# Gamma Photon Transport on the GPU for PET

László Szirmay-Kalos, Balázs Tóth, Milán Magdics, Dávid Légrády, Anton Penzov



**Budapest University of Technology** 

#### Gamma photon transport



Compton scattering + Klein-Nishina formula

- = New
  - Direction
  - Energy (freq)

Detector

## Why is it important?



#### Iterative reconstruction











- Pros
  - Direct simulation of nature
  - Rejection sampling can mimic the Klein-Nishina phase function
  - Paths are computed independently, so it scales well on MIMD (multi-CPU = slow and expensive)
- Cons
  - Bad on SIMD (GPU = fast and cheap)
  - Similar absolute error in detectors
  - Paths are computed independently, so it cannot exploit coherence
  - Random writes

# Our approach

- SIMD-like algorithm (GPU)
  - Same algorithm for all samples (no conditionals + table driven sampling)
  - No random writes
- Reuses paths
- Same relative error in all detectors



#### Random first pass



#### Random first pass



# **SIMD free path sampling** $r = CDF(S) = 1 - \exp(-\int_{0}^{S} \sigma_{t}(s, E) ds)$



- Deterministic marching (no Woodcock tracking)
- Tri-linear interpolation from the voxels
- Table driven handling of the energy dependency
- Sorting multi-dimensional samples to increase coherence

#### SIMD Scattering with Texture Mapping



# SIMD termination

- Deterministic (No Russian-roulette)
  - N paths of length 1
  - $-p^2N$  paths of length 2
  - $-p^3N$  paths of length 3
- *p*=probability of
  - absorption and
  - leaving the volume

#### **Deterministic second pass**



# Mapping onto the GPU





#### **Reconstruction results**



### Conclusions

- Instead of physics analogy develop algorithms preferred by the hardware
  – SIMD - GPU
- GPUs are appropriate for solving particle transport interactively.