks that have significant
influence on a few pixels or some influence on a lot of pixels, and does not waste computation time on
those walks that have little contribution to just a few pixels. Using theluminance information is justified
by the fact that the human eye is more sensitive to luminance variations than to color variations.

8.3.1 Application of the VEGAS algorithm

TheVEGAS algorithm [Lep80] can be applied to gather information about the importance sequences
of directions. Let us approximate the probability density in the following product form:

p(!1; !2; : : : ; !D) / g1(!1) � g2(!2) � : : : � gD(!D): (8.18)

8.3. IMPORTANCE SAMPLING FOR THE EVALUATION OF DIRECTIONAL INTEGRALS 92

It can be shown [Lep80] that the optimal selection ofg1 is

g1(!1) =

sZ
: : :

Z I2(!1; : : : ; !D)
g2(!2) : : : gD(!D)

d!2 : : : d!D; (8.19)

and similar formulae apply tog2; : : : ; gD. Theseg1; : : : ; gD functions can be tabulated as 2-dimensional
arrays (note that a single direction is defined by 2 scalars,� and�). The (i; j) element of this matrix
represents the importance of the directional region where

� 2 [
2i�

N
;
2(i+ 1)�

N
); � 2 [

j�

N
;
(j + 1)�

N
):

This immediately presents a recursive importance sampling strategy. The algorithm is decomposed
into phases consisting of a number of samples. At the end of each phase weightsg1; : : : ; gD are refined,
to provide a better probability density for the subsequent phase. Assuming thatg1; : : : ; gD are initially
constant, a standard Monte-Carlo method is initiated, but in addition to accumulating to compute the
integral,g1; : : : ; gD are also estimated using equation (8.19). Then for the following phase, the samples
are selected according to theg functions. In order to calculate a sample for!i, for instance, a single
random value is generated in the range of 0 and the sum of all elements in the array defininggi. Then
the elements of the array is retained one by one and summed to a running variable. When this running
variable exceeds the random sample, then the searched directional region is found. The direction in this
region is then found by uniformly selecting a single point from the region.

VEGAS method is not optimal in the sense that the probability density can only be approximately
proportional to the importance even in the limiting case since only product form densities are considered.

We have to mention that the original VEGAS method used 1-dimensionalg functions, but in our
case, the 2 scalars defining a single direction are so strongly correlated, thus it is better not to separate
them. In theory, higher dimensional tables could also be used, but this would pose unacceptable memory
requirements.

8.3.2 Application of Metropolis sampling

The Metropolis method achieves the sampling according to a probability that is proportional to the im-
portance functionI by establishing a Markov process on the space of global walks, whose limiting
distribution is proportional to the selected importance function. The integration problem is formulated
as follows:

L(!) =

�
1

4�

�D Z

Z

: : :

Z

Le(!) + 4� � F(!01; !) � ID(!01; !02; : : : ; !0D) d!0D : : : d!01 =
Z
V

f(z) dz:

The Metropolis algorithm [MRR+53] converges to the optimal probability density that is propor-
tional to the importance, that is in the limiting caseI(z) = b � p(z): However, this probability density
cannot be stored, thus in the Monte-Carlo formula the importance should be used instead, in the following
way:

L(!) =

Z
V

f(z) dz =

Z
V

f(z)

I(z) �I(z) dz = b �
Z
V

f(z)

I(z) �p(z) dz = b �E
�
f(z)

I(z)

�
� b

N
�
NX
i=1

f(zi)

I(zi)
: (8.20)

Scalarb of equation (8.20) has also an intuitive meaning. It is actually the integral of the importance
function on the whole domain sinceZ

V

I(z) dz =
Z
V

I(z)
p(z)

� p(z) dz =
Z
V

b � p(z) dz = b: (8.21)

In order to generate samples according top(z) = 1=b � I(z), a Markov process is constructed whose
stationary distribution is justp(z). Informally, the next statezi+1 of this process is found by letting an

8.3. IMPORTANCE SAMPLING FOR THE EVALUATION OF DIRECTIONAL INTEGRALS 93

almost arbitrarytentative transition function T (zi ! zt) generate atentative samplezt by mutating
the actual samplezi. Then, the tentative sample is either accepted as the real next state or rejected making
the next state equal to the actual state using anacceptance probabilitya(zi ! zt) that expresses the
increase of the importance:

a(zi ! zt) = min

�I(zt) � T (zt ! zi)

I(zi) � T (zi ! zt)
; 1

�
:

When we use Metropolis sampling in the solution of the global illumination problem, the “state”z

corresponds to a complete walk. Mutation strategies are responsible for changing the walk a “little”, by
perturbing one or more directions.

Variance reduction

Metropolis method may ignore calculated function values if their importance is low. However, these
values can be used to reduce variance. Suppose that the importance degrades at stepi. Thus the process
is in zt with probability a(zi ! zt) and inzi with probability 1 � a(zi ! zt). In order to compute
the integral quadrature, random variablef(zi+1)=I(zi+1) is needed. A common variance reduction
technique is to replace a random variable by its mean, thus we can use

(1� a(zi ! zt)) �
f(zi)

I(zi)
+ a(zi ! zt) �

f(zt)

I(zt)

in the integral quadrature instead off(zi+1)=I(zi+1).

Mutation strategies

The statespace of the Markov process consists ofD-dimensional vectors of directions that define the
sequence of directions in the global walks. Thus the tentative transition function is allowed to modify
one or more directions in these sequences.

s

s

s

ω

ω

ωω

ω

ω 1

1

2

2

3
3

(m)

(m+1)(m)

(m+1)

(m)
(m+1)

Figure 8.5: Mutation strategy

The set of possible sequences of directions can be represented by a2D-dimensional unit cube (each
direction is defined by two angles). In the actual implementation random mutations are used that are
uniformly distributed in a2D dimensional cube of edge-sizes. In order to find the optimal extent of the
random perturbation, several, contradicting requirements must be taken into consideration. First of all,
in order to cover the whole statespace of unit size, mutations cannot be very small. Small mutations also
emphasize the start-up bias problem which is a consequence of the fact that the Markov process only
converges to the desired probability density (this phenomenon will be examined in detail later). On the
other hand, if the mutations are large, then the Markov process “forgets” which regions are important,
thus the quality of importance sampling will decrease. Finally, another argument against small mutations
is that it makes the subsequent samples strongly correlated. Note that Monte-Carlo quadrature rules usu-
ally assume that the random samples are statistically independent, which guarantees that if the standard
deviation of random variablef(z) is �, then the standard deviation of the Monte-Carlo quadrature will

8.3. IMPORTANCE SAMPLING FOR THE EVALUATION OF DIRECTIONAL INTEGRALS 94

be�=
p
M after evaluatingM samples. Since Metropolis method uses statistically correlated samples,

the standard deviation of the quadrature can be determined using the Bernstein theorem [R´en62], which
states that it can be upperbounded by

� �
s
1 + 2

PM
k=1R(k)

M
(8.22)

whereR(k) is an upperbound of the correlation betweenf(zi) andf(zi+k). It means that strong corre-
lation also increases the variance of the integral estimate.

Generating an initial distribution and automatic exposure

The Metropolis method promises to generate samples with probabilities proportional to their importance
in the stationary state. Although the process converges to this probability from any initial distribution as
shown in figure 8.8, the samples generated until the process is in the stationary state should be ignored.

The initial bias problem can be reduced if several Metropolis sequences are generated starting from
an initial distribution that mimics the stationary distribution and their estimates are averaged. Selecting
samples with probabilities proportional to the importance can be approximated in the following way. A
given number of seed points are found in the set of sequences of global directions. The importances of
these seed points are evaluated, then, to simulate the distribution following this importance, the given
number of initial points are selected randomly from these seed points using the discrete distribution
determined by their importance.

Equation (8.20) also contains an unknownb constant that expresses the luminance of the whole
image. The initial seed generation can also be used to determine this constant. Then at a given point
of the algorithm the total luminance of the current image — that is the sum of the importances of the
previous samples — is calculated and an effective scaling factor is found that maps this luminance to the
expected one.

8.3.3 Evaluation of the performance of the Metropolis method

To evaluate the efficiency of Metropolis sampling for ray-bundle tracing, the scene of figure 8.6 has been
selected. The surfaces have both diffuse and specular reflections and the lightsource is well hidden from
the camera (figure 8.6), thus this scene is rather difficult to render by other algorithms.

Figure 8.6: A test scene

The error measurements of the Metropolis method with different perturbation sizes, and for quasi-
Monte Carlo samples are shown by figure 8.7.

Considering the performance of the Metropolis method for our algorithms, we have to conclude that
for homogeneous scenes, it cannot provide significant noise reduction compared to quasi-Monte Carlo
walks. This is due to the fact that the variation of the integrand in equation (8.5) is modest. The combined
and bi-directional walking techniques cause even further smoothing which is good for the quasi-Monte
Carlo but bad for the Metropolis sampling. On the other hand, the number of samples was quite low (we
used a few thousand samples). For so few samples the Metropolis method suffers from the problems of
initial bias and correlated samples. Due to the smooth integrand, the drawbacks are not compensated by
the advantages of importance sampling.

8.3. IMPORTANCE SAMPLING FOR THE EVALUATION OF DIRECTIONAL INTEGRALS 95

0.1

1

1 10 100 1000

av
er

ag
e

er
ro

r

global walks

Error of bundle tracing

quasi Monte-Carlo
Metropolis s=0.5
Metropolis s=0.6

Figure 8.7: Error measurements for the “difficult scene” (left) and the image rendered by Metropolis walks (right)

Convergence of the Metropolis method (100 samples)

distribution

0
1

2
3

4
5

6 0
0.5

1
1.5

2
2.5

3

0

5

10 reference

Convergence of the Metropolis method (500 samples)

distribution

0
1

2
3

4
5

6 0
0.5

1
1.5

2
2.5

3

0

5

10 reference

Convergence of the Metropolis method (1000 samples)

distribution

0
1

2
3

4
5

6 0
0.5

1
1.5

2
2.5

3

0

1

2

3

4

5

6

7

8

9

10 reference

Convergence of the Metropolis method (5000 samples)

distribution

0
1

2
3

4
5

6 0
0.5

1
1.5

2
2.5

3

0

1

2

3

4

5

6

7

8

reference

Figure 8.8: Convergence of the first-bounce as computed by 100, 500, 1000 and 5000 Metropolis samples

8.3. IMPORTANCE SAMPLING FOR THE EVALUATION OF DIRECTIONAL INTEGRALS 96

Evaluation of the start-up bias

In order to theoretically evaluate the start-up bias, let us examine a simplified, 1-dimensional case when
the importance is constant, thus the transition proposed by the tentative transition function is always
accepted. In this case, the probability density in the equilibrium is constant. The question is how quickly
the Metropolis method approaches to this constant density (figure 8.9).

p p pp
210

Figure 8.9: Convergence of Metropolis method to the uniform distribution

Metropolis method can generate samples following a given probability density in a closed interval. Since
random mutations may result in points that are outside the closed interval, the boundaries should be handled in
a special way. If the variable of an integrand denotes “angle of direction”, then the interval can be assumed to
be “circular”, that is, the external points close to one boundary are equivalent to the internal points of the other
boundary. Using this assumption, let us suppose that the domain of the integration is[��; �] and the integrand is
periodic with2�. Let the probability distribution at stepn bepn. The Metropolis method is initiated from a single
seed at0, thusp0 = �(x). Assume that transition probabilityP (y ! x), which is equal to the tentative transition
probability for constant importance, is homogeneous, that isP (y ! x) = P (x � y). Using the total probability
theorem, the following recursion can be established for the sequence ofpn:

pn+1(x) =

1Z
�1

pn(y) � P (x! y) dy =

1Z
�1

pn(y) � P (x� y) dy = pn � P; (8.23)

where� denotes the convolution operation. Applying Fourier transformation to this iteration formula, we can
obtain:

p�n+1 = p�n � P �; (8.24)

wherep�n+1 = Fpn+1, p�n = Fpn andP � = FP . Since the domain is “circular”, i.e.x denotes the same sample
point asx+ 2k� for any integerk, the probability density is periodic, thus it can be obtained as a Fourier series:

pn(x) =

1X
k=�1

a
(n)

k e|kx; (8.25)

where| =
p
�1. The Fourier transform is thus a discrete spectrum:

p�n(f) =

1X
k=�1

a
(n)

k � �(f � k): (8.26)

Substituting this into equation (8.24), we get

p�n+1(f) =

1X

k=�1

a
(n)

k � �(f � k)

!
� P �(f) =

1X
k=�1

a
(n)

k � P �(k) � �(f � k); (8.27)

thusa(n+1)k = a
(n)

k �P �(k). Using the same conceptn times, and taking into account that the initial distribution is
�(x), we can obtain:

p�n(f) =

1X
k=�1

(P �(k))
n � �(f � k) (8.28)

thus in the original domain

pn(x) =

k=1X
k=�1

(P �(k))
n � e|kx: (8.29)

8.3. IMPORTANCE SAMPLING FOR THE EVALUATION OF DIRECTIONAL INTEGRALS 97

TheL2 error betweenpn and the stationary distribution is then

jjpn � p1jj2 =

vuuut 1Z
0

jpn(x) � a
(1)

0
j2 dx: (8.30)

Note that according to the definition of the Fourier series

a
(n)
0

=
1

2�
�

�Z
��

pn(x) dx = 1 (8.31)

independently ofn, thusa(1)

0
is also 1.

Using this and substituting equation (8.29) in equation (8.30), we get the following error for the
distribution:

jjpn � p1jj2 =

vuuut k=1X
k=�1;k 6=0

jP �(k)j2n: (8.32)

Starting from multiple seeds

So far we have assumed that the integrand is estimated from a single random walk governed by the
Markov process. One way of reducing the startup bias is to use several walks initiated from different
starting points, called seeds, and combine their results. If the initial point is generated from seedpoints
x1; x2; : : : ; xN randomly selectingxi with probability �i (

PN
i=1 �i = 1), then the initial probability

distribution is the following

p0(x) =
NX
i=1

�i � �(x � xi): (8.33)

Using the same concept as before, the probability density aftern steps can be obtained in the following
form

pn(x) =
k=1X
k=�1

NX
i=1

�i � (P �(k))n � e|k(x�xi) (8.34)

The error of the probability distribution after stepn is then

jjpn � p1jj2 =

vuuut k=1X
k=�1;k 6=0

�����
NX
i=1

�i � (P �(k))n � e|k(x�xi)
�����
2

: (8.35)

Analysis of uniform random perturbations

Let the perturbation be the selection of a point following uniform distribution from an interval of size�

centered around the current point. Formally the transition probability is

P (x! y) =

8<
:
1=� if jx� yj < �;

0 otherwise:
(8.36)

The Fourier transform of this function is

P �(k) =
sink��

k��
(8.37)

which can be rather big even for largek values. This formula, together with equation (8.32) allows
to generate the graph of the startup errors for different sample numbers and for different perturbation
sizes (figure 8.10). The presented analysis can be generalized to higher dimensions thus we can obtain a
method to estimate how many sample points must be ignored to get rid of the start-up bias. Note that the
probability density is not accurate for many iterations if the perturbation size is small compared to the
size of the domain. This situation gets just worse for higher dimensions.

8.4. STOCHASTIC ITERATION USING RAY-BUNDLES 98

0

0.5

1

1.5

2

0 20 40 60 80 100

L2
 e

rr
or

 o
f t

he
 p

ro
ba

bi
lit

y
de

ns
ity

number of samples

Startup bias

delta=0.2
delta=0.4
delta=0.6
delta=0.8
delta=1.0

Figure 8.10: Startup error for different perturbation size�

8.4 Stochastic iteration using ray-bundles

Let us recall that finite-element formulation needed by ray-bundles modifies the rendering equation to
the following form (equation (8.7)):

L(!) = Le(!) +

Z

F(!0; !) �A(!0) � L(!0) d!0 = Le(!) + TFL(!): (8.38)

This section proposes a stochastic iteration type method for the solution of this equation. Let us define a
random operatorT �F that behaves like the projected transport operator in the average case in the following
way:

A random direction is selected using a uniform distribution and the radiance of all patches is trans-
ferred into this direction.

Formally, the definition, which denotes the random direction by!0, is

T �(!0)L(!) = 4� �T(!0; !) � L(!0) = 4� � F(!0; !) �A(!0) � L(!0): (8.39)

If direction !0 is sampled from a uniform distribution — i.e. the probability density of the samples is
1=(4�) — then the expected value of the application of this operator is

E[T �(!0)L(!)] =
Z

4� �T(!0; !) � L(!0) d!
0

4�
= TFL(!): (8.40)

In the definition of the random operator! is the actually generated and!0 is the previously generated
directions. Thus a “randomization point” is a global direction in this method.

The resulting algorithm is quite simple. In a step of the stochastic iteration an image estimate is
computed by reflecting the previously computed radiance estimate towards the eye, and a new direction
is found and this direction together with the previous direction are used to evaluate the random transport
operator. Note that the algorithm requires just one variable for each patchi, which stores the previous
radianceL[i].

8.4. STOCHASTIC ITERATION USING RAY-BUNDLES 99

The ray-bundle based stochastic iteration algorithm is:

Generate the first random global direction!1
for each patchi doL[i] = Lei (!1)
for m = 1 to M do // iteration cycles

Calculate the image estimate reflecting the incoming radianceL[1]; : : : ; L[n] from!m towards the eye
Average the estimate with the Image
Generate random global direction!m+1

for each patchi doLnew[i] = Lei (!m+1) + 4� �
Pn

j=1
~fi(!m; !m+1) �A(!m)ij � L[j]

endfor
Display Image

Due to the fact thatA(!m)ij ,A(�!m)ij can simultaneously be computed, the algorithm can easily
be generalized to simultaneously handle bi-directional transfers.

Note that this algorithm is quite similar to the global walk algorithm, but it does not reinitialize the
irradiance vector after eachDth step. In fact, it generates a single infinite walk, and adds the effect of
the lightsources to the reflected light field and computes the image accumulation after each step.

0.001

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

global steps (iterations)

Error of bundle tracing in homogeneous room

stochastic iteration
bi-directional QMC (D=5)

bi-directional QMC (D=10)

Figure 8.11: Stochastic iteration versus bi-directional walking techniques of length 5 and of length 10. The test
scene was the homogeneous Cornell box (section 3.4)

The convergence rates are compared for bi-directional walking techniques and for stochastic iter-
ation in figure 8.11. Note that walking methods have bias which depends on the length of the walk.
Stochastic iteration, on the other hand, not only free from this bias problem, but its convergence speed is
significantly better than that of the walking techniques.

8.4.1 Can we use quasi-Monte Carlo techniques in iteration?

Stochastic iteration can also be viewed as a single walk which uses a single sequence of usually 4-
dimensional randomization points (for ray-bundle tracing 2-dimensional randomization points), and the
T �i+kT �i+k�1 : : : T �i Le terms are included in integral quadratures simultaneously for allk.

It means that the randomization points should support not only 4-dimensional integration, but using
subsequent pairs also 8-dimensional integration, using the subsequent triplets 12-dimensional integra-
tion, etc. Sequences that supportk-dimensional integrals when subsequentk-tuples are selected are
called k-uniform sequences[Knu81]. The widely used Halton or Hammersley sequences are only

8.4. STOCHASTIC ITERATION USING RAY-BUNDLES 100

0.01

0.1

1

1 10 100 1000 10000

L1
 e

rr
or

number of iterations

Error of stochastic iteration in the Cornell box

stochastic iteration (rand)
stochastic iteration (drand48)

QMC iteration (Halton)
QMC iteration (Hammersley, m=10000)

QMC iteration (pi^n)

Figure 8.12: Ray-bundle based stochastic iteration with random and quasi-random numbers. The test scene was
the Cornell box shown in figure 8.21

1-uniform, thus theoretically they should provide false results. This is obvious for the Hammersley se-
quence, in which the first coordinate is increasing. Such a sequence would search for only those multiple
reflections where the angle corresponding to the first coordinate always increases in subsequent reflec-
tions. It is less obvious, but is also true for the Halton sequence. Due to its construction using radical
inversion, the subsequent points in the sequence are rather far, thus only those reflections are considered,
where the respective angle changes drastically.

In order to avoid this problem without getting rid of the quasi-Monte Carlo sequences, in [SKFNC97]
we proposed the random scrambling of the sample points. The same problem arises, for example, when
generating uniform distributions on a sphere, for which [CMS98] proposed to increase the dimension of
the low-discrepancy sequence.

Note that this problem is specific to quasi-Monte Carlo integration and does not occur when classical
Monte-Carlo method is used to select the sample points (a random sequence is1-uniform [Knu81]).

In order to demonstrate these problems, we tested the ray-bundle based iteration for different random
(i.e. pseudo-random) and low-discrepancy sequences. The test scene was the Cornell box. In figure 8.12
we can see that the Hammersley sequence gives completely wrong result and the Halton sequence also
deteriorates from the real solution. The two random generators (rand and drand48), however, performed
well.

The figure also included a modification of theqn = f�ng quasi-Monte Carlo sequence (operatorfg
selects the fractional part of a number). This is believed to be (but has not been proven to be)1-uniform
[Deá89]. However, this sequence is very unstable numerically, therefore we used the following scheme
started at�0 = 1:

�n = �n�1 � (� � 2)
if �n > 100000 then �n = �n � 100000
qn = f�ng

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 101

8.5 Calculation of the radiance transport in a single direction

The key of the calculation of the radiance transported by a ray-bundle is the determination of geometry
matrixA. Examining the elements of the geometry matrix

A(!0)jij = hbj(h(~x;�!0)) � cos �0;~bi(~x)i =
Z
S

bj(h(~x;�!0)) � ~bi(~x) � cos �0 d~x;

we can realize that its computation requires the determination of whether a point of the support of basis
function i is visible from a point of the support of basis functionj in a given direction�!0 (note that
bj(h(~x;�!0)) �~bi(~x) is non zero only if~x is in the support of~bi and the pointh(~x;�!0) is in the support
of bj). For the algorithms to be introduced, the support of a basis function is a planar triangle, while the
support of an adjoint basis function is either a planar triangle or a single vertex. Direction!0 is called
the transillumination direction [Neu95, SKFNC97].

Note that an element of the geometry matrix is non zero only ifcos �0 � 0, that is if patchi is facing
towards the transillumination direction. Faces meeting this requirement are calledfront faces, while
those faces which cannot meet this are calledback faces. Obviously, only front faces can get radiance
contribution from a transillumination direction (this can be lifted easily to allow transparent materials).

transillumination direction

transillumination
plane

5

4

3

2

1

4 54 5

3

Image seen from patch 3 Image seen from patch 2

Figure 8.13: Global visibility algorithms

The determination of the geometry matrix is aglobal visibility problem , since only the viewing
direction is fixed but the eye position is not. In fact, the eye position should visit all surface points or all
vertices depending on the selected adjoint base. Looking at figure 8.13, it is easy to see that the global
visibility problem can be solved in an incremental way if the patches are visited in the order of their
position in the transillumination direction. In fact, what is visible from a patch differs just in a single
patch from what is visible from the next patch. This single patch may appear as a new and may hide other
patches. The required sorting is not obvious if the patches overlap in the transillumination direction, but
this can be solved in a way as proposed in thepainter’s algorithm [NNS72]. On the other hand, in our
case the patches are usually small, thus simply sorting them by their center introduces just a negligible
error. Although sorting seems worthwhile, it is not obligatory. Thus the proposed visibility algorithms
will be classified according to whether or not an initial sorting is required.

At a given point of all global visibility algorithms the objects visible from the points of a patch must
be known. This information is stored in a data structure called thevisibility map . The visibility map can
also be regarded as an image on the plane perpendicular to the transillumination direction. This plane is
called thetransillumination plane (figure 8.13).

The algorithms that generate the visibility map can be either discrete or continuous.Discrete algo-
rithms decompose the transillumination plane to small pixels of size�P . Their visibility map is simply
a rasterized image where each pixel can store either the index of the visible patch or the radiance of
the visible point. Forcontinuous algorithms, the visibility map identifies those regions in which the
visibility information is homogeneous (either the same patch is seen or no patch is seen).

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 102

Discrete algorithms are faster and the rendering hardware and the z-buffer of workstations can also
be exploited [SKe95, SKM94] but in order to handle all patches simultaneously, the “window” of the
algorithm should include all patches. The large window, however, should be decomposed into sufficiently
small pixels to provide the required precision, which might result in high resolution requirements for
sparse scenes. Continuous algorithms are free from these resolution problems, but are usually more
difficult to implement and are much slower.

The computation of the geometry matrix also depends on the selected basis functions and the finite-
element algorithm (adjoint basis). We consider two different sets of basis functions and two finite element
approaches. In the first case the Galjerkin method is applied for piece-wise constant basis functions.
Secondly, piece-wise linear basis functions are used in a point-collocation algorithm.

8.5.1 Galerkin’s method with piece-wise constant basis functions

Let us use the following basis functions

bj(~x) =

8<
:
1 if ~x 2 Aj ;

0 otherwise.
(8.41)

In Galerkin’s method, the unknown directional functionsLi(!) are found to ensure that approxi-
mation (8.1) is the real solution of the radiance equation in the subspace induced by the basis functions
bi. To satisfy normalization criteria, the adjoint base is selected as follows:

~bj(~x) =

8<
:
1=Aj if ~x 2 Aj ;

0 otherwise.
(8.42)

Sincehbj(~x);~bi(~x)i is 1 if i = j and zero otherwise, the elementi; j of the geometry matrix is

A(!0)jij = hbj(h(~x;�!0)) � cos �0;~bi(~x)i =
1

Ai
�
Z
Ai

bj(h(~x;�!0)) � cos �0 d~x: (8.43)

Since the integrand of this equation is piece-wise constant, the integral can also be evaluated analytically:

1

Ai
�
Z
Ai

bj(h(~x;�!0)) � cos �0 d~x =
A(i; j; !0)

Ai
; (8.44)

whereA(i; j; !0) expresses the projected area of patchj that is visible from patchi at direction�!0. In
the unoccluded case this is the intersection of the projections of patchi and patchj onto the transillu-
mination plane. If occlusion occurs, the projected areas of other patches that are in between patchi and
patchj should be subtracted as shown in figure 8.14.

A

A

’

j

i
A(i,j,)

projection of

projection of

Akprojection of

ω

’ω

Ak

Ai

A j

’ω

projection plane

Figure 8.14: Interpretation ofA(i; j; !0)

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 103

Having the visibility map of patches visible fromAi, the computation ofA(i; j; !0) requires to deter-
mine which regions are inside the projection ofAi and to sum these areas. Note that the geometry matrix
is symmetric in the following sense

A(i; j; !0) = A(j; i;�!0)

thusbi-directional transfers really do not have visibility computation overhead.
In the following sections different continuous and discrete visibility algorithms are presented to de-

termine the necessary visibility information.

Continuous algorithm with initial sorting: Local visibility map

This algorithm processes the patches in the order defined by the transillumination direction and maintains
the visibility graph dynamically [SKFNC97].

visibility map 1

1

2

3

4

visibility map 2visibility map 3visibility map 4

44

3

4

2

1
3

0

0

0

000

0 0

4

2

3

transillumination direction

Figure 8.15: Local visibility maps

When the processing of patchi is started, the visibility map shows which patches are visible from
patchi. To calculate theA(i; j; !0) values, those patches which have projections either entirely or partly
in the projection of patchi are selected from the visibility map, and are clipped onto patchi to clearly
separate inner regions. The process of clipping of the patches onto each other is quite similar to the
Weiler-Atherthon algorithm [WA77]. Then the projected areas of those patch parts which are inside
the projection of patchi are summed to find theA(i; j; !0) values.

When we step onto the patch next to patchi, a new visibility map is created by replacing those region
parts that are inside the projection ofAi by the projection ofAi. Then, if patchi can reflect energy onto
the next patch (it is a back facing patch with respect to the transillumination direction), then patchi

should be added to the visibility map, otherwise, the place of the projection of patchi will be empty.
The algorithm, that maintains a listL for the sorted patches,V for the projected patches that are

currently in the visibility map,O for those clipped, not-hidden patches whose projections are outside
patchi, andI for those clipped, not-hidden patches whose projections are inside patchi, is as follows:

list L = Sort patches in direction!0

visibility mapV = f g
for each patchi in L do

Clip patches inV onto patchi and generate:O = outside list,I = inside list
if patchi is front facingthen
A(i; j; !0) =

P
j2I A(j)

V = O

elseV = O + patchi
endfor

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 104

If the number of patches isn, then the size of the visibility map isO(n) in the average case but
O(n2) in the worst-case. Thus the resulting algorithm that compares each patch with the actual visibility
map will haveO(n2) average-case andO(n3) worst-case time-complexity. This is not acceptable when
complex scenes are processed. In order to reduce the complexity, we can use the wide selection of
computational geometry methods that usually apply spatial decomposition on the plane to reduce the
number of unnecessary comparisons [SKFP98b].

Another alternative is to introduce randomization (or quasi-randomization) in the computation of
the visible areas, as suggested byRussian-roulette [SKP99b]. When the outside listO is generated,
the patches that have small area times radiance are randomly (or quasi-randomly) deleted from the list.
Suppose that those patches are considered for deletion for whichA(j) � L(j) < � whereA(j) is the
projected area of the patchj andL(j) is the radiance of this patch, and the probability of not deleting
this patch isA(j) �L(j)=�. Whenever a small patch is kept, its radiance is multiplied by�=A(j) �L(j) to
compensate for occasions when it is deleted.

Thus the following instructions should be inserted in the algorithm:

for each patchj in O do
if A(j) � L(j) < � then

Generate uniformly distributed random numberr in [0; 1]
if A(j) � L(j) < r � � then Delete patchi fromO

elseL(j) = �=A(j)
endif

endfor

In quasi-Monte Carlo integrationr is an additional integration variable that should be generated by
an independent low-discrepancy sequence.

Continuous algorithm without initial sorting: Global visibility map

This algorithm first projects all the polygon vertices and edges onto the transillumination plane, then
determines all the intersection points between the projected edges, and form a planar graph that is a
superset of the set of projected edges of the polygons [SKFP98b, SKFNC97]. In the resulting planar
graph, each territory represents a list of patches that can be projected onto the territory. Furthermore, if
the patches do not intersect, the order of patches is also unique in each territory.

Thus, to computeA(i; j; !0) for somei, the lists of the territories should be visited to check whether
i is included. If patchi is found, then the patch next to it on the list should be retained to find indexj,
and the area of the territory should be added toA(i; j; !0).

visibility map

1

2

3

4{4}

{2,4}
{2}

{2,3}

{1,2,3}

{1,3}

{3}

{}

{}

transillumination direction

Figure 8.16: Global visibility map

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 105

The draft of the algorithm to generate the data structure is the following:

Clear geometry matrixA(i; j; !0)
Project vertices and edges onto the transillumination plane
Calculate all intersection points between projected edges
Compute the graph of the induced planar subdivision
for each region of this graphdo

Sort patches visible in this region
for each patchi in the list of patches visible in this region

j = Next patch in the list
if patchi is front facing and patchj is back facingthenA(i; j; !0) += area of the region

endfor
endfor

The speed of the algorithm is considerably affected by how well its steps are implemented. A simplis-
tic implementation of the intersection calculation, for example, would test each pair of edges for possible
intersection. If the total number of edges isn, then the time complexity of this calculation would be
O(n2). Having calculated the intersection points, the structure of the subdivision graph has to be built,
that is, incident nodes and arcs have to be assigned to each other somehow. The number of intersection
points isO(n2), hence both the number of nodes and the number of arcs fall into this order. A simplis-
tic implementation of the graph computation would search for the possible incident arcs for each node,
giving a time complexity ofO(n4). This itself is inadmissible in practice, not to mention the possible
time complexity of the further steps. However, applying the results of computational geometry, we can
do it much better. Algorithms are available that can do it inO((n+ i) log n) [Dév93, SKe95] time where
n is the number of patches (or edges) andi is the number of edge intersections, or even inO(n1+"

p
k)

time [dB92] wherek is the number of edges in the visibility map. The number of intersectionsi and the
number of edgesk are inO(n2) in the worst-case, but are inO(n) in practical scenes.

Discrete algorithm with initial sorting: Global painter’s algorithm

Discrete algorithms determine the visible patches for each front facing patch through a discretized win-
dow. This is a visibility problem, and the result is an “image” of the patches, assuming the eye to be on
patchi, the window to be on the transillumination plane and the color of patchj to bej if the patch is
facing to patchi and to be0 otherwise.

visibility map 1

1

2

3

4

visibility map 2visibility map 3visibility map 4

4

0

0

transillumination direction

4
4
4
4

4

0

0

4
4
4
4

3
3
3
3
3
3
3
3
3
3
0

00

2

0

2

4
4
4
4

2
2
2
2
3
3
3
3
3
3
0

0

2

0

2

4
4
4
4

2
2
1
1
1
1
1
1
3
3
0

0

Figure 8.17: Application of painter’s algorithm

If the patches are sorted in the transillumination direction and processed in this order, the computation
of A(i; j; !0) requires the determination of the pixel values inside the projection of patchi. Then, to
proceed with the next patch in the given order, the pixels covered by patchi are filled withi if patch

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 106

i is not front facing and 0 otherwise. The two steps can be done simultaneously by a modified scan-
conversion algorithm that reads the value of the image buffer before modifying it.

This is summarized in the following algorithm [SKF97]:

Sort patches in direction!0 (painter’s algorithm)
Clear image
for each patchi in the sorted orderdo

if patchi is front facingthen
for each pixel in the projection of patchi

j = Read pixel
A(i; j; !0) += �P // �P is the area of a pixel
Write 0 to the pixel

endfor
elseRender patchi with color i

endfor

Sorting a data set is known to haveO(n logn) time complexity, so does the painter’s algorithm
in the average case. A single cycle of the secondfor loop contains only instructions that work with a
single patch and an “image”, thus the time required for a single cycle is independent of the number of
patches. Since thefor loop is executedn number of times, the time complexity of thefor loop isO(n).
Consequently the algorithm requiresO(n log n) time.

Discrete algorithm without initial sorting: software z-buffer

For the sake of completeness, we mention that theglobal z-buffer algorithm [Neu95] can also be used
for our purposes. This method stores not just the closest patch index and itsz value in the buffer, but the
whole list of those patches which can be projected onto this pixel. The patches are scan-converted by the
z-buffer algorithm, and are inserted into the lists associated with the covered pixels. The lists of pixels
can be used to computeA(i; j; !0) similarly to the continuous global visibility map algorithm.

Discrete algorithm without initial sorting: exploitation of the hardware z-buffer

In this section another method is proposed that traces back the visibility problem to a series of z-buffer
steps to allow the utilization of the z-buffer hardware of workstations [SKP98a].

1
2

3

4

5

6

7

A(4,2)

A(4,1)

A(4,3)

A(5,3)

selected direction

emitter patches receiver patchesreceiver
image

emitter
image

Figure 8.18: Calculating the power transfer using the z-buffer

In this algorithm the radiance is transferred by dynamically maintaining two groups of patches, an
emitter group and areceiver group, in a way that no patch in the receiver group is allowed to hide a
patch in the emitter group looking from the given transillumination direction.

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 107

Let the two classes of patches be rendered into two image buffers — called the emitter and receiver
images, respectively — setting the color of patchj to j and letting the selected direction be the viewing
direction for the receiver set and its inverse for the emitter set.

Looking at figure 8.18, it is obvious that a pair of such images can be used to calculate the radi-
ance transfer of all those patches which are fully visible in the receiver image. The two images must
be scanned parallely and wheni (that is the index of patchi) is found in the receiver image, the corre-
sponding pixel in the emitter image is read and its value (j) is used to decide whichA(i; j; !0) should be
increased by the area of the pixel.

In order to find out which patches are fully visible in the receiver image, the number of pixels they
cover is also computed during scanning and then compared to the size of their projected area. For those
patches whose projected area is approximately equal to the total size of the covered pixels, we can assume
that they are not hidden and their accumulated irradiances are valid, thus these patches can be removed
from the receiver set and rendered into the emitter image to calculate the radiance transfer for other
patches (this is the strategy to maintain the emitter and receiver sets automatically).

This leads to an incremental algorithm that initially places all patches in the receiver set. Having
calculated the receiver image by the z-buffer algorithm, the radiance transfer for the fully visible patches
are evaluated, and then they are moved from the receiver set to the emitter set. The algorithm keeps doing
this until no patch remains in the receiver set (cyclic overlapping would not allow the algorithm to stop,
but this can be handled by a clipping as in the painter’s algorithm [NNS72]). The number of z-buffer
steps required by the algorithm is quite small even for complex practical scenes [Sbe96]. Exploiting the
built-in z-buffer hardware of advanced workstations, the computation can be fast.

When checking whether or not the visible size is approximately equal to the projected patch size, the
allowed tolerance is the total area of the pixels belonging to the edge of the patch, which in turn equals
to the sum of the horizontal and vertical sizes of a triangular patch.

This algorithm “peels” the scene by removing the layers one by one. The sequences of evolving
receiver and emitter images are shown in figure 8.19 and in figure 8.20, respectively. Note that the first
receiver image contains all patches, thus its pair is an empty image that is not included figure 8.20. The
pair of the second receiver image is the first shown emitter image, etc. The last emitter image includes
all patches thus its receiver pair is empty, and therefore is not shown in figure 8.19.

In the following algorithmR denotes the collection of the receiver patches.

R = all patches
Clear emitterimage
while R is not empty

Clear receiverimage
for each patchr in R

Render patchr into receiverimage via z-buffer
Clear rowr of geometry matrixA(r; j; !0)
patch[r].visible size = 0

endfor
for each pixelP

r = receiverimage[P]
e = emitter image[P]
patch[r].visible size +=�P
A(r; e; !0) += �P

endfor
// Move patches to the emitter set

for each patchp
if patch[p].visible size� projected size of patchp then

Remove patchp fromR and render it to emitterimage
endif

endfor
endwhile

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 108

Figure 8.19: Steps of the evolution of receiver images

Figure 8.20: Steps of the evolution of emitter images

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 109

8.5.2 Analysis of the finite resolution problem of discrete methods

In order to find out how important the resolution of the visibility map, a Cornell box scene (figure 8.21)
consisting of 3705 triangular patches has been rendered with the global painter’s algorithm having set the
resolution to different values from50� 50 to 1000 � 1000. Since the resolution can only be interpreted
when compared to the size of the patches, table 8.2 summarizes the average projected patch sizes in
pixels and also the residual errors of the iteration.

Figure 8.21: A Cornell box as rendered using100� 100 (left) and1000� 1000 (right) pixels for the visibility map

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error in Stochastic Iteration for different visibility map resolutions

resolution=1000x1000
resolution=500x500
resolution=200x200
resolution=100x100

resolution=50x50

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

CPU time (secs)

Error in Stochastic Iteration for different visibility map resolutions

resolution=1000x1000
resolution=500x500
resolution=200x200
resolution=100x100

resolution=50x50

Figure 8.22: Comparison of the error curves using visibility maps of different resolutions as a function of
iterations (left) and of computation time (right)

Note that the resolution plays negligible role until the average patch per pixel ratio is significantly
greater than one (left of figure 8.22). For instance, the error curves of resolutions1000 � 1000 and
500 � 500 can hardly be distinguished. This can be explained by the stochastic nature of the algorithm.
Each radiance transfer uses a different direction, thus a different discrete approximation of the size of the
patch. Although this approximation can be quite inaccurate in a single step, the expected value of these
approximations will still be correct. As the algorithm generates the result as the average of the estimates,

8.5. CALCULATION OF THE RADIANCE TRANSPORT IN A SINGLE DIRECTION 110

resolution pixel-per-patch residual error

50� 50 0.5 0.25
100� 100 2 0.05
200� 200 8 0:02

500� 500 55 � 0:01

1000 � 1000 220 � 0:01

Table 8.2: Average number of pixels per patch and the discretization errors

these approximation errors will be eliminated. The effect of the low resolution is just an “additional
noise”. However, when the pixel size becomes comparable to the projected size of the patches, then the
iteration will deteriorate from the real solution as we can clearly see it in figure 8.22 when the resolution
is lower than200 � 200. The core of the problem is that discrete filling algorithms always assume that
both the width and the height of the patch is at least 1. Thus, for patches having smaller height or width,
even the expected value will be incorrect. The computation time is roughly proportional to the number
of pixels in the visibility map thus it is desirable to keep the resolution low (right of figure 8.22). For
example, the 500 stochastic iterations that generated the left and the right of figure 8.21 needed 3 and 8
minutes respectively. The optimal selection of the resolution is the minimal number which guarantees
that even the smallest patches are projected onto a few pixels.

Even patches of subpixel size can be correctly handled by a Russian-roulette like method introduced
in section 8.5.1. The basic idea is a random rendering of small patches to sustain the correct expectation
of the projected size time the radiance. Suppose that those patches are considered for random rendering
for which A(j) � L(j) < � whereA(j) is the projected area of patchj andL(j) is the radiance of
the patch, and the probability of rendering pixels isA(j) � L(j)=�. When a patch is not rendered, the
pixels are filled up with a reference value that corresponds to zero radiance. Whenever a small patch is
rendered, its radiance is multiplied by�=A(j) �L(j) to compensate for occasions when it is not rendered.

8.5.3 Point collocation method with piece-wise linear basis functions

In this method [SKFP98a] the radiance variation is assumed to be linear on the triangles. Thus, each
vertexi of the triangle mesh will correspond to a “tent shaped” basis functionbi that is 1 at this vertex
and linearly decreases to 0 on the triangles incident to this vertex (figure 8.23). Assume that the shading
normals are available at the vertices.

In the point-collocation method, the unknown directional functionsLj(!) are determined to ensure
that the residual of the approximation is zero at the vertices of the triangle mesh. This corresponds to
Dirac-delta type adjoint basis functions, where~bj(~x) is non-zero at vertexi only. Thus the geometry
matrix is

A(!0)jij = hbj(h(~x;�!0)) � cos �0; �(~x � ~xi)i = bj(h(~xi;�!0)) � cos �0(~xi): (8.45)

Calculation of the irradiance at vertices

Since now the irradiance is not piece-wise constant but piece-wise linear, it is better to evaluateA(!0) � I
directly than evaluating the geometry matrix and the irradiance separately. Thus we have to find

(A(!0) � I)[i] =
nX
j=1

bj(h(~xi;�!0)) � cos �0(~xi) � I[j]: (8.46)

In this formula thebj(h(~xi;�!0)) factor is non-zero for thosej indices which represent a vertex of
the patch visible from~xi at direction!0. The exact value can be derived from the calculation of the height
of the linear “tent” function at pointh(~xi;�!0). This means that having identified the patch visible from

8.6. HANDLING SKY-LIGHT ILLUMINATION 111

1
basis functionb (p)

i

I

I

I

I
f . I . cos

f . I . cos

f . I . cos

d-1

d-1

d

d-1

d-1

d-1

d-1

(1)

(1)

(2)

(2)

(3)

(1)

(2)

(3)

direction

direction

d-1

d

θ

θ

θ

(1)

(2)

(3) (3)

Figure 8.23: Linear basis function in 3-dimension (left) and global visibility algorithm for the vertices (right)

~xi at direction!0, the required value is calculated as a linear interpolation of the irrandiances of the
vertices of this patch.

To solve it for all patches, the triangular patches are sorted in direction!0, then painted one after the
other into an image buffer. For vertexi of each triangle, the “color” is set to

Lei (!
0) + 4� � Fii(!0previous; !0) � I[i]

at stepd and the linear interpolation hardware (Gouraud shading) is used to generate the color (or irradi-
ance) inside the triangle. For back-facing patches this step clears the place of the triangle in the “image”.
If the triangles that are in front of the given triangle in direction!0 are rendered into the image buffer,
then the radiance illuminating the vertices of the given triangle is readily available in the current image
buffer. Assuming that patches are processed in the order of the transillumination direction, every patch
should be rendered only once into the image buffer.

Thus the calculation of the irradiances at a given transillumination direction is:

Sort patches in direction!0 (painter’s algorithm)
Clear image-buffer
for each patchi in sorted orderdo

if patchi is front facingthen
for each vertexv[i] of the patchi do color[v[i]] = Lev[i](!

0) + 4� � Fv[i];v[i](!0previous; !0) � I[v[i]]
Render patchi into the image-buffer with Gouraud shading

else
for each vertexv[i] of the patchi do I[v[i]] = (image buffer at projection ofv[i]) � cos �0[v[i]]
Render patchi with color 0

endif
endfor

The processing of a single direction for all patches requires a sorting step and the rendering of each
triangle into a temporary buffer. This can be done inO(n logn) time.

8.6 Handling sky-light illumination

The visibility methods introduced so far can easily be extended for sky-light illumination by initializing
the image on the transillumination plane by a special value if the direction points downwards (sky is
usually above the horizon). When the radiance is transferred and this value is found in a given pixel, then
the irradiance of the receiver is updated according to the intensity of the sky-light (figures 9.3 and 9.9).

8.7. IMPROVING THE EFFICIENCY 112

8.7 Improving the efficiency

The error of Monte-Carlo and quasi-Monte Carlo techniques depends on the number of samples and
on how flat the integrand is. For Monte-Carlo integration this is expressed by equation (5.27) while for
quasi-Monte Carlo quadrature this is shown by the Koksma-Hlawka inequality. Thus the efficiency of the
methods can be improved by the proper formulation of the global illumination problem as a numerical
integration where the integrand is flatter. If iteration approach is used, then another source of the error is
the energy defect. This defect depends on the initial radiance function. The closer the initial function is
to the solution, the less the defect is.

8.7.1 Self-correcting iteration

Self-correcting iteration (section 7.2.1) means that averaging is applied not only in the image estimation
but also for the radiance to continue the iteration. This means that a new random transport operator is
combined not only with the last operator but all preceding operators. This seems advantageous, but it
also has a drawback. Namely, the results of the previous iteration steps must be stored to allow such
a combination. In order to avoid this additional storage, self-correcting iteration is applied only to the
diffuse reflection, the non-diffuse reflection is estimated by normal stochastic iteration. Let us decom-
pose the radiance and the random light transport operator to separately model diffuse and non-diffuse
reflections,

L = Le + Ld + Lnd; T � = T �d + T �nd;
and rewrite the iteration in the following way

L0d(m) = T �d (m)(Le + Lnd(m� 1) + Ld(m� 1));

Ld(m) = �m � L0d(m) + (1� �m) � Ld(m� 1);

Lnd(m) = T �nd(m)(Le + Lnd(m� 1) + Ld(m� 1));

Pm = M(Le + Ld(m) + Lnd(m)); (8.47)

where�m is an appropriate sequence that converges to 0. In practice, the�m = 1=m or �m = 1=
p
m

have been found to be appropriate.

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error of the Cornell box scene

Self-correnting iteration with tm = 1/sqrt(m)
Self-correnting iteration with tm = 1/m

Stochastic iteration

Figure 8.24: Efficiency improvements of self-correcting iteration in the Cornell box scene (figure 8.21)

The efficiency gained from proper initialization of the radiance function and by self-correcting itera-
tion is shown in figure 8.24. The sequence of images are included by figure 9.13.

8.7. IMPROVING THE EFFICIENCY 113

8.7.2 Preprocessing the small lightsources

The primary causes of the high variation of the integrand are the smaller, bright lightsources. Espe-
cially, if the lightsource is infinitely small but its power is not zero — that is, its radiance is infinite —
then the error bounds of the Monte-Carlo and quasi-Monte Carlo quadratures will be infinite as well.
Consequently, these small, bright lightsources should be handled by special techniques.

The problem of small lightsources can be solved by a modified version of the “first-shot” that shoots
the power of the point lightsources onto other surfaces, then removes them from the scene. This method
[CMS98] works well in the radiosity setting, since in this case, the representation of the reflected radiance
requires a diffuse “emission” in each patch, thus the memory overhead of the first-shot is just one variable
per patch. However, in non-diffuse scenes the classical first-shot has prohibitive memory requirements,
since even if the original light-sources are diffuse, their reflection may have general directional function,
which requires the representation of the complete reflected, non-diffuse radiance function. If the direc-
tional variation of the radiance is represented byn basis functions (i.e.n is the number of small solid
angles in which the radiance can be supposed to be constant) in each patch, then the method requiresn

new variables for each patch. To solve this problem, a new first-shot technique is proposed that is called
the incoming first-shot. Incoming first-shot precomputes and stores the incoming radiance received by
the patches from each point sample on the lightsources (this requiresl additional variables per patch,
wherel is the number of point samples of the lightsources) [SKP98a]. The secondary, non-diffuse emis-
sion to a direction is computed from these incoming radiances on the fly. The method is feasible ifl is
small, thus it can be used for a few point lightsources and smaller area lightsources.

+=

Lep

LepT

Figure 8.25: Incoming first shot technique

Formally, the unknown radianceL is decomposed into two terms:

L = Lep + Lnp (8.48)

whereLep is the emission of the small area and point-like lightsources,Lnp is the emission of the large
area lightsources and the reflected radiance. Substituting this into the rendering equation we have:

Lep + Lnp = Le + T (Lep + Lnp): (8.49)

ExpressingLnp we obtain:
Lnp = (Le � Lep + T Lep) + T Lnp: (8.50)

Introducing the new lightsource term

Le� = Le � Lep + T Lep (8.51)

which just replaces the small lightsources (Lep) by their single reflection (T Lep), the equation forLnp is
similar to the original rendering equation:

Lnp = Le� + T Lnp: (8.52)

It means that first the direct illumination caused by the small lightsources must be computed, then they
can be removed from the scene and added again at the end of the computation.

8.7. IMPROVING THE EFFICIENCY 114

Incoming first-shot of point lightsources

Suppose that the scene containsl point lightsources at locations~y1; : : : ; ~yl with powers�1; : : : ;�l,
respectively, then their reflection at point~x is:

(T Lep)(~x; !) =
lX

i=1

�l � v(~yi; ~x)
4�j~yi � ~xj2 � fr(!

0
i; ~x; !) � cos �0i; (8.53)

where!0i is the direction from lightsourcei to point~x, �0i is the angle between!0i and the surface normal,
andv(~yi; ~x) indicates the mutual visibility of~x and~yi. Suppose that the patch under consideration is
patchj and its area isAj . Having projected the reflected radiance into adjoint base~bi, we get:

Le�j (!) = hT Lep(~x; !);~bj(~x)i =
lX

i=1

1

Aj
�
Z
Aj

�i � v(~yi; ~x)
4�j~yi � ~xj2 � fr(!

0
i; ~x; !) � cos �0i d~x: (8.54)

To compute the reflection of a lightsource at a point, the visibility of the lightsource from the point must
be determined. We can useshadow rays evaluated by ray-shooting, but this is rather slow. Another alter-
native is to exploit the image synthesis hardware in the following way. The eye is put at the lightsource
and the window is defined as one of the faces of a cube placed around the eye. Rendering the images for
each faces with constant shading and using the index of the patches as color values, the visible areas of
the patches from the lightsource can be determined.

windows

point
lightsource

patch jP

θ

θ

’

p

f
j

x
ω’

ω

W

y

i

i

Figure 8.26: Computation of the lightsource visibility by hardware

The integral in equation (8.54) can also be evaluated on the six window surfaces (W) that form a
cube around the lightsource (figure 8.26). To find formal expressions, let us express the solid angled
p,
in which a differential surface aread~x is seen through pixel aread~p, both from the surface area and from
the pixel area:

d
p =
d~x � cos �0i
j~yi � ~xj2 =

d~p � cos �p
j~yi � ~pj2 ; (8.55)

where�p is the angle between direction pointing to~x from ~yi and the normal of the window. The distance
j~yi � ~pj between pixel point~p and the lightsource~yi equals tof= cos �p wheref is the distance from~yi
to the window plane, that is also called thefocal distance. Using this and equation (8.55), differential
aread~x can be expressed and subsituted into equation (8.54), thus we can obtain:

Le�j (!) =
lX

i=1

1

Aj
�
Z
W

�i � v(~yi; ~x)
4�

� fr(!0i; ~x; !) �
cos �3p

f2
d~p:

Let Pj be the set of pixels in which patchj is visible from the lightsource.Pj is computed by running
a z-buffer/constant shading rendering step for each sides of the window surface, assuming that the color

8.7. IMPROVING THE EFFICIENCY 115

of patchj is j, then reading back the “images” (figure 8.28). The reflected radiance on patchj is
approximated by a discrete sum as follows:

Le�j (!) �
lX

i=1

�i

4�f2Aj
�
X
p2Pj

fr(!
0
i; ~x; !) � cos �3p � �P; (8.56)

where�P is the area of a single pixel in the image. IfR is the resolution of the image — i.e. the top of
the hemicube containsR�R pixels, while the side faces containR�R=2 pixels – then�P = 4f2=R2:

If the BRDF can be assumed to be~fj(!0i; !) in patchj, then the reflected radiance can be decomposed
into 3 factors: the power spectrum of the lightsource�i, the BRDF ~fj(!

0
i; !) which is also a spectrum

and is the only factor which depends on viewing direction!, and a scalar factor defined as:

rij =
1

�R2Aj
�
X
p2Pj

cos �3p:

These scalar factors are computed and stored at each patch, which requires just one float variable per
each patch and each point lightsource.

If variablesrij are available, then the incoming first-shot phase is complete. During global illumi-
nation when the reflected radianceLe�j (!) is needed at point~x of patchj, this is computed on the fly
from the stored scalar parametersrij , from the directions pointing from~x to the lightsources and from
the power of the lightsources according to the following formula:

Le�j (!) =
lX

i=1

�i � rij � ~fj(!0i; !): (8.57)

Smaller area lightsources

Now let us discuss the computation of a single reflection of the light coming from a small area lightsource
S of emissionLe(~y; !) to a point~x. The reflection at point~x is

(T Lep)(~x; !) =
Z

S

Le(h(~x;�!0); !0) � fr(!0; ~x; !) � cos �0 d!0 =

Z
S

Le(~y; !0) � cos � � v(~y; ~x)
j~y � ~xj2 � fr(!0; ~x; !) � cos �0 d~y; (8.58)

where
S is the solid angle in which lightsourceS is visible,~y is a running point on the lightsource and
� is the angle between!0 and the surface normal of the lightsource at~y. The projected reflected radiance
of patchj is

Le�j (!) =
1

Aj
�
Z
Aj

(T Lep)(~x; !) d~x =

Z
S

1

Aj
�
Z
Aj

Le(~y; !0) � cos � � v(~y; ~x)
j~y � ~xj2 � cos �0 � fr(!0; ~x; !) d~x d~y; (8.59)

The outer integral is estimated by a trapezoidal-like rule. It means that the lightsource area is tessellated
to triangles (or quadrilaterals). The integrand is evaluated at the common vertices and is assumed to be
linear between the vertices. If the number of vertices isl, then the quadrature rule is:

Le�j (!) �
lX

i=1

1

Aj
�
Z
Aj

Le(~yi; !
0
i) � cos �i � Sti � v(~yi; ~x)
3j~yi � ~xj2 � cos �0i � fr(!0i; ~x; !) d~x;

whereSti is the total area of the lightsource triangles that share vertexi and factor1=3 comes from the
fact that a triangle has 3 vertices.

8.7. IMPROVING THE EFFICIENCY 116

Note that the inner integral is the same as the integral in equation (8.54), with the substitution

�i

4�
(Le(~yi; !

0
i) � cos �i �

Sti

3
:

There is another slight difference in the window surface. A one-sided area lightsource can emit light into
that halfspace which is “above” the plane of lightsource. Thus the window surface becomes ahemicube
(figure 8.28). An even better window surface is thecubic tetrahedron [BKP91], since it has just 3 faces
while the hemicube has 5.

Summarizing the incoming first-shot from a smaller area lightsource consists of the following steps.
First the lightsource is decomposed into a triangle mesh. A hemicube or a cubic tetrahedron is placed at
each vertex~yi of the mesh and the visibility of the other surfaces are determined. Scalar factors

rij =
4Sti � cos �i
3R2Aj

�
X
p2Pj

cos �3p

are stored in each patchj. The reflected radiance can be obtained from this scalar factor during the global
illumination computation in the following way:

Le�j (!) =
lX

i=1

Le(~yi; !
0
i) � rij � f jr (!0i; !): (8.60)

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error of rendering the Sierpiensky set

With incoming first-shot
Without first-shot

0.01

0.1

1

0 100 200 300 400 500 600 700 800 900 1000

L1
 e

rr
or

time (seconds)

Error of rendering as a function of time

With incoming first-shot
Without first-shot

Figure 8.27: Error of ray-bundle stochastic iteration with and without first-shot for the Sierpiensky set scene
(figure 9.1). The left image has been plotted as a function of time to demonstrate that the overhead of the first-shot

step amortizes quickly

The error curves of figure 8.27 compare the stochastic iteration with and without the incoming first-
shot. We can conclude that the incoming first-shot step has its overhead, but it is worth doing. We can
see that the stochastic iteration is about 20 times faster with the incoming first-shot than without it.

Diffuse shot

Getting rid of the point and small area lightsources reduces the variation of integrand, but medium size
lightsources might still pose problems. The incoming first-shot method proposed in the previous section
is of limited use for these lightsources since the incoming first-shot requiresl additional variables per
patch, wherel is the number of point samples on the lightsources, which may become very memory
demanding. Thus a different approach is needed, which decomposes the transport operator instead of
subdividing the lightsources.

8.7. IMPROVING THE EFFICIENCY 117

hemicube placement looking down looking to the left

looking to the right looking forward looking backward

Figure 8.28: Placement of the hemicube around a lightsource point and the images on the 5 hemicube faces

current
global random direction

radiance transfers
in an iteration step

previous
global random
direction

current
global random direction

computation of the image estimate
in an iteration step

incoming first-shot

image plane

first shot

previous
radiance transfer

current radiance
transfer

eye transfer

Figure 8.29: Ray-bundle stochastic iteration with incoming first-shot

8.7. IMPROVING THE EFFICIENCY 118

Let us express the BRDF of the surfaces as a sum of the diffusefd and non-diffuse (specular)fnd
terms (note that the available BRDF representations do exactly this),

fr(!
0; ~x; !) = fd(~x) + fnd(!

0; ~x; !)

and let us express the transport operator as the sum of diffuse and non-diffuse reflections:

T = Td + Tnd;

TdL =

Z

H

L(h(~x;�!0); !0) �cos �0 �fr(~x) d!0; TndL =

Z

L(h(~x;�!0); !0) �cos �0 �fnd(!0; ~x; !) d!0:

The basic idea of the “diffuse shot” technique is thatTdLe can be calculated in a preprocessing phase.
The storage of the foundTdLe requires just one variable per patch (this is why we handled the diffuse
reflection separately).

+=

only specular
reflection

diffuse+specular
reflection

"emission"

Figure 8.30: First step of the diffuse shot technique

Then, during the global walks, the first step should only be responsible for the non-diffuse reflection.
The diffuse part is added to the result of this first step. The method can also be explained as a restructuring
of the Neumann-series expansion of the solution of the rendering equation in the following way:

L = Le + T Le + T 2Le + T 3Le + : : : = (Le + TdLe) + TndLe + T (TdLe + TndLe) + : : : (8.61)

whereTdLe is known after the preprocessing phase. Note that this method handles the first step in
a special way, thus it requires the different bounces to be stored separately, as it is done by the self-
correcting iteration or by combined and bi-directional walk methods. In self-correcting iteration, the
formulae are reorganized in the following way to include(TdLe) that is already known:

L0d(m) = (TdLe) + T �d (m)(Lnd(m� 1) + Ld(m� 1));

Ld(m) = �m � L0d(m) + (1� �m) � Ld(m� 1);

Lnd(m) = T �nd(m)(Le + Lnd(m� 1) + Ld(m� 1));

Pm = M(Le + Ld(m) + Lnd(m)); (8.62)

Note that this restructuring replaced random variableT �d Le by its mean(TdLe) which is a common
variance reduction technique.

In order to present the idea for the walk methods, let us denote the result of the diffuse shot byLdif .
The calculation of thed-bounce irradianceJd for d = 1; 2; : : : is modified as follows:

J0 = A(!0D) � Le(!0D);
J1 = 4� �A(!0D�d) �

�
Fnd(!

0
D�d+1; !

0
D�d) � J0 + Ldif

�
;

Jd = 4� �A(!0D�d) � F(!0D�d+1; !0D�d) � Jd�1;

whereFnd is the diagonal matrix of non-diffuse reflectance functions.

8.7. IMPROVING THE EFFICIENCY 119

Now let us discuss the computation of a single diffuse reflection of the light coming from patch
S of emissionLe(~y; !) to a point~x. We can follow the hardware supported approach of the previous
section, which places hemicubes at the lightsource, determines the visible patches and adds up the diffuse
reflections of all sample points. On the other hand, another technique can also be used that works well
for larger area lightsources and small receiver patches. If the patches are small, thenLe can be assumed
to be constant for all~y points and directions pointing form~y to ~x. Thus the diffuse reflection is

Ld(~x) = TdLe =
Z

H

Le(h(~x;�!0); !0) �cos �0 �fr(~x) d!0 � Le(~y; !~y!~x) �fr(~x) �
Z

S

cos �0 d!0; (8.63)

where
S is the solid angle in which patchS is visible, that is the projection of the patch onto the
unit hemisphere. Note also thatcos �0 means projecting onto the base plane of the hemisphere, thus the
computation of the diffuse reflection requires the area obtained by projecting the patch first onto the unit
hemisphere then to the base circle.

-

+

+

R l R l 1+

N

Figure 8.31: Hemispherical projection of a planar polygon (~Rl and ~Rl�1 are two consecutive vertices)

To simplify the problem, consider only one edge line of the polygon first, and two consecutive ver-
tices, ~Rl and ~Rl�1, on it (figure 8.31). Operator� stands for modulo addition which can handle the
problem that the next of vertexl is usually vertexl + 1, except for the last vertex which is followed
by vertex0. The hemispherical projection of this line is a half great circle. Since the radius of this
great circle is 1, the area of the sector formed by the projections of~Rl and ~Rl�1 and the center of the
hemisphere is simply half the angle of~Rl and ~Rl�1. Projecting this sector orthographically onto the
equatorial plane, an ellipse sector is generated, having the area of the great circle sector multiplied by
the cosine of the angle of the surface normal~N and the normal of the segment (~Rl � ~Rl�1). The area of
the doubly projected polygon can be obtained by adding and subtracting the areas of the ellipse sectors
of the different edges, as is demonstrated in figure 8.31, depending on whether the projections of vectors
~Rl and ~Rl�1 follow each other clockwise. This sign value can also be represented by a signed angle of
the two vectors, expressing the area of the double projected polygon as a summation:

X
l

1

2
� angle(~Rl; ~Rl�1)

(~Rl � ~Rl�1)

j~Rl � ~Rl�1j
� ~N: (8.64)

This method has supposed that the lightsource patch is above the plane of~x and is totally visible.
Surfaces below the equatorial plane do not pose any problems, since we can get rid of them by the
application of a clipping algorithm. When partial occlusion occurs, then either a continuous (object
precision) visibility algorithm is used to select the visible parts of the surfaces, or the visibility term
is estimated by firing several rays to surface elementj and averaging their 0/1 associated visibilities.
Since this means extra visibility computation, we prefer this method to the hemicube approach only if
the lightsources are great and are seen from almost everywhere.

8.7. IMPROVING THE EFFICIENCY 120

8.7.3 Adaptive importance sampling and resolution control in iteration

The light transfer might be significantly different in particular directions. According to importance sam-
pling, important directions should be selected more often. If the probability density of the direction is
p(!), then the definition of the random transport operator is then:

T �(!0)L(!) = T(!0; !) � L(!0)
p(!)

: (8.65)

Similarly, when the light is transferred into a single direction, particular regions might provide different
contributions. To emphasize important regions, we can use higher resolution discrete visibility maps
where the transfer is significant. To establish the required probability densityp(!) and the resolution
plan, an adaptive strategy is proposed. Let us decompose the set of directions into finite subsets, using,
for example, a spacing of the�, � angles, and associate with each subset an importance value which
defines a discrete probability densityp(!) and a low-resolution visibility map storing also importance
values that define where higher resolution is needed. Initially all importance values are equal. Running
the algorithm, the transferred radiance is obtained and registered into the two importance maps. After a
predefined number of steps, the importance is set proportionally to the average radiance values.

8.7.4 Reducing the power defect of the iteration

The power defect of the iteration can be reduced by the proper selection of the initial radiance function.
In the ideal case the initial radiance is close to the real solution, thus the initial radiance is selected as a
rough estimate of the final solution. To get this rough estimate, either the iteration can be run for a few
samples without taking into account the measured values [Neu95, Sbe96], or the initial function is made
equal to a single bounce of the lightsources which are computed by the methods of the previous sections.

Let us consider another method. Assume that the incoming radiance of each patch is constant and
the initial radiance is obtained as the reflection of this constant radiance.

We shall suppose that the environment is closed. This is not a real limitation since any scene can be
closed by adding closing surfaces and setting their BRDF to zero. Let the constant radiance be~L. The
initial radiance is then its reflection

L0(~x; !) = T ~L =

Z

H

~L � fr(!0; ~x; !) � cos �0 d!0 = ~L � a(~x; !);

wherea(~x; !) is the albedo. To find the constant~L value, the total energy in the scene is set to be equal
to the expected one. Using the rendering equation we have:Z

H

Z
S

~L cos � d~x d! =

Z

H

Z
S

~Le(~x; !) cos � d~x d! +

Z

H

Z
S

Z

H

~L � fr(!0; ~x; !) � cos �0 d!0 cos � d~x d!:

Simplifying this, we obtain:

~L =

R

H

R
S

~Le(~x; !) cos � d~x d!

S� � (1� amean)
; where amean =

1

S�
�
Z

H

Z
S

a(~x; !) cos � d~x d!:

In figure 9.13, the image sequence shows how the iteration enhances this initial estimate. The error
measurements of figure 8.32 indicate that setting the initial radiance really improves the initial behaviour,
but the benefits vanish later. The improvements take longer for self-correcting iteration than for normal
stochastic iteration.

8.7. IMPROVING THE EFFICIENCY 121

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error of the Cornell box scene rendered with stochastic iteration

Initialized radiance
Without initialized radiance

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error of the Cornell box scene rendered with self-correcting iteration

Initialized radiance
Without initialized radiance

Figure 8.32: Efficiency improvements of the stochastic iteration (left) and for the self-correcting iteration (right)
provided by initializing the radiance in the Cornell box scene (figure 8.21)

8.7.5 Constant radiance step

The average radiance~L can be used not only for initializing the radiance, but also simplifying the global
illumination problem similarly to [Neu96]. Let us decompose the unknown radiance function into this
average~L and a distance from this average�L. SubstitutingL = ~L+�L into and rendering equation
we can obtain:

�L(~x; !) = Le(~x; !) + (a(~x; !)� 1) � ~L+ T�L: (8.66)

This is an easier — i.e. lower variation — problem than the original rendering equation if the new
lightsource termLe� = Le(~x; !) + (a(~x; !) � 1) � ~L is flatter thanLe(~x; !). This is the case if the
lightsources do not reflect and the non-lightsource surfaces have high albedo.

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error of the Cornell box scene rendered with self-correcting, stochastic iteration

Constant radiance step
Without constant radiance step

Figure 8.33: Efficiency improvements of the constant radiance step in the Cornell box scene (figure 8.21)

As shown in figure 8.33, for the Cornell box-scene the improvements are negligible.

Chapter 9

Simulation results

The presented algorithms have been implemented in C++ in OpenGL environment and the program has
been executed on Silicon Graphics Indigo2, Silicon Graphics O2 workstations and on a PC with 400
MHz Pentium II processor. The running times given in the following sections are measured on the PC.

The images have been generated by the ray-bundle walk method and by the different versions of
stochastic iteration. The resolutions of the image and the visibility map are800 � 800 and600 � 600,
respectively.

Figure 9.1 compares the images obtained by the diffuse shot, first shot, diffuse radiosity and non-
diffuse global illumination type ray-bundle tracing. The scene that contains a 3D Sierpiensky set has
22768 patches. The diffuse albedo of the patches in this set is(0:18; 0:06; 0:12) on the wavelengths 400
nm, 552 nm and on 700 nm, respectively. The specular albedo is wavelength independent and is between
0.8 and 0.4 depending on the viewing angle. The specular reflection has been modeled by the stretched-
Phong model [NNSK98b]. The “shine” parameter is 3. These images demonstrate that simplifications
of local illumination algorithms and ignoring of non-diffuse reflections might result in very inaccurate
images.

9.1 Testing the walk method

Figure 9.2 shows a scene as rendered after the incoming first-shot applied only to the point lightsource
and after 500 walks of length 5. The scene contains specular, metallic objects tessellated to 9605 patches,
and is illuminated by both area (ceiling) and point (right-bottom corner) lightsources. The specular re-
flection has been modeled by a physically plausible modification of the Phong model that is particu-
larly suitable for metals [NNSK98b]. A global radiance transfer took about 0.5 second on a Pentium
II/400MHz computer. Since the radiance information of a single patch is stored on 3 wavelengths in
3� 18 float variables (3 for the emission, 3 for the incoming radiance generated by the point lightsource,
3D(D + 1)=2 = 45 for the incoming radiances of the steps of the walk and 3 for the accumulating
radiance perceived from the eye), the extra memory used in addition to storing the scene is only 2.1
Mbytes. In figure 9.3 a fractal terrain can be seen that was rendered by global ray-bundle walks without
any special preprocessing. The mountain is a realization of the 2D Brownian motion, which has been
generated by a random midpoint perturbation algorithm setting the recursion level to 4 [SK99d]. The
scene is illuminated by a spherical lightsource (the moon) and also by sky-light illumination. Note that
the moon has been placed in front of the mountain to enable it to simultaneously illuminate the mountain
and to have reflection in the lake. This is a rather difficult scene for the ray-bundle tracing to render since
the lake is highly specular (the shine parameter is 30) and the snow has 0.98 albedo.

122

9.1. TESTING THE WALK METHOD 123

diffuse first shot general first shot

radiosity solution global illumination solution

Figure 9.1: Sierpiensky set (22.7k patches) after the diffuse first shot, the incoming first-shot (local illumination
solution), the diffuse radiosity solution (diffuse global illumination) and the ray-bundle stochastic iteration

(non-diffuse global illumination)

9.1. TESTING THE WALK METHOD 124

Figure 9.2: A golden Beethoven with metallic spheres (9.6k patches) after the incoming first-shot of the point
lightsource at the right-bottom corner (left) and after 500 global ray-bundle walks (right)

Figure 9.3: A smooth mountain with a nearby “moon” and a flat lake (15k patches) after 3000 ray-bundle walks
of length 5

9.2. TESTING STOCHASTIC ITERATION AND SELF-CORRECTING ITERATION 125

9.2 Testing stochastic iteration and self-correcting iteration

Figure 9.7 shows a scene as rendered after 500 stochastic iterations and after 3000 iterations when the
algorithm is fully converged. This pair of images demonstrates that this algorithm can provide good
image quality even after relatively few number of iterations. The scene contains specular, metallic objects
tessellated to 9519 patches. The calculation of the left image took 6 minutes. Figure 9.8 shows a scene
containing 56745 patches after 300 stochastic iterations, which provide an accuracy within 5 percents
(20 minutes computation time).

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error in Stochastic Iteration

flake sceen
room with beethoven and a teapot

Figure 9.4: Convergence of stochastic iteration for the sphere-flake (figure 9.8) and for the golden Beethoven with
teapot (figure 9.7)

The speed of convergence of stochastic iteration has been measured for the sphere-flake (figure 9.8)
and for the room containing a Beethoven and a teapot (figure 9.7). The measurement results are shown
in figure 9.4. Note that the algorithm converges faster for sphere-flake scene, which is due to the larger
lightsources.

9.2.1 Self-correcting stochastic iteration

Figure 9.9 shows a fractal terrain containing 59614 patches rendered by self-correcting stochastic iter-
ation (45 minutes computation time). The scene is similar to that of figure 9.3, but here the Brownian
surface has been tessellated to more patches increasing the recursion level of the random midpoint per-
turbation algorithm to 7.

Figure 9.12 contains again the teapot and the Beethoven head, but now the BRDFs are not metallic.
Figure 9.13 shows the evolution of the images for normal iteration, and also when the initial radiance
estimation step has been applied. The measurement results for the self-correcting, stochastic iteration
are in figure 9.5. The poorer asymptotic convergence for the mountain scene is the effect of the highly
specular lake.

9.2.2 Self-correcting stochastic iteration with incoming first-shot

Figure 8.27 compares the speed of the convergence of stochastic iteration with and without the proposed
incoming first-shot step for the Sierpiensky set. In figures 9.10, 9.11 and 9.13 the timing and the image
quality of the two methods can also be compared. In the mountain scene of figure 9.10, 15 point samples
are selected from the “moon”. The incoming first-shot phase took 112 seconds, which were needed by
the15� 5 z-buffer/constant-shading rendering steps.

9.2. TESTING STOCHASTIC ITERATION AND SELF-CORRECTING ITERATION 126

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error in Self-correcting iteration

Sierpiensky set
mountain with moon

teapot with Beethoven

Figure 9.5: Convergence of self-correcting stochastic iteration for the Sierpiensky set (figure 9.1), for the
mountain with lake and moon (figure 9.10) and for the ceramic Beethoven with teapot (figure 9.12)

When rendering Sierpiensky set of figure 9.11 the area lightsource has been subdivided into a mesh
of 8 triangles and 9 vertices. The incoming first-shot phase took 55 seconds. A single radiance transfer
by a ray-bundle took 1.5 seconds without the first-shot results and 2 seconds when the incoming first-shot
was also used. The 0.5 second overhead is due to the reflection of the result stored by the incoming first-
shot both towards the eye and towards to next global direction. Despite the overhead, we can conclude
that incoming first-shot is worth for this small extra time, since the resulting algorithm converges very
quickly, and the image is almost fully converged after 2.5 minutes. Comparing the error curves, we can
see that the stochastic iteration is about 20 times faster with the incoming first-shot than without it.

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error in Self-correcting iteration with incoming first-shot

Sierpiensky set
mountain with moon

teapot with Beethoven

Figure 9.6: Convergence of self-correcting stochastic iteration having applied the incoming first-shot step for the
Sierpiensky set (figure 9.1), for the mountain with lake and moon (figure 9.10) and for the ceramic Beethoven with

teapot (figure 9.12)

The error curves of the renderings with self-correcting stochastic iteration combined with the incom-
ing first-shot are shown in figure 9.6. These curves and also the image sequences in figures 9.10, 9.11
and 9.13 demonstrate that this alternative is far superior to the others.

9.2. TESTING STOCHASTIC ITERATION AND SELF-CORRECTING ITERATION 127

Figure 9.7: A room with golden Beethoven and a teapot (9.5k patches) rendered by stochastic iteration after 500
steps i.e. 6 minutes (left) and when fully converged (right)

Figure 9.8: A golden sphere-flake (56k patches) illuminated by area lightsources rendered by stochastic iteration
(300 iterations, 20 minutes)

9.2. TESTING STOCHASTIC ITERATION AND SELF-CORRECTING ITERATION 128

Figure 9.9: Highly tessellated mountain with moon (60k patches) rendered with stochastic, self-correcting
iteration

without incoming first-shot

0 iteration, 0 sec 100 iterations, 212 secs 200 iterations, 424 secs

with incoming first-shot

first-shot+ 0 iteration, 116 secs first-shot+ 50 iterations, 272 secs first-shot+ 100 iterations, 432 secs

Figure 9.10: Mountain with moon rendered with self-correcting iteration without and with the incoming radiance
step

9.2. TESTING STOCHASTIC ITERATION AND SELF-CORRECTING ITERATION 129

without incoming first-shot

0 iteration, 0 secs 50 iterations, 68 secs 100 iterations, 137 secs

with incoming first-shot

first-shot+ 0 iteration, 50 secs first-shot+ 10 iterations, 70 secs first-shot+ 50 iterations, 150 secs

Figure 9.11: Comparison of stochastic iteration without (upper-row) and with incoming first-shot (lower-row)

Figure 9.12: Ceramic teapot and Beethoven rendered with stochastic, self-correcting iteration

9.2. TESTING STOCHASTIC ITERATION AND SELF-CORRECTING ITERATION 130

stochastic iteration

0 iteration 100 iterations, 65 secs 200 iterations, 130 secs

self-correction

0 iteration 100 iterations, 66 secs 200 iterations, 132 secs

self-correction with radiance initialization

0 iteration 100 iterations, 67 secs 200 iterations, 134 secs

self-correction with incoming first-shot

first-shot+ 0 iteration, 48 secs first-shot+ 10 iterations, 59 secs first-shot+ 70 iterations, 125 secs

Figure 9.13: Ceramic teapot and Beethoven (12.7k patches) rendered by stochastic iteration (first row), by
self-correction (second row), by self-correction with initial radiance estimation (third row), and by self-correction

and incoming first-shot (fourth row)

Chapter 10

Conclusions

This thesis has proposed methods aiming at the efficient solution of the global illumination problem.

The thesis has reviewed the state-of-the-art of global illumination methods, emphasizing those that
incorporate Monte-Carlo techniques. These reviews and comparisons have been published in [SKe95,
SK99d, SK99a, SK99b]. The state-of-the-art has been improved by several techniques using coherence,
quasi-Monte Carlo methods and importance sampling. The particular results and the references where
they were published are as follows:

1 Stochastic iteration for the solution of the non-diffuse global
illumination problem

In chapter 7 a general framework, calledstochastic iterationhas been proposed, to solve the rendering
equation [SK98c, SK99c]. Stochastic iteration replaces the light-transport operator by a random trans-
port operator generated from a finite-dimensional distribution. The expected value of the application of
the random transport operator should be equivalent to the application of the light-transport operator. In
the iteration the random transport operator is used and the measured value (i.e. pixel color) is obtained as
the average of the measured radiances of the iteration steps. Compared to previous techniques involving
Monte-Carlo techniques and iteration, this method is unique in the sense that it can attack the general
form of the rendering equation, that is the non-diffuse global illumination problem. The proposed meth-
ods provide asymptotically correct results if the random operators are contractions and are not strongly
correlated. It was also shown that stochastic iteration can eliminate the error accumulation problem and
the prohibitive memory demand of classical iteration. A methodology of the elaboration of practical
algorithms is also presented. An analogous approach of stochastic iteration could also be successfully
used in very different application areas [SK94, SKMFF96, SKMFH00].

1.1 Single-ray stochastic iteration algorithm

In section 7.4.1 a single-ray based iteration algorithm is proposed [SK99a, SK99c], which uses the value
of the radiance function in a single point and direction, thus it requires no tessellation and finite-element
representation. Unlike other random-walk algorithms that make decisions based on local characteristics,
this method also uses the information gathered at previous steps. Since this method requires BRDF
sampling and albedo computation, BRDF models have also been developed that allow fast importance
sampling [NNSK98b, NNSK99a, NNSK98a].

1.2 Quasi-Monte Carlo methods in iteration

In section 8.4.1, the application of low-discrepancy sequences in iteration has been formally analyzed
and examined by simulation [SK99a, SK99c]. It turned out that only1-distribution sequences can be

131

10. CONCLUSIONS 132

expected to provide correct results, Halton and Hammersley sequences fail. Simulation results have
indicated that thef�ng deterministic series is appropriate.

2 Quasi-Monte Carlo methods for the solution of the rendering equation

In section 6.2 it has formally proven that quasi-Monte Carlo methods can effectively be used for the
solution of the rendering equation [SKF97], and they are better than Monte-Carlo techniques for practical
scenes, in spite of the fact that the integrand of the rendering equation is not of finite-variation in the sense
of Hardy and Krause. We also concluded that quasi-Monte Carlo techniques are primarily worth applying
for the estimation of lower bounces [SKP98b, SKP99a].

2.1 Importance sampling and Russian-roulette for quasi-Monte Carlo quadrature

The classical Monte-Carlo importance sampling and Russian-roulette have been generalized for quasi-
Monte Carlo methods [SKCP98, SKCP99, SK98d].

3 Global illumination algorithm using ray-bundles

Applying finite-element representation for the positional variation of the radiance function, a projected
form of the rendering equation has been established, which is the theoretical basis of the light-transport
using complete wavefronts, called ray-bundles. Ray-bundles allow us to exploit the coherence of the
radiance function. Two finite-element strategies, the Galerkin method with piece-wise constant basis
functions and the point-collocation method with piece-wise linear basis functions have been examined
and the related formulae have been developed.

3.1 Global visibility algorithms

Global visibility algorithms have been developed to allow fast tracing of ray-bundles in section 8.5
[SKF97, SKFNC97, SKFP98b, SKFP98a, SKP98a, SKP99b, SKM94], and the complexity of visibil-
ity algorithms have been analyzed [SKe95, HMSK92, MSK95, FMSK96, SKM96, SKF97, SKM97,
SKM98a, SKM98b]. These algorithms can be classified as continuous and discrete. Continuous algo-
rithms determine the visibility for all points in the scene, while discrete algorithms consider only sample
points organized into a regular, raster grid. Continuous algorithms have mainly theoretical interest. Dis-
crete algorithms, that are better than the continuous algorithms both in speed and in storage complexities,
on the other hand, result in very fast solutions and also allow the utilization of the built-in rendering hard-
ware. The resolution limit of discrete methods has been examined and a Russian-roulette-like random
visibility algorithm has been proposed to reduce the resolution requirement of discrete methods [SK98a].
The computation time depends on the total surface area and the resolution of the visibility map. Since
only the expected value of the visible surface area should be accurately computed, and an actual ras-
terization can be very coarse, lower resolution visibility maps can also be used. The limit is when the
projected patch size becomes comparable to the pixel size, since classical filling algorithms always gen-
erate an approximation whose height and width are at least 1. This problem can be solved by modifying
the filling algorithm to handle patches or spans randomly if their width or height is less than 1. These
low resolution maps increase the variance, thus slow down the convergence a little bit, but still provide
unbiased results and significantly reduce the computation time of a single transfer. The random visibility
approach can also be applied to speed-up continuous algorithms [SK98a].

3.2 Ray-bundle tracing

In section 8.2 a new, combined finite-element and random-walk algorithm, called theray-bundle trac-
ing, has been presented to solve the rendering problem of complex scenes including also glossy surfaces

10. CONCLUSIONS 133

[SKFP98b, SKP98a, SK98a, SKP99b]. The method is fundamentally different from other global radios-
ity algorithms, such as the method of global lines or the transillumination method in its ability to solve
the general, non-diffuse rendering problem. It applies a formulation that makes the integrand have finite
variation, thus the efficiency of low-discrepancy sequences can be fully exploited [SKF97]. The basic
idea of the method is to form bundles of parallel rays that can be traced efficiently, taking advantage of
image-coherence and the built-in rendering hardware. The basic algorithm has also been extended to
combine the results of the steps of a walk and also to take bi-directional steps.

Unlike other random walk methods using importance sampling, this approach does not emphasize
the locally important directions, but handles a large number (1 million or even infinite) parallel rays
simultaneously instead, thus it is more efficient than those methods when the surfaces are not very spec-
ular.

The time complexity of the algorithm depends on the used global visibility algorithm. For example,
the global painter’s algorithm hasO(n log n) complexity (n is the number of patches) [SKF97], which
is superior to theO(n2) complexity of classical, non-hierarchical radiosity algorithms [SKM95].

The memory requirement is comparable to that of the diffuse radiosity algorithms, although the new
algorithm is also capable to handle non-diffuse reflections or refractions. Thus this method does not
suffer from the prohibitive memory hunger of other non-diffuse finite-element approaches. Since global
ray-bundle walks are computed independently, the algorithm is very well suited for parallelization.

The application of importance sampling for the ray-bundle tracing has been studied in section 8.3.2.
The Metropolis and VEGAS methods have been considered, but only the Metropolis method was ex-
amined in details, using both theoretical considerations and simulation study [SKP98a, SKDP99]. For
homogeneous scenes, Metropolis sampling could not provide significant noise reduction compared to
quasi-Monte Carlo walks. This is due to the fact that the integrand of equation (8.5) is continuous and is
of finite variation unlike the integrand of the original rendering equation, thus if its variation is modest
then quasi-Monte quadrature is almost unbeatable. If the radiance distribution has high variation (dif-
ficult lighting conditions), then the Metropolis method becomes more and more superior. On the other
hand, in section 8.7.3 an adaptive — i.e. sequential Monte-Carlo type — importance sampling approach
was proposed for ray-bundle based iteration.

3.3 Stochastic iteration with ray-bundles

In section 8.4 a stochastic iteration algorithm using ray-bundles is also proposed that can efficiently
render scenes of moderate specularity illuminated by larger area lightsources [SK98c, SK99c]. This
algorithm provides unbiased estimates and seems to be significantly better than the finite-length ap-
proaches, in terms of both speed and storage space. The performance of stochastic iteration has been
further improved by finding a good initial radiance distribution and by incorporating self-correcting iter-
ation estimates for the diffuse part of the radiance function. This allows more lightpaths to be included
into the integral quadrature provided by a certain number of iterations.

3.4 Incoming first-shot

To handle small lightsources, theincoming first-shot method has been proposed for non-diffuse al-
gorithms in section 8.7.2 [SKP98a, SKSMT00]. On the other hand, a similar method, calleddiffuse
first-shot has been introduced to handle medium size lightsources. These preprocessing techniques
speed-up stochastic iteration by considerable amount, and allow the global illumination rendering of
complex scenes in a few minutes.

Since the proposed methods are able to render complex scenes with physical correctness in reason-
able time, the primary application areas of the methods include CAD, lighting design, terrain visualiza-
tion, computer aided motion picture development, etc.

10.1. FUTURE IMPROVEMENTS 134

10.1 Future improvements

The single-ray based stochastic iteration is being implemented with heuristic self-correction. If self-
correcting iteration were used directly, then each iteration step would introduce a new point to compete
for random selection. To limit the hunger for memory, after a certain steps the population should be
decimized randomly. By incorporating visual importance into the survival probabilities, bi-directional
algorithms can be obtained. We concluded that the single-ray based algorithm automatically estimates
the average contraction of the light transport and uses this estimate to randomly terminate the walk.

We intend to incorporate anadaptive tessellationmethod into the ray-bundle tracing algorithm. Note
that when computing the radiance transport for a given patch, the variation of the incoming radiance can
also be easily estimated. If this variation exceeds a given limit, then we cannot assume that the outgoing
radiance of the patch is homogeneous, thus the patch has to be subdivided. This tessellation scheme is
much more robust than those methods which examine the radiosity gradient. This tessellation scheme
also detects highlights that are completely inside a patch and can even provide information where the
patch should be subdivided. Considering this, the method is also able to dodiscontinuity meshing.

The algorithm seems to be particularly efficient to handleparticipating media since it can handle
very many parallel lines simultaneously. Participating media can be modeled as a set of partly transparent
“points” that always project onto a single pixel in the visibility map. Since this point field can be rendered
very quickly, the radiance transfer in a single direction can be computed very efficiently.

The Metropolis method seems to be worth using only for very difficult lighting conditions. On the
other hand, the Metropolis method is sensitive to its parameters such as the extent of perturbation. Future
research should concentrate on the automatic and “optimal” determination of these control parameters.

Global walks are computed completely independently. Stochastic iteration, on the other hand, de-
pends on the previous sample, but it can also be decomposed into several parallel runs using different
randomization sequences. Thus the algorithm can easily be ported toparallel computing systems.

The presented methods are particularly efficient if the surfaces are not highly specular and the scene
is illuminated by larger area lightsources. This is the application domain where other random walks
becomes inefficient. Thus it is worth joining the two approaches usingmultiple importance sampling
in a way that the strengths of the two approaches can be preserved.

Since the iteration is basically view-independent, just the result of each iteration step is projected
to the eye, images for many cameras can be computed simultaneously, which can be used to produce
animation. Since the radiance is stored in the object space, if the surfaces are not highly specular, then
the same radiance information remains valid for a wider range of viewing directions. It means that the
images must be computed by stochastic iteration just for a few camera orientations (viewing directions),
and for the inbetweening frames, the radiance of the patches can be interpolated. In order to save space,
the radiance is stored just for a few directions at less specular surfaces.

Due to the high-speed of self-correcting stochastic iteration combined with incoming first-shot, the
method seems appropriate forinteractive walk-through in scenes of glossy objects of moderate com-
plexity. Note that in this approach the incoming radiance and the diffuse reflection are view independent
thus are valid for all view positions. When either the view position of the viewing direction change,
the only factor which should be recomputed by stochastic iteration is the indirect specular (i.e. glossy)
reflection. In order to speed-up this calculation, each patch is associated with a single variableI that
represents the average indirect incoming radiance from the whole hemisphere. VariableI is also view
independent. Recall that the response to the homogeneous illumination is the incoming homogeneous
radiance times the albedo, thus when the viewing direction changes from! to !new, then the reflected
glossy illumination should be corrected approximately by(a(!new)� a(!)) � I. Due to the assumption
of homogeneous indirect illumination, this is just an approximation, but is quite accurate and can be
accepted as a good starting point of subsequent iteration steps. An even more precise approach would
associate not one but several average incoming radiance variables with each patch, that can represent
different incoming solid angles. Since when the actual radiance is close to the solution, the stochastic
iteration converges after a few steps, and a single iteration for a scene of103 — 104 patches requires
about0:05 — 0:5 seconds, which results in a new frame in about a second.

Acknowledgements

This work has been supported by theNational Scientific Research Fund(OTKA), ref.No.: F 015884
and ref.No.: T029135, by theAustrian-Hungarian Action Fund, ref.No.: 29p4, 32¨ou9 and 34¨ou28,
and by theSpanish-Hungarian Research Fund, ref.No.: E9. The research work has been carried out
at the Department of Control Engineering and Information Technology of the Technical University of
Budapest, and partly at the Institute of Computer Graphics of the Vienna University of Technology and
at the Department of Applied Mathematics and Informatics of the University of Girona. Prof. P´eter
Arató department head, Prof. B´ela Lantos and the whole staff of the Department of Control Engineering
and Information Technology have been giving continuous support during the work.

Chapters of this thesis have also been presented as Ph.D. courses at the Technical University of
Budapest, University of Girona and at the Vienna University of Technology [SK99b]. Special thanks go
to Prof. Werner Purgathofer for the valuable discussions and for making the resources of the Institute of
Computer Graphics of the Vienna University of Technology available for this research and to Prof. Mateu
Sbert from the University of Girona whose ideas inspired many problems considered in this research.
The discussions with professors and the most active Ph.D. students of the related courses, including
among others Robert F. Tobler, Francesc Castro, Roel Martinez, Jan Prikryl, Anna Vilanova Bartoli, Jiri
Hladuvka and Helmut Mastal, also helped to put the ideas in a simpler form.

I am also grateful to the Hungarian Telematics Co. where some results of this work have been
built into a commercial system visualizing industrial processes and where some technical parts of the
work have been realized, and to its employees for their technical help and logistical support, including
Péter Risztics, Istv´an Jankovits, Elefteria Szertaridisz and M´aria Keszthelyi. When I implemented the
algorithms, I re-used classes and modules from the software developed by the members of the computer
graphics group over the years, including the sphere-flake generator and parts from the radiosity program
written by Tibor Fóris, a ray-tracing program by Bal´azs Cs´ebfalvi and I also utilized model conversion
and text, figure and image processing tools made by P´eter Dornbach and Tam´as Horváth. Thanks also
go to mathematicians Sarolta Incz´edy, László Neumann, Attila Neumann and Istv´an Deák for drawing
my attention to the mathematical and computer graphics techniques on which the presented methods are
built, including, for example, the transillumination method, and for urging me to pursue this research. I
appreciate the much-needed moral support and tolerance provided by my friends and family members.

And at last, we cannot forget the tremendous compiling, computation, rendering and text processing
work carried out by Jenny (Silicon Graphics Indigo 2), Kata (PC 400 Mhz Pentium II), Susan (HP-Apollo
720), Thais, Hengest (Sun), Ringlotte, Marille, Ribisl, Zwetschke, Knieriem (Silicon Graphics O2) and
Schnoferl (Silicon Graphics Indy).

135

Related publications

Books and scripts

[SK99b] L. Szirmay-Kalos.Monte-Carlo Methods in Global Illumination. Institute of Computer Graphics,
Vienna University of Technology, Vienna, 1999.

[SK99d] L. Szirmay-Kalos.Sźaḿıtógépes grafika. ComputerBooks, Budapest, 1999.

[SKe95] L. Szirmay-Kalos (editor).Theory of Three Dimensional Computer Graphics. Akadémia Kiadó,
Budapest, 1995.

Journals

[SK99c] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumination.Computer Graphics
Forum (Eurographics’99), 18(3):233–244, 1999.

[SKP99b] L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle tracing with infinite number of rays.Com-
puters and Graphics, 23(2):193–202, 1999.

[SKCP99] L. Szirmay-Kalos, B. Cs´ebfalvi, and W. Purgathofer. Importance driven quasi-random walk solution
of the rendering equation.Computers and Graphics, 23(2):203–212, 1999.

[NNSK99a] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Compact metallic reflectance models.Computer
Graphics Forum (Eurographics’99), 18(3):161–172, 1999.

[NNSK99b] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Reflectance models by pumping up the albedo
function.Machine Graphics and Vision, 8(1):3–18, 1999.

[NNSK99c] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Reflectance models with fast importance sam-
pling. Computer Graphics Forum, 18(4):249–265, 1999.

[SKMFH00] L. Szirmay-Kalos, G. M´arton, T. Fóris, and T. Horv´ath. Development of process visualization sys-
tems - an object oriented approach.Journal of System Architecture, 46:275–296, 2000.

[SKFP98a] L. Szirmay-Kalos, T. F´oris, and W. Purgathofer. Non-diffuse, random-walk radiosity algorithm with
linear basis functions.Machine Graphics and Vision, 7(1):475–484, 1998.

[SKM98b] L. Szirmay-Kalos and G. M´arton. Worst-case versus average-case complexity of ray-shooting.Jour-
nal of Computing, 61(2):103–133, 1998.

[SKM98a] L. Szirmay-Kalos and G. M´arton. Construction and analysis of worst-case optimal ray-shooting
algorithms.Computers and Graphics, 22(2):793–806, 1998.

[CSK98] B. Csébfalvi and L. Szirmay-Kalos. Interactive volume rotation.Machine Graphics and Vision,
7(4):793–806, 1998.

[SKFNC97] L. Szirmay-Kalos, T. F´oris, L. Neumann, and B. Cs´ebfalvi. An analysis to quasi-Monte Carlo inte-
gration applied to the transillumination radiosity method.Computer Graphics Forum (Eurograph-
ics’97), 16(3):271–281, 1997.

[SKHR97] L. Szirmay-Kalos, T. Horv´ath, and P. Risztics. Generalization and solution of reward models.
IASTED Int. Journal of Modelling and Simulation, June 1997.

[SK96] L. Szirmay-Kalos. Application of variational calculus in the radiosity method.Periodica Polytech-
nica (Electrical Engineering), 40(2):123–138, 1996.

[HMSK92] T. Horváth, P. Márton, G. Risztics, and L. Szirmay-Kalos. Ray coherence between sphere and a
convex polyhedron.Computer Graphics Forum, 2(2):163–172, 1992.

136

10.1. FUTURE IMPROVEMENTS 137

Chapters in books

[SKP98a] L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle tracing with hardware acceleration. In
Rendering Techniques ’98, Springer, pages 247–258, 1998.

[SK94] L. Szirmay-Kalos. Dynamic layout algorithm to display general graphs. In Paul Heckbert, editor,
Graphics Gems IV. Academic Press, Boston, 1994.

Conference proceedings

[SK99a] L. Szirmay-Kalos. Monte-Carlo methods for global illumination. InSpring Conference of Computer
Graphics ’99, pages 1–28, Budmerice, 1999. invited talk.

[SKP99a] L. Szirmay-Kalos and W. Purgathofer. Analysis of the quasi-monte carlo integration of the rendering
equation. InWinter School of Computer Graphics ’99, pages 281–288, Plzen, 1999.

[SKDP99] L. Szirmay-Kalos, P. Dornbach, and W. Purgathofer. On the start-up bias problem of metropolis
sampling. InWinter School of Computer Graphics ’99, pages 273–280, Plzen, 1999.

[SKFP98b] L. Szirmay-Kalos, T. F´oris, and W. Purgathofer. Quasi-Monte Carlo global ray-bundle tracing with
infinite number of rays. InWinter School of Computer Graphics ’98, pages 386–393, Plzen, 1998.

[SKCP98] L. Szirmay-Kalos, B. Cs´ebfalvi, and W. Purgathofer. Importance-driven quasi-Monte Carlo solution
of the rendering equation. InWinter School of Computer Graphics ’98, pages 377–386, Plzen, 1998.

[SKF97] L. Szirmay-Kalos and T. F´oris. Radiosity algorithms running in sub-quadratic time. InWinter School
of Computer Graphics ’97, pages 562–571, Plzen, 1997.

[SKM97] L. Szirmay-Kalos and G. M´arton. On the limitations of worst-case optimal ray-shooting algorithms.
In Winter School of Computer Graphics ’97, pages 552–561, Plzen, 1997.

[CMSK97] B. Csébfalvi, G. Márton, and L. Szirmay-Kalos. Fast opacity control of volumetric ct data. InWinter
School of Computer Graphics ’97, pages 79–87, Plzen, 1997.

[SKMFF96] L. Szirmay-Kalos, G. M´arton, T. Fóris, and J. F´abián. Application of object-oriented methods in
process visualisation. InWinter School of Computer Graphics ’96, pages 349–358, Plzen, 1996.

[FMSK96] T. Fóris, G. Márton, and L. Szirmay-Kalos. Ray-shooting in logarithmic time. InWinter School of
Computer Graphics ’96, pages 84–90, Plzen, 1996.

[SKM96] L. Szirmay-Kalos and G. M´arton. On the complexity of ray-tracing. InDagstuhl Seminar on Ren-
dering, Dagstuhl, Germany, June 1996.

[SK95] L. Szirmay-Kalos. Stochastic sampling of two-dimensional images. InCOMPUGRAPHICS ’95,
Alvor, 1995.

[SKM95] L. Szirmay-Kalos and G. M´arton. On convergence and complexity of radiosity algorithms. InWinter
School of Computer Graphics ’95, pages 313–322, Plzen, 1995.

[MSK95] G. Márton and L. Szirmay-Kalos. On average-case complexity of ray tracing algorithms. InWinter
School of Computer Graphics ’95, pages 187–196, Plzen, 1995.

[SKM94] L. Szirmay-Kalos and G. M´arton. On hardware implementation of scan-conversion algorithms. In
8th Symp. on Microcomputer Appl., Budapest, 1994.

[SK93] L. Szirmay-Kalos. Global element method in radiosity calculation. InCOMPUGRAPHICS ’93,
Alvor, 1993.

[DRSK92] B. Dobos, P. Risztics, and L. Szirmay-Kalos. Fine-grained parallel processing of scan conversion
with i860 microprocessor. In7th Symp. on Microcomputer Appl., Budapest, 1992.

[MRSK92] G. Márton, P. Risztics, and L. Szirmay-Kalos. Quick ray-tracing exploiting ray coherence theorems.
In 7th Symp. on Microcomputer Appl., Budapest, 1992.

[HKRSK91] T. Horváth, E. Kovács, P. Risztics, and L. Szirmay-Kalos. Hardware-software-firmware decompo-
sition of high-performace 3d graphics systems. In6th Symp. on Microcomputer Appl., Budapest,
1991.

10.1. FUTURE IMPROVEMENTS 138

Technical reports

[NNSK98b] L. Neumann, A. Neumann, and L. Szirmay-Kalos. New simple reflectance models for metals and
other specular materials. Technical Report TR-186-2-98-17, Institute of Computer Graphics, Vienna
University of Technology, 1998. www.cg.tuwien.ac.at/.

[SK98a] L. Szirmay-Kalos. Global ray-bundle tracing. Technical Report TR-186-2-98-18, Institute of Com-
puter Graphics, Vienna University of Technology, 1998. www.cg.tuwien.ac.at/.

[SK98b] L. Szirmay-Kalos. Object-oriented framework and methodology to process visualization system
development. Technical Report TR-186-2-98-19, Institute of Computer Graphics, Vienna University
of Technology, 1998. www.cg.tuwien.ac.at/.

[NNSK98a] L. Neumann, A. Neumann, and L. Szirmay-Kalos. Analysis and pumping up the albedo function.
Technical Report TR-186-2-98-20, Institute of Computer Graphics, Vienna University of Technol-
ogy, 1998. www.cg.tuwien.ac.at/.

[SK98c] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumination. Technical Re-
port TR-186-2-98-21, Institute of Computer Graphics, Vienna University of Technology, 1998.
www.cg.tuwien.ac.at/.

[SK98d] L. Szirmay-Kalos. Stochastic methods in global illumination — state of the art report. Technical
Report TR-186-2-98-23, Institute of Computer Graphics, Vienna University of Technology, 1998.
www.cg.tuwien.ac.at/.

[SKP98b] L. Szirmay-Kalos and W. Purgathofer. Quasi-Monte Carlo solution of the rendering equation. Tech-
nical Report TR-186-2-98-24, Institute of Computer Graphics, Vienna University of Technology,
1998. www.cg.tuwien.ac.at/.

[SKSMT00] L. Szirmay-Kalos, M. Sbert, R. Martinez, and R. F. Tobler. Incoming first-shot for non-diffuse global
illumination. Technical Report TR-186-2-00-04, Institute of Computer Graphics, Vienna University
of Technology, 2000. www.cg.tuwien.ac.at/.

[SK88] L. Szirmay-Kalos. Árnyalási modellek a h́aromdimenzíos raszter grafiḱaban (Szakszemináriumi
Füzetek 30). BME, Folyamatszab´alyozási Tansz´ek, 1988.

BIBLIOGRAPHY

[Ábr97] Gy.Ábrahám. Optika. Panem-McGraw-Hill, Budapest, 1997.

[AH93] L. Aupperle and P. Hanrahan. A hierarchical illumination algorithms for surfaces with glossy reflec-
tion. Computer Graphics (SIGGRAPH ’93 Proceedings), pages 155–162, 1993.

[AK90] J. Arvo and D. Kirk. Particle transport and image synthesis. InComputer Graphics (SIGGRAPH
’90 Proceedings), pages 63–66, 1990.

[Ant80] J. Antal.Fizikai kézik̈onyv m̋uszakiaknak. Műszaki Könyvkiadó, Budapest, 1980.

[Arv95] J. Arvo. Stratified sampling of spherical triangles. InComputer Graphics (SIGGRAPH ’95 Proceed-
ings), pages 437–438, 1995.

[BBS96] G. Baranoski, R. Bramley, and P Shirley. Fast radiosity solutions for environments with high average
reflectance. InRendering Techniques ’96, pages 345–355, 1996.

[Bek97] P. Bekaert. Error control for radiosity. InRendering Techniques ’97, Porto, Portugal, 1997.

[Bek99] Ph. Bekaert.Hierarchical and stochastic algorithms for radiosity. PhD thesis, University of Leuven,
1999. http://www.cs.leuven.ac.be/cwis/research/graphics/CGRG.PUBLICATIONS/PHBPPHD.

[BF89] C. Buckalew and D. Fussell. Illumination networks: Fast realistic rendering with general reflectance
functions.Computer Graphics (SIGGRAPH ’89 Proceedings), 23(3):89–98, July 1989.

[BKP91] J. C. Beran-Koehn and M. J. Pavicic. A cubic tetrahedral adaptation of the hemicube algorithm. In
James Arvo, editor,Graphics Gems II, pages 299–302. Academic Press, Boston, 1991.

[Bli77] J. F. Blinn. Models of light reflection for computer synthesized pictures. InComputer Graphics
(SIGGRAPH ’77 Proceedings), pages 192–198, 1977.

[BNN+98] P. Bekaert, L. Neumann, A. Neumann, M. Sbert, and Y. Willems. Hierarchical Monte-Carlo radios-
ity. In Rendering Techniques ’98, pages 259–268, 1998.

[BS95] P. Bodrogi and J. Schanda. Testing the calibration model of colour crt monitors.Displays, 16(3):123–
133, 1995.

[BS96] G. Besuievsky and M. Sbert. The multi-frame lighting method - a monte-carlo based solution for
radiosity in dynamic environments. InRendering Techniques ’96, pages pp 185–194, 1996.

[CG85] M. Cohen and D. Greenberg. The hemi-cube, a radiosity solution for complex environments. In
Computer Graphics (SIGGRAPH ’85 Proceedings), pages 31–40, 1985.

[Chi88] H. Chiyokura.Solid Modelling with DESIGNBASE. Addision Wesley, 1988.

[CLSS97] P. H. Christensen, D. Lischinski, E. J. Stollnitz, and D. H. Salesin. Clustering for glossy global
illumination. ACM Transactions on Graphics, 16(1):3–33, 1997.

[CMS98] F. Castro, R. Martinez, and M. Sbert. Quasi Monte-Carlo and extended first-shot improvements to
the multi-path method. In L. Szirmay-Kalos, editor,Spring Conference on Computer Graphics ’98,
pages 91–102, 1998.

[CPC84] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. InComputer Graphics (SIGGRAPH
’84 Proceedings), pages 137–145, 1984.

[Cse97] B. Cs´ebfalvi. A review of Monte-Carlo ray tracing algorithms. InCESCG ’97, Central European
Seminar on Computer Graphics, Vienna, pages 87–103, 1997.

[CSSD96] P. H. Christensen, E. J. Stollnitz, D. H. Salesin, and T. D. DeRose. Global illumination of glossy
environments using wavelets and importance.ACM Transactions on Graphics, 15(1):37–71, 1996.

139

BIBLIOGRAPHY 140

[CT81] R. Cook and K. Torrance. A reflectance model for computer graphics.Computer Graphics, 15(3),
1981.

[dB92] M. de Berg. Efficient Algorithms for Ray Shooting and Hidden Surface Removal. PhD thesis,
Rijksuniversiteit te Utrecht, The Nederlands, 1992.

[Do98] P. Dornbach. Implementation of bidirectional ray-tracing algorithm. InCESCG ’98, Central Euro-
pean Seminar on Computer Graphics, Budmerice, 1998.

[DBW97] Ph. Dutre, Ph. Bekaert, and Y. D. Willems. Bidirectional radiosity. InRendering Techniques ’97,
pages 205–216, 1997.

[Deá89] I. Deák. Random Number Generators and Simulation. Akadémia Kiadó, Budapest, 1989.

[Deá97] I. Deák. Monte Carlo ḿodszerek a ẗobbdimenzíos t́erben elhelyezkedő halmazok vaĺosźınűśeǵenek
meghat́aroźaśara norḿalis eloszĺas eset́en. PhD thesis, MTA, Hungary, 1980.

[Dév93] F. Dévai. Computational Geometry and Image Synthesis. PhD thesis, MTA, Hungary, 1993.

[DLW93] Ph. Dutre, E. Lafortune, and Y. D. Willems. Monte Carlo light tracing with direct computation of
pixel intensities. InCompugraphics ’93, pages 128–137, Alvor, 1993.

[DW96] Ph. Dutre and Y. D. Willems. Potential-driven Monte Carlo particle tracing for diffuse environments
with adaptive probability functions. InRendering Techniques ’96, pages 306–315, 1996.

[EH94] Gröeller E. and L¨offelmann H. Extended camera specification for image synthesis.Machine Graph-
ics and Vision, 3:513–530, 1994.

[Erm75] S.M. Ermakow.Die Monte-Carlo-Methode und verwandte Fragen. R. Oldenbourg Verlag, Wien,
1975.

[Fed95] M. Feda. Radiosity. Institute of Computer Graphics, Vienna University of Technology, Vienna,
1995.

[FP94] M. Feda and W. Purgathofer. A median cut algorithm for efficient sampling of radiosity functions.
In Eurographics’94, 1994.

[Ga99] A. Gasc´on and C. Coll. Virtual Newton Telescope. InCESCG ’99Central European Seminar on
Computer Graphics, Budmerice, 1999.

[Gla95] A. Glassner.Principles of Digital Image Synthesis. Morgan Kaufmann Publishers, Inc., San Fran-
cisco, 1995.

[Hec91] P. S. Heckbert.Simulating Global Illumination Using Adaptive Meshing. PhD thesis, University of
California, Berkeley, 1991.

[Her91] Ivan Herman.The Use of Projective Geometry in Computer Graphics. Springer-Verlag, Berlin,
1991.

[HMF98] M. Hyben, I. Martisovits, and A. Ferko. Scene complexity for rendering in flatland. In L. Szirmay-
Kalos, editor,Spring Conference on Computer Graphics ’98, pages 112–120, 1998.

[HSA91] P. Hanrahan, D. Salzman, and L. Aupperle. Rapid hierachical radiosity algorithm.Computer Graph-
ics (SIGGRAPH ’91 Proceedings), 1991.

[HTSG91] X. He, K. Torrance, F. Sillion, and D. Greenberg. A comprehensive physical model for light reflec-
tion. Computer Graphics, 25(4):175–186, 1991.

[ICG86] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for non-diffuse environments.
In Computer Graphics (SIGGRAPH ’86 Proceedings), pages 133–142, 1986.

[JC95] H. W. Jensen and N. J. Christensen. Photon maps in bidirectional Monte Carlo ray tracing of complex
objects.Computers and Graphics, 19(2):215–224, 1995.

[JC98] H. W. Jensen and P. H. Christensen. Efficient simulation of light transport in scenes with participating
media using photon maps.Computers and Graphics (SIGGRAPH ’98 Proceedings), pages 311–320,
1998.

[Jen95] H. W. Jensen. Importance driven path tracing using the photon maps. InRendering Techniques ’95,
pages 326–335, 1995.

BIBLIOGRAPHY 141

[Jen96] H. W. Jensen. Global illumination using photon maps. InRendering Techniques ’96, pages 21–30,
1996.

[Ko73] A. Kósa.Variációsźaḿıtás. Tankönyvkiadó, Budapest, 1973.

[Kaj86] J. T. Kajiya. The rendering equation. InComputer Graphics (SIGGRAPH ’86 Proceedings), pages
143–150, 1986.

[Kel95] A. Keller. A quasi-Monte Carlo algorithm for the global illumination in the radiosity setting. In
H. Niederreiter and P. Shiue, editors,Monte-Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, pages 239–251. Springer, 1995.

[Kel96a] A. Keller. Quasi-Monte Carlo Radiosity. In X. Pueyo and P. Schr¨oder, editors,Rendering Techniques
’96, pages 101–110. Springer, 1996.

[Kel96b] A. Keller. The fast Calculation of Form Factors using Low Discrepancy Sequences. InProc. Spring
Conference on Computer Graphics (SCCG ’96), pages 195–204, Bratislava, Slovakia, 1996. Come-
nius University Press.

[Kel97] A. Keller. Instant radiosity.Computer Graphics (SIGGRAPH ’97 Proceedings), pages 49–55, 1997.

[Kel98] A. Keller. Quasi-Monte Carlo Methods for Photorealistic Image Synthesis. Shaker-Verlag, 1998.

[Knu81] D.E. Knuth. The art of computer programming. Volume 2 (Seminumerical algorithms). Addison-
Wesley, Reading, USA, 1981.

[Kra89] G. Krammer. Notes on the mathematics of the PHIGS output pipeline.Computer Graphics Forum,
8(8):219–226, 1989.

[Kra99] G. Krammer.Bevezet́es a sźaḿıtógépi grafiḱaba. Jegyzet, ELTE, 1999. http://valerie.inf.elte.hu/ ˜
krammer/eltettk/grafika/jegyzet/index.html.

[LA98] G. Lukács and L. Andor. Photometric ray tracing. InThe Mathematics of Surfaces VIII, Editors:
R. J. Cripps and R. R. Martin, pages 325–338, The Institute of Mathematics and its Applications,
Information Geometers Ltd, 1998.

[Lan91] B. Lantos.Robotok Iŕanýıtása. Akadémiai Kiadó, Budapest, Hungary, 1991.

[LB94] B. Lange and B. Beyer. Rayvolution: An evolutionary ray tracing algorithm. InPhotorealistic
Rendering Techniques, pages 136–144, 1994.

[Lep80] G. P. Lepage. An adaptive multidimensional integration program. Technical Report CLNS-80/447,
Cornell University, 1980.

[Lew93] R. Lewis. Making shaders more physically plausible. InRendering Techniques ’93, pages 47–62,
1993.

[LW93] E. Lafortune and Y. D. Willems. Bi-directional path-tracing. InCompugraphics ’93, pages 145–153,
Alvor, 1993.

[LW96] E. Lafortune and Y. D. Willems. A 5D tree to reduce the variance of Monte Carlo ray tracing. In
Rendering Techniques ’96, pages 11–19, 1996.

[Már95a] G. Márton. Acceleration of ray tracing via Voronoi-diagrams. In Alan W. Paeth, editor,Graphics
Gems V, pages 268–284. Academic Press, Boston, 1995.

[Már95b] G. Márton. Suǵarkövet̋o algoritmusokátlagos bonyolultśagának vizsǵalata. PhD thesis, MTA,
Hungary, 1995.

[Mát81] L. Máté. Funkciońalanaĺızis m̋uszakiaknak. Műszaki Könyvkiadó, Budapest, 1981.

[Min41] M. Minnaert. The reciprocity principle in lunar photometry.Astrophysical Journal, 93:403–410,
1941.

[Mit92] D. Mitchell. Ray Tracing and Irregularities of Distribution. InRendering Techniques ’92, pages
61–69, Bristol, UK, 1992.

[Mit96] D. P. Mitchell. Consequences of stratified sampling in graphics.Computer Graphics (SIGGRAPH
’96 Proceedings), pages 277–280, 1996.

[MRR+53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations
by fast computing machines.Journal of Chemical Physics, 21:1087–1091, 1953.

BIBLIOGRAPHY 142

[Nem90] A. Nemcsics.Sźındinamika, sźınes k̈ornyezet ḿerése. BME, Budapest, 1990.

[Neu96] L. Neumann. Constant radiance term. Technical Report TR-186-2-96-12, Institute of Computer
Graphics, Vienna University of Technology, 1996. www.cg.tuwien.ac.at/.

[Neu95] L. Neumann. Monte Carlo radiosity.Computing, 55:23–42, 1995.

[NFKP94] L. Neumann, M. Feda, M. Kopp, and W. Purgathofer. A new stochastic radiosity method for highly
complex scenes. InProc. of the 5th. EG Workshop on Rendering, 1994.

[Nie92] H. Niederreiter.Random number generation and quasi-Monte Carlo methods. SIAM, Pennsilvania,
1992.

[NNB97] L. Neumann, A. Neumann, and P. Bekaert. Radiosity with well distributed ray sets.Computer
Graphics Forum (Eurographics’97), 16(3):261–270, 1997.

[NNS72] M. E. Newell, R. G. Newell, and T. L. Sancha. A new approach to the shaded picture problem. In
Proceedings of the ACM National Conference, pages 443–450, 1972.

[NPT+95] L. Neumann, W. Purgathofer, R. F. Tobler, A. Neumann, P. Elias, M. Feda, and X. Pueyo. The
stochastic ray method for radiosity. InRendering Techniques ’95, pages 206–218, 1995.

[ON94] M. Oren and S. Nayar. Generalization of lambert’s reflectance model.Computer Graphics (SIG-
GRAPH ’94 Proceedings), pages 239–246, 1994.

[Pel97] M. Pellegrini. Monte Carlo approximation of form factors with error bounded a priori.Discrete and
Comp. Geometry, 1997.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes in C (Second
Edition). Cambridge University Press, Cambridge, USA, 1992.

[Pho75] B. T. Phong. Illumination for computer generated images.Communications of the ACM, 18:311–
317, 1975.

[PM95] S. N. Pattanaik and S. P. Mudur. Adjoint equations and random walks for illumination computation.
ACM Transactions on Graphics, 14(1):77–102, 1995.

[Pop87] Gy. Popper.Bevezet́es a v́egeselem-ḿodszer matematikai elḿelet́ebe. BME Mérnöktovábbképző
Intézet, Budapest, 1987.

[PP98] J. Prikryl and W. Purgathofer. Perceptually based radiosity. InEurographics ’98, STAR — State of
the Art Report, 1998.

[Ro76] P. Rózsa.Lineáris algebraés alkalmaźasai. Műszaki Könyvkiadó, Budapest, 1976.

[Rén62] A. Rényi. Wahrscheinlichkeitsrechnung. VEB Deutscher Verlag der Wissenschaften, Berlin, 1962.

[RVW98] G. Renner, T. V´arady, and V. Weiss. Reverse engineering of free-form features. InPROLAMAT 98,
CD proc., Trento, 1998.

[SAWG91] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global illumination solution for general
reflectance distributions.Computer Graphics (SIGGRAPH ’91 Proceedings), 25(4):187–198, 1991.

[Sbe96] M. Sbert. The Use of Global Directions to Compute Radiosity. PhD thesis, Catalan Technical
University, Barcelona, 1996.

[Sbe97] M. Sbert. Error and complexity of random walk Monte-Carlo radiosity.IEEE Transactions on
Visualization and Computer Graphics, 3(1), 1997.

[Sbe99] M. Sbert. Optimal absorption probabilities for random walk radiosity.to be published, 1999.

[SC94] F. Sillion and Puech C.Radiosity and Global Illumination. Morgan Kaufmann Publishers, Inc., San
Francisco, 1994.

[Sch93] Ch. Schlick. A customizable reflectance model for everyday rendering. InFourth Eurographics
Workshop on Rendering, pages 73–83, France, 1993.

[Sch96] J. Schanda. CIE colorimetry and colour displays. InIS&T/SID Conf. Scottsdale, 1996.

[SDS95] F. Sillion, G. Drettakis, and C. Soler. Clustering algorithm for radiance calculation in general envi-
ronments. InRendering Techniques ’95, pages 197–205, 1995.

BIBLIOGRAPHY 143

[Se66] J. Shrider (editor).The Monte-Carlo Method. Pergamon Press, Oxford, 1966. Also inThe method
of statistical trials (The Monte Carlo Method), Fizmatgiz, Moscow, 1965.

[SGCH94] P. Schr¨oder, S.J. Gortler, M.F. Cohen, and P. Hanrahan. Wavelet projections for radiosity.Computer
Graphics Forum, 13(2):141–151, 1994.

[SH81] R. Siegel and J. R. Howell.Thermal Radiation Heat Transfer. Hemisphere Publishing Corp., Wash-
ington, D.C., 1981.

[Shi90] P. Shirley. A ray-tracing method for illumination calculation in diffuse-specular scenes. InProc.
Graphics Interface, pages 205–212, 1990.

[Shi91a] P. Shirley. Discrepancy as a quality measure for sampling distributions. InEurographics ’91, pages
183–194. Elsevier Science Publishers, 1991.

[Shi91b] P. Shirley. Time complexity of Monte-Carlo radiosity. InEurographics ’91, pages 459–466. Elsevier
Science Publishers, 1991.

[SMP98] M. Sbert, R. Martinez, and X. Pueyo. Gathering multi-path: a new Monte-Carlo algorithm for
radiosity. InWinter School of Computer Graphics ’98, pages 331–338, Plzen, 1998.

[Sob91] I. Sobol.Die Monte-Carlo Methode. Deutscher Verlag der Wissenschaften, 1991.

[SP89] F. Sillion and C. Puech. A general two-pass method integrating specular and diffuse reflection. In
Computer Graphics (SIGGRAPH ’89 Proceedings), pages 335–344, 1989.

[SP92] V. Székely and A. Poppe.Sźaḿıtógépes grafika alapjai IBM PC-n. ComputerBooks, Budapest,
1992.

[SPS98] M. Stamminger, Slussalek P., and H-P. Seidel. Three point clustering for radiance computations. In
Rendering Techniques ’98, pages 211–222, 1998.

[ST93] G. Stoyan and G. Tak´o. Numerikus ḿoszerek. ELTE, Budapest, 1993.

[SW93] P. Shirley and C. Wang. Luminaire sampling in distribution ray tracing.SIGGRAPH ’93 Course
Notes, 1993.

[SWZ96] P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques for direct lighting calculations.
ACM Transactions on Graphics, 15(1):1–36, 1996.

[Tob98] R. F. Tobler. ART – Advanced Rendering Toolkit, 1998. http://www.cg.tuwien.ac.at/research /ren-
dering/ART.

[Vea97] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford
University, http://graphics.stanford.edu/papers/veachthesis, 1997.

[VG95] E. Veach and L. Guibas. Bidirectional estimators for light transport. InComputer Graphics (SIG-
GRAPH ’95 Proceedings), pages 419–428, 1995.

[VG97] E. Veach and L. Guibas. Metropolis light transport.Computer Graphics (SIGGRAPH ’97 Proceed-
ings), pages 65–76, 1997.

[VMC97] T. Várady, R. R. Martin, and J. Cox. Reverse engineering of geometric models - an introduction.
Computer-Aided Design, 29(4):255–269, 1997.

[WA77] K. Weiler and P. Atherton. Hidden surface removal using polygon area sorting. InComputer Graph-
ics (SIGGRAPH ’77 Proceedings), pages 214–222, 1977.

[War92] G. Ward. Measuring and modeling anisotropic reflection.Computer Graphics, 26(2):265–272, 1992.

[War95] T. Warnock. Computational investigations of low-discrepancy point sets. In H. Niederreiter and
P. Shiue, editors,Monte-Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages
354–361. Springer, 1995.

[WCG87] J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass solution to the rendering equation: A
synthesis of ray tracing and radiosity methods. InComputer Graphics (SIGGRAPH ’87 Proceed-
ings), pages 311–324, 1987.

[WS82] G. Wyszecki and W. Stiles.Color Science: Concepts and Methods, Quantitative Data and Formulae.
Wiley, New York, 1982.

[ZS95] K. Zimmerman and P. Shirley. A two-pass solution to the rendering equation with a source visibility
preprocess. InRendering Techniques ’95, pages 284–295, 1995.

SUBJECT INDEX

1

1-equidistribution 36

5D adaptive tree 52

A

abstract lightsource model 12
acceptance probability 45, 71, 93
adaptive importance sampling 52
adaptive tessellation 134
adjoint basis 29, 84
adjoint operator 11
albedo 12, 53, 82, 86
ambient light 19
animation 134

B

back faces 101
base 51
Bi-directional algorithms 69
bi-directional path-tracing 47, 69
Bi-directional Reflection Distribution Function 12
bi-directional reflection/refraction function 8
bi-directional transfer 103
bi-directional transport matrix 84
Bi-directional walking 89
BRDF 8, 12
BRDF sampling 52
brick-rule 34

C

camera 2, 13
camera parameter 14
caustics 64
central limit theorem 35
CIE XYZ 4
closed environment 26
clustering 24
coherent component 7
color 3
color matching functions 3
combined walking 89
continuous algorithms 101
contraction 16
contribution indicator function 58
cubic tetrahedron 32, 116

D

d-bounce irradiance 86, 118
density 51
detailed balance 46

differential solid angle 5
diffuse first-shot 133
diffuse radiosity 24
dimensional core 35, 47
dimensional explosion 35, 47
direct contribution 9
direct lightsource calculations 55
directional distributions 24
directional-lightsource 12
discontinuity meshing 134
discrepancy 37
Discrete algorithms 101
distributed ray-tracing 47, 63
domain of discontinuity 49

E

emission 8
emitter group 106
Energy balance 12
equidistribution 36
error measure 15
expansion 20
explicit equation 11
eye 2

F

filtering 15
finite-element method 20, 24, 28
first-shot 113
flux 6
focal distance 14, 114
form factor 31
front faces 101
fundamental law of photometry 7

G

Galerkin’s method 30, 102
gamma-correction 13
gathering 61
gathers 22
Gaussian quadrature 34
genetic algorithms 52
geometry matrix 84
geometry of the virtual world 1
global directions 83
global illumination 17
Global illumination solution 17
global importance sampling 52
global method 48
global pass 1, 2
global visibility problem 101
global z-buffer algorithm 106

144

SUBJECT INDEX 145

Gouraud shading 87
in radiosity method 88

Grassmann laws 3

H

Halton-sequence 41
Hardy-Krause variation 38
hemicube 32, 116
hemisphere algorithm 32
hidden surface problem 16
hierarchical methods 24
hierarchical radiosity 25
human eye 1, 13

I

illumination hemisphere 5
illumination networks 24
illumination sphere 5
image synthesis 1
image-buffer 13
image-space error measure 15
implicit equation 11
importance function 56, 91
importance sampling 40, 47
incoming first-shot 113, 133
Instant radiosity 73
intensity 6
interactive walk-through 134
inversion 20
iteration 20
Iteration techniques 24

K

k-uniform sequences 99
kd-tree 72
Koksma-Hlawka inequality 38

L

Light 3
light power 1
light-tracing 47, 66
lighting 1, 2
lightsource 12
lightsource sampling 52
links 52
Local illumination methods 17
local importance sampling 52
local method 48
local pass 2
look-up table 13
low-discrepancy 41
low-discrepancy series 40
luminance 56, 91

M

Mach-banding 88
material properties 2
maxd-bounce irradiance 86
measurement device 2
metamers 4
Metropolis light-transport 72

Metropolis sampling 52
monitor 13
Monte-Carlo 35
Monte-Carlo radiosity 47
multi-path method 48
multiple importance sampling 134
multiresolution methods 24

N

norm 16

O

object-space error measure 15
optical material properties 1

P

painter’s algorithm 101
parallel computing 24, 134
participating media 2, 134
partitioned hemisphere 24
path-tracing 47, 64
photon 6
Photon tracing 65
photon-map 52, 72
physically plausible 12
pinhole camera model 13
point collocation 30
point-lightsource 12
potential 9
potential equation 9
potential measuring operator 10, 11
power 6
power equation 32
pupil 13

Q

quasi-Monte Carlo 35
quasi-Monte Carlo quadrature 36

R

radiance 1, 2, 6
radiance measuring operator 9, 11
radiosity method 31
randomization point 75
ray-bundle 83
ray-bundle tracing 132
Ray-casting 61
receiver group 106
Reciprocity 12
Recursive ray-tracing 17
reflected/refracted component 8
rendering 1
rendering equation 2, 8

short form 8
rendering problem 10
RGB 4
Russian-roulette 57, 104

S

scalar product 11

SUBJECT INDEX 146

scaling value 9
Self-correcting iteration 77
sensitivity function 9
shadow ray 114
shooting 24, 61, 65
Simpson-rule 34
sky-light illumination 12
solid angle 5
spherical coordinate system 5
splitting 22
standard NTSC phosphors 4
star-discrepancy 37
stochastic iteration 25, 74, 131
stochastic radiosity 78
Stochastic ray-radiosity 79
stratification 40
surface 11
surface dependent camera parameter 15

T

tentative path 71
tentative sample 45, 93
tentative transition function 45, 71, 93
tessellation 11
theorem of iterated logarithm 41
theorems of large numbers 35
tone mapping 2, 4
total expected value theorem 75
transfer probability density 7
transillumination direction 101
transillumination directions 78
transillumination plane 101
transillumination radiosity method 78
trapezoidal-rule 34
triangle mesh 11
tristimulus 3
two-pass methods 47

U

uniform 36

V

Van der Corput sequence 41
variation 37
variation in the sense of Vitali 37
VEGAS algorithm 91
VEGAS method 52
virtual world 1
visibility calculation 16
visibility function 8
visibility indicator 31
visibility map 101
visibility ray-tracing 17, 62

W

walk 83
wavelet 24
Weiler-Atherthon algorithm 103
well-distributed ray-sets 25
white point 4

X

XYZ 4

1-uniform 100

