
Fast System Matrix Generation on a GPU Cluster

Balázs Tóth, Milán Magdics, and László Szirmay-Kalos
Budapest University of Technology

http://www.iit.bme.hu/

Abstract—This paper presents an algorithm for Positron Emis-
sion Tomography reconstruction running on a GPU cluster. The
most computation intensive part of the reconstruction process,
the forward projection, is re-interpreted as a geometric problem,
that can efficiently be solved by the graphics hardware. We also
investigate the possibilities to further increase the speed and to
sidestep the texture memory limitations by using not a single
GPU, but a cluster of GPUs. To do so, the iteration scheme is
modified to minimize the communication need between the GPU
nodes.

I. INTRODUCTION

In positron emission tomography we need to find the
locations of positron–electron collisions. As a result of such
collision, two gamma-photons are born that leave the collision
location at two opposite directions [Gea07]. Photons may be
absorbed by detectors forming grids. During measurement
we collect the number of simultaneous photon incidents in
detector pairs, also called Lines Of Responses or LORs (Fig. 1).

Detector
module 1

Detector
module 2

LOR
voxel

Nt

Na

p
q

r
s

Fig. 1. Positron Emission Tomography. The pair of photons emitted at a
voxel is detected by a pair of detectors. Detectors are on detector module
planes. These planes are not necessarily parallel.

Let us denote the intensity of photon pair emissions
in the voxels of a voxel grid of the measured object by
x1, x2, . . . , xNvoxel

, and the number of photon incidents in
LORs by y1, y2, . . . , yNLOR

. The system response is charac-
terized by a system matrix A, where element Alv defines the
probability that a photon-pair emitted in voxel v is detected by
LOR l [JSC+97]. The system matrix also defines the corre-
spondence between voxel intensities x = (x1, x2, . . . , xNvoxel

)

and measured values y = (y1, y2, . . . , yNLOR
):

y = A · x.

The task of the reconstruction is to find voxel intensities of
x based on the LOR incidents in y, i.e. the solution of this
equation. However, the matrix of this equation is not quadratic
and is huge since the typical voxel number is 106 and the
LOR number is about 107. Such equations can be attacked by
iterative approaches, that iterate forward-projection,

ỹ = A · x(n), (1)

or in scalar form

ỹl =
Nvoxel∑

v′=1

Alv′x
(n)
v′ , (2)

and check whether or not the resulting guess ỹ is close to
the measured y, and determine the next x(n+1) from x(n)

accordingly.
For example, based on expected value maximization

[SV82], we obtain the following correction, also called back-
projection scheme:

x
(n+1)
v

x
(n)
v

=
1

NLOR∑

L=1

Alv

·
NLOR∑

l=1

Alv
yl

ỹl
(3)

Note that the equations of forward (equation 2) and back-
projection (equation 3) are similar in the way that they take
many known values (voxel intensities and LORs, respectively)
and compute many unknown values (again, LORs and voxel
intensities, respectively). This kind of “many to many” com-
putation can be organized in two different ways. We can take
known values one-by-one, obtain the contribution of a single
known value to all of the unknowns, and accumulate the
contributions as different known values are visited. We call
this scheme shooting. The orthogonal approach would take
unknown values (i.e. equations) one-by-one, and obtain the
contribution of all known values to this particular unknown
value. This approach is called gathering.

As our reconstruction scheme consists of a forward- and a
back-projection steps, there are four different ways to imple-
ment the method depending on whether shooting or gathering
approach is followed in forward- and back-projections. We
emphasize that the distinction of these cases might be just the
order of loops in a CPU implementation, but is a crucial design
decision when the algorithm is run on the GPU since it defines

which loop is executed in parallel on the shader processors
[SKSS08]. A shooting type forward-projection takes voxels
one-by-one and indentifies those LORs that can detect this
voxel. A gathering type forward-projection visits LORs one-
by-one and finds those voxels that may contribute to this
LOR. A shooting type back-projection, on the other hand,
takes LORs and obtains the correction for those voxels that
can be measured by this LOR. Finally, a gathering type back-
projection visits voxels one-by-one, and identifies those LORs
that measure this voxel.

In this paper, we propose the combination of a shooting
type forward-projection and a gathering type back-projection.
This way, both forward- and back-projections use the same
elementary operation, the identification of those LORs that
may measure a particular voxel. We call this elementary
operation voxel to LOR correspondence determination.

Taking a geometric point of view and ignoring photon
scattering, a LOR may measure a voxel if there exist lines
crossing both detector surfaces and the voxel. This is not
the case for most of the LOR and voxel combinations, thus
the system matrix is sparse. Thus, the computation algorithm
should consider this sparseness and should not waste time for
trying to obtain zero elements.

The non-zero system matrix elements represent a probabil-
ity, which can be built from elementary probability densities.
Let P (l|~v, ~ω) denote the conditional probability density that a
photon-pair arrives at the two detectors of LOR l, provided that
it is emitted in point ~v at directions ~ω and −~ω, respectively.
Using this density we can establish a probability that a photon
pair emitted in voxel v is detected in LOR l:

Alv = P (l|v) =
∫

V

∫

2π

P (l|~v, ~ω)
dω

2π

dv

V
. (4)

where V is the volume of the voxel. The volumetric inte-
gral is approximated by taking uniformly distributed points
~v1, . . . , ~vN in the voxel:

Alv ≈ 1
N

N∑

i=1

∫

2π

P (l|~vi, ~ω)
dω

2π
,

thus we need to find efficient methods for the computation of
probability

P (l|~v) =
∫

2π

P (l|~v, ~ω)
dω

2π
. (5)

The system matrix elements can be computed by lines traced
through the volume and intersecting the detectors [MDB+08],
where the lines were generated by points sampled on the
detectors.

This paper proposes an approach that exploits the computa-
tional power of a GPU cluster to provide the non-zero system
matrix elements and calculates the forward projection. In order
to make the approach appropriate for GPU implementation, we
define a special line density that is appropriate for GPU com-
putation. Unlike previous GPU approaches [NGH08], [BS06]
to solve the reconstruction problem on the GPU, we implement

all steps directly on the GPU, thus no CPU intervention
is needed. Comparing to papers about general tomography
solutions on the GPU [BSKK07], [XM07], the novelty of our
approach is the extension onto a GPU cluster, which becomes
necessary when a single GPU card cannot store all measured
data.

II. VOXEL TO LOR CORRESPONDENCE COMPUTATION

In the proposed algorithm, the system matrix is approxi-
mated by lines. The lines are generated by the GPU, automat-
ically assigning the workload to the parallel shader processors.
To exploit GPU features, the system matrix integral is given
a geometric interpretation. Let us consider the two detector
modules. The module that is farther to point-like voxel ~v is
called primary, the other is called secondary. Detectors of
a module form a 2D grid. Let us assign indices p, q to the
primary detector and indices r, s to the secondary (Fig. 1).
Thus, LOR l gets four indices, (p, q, r, s). The integral in
probability P (l|~v) (equation 5) is estimated by tracing lines
that intersect both detector p, q and detector r, s and cross
point ~v. These lines are produced on the GPU by rasterizing
the quad of the secondary detector module having set the eye
position to point ~v and the camera window to the primary
module.

With these lines we estimate an integral:

P (l|~v) ≈
M∑

j=1

P (l|~v, ~ωj)
∆ωj

2π
.

where M is the number of lines intersecting the primary
detector, and line j has place vector ~v and direction vector
~ωj and represents solid angle ∆ωj .

Lines are generated by rasterizing a quad and weights
P (l|~v, ~ωj)∆ωj/(2π) are obtained in the pixel shader.

A. Setting the virtual camera

The viewport resolution is set to be R times the resolution
of the primary module, i.e. RNa × RNt. This way, we trace
M = R2 lines through a primary detector.

The camera transformation is a concatenation of the fol-
lowing transformations (Fig. 2):

1) A translation that translates ~v to the origin.
2) A mirroring onto the origin that ensures that the sec-

ondary module will also be in front of the camera.
3) A rotation around axis x to align the normal vector of

the detector (~n) with axis −z. The rotation angle is α =
atan2(ny,−nz).

This camera transformation also modifies the center of the
primary detector module:

~c′ = [~c− ~v] ·

1 0 0
0 cos α sin α
0 − sin α cosα

 .

The result of the camera transformation is shown by Fig. 3.
The perspective transformation has two roles:

1) It first applies a shearing that is parallel to the x, y plane
to ensure that the center of the detector ~c′ is moved to

primary
module

voxel

secondary
module

detector =
macropixel x

z

y

v
r

c
r n

r

n
r

α

h

w

Fig. 2. Setting the camera. The eye position is the voxel and the window is
the primary detector module.

x

z

y
n
r

'c
r

h

w

X=0…RNa

Y=0…RNt

Fig. 3. Result of transforming to camera space.

axis z. The homogeneous linear transformation matrix
of the shearing is

1 0 0 0
0 1 0 0

−c′x/c′z −c′y/c′z 1 0
0 0 0 1

 .

2) Then, the eye position is mapped onto the ideal point of
axis z, while projecting the visible frustrum to the cube
of corners (−1,−1,−1) and (1, 1, 1):

−2c′z/w 0 0 0
0 −2c′z/h 0 0
0 0 −(f + b)/(b− f) −1
0 0 −2fb(b− f) 0

 ,

where w and h are the width and the height of the
primary detector module, respectively, f is the front
clipping plane distance and b is the back clipping plane
distance.

B. The pixel shader program

Having set the camera, the quad of the secondary module is
sent down the rendering pipeline. The vertex shader transforms
it to clipping space by executing both the camera and the per-
spective transformations, the rasterizer generates the pixels in
its projection intepolating the pixel properties from the vertex
properties, and the pixel shader processes pixels one-by-one.
Note that a pixel of coordinates (X, Y) generated by the raster-
ization process corresponds to a line that crosses eye position
~v and the primary detector of (p, q) = (X div R, Y div R).
The fractional part of (X mod R, Y mod R)/R, on the
other hand, shows the location of the line–detector intersection
on the detector surface. This information can be used to
compute absorption in the material and to simulate physical
processes inside the detector crystal. Pixel coordinate pair
(X, Y) corresponds to camera space point

~y′1 =
(

c′x + w

(
X

RNa
− 1

2

)
, c′y + h

(
Y

RNt
− 1

2

)
, c′z

)
.

In order to obtain world space intersection point ~y1, camera
space point ~y′1should be rotated by −α around axis x and
translated by ~v, i.e. we should execute the inverse camera
transform.

In order to identify the secondary detectors intersected by a
line, we clear the viewport by zero and rasterize the secondary
detector using Gouraud shading. Let us assign “colors”

(1, 1), (1, Nt + 1), (Na + 1, Nt + 1), (Na + 1, 1)

with red (R) and green (G) channels to the vertices of the
quad of the secondary detector module. Adding 1 is necessary
to distinguish detectors from the background, i.e. where the
module is not visible. If the GPU interpolates color with
perspective correction, then from the interpolated (R, G) pair
we can obtain the indices of the secondary module as taking
its integer part r = (int)R − 1, s = (int)G − 1. The
fractional part again tells us where the intersection happened
inside the detector. Similarly, we can assign the world space
coordinates of the vertices to a texture coordinate register, thus
the interpolation provides us with hit point ~y2 on the secondary
detector.

As a result of the rasterization and interpolation, the pixel
shader gets the target pixel coordinate from which indices
(p, q) and world space hit point ~y1 on the primary detector can
be obtained, colors (R,G) from which the secondary detector
can be determined, and interpolated texture coordinates encod-
ing hit point ~y2. Direction vector ~ω of the line can be computed
from these data. Weight a of this line will be the product
of P (l|~v, ~ωj), which is the probability that the photon pair
reached the detectors, and ∆ωj , is the solid angle represented
by this line.

The line of the LOR has equation

~y(t) = ~y1t + ~y2(1− t), t ∈ [0, 1].

The probability that none of the two photons is absorbed is

P (l|~v, ~ωj) = exp

−

1∫

0

σt(~y(t))dt

 ,

where σt(~y) is the extinction coefficient of the measured object
at point ~y. This integral can be estimated by ray marching, i.e.
by taking K samples on the ray and using a simple quadrature:

P (l|~v, ~ωj) ≈ exp

(
−

K∑

k=0

σt(~y(k/K))|~y1 − ~y2|/K

)
.

Concerning solid angle ∆ωj , we should note that the pro-
posed rasterization process generates lines with non-uniform
directional distribution, thus the integrand should be weighted
accordingly (Fig. 4).

primary
module

voxel

v
r

1y
r

n
r

θh

w

θ

A∆ ω∆

Fig. 4. Solid angle ∆ω corresponding to a single line.

A pixel of the camera window represents ∆A = (w ×
h)/(Na × Nt)/R2 area, which is seen from point ~v in solid
angle

∆ω =
∆A cos θ

|~y1 − ~v|2 =
wh cos θ

NaNtR2|~y1 − ~v|2
where θ is the angle between viewing direction (~y1 − ~v) and
the surface normal ~n.

As a result, the pixel shader outputs (r, s, a) triplets as
colors, encoding the hit point location on the secondary
detector and the total weight of this line. The render target
image is called the correspondence image.

C. Interpretation of the correspondence image

The pixels of the resulting high-resolution correspondence
image encode lines crossing point ~v. From another point of
view, the image is a representation of a row of the sparse
system matrix. If we need a matrix element of this voxel and
LOR of detector p, q, then those pixels should be visited where
the coordinates are

(pR, qR), . . . , ((p + 1)R− 1, (q + 1)R− 1).

These pixels form a macropixel (Fig. 2). In order to obtain a
LOR of detector p, q and detector r, s, those pixels should be
extracted from macropixel p, q where the color is r, s, and the
weights of such pixels are added.

III. FORWARD-PROJECTION

Note that the correspondence image represents the effect
of a single voxel (more precisely a single sample of a single
voxel) onto all LORs. Thus, in order to execute the forward
projection (equation 1) all voxels should be processed and the
weights should be added.

Detector 1 Detector 2

LOR image

p

q s

r

u

v
0,0 1,0

1,10,1

0,0 1,0

1,1
0,0
0,0

0,0
1,00,1

1,0
0,0

1,0
1,0

0,0
0,1

0,0
1,1

1,0
0,1

1,0
1,1

0,1
0,0

0,1
1,0

1,1
0,0

1,1
1,0

0,1
0,1

0,1
1,1

1,1
0,1

1,1
1,1

Fig. 5. The LOR image. In this figure we assumed that a detector module
has 2× 2 resolution.

To support this operation, the LORs are encoded in a two-
dimensional texture, called LOR image (Fig. 5). As a LOR is
defined by four indices (p, q, r, s) but the graphics hardware
allows only two-dimensional textures to be render targets, the
LORs are given as a two-dimensional texture atlas, where a
texel of coordinates (u, v) represents that LOR, for which:

u =
pNa + r

NaNt
, v =

qNt + s

NaNt
.

The rendering pass that adds the contribution of the current
voxel sample to the LOR texture renders a single quad that
covers all target texels. We use the vertex shader to visit all
pixels of the correspondence image and to determine the LORs
to which this contribution should be accumulated. The vertex
shader computes the u, v coordinates of a LOR from the four
LOR indices, transforms it to homogeneous clipping space
as ((1 + u)/2, (1 − v)/2, 0, 1) and emits the point primitive
with this position and its summed weight multiplied by voxel
contribution xv/N . Setting alpha blending to add colors, this
contribution will be added to the respective LOR.

IV. BACK-PROJECTION

Our back-projection algorithm is based on the concept of
gathering, i.e. it evaluates equation 3 one-by-one. For a partic-
ular equation, those LORs should be identified, which measure
this voxel. Note that this task is solved by the voxel to LOR
correspondence computation that is discussed in the previous
section. The result of this step is the correspondence image.
The difference between forward- and back-projections is the
processing of the correspondence image. Now, we have to
evaluate equation 3, that is, having the correspondence image

encoding system matrix elements Alv for l = 1 . . . NLOR and
for the current voxel v, we have to obtain two sums

NLOR∑

L=1

Alv,

NLOR∑

l=1

Alv
yl

ỹl
.

A possible solution would be to render a single pixel viewport
where the pixel shader would compute both sums and and
would output either the two sums in two color channels or their
ratio in a single color channel. However, this approach would
not exploit the parallel GPU architecture. Thus, we reduce the
resolution of the correspondence image gradually. In the first
run, the resolution is not reduced to 1×1 only to the half of the
original resolution, and we compute the above sums only for 4
pixels. Then in each consecutive rendering step, the resolution
is halved and in each step, the pixel shader adds four pixels
together.

V. DISTRIBUTED RECONSTRUCTION

The proposed iteration scheme generates a new LOR es-
timate in each iteration step as a result of a rendering to a
texture. Thus LORs should be encoded in a texture. Thus, the
maximum render target and texture resolutions, and ultimately
the available texture memory impose limits on the number
of LORs. A possible solution of this problem that does not
sacrifice performance is the application of multiple GPU cards,
or a GPU cluster. In this case, the task is to distribute the
computation burden among them, with practically no extra
communication since such communication is very costly on
this hardware.

y A
x

= .

y1

yG

A1

AG

Fig. 6. Distribution of the system matrix and the LOR estimate to different
GPUs.

We propose to assign just a subset of LORs to every GPU
node of the available G nodes, and run the forward-projection
and the back-projecting correction algorithm completely inde-
pendently on these nodes. Mathematically, the LOR incidence
vector y is broken down to vectors y1, . . . ,yG of smaller
NLOR/G dimension, and matrix A is also decomposed to G
minor matrixes A1, . . .AG of dimension NLOR/G×Nvoxel

(Fig. 6). Thus, node g provides an independent estimate of the
complete voxel intensity vector using partial LOR vector yg

and using minor matrix Ag . These estimates are less accurate
than the result that would be obtained by considering all
LORs simultaneously. When these independent guesses are
available, we composite these guesses together to obtain the
high accuracy estimate. The final estimate is obtained as the

combination of guesses x[g]

x =
G∑

g=1

αgx[g],
G∑

g=1

αg = 1,

where α1, . . . , αG are yet unknown weights, which should be
selected to minimize the L2 error

ε = (y −A · x)2 =

(
y −A ·

G∑
g=1

αgx[g]

)2

.

Let us introduce the notation of the forward projection of guess
x[g] by minor matrix Ah as

ỹhg = Ah · x[g].

With this, the error is

ε =
G∑

h=1

(
yh −

G∑
g=1

αgỹhg

)2

.

To find the minimum, the partial derivatives according to αg

are made equal to zero, and constraint
∑G

g=1 αg = 1 is also
taken into account:

∂ε

∂αk
=

G∑

h=1

2

(
yh −

G∑
g=1

αgỹhg

)
· ỹhk = 0.

This results in a linear equation for the unknown weights:

B ·

α1

...
αG

 = b,

G∑
g=1

αg = 1,

where

Bkg =
G∑

h=1

ỹhg · ỹhk, bk =
G∑

h=1

yh · ỹhk.

In our system, the number of GPUs is at most five, thus, the
additional computational cost of combination is the solution
of a linear equation with five unknowns, which is negligible
compared to the other steps. Thus, the performance scales
linearly in this range.

VI. RESULTS

The system has been implemented on a 5 node HP Scalable
Visualization Array (SVA), where each node is equipped with
an NVIDIA GeForce 8800 GTX GPU, programmed under
GLSL. The nodes are interconnected by Infiniband.

Fig. 7 depicts the original density field used as the extinction
coefficient in the calculations and the reconstructed voxel
intensity map encoded with false colors. The voxel array has
1283 resolution.

Fig. 8 shows the correspondence images for two different
voxel positions. Note that we used color scaling to map colors
from the range [1 . . . Na + 1, 1 . . . Nt + 1] to [0 . . . 1, 0 . . . 1].
We assumed 32× 32 resolution of the detector modules.

Fig. 9 contains the weights of LORs when only the geome-
try is considered and when the absorption of the voxels is also

Fig. 7. Reconstructed volume composited with the density field (the
extinction coefficient).

Fig. 8. Correspondence images rendered with false colors for three different
voxels.

computed. In this experiment, we used a spherical numerical
phantom.

Concerning the performance, on a single node the execution
time of the correspondence image rendering is 0.06 msec
when R = 4, a single LOR image generation of resolution
322 × 322 takes 0.07 msec, the complete forward-projection
iteration lasts 0.13 msec for a single voxel and 4.5 minutes for
all 1283 voxels. The reduction of the correspondence image
to a single scalar requires 0.04 msec, thus a single back-
projection iteration for all voxels need 90 seconds. Due to a
good scalability, 10 iterations and the composition of the result
on the five node cluster is possible in less than 10 minutes.

VII. CONCLUSION

This paper proposed a GPU based algorithm for the re-
construction of PET measurements. The original approach is
restructured to exploit the massively parallel nature of GPUs.
We also applied a further parallelization to extend the algo-
rithm to multiple GPUs taking into account the communication
bottleneck between different GPU nodes. This approach can
reduce the computation time of the reconstruction to a few
minutes from hours of computation needed by CPU solutions.

geometry only +absorption

Fig. 9. Weights of LORs.

Acknowledgement

This work has been supported by the Terratomo project
of the National Office for Research and Technology and by
OTKA K-719922 (Hungary), and by the Croatian-Hungarian
Action Fund.

REFERENCES

[BS06] Bing Bai and Anne Smith. Fast 3D iterative reconstruction of
PET images using PC graphics hardware. In IEEE Nuclear
Science Symposium, pages 2787–2790, 2006.

[BSKK07] O. Bockenbach, S. Schuberth, M. Knaup, and M. Kachelriess.
Image reconstruction platforms; state of the art, implications and
compromises. In 9th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear
Medicine — Volume 9, pages 17–20, 2007.

[Gea07] Geant. Physics reference manual, geant4 9.1. Technical report,
CERN, 2007.

[JSC+97] C. A. Johnson, J. Seidel, R. E. Carson, W. R. Gandler, A. Sofer,
M. V. Green, and M. E. Daube-Witherspoon. Evaluation of 3D
reconstruction algorithms for a small animal PET camera. IEEE
Transactions on Nuclear Science, 44:1303–1308, June 1997.

[MDB+08] Sascha Moehrs, Michel Defrise, Nicola Belcari, Alberto Del
Guerra, Antonietta Bartoli, Serena Fabbri, and Gianluigi Zanetti.
Multi-ray-based system matrix generation for 3D PET recon-
struction. Phys. Med. Biol., 53:6925–6945, 2008.

[NGH08] Michel Desvignes Nicolas Gac, Stphane Mancini and Dominique
Houzet. High speed 3D tomography on CPU, GPU, and FPGA.
EURASIP Journal on Embedded Systems, 2008. Article ID
930250, 12 pages.

[SKSS08] L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based Tech-
niques for Global Illumination Effects. Morgan and Claypool
Publishers, San Rafael, USA, 2008.

[SV82] L. Shepp and Y. Vardi. Maximum likelihood reconstruction for
emission tomography. IEEE Trans. Med. Imaging, 1:113–122,
1982.

[XM07] F. Xu and K Mueller. Real-time 3d computed tomographic
reconstruction using commodity graphics hardware. Phys Med
Biol, pages 3405–3419, 2007.

