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Introduction 
Subdivision surfaces are rapidly becoming popular in computer graphics since 

subdivision algorithms can easily provide coarser or smoother versions of a base mesh 

of arbitrary topology. It means that only the simple base mesh should be stored in the 

model and passed to the graphics API, but the rendered surface will still be smooth. 

However, GPU based subdivision refinement has not appeared in games so far, 

because of performance issues and the difficult integration of the subdivision 

tessellation into the incremental polygon rendering pipeline.  

Our proposed solution computes subdivisions in the geometry shader unit of 

Direct3D 10 compatible GPUs. The recursions of subdivisions are unfolded into one 

single geometry shader run, so this is a single pass algorithm. It operates without 

loops and without auxiliary texture memory write, so the method is inherently fast. 

The geometry shader subdivides each quad of the base mesh and directly generates an 

output vertex array encoding the triangle strips of the refined mesh. Each quad is sent 

as a point down the pipeline and information on vertex locations and connected quads 

is read from prepared buffers by the geometry shader. Since the current Direct3D 10 

specification limits the number of vertices emitted per run, our algorithm cannot 

subdivide infinitely. Practically two subdivision levels are easily achievable, which 

provides high enough quality for games.  

Our program uses Catmull-Clark subdivision scheme [Catmull78], but other 

schemes, such as Loop, Butterfly, and Kobbelt can also be implemented similarly. 

Extraordinary points, i.e. vertices having valence other than four, are handled 

correctly. The program also has features needed by games, like texture mapping and 

normal mapping (bumps). The method does not require pre-processing. We just have 

to upload buffers describing vertex locations, vertex indices of quads, and vertex 

indices of adjacent quads. These buffers can be prepared during the creation of the 

model. 

 

Catmull-Clark Subdivision 
Subdivision schemes take a mesh of large polygons, subdivide the polygons, 

and modify the position of the vertices to make the resulting mesh have a smoother 

appearance (Figure 1). The Catmull-Clark scheme is a particularly popular method, 

which produces quads in each subdivision. The base mesh can have arbitrary topology 

that is converted to a quad mesh in the first step.  



 

 

   
 

Figure 1. Original mesh and its level 1 and level 2 subdivisions applying the 

smoothing step once and twice, respectively. 

 

In this article we assume that the base mesh is also built of quads. This is not a 

serious limitation since should not the base mesh be a quad mesh, the first step is 

implemented separately, then the discussed algorithm can execute the further 

refinement steps.  

 

 
Figure 2. One smoothing step of the Catmull-Clark subdivision scheme supposing 

valence 4 vertices. First the face points are obtained, then the edge midpoints are 

moved, and finally the original vertices are refined according to the weighted sum of 

its neighboring edge and face points. 

 

Let us consider a three-dimensional quadrilateral mesh (Figure 2). In the first 

step the Catmull-Clark scheme obtains face points as the average of the vertices of 

each face polygon. Then edge points are computed in the vicinity of the middle of the 

original edges by averaging the vertices at the ends of the edge and face points of 

polygons meeting at this edge. Finally, the original vertices are moved to the weighted 

average of the face points of those faces that share this vertex, and of edge points of 

those edges that are connected to this vertex. Connecting the edge points with the face 

points, we create a refined surface that has four times more quadrilaterals.  



 

 

The location of the new face and edge points, and of the modified original 

vertices can also be directly expressed from the vertices of the original polygon and of 

its neighboring polygons. The weights used to compute these points are shown in 

Figure 3. Note that the weights in the formula of the modified original vertices depend 

on how many edges meet in this particular vertex. The number of meeting edges is 

called the valence. Figure 3 shows the weights for valence values 3, 4, and 5, 

respectively.  Vertices of valence greater than 5 are very rare in models. On the other 

hand, it is possible to convert these models to have vertices of at most valence 5. Thus 

we assume that valence 5 is the maximum and that it is the modeler’s responsibility to 

create the mesh accordingly. 

 
 

Figure 3. Weighting of the original vertices for face points, edge points, and for 

modified original vertices, respectively. The formula of the positions of the modified 

original vertices depends on the valence of the vertex. 

  

Each subdivision step multiplies the number of quadrilaterals in the mesh by 

four. Thus, if the subdivision is executed on the CPU, then the data of the subdivided 

geometry uploaded on the GPU increases dramatically. To attack this problem, not 

only the rendering, but also the subdivision operation should be executed on the GPU. 

In the following section such a solution is presented. 

Subdivision on the GPU 
Subdivision algorithms take the base mesh and replace each polygon by a 

series of polygons. Unfortunately, this operation does not fit into earlier GPU 

architectures (Direct3D 9 or Shader Model 3 and earlier), because they were not able 

to modify the topology of the uploaded geometry, neither could they introduce new 

primitives in the rendering pipeline. Although Direct3D 9 or earlier GPUs cannot 

render subdivision surfaces in a single pass, they can execute subdivision algorithms 

in multiple passes [Bunnel05]. These implementations store the vertices in textures 

and recognize that subdivision schemes are very similar to filtering these geometry 

images. They refine the geometry stored in textures by the fragment shader, and 

transform the refined vertices in the next pass by the vertex shader. Every refinement 

level needs a new pass. These methods require a lot of texture fetches and 

cumbersome offline preparation of the input data before sending the geometry to the 

pipeline.  

A straightforward single pass implementation of subdivision algorithms has 

become possible with the introduction of the geometry shader in Direct3D 10 GPUs.  



 

 

The Geometry Shader Approach for Subdivision 
Surfaces 

In the new Direct3D 10 compatible GPUs, the geometry goes through the 

vertex shader, then the geometry shader processes primitives one by one and outputs 

an array of triangles that are rasterized later in the pipeline [Blythe06]. When a 

triangle is processed by the geometry shader, the information on adjacent triangles is 

also available. However, the Catmull-Clark scheme works with quads and not with 

triangles, and subdivision rules need information about adjacent quads. Direct3D does 

not support quads and neither does it provide the geometry shader with their required 

adjacency. To solve this problem, in our solution quads encoded as points are sent 

down the pipeline. The geometry shader assembles the subdivided mesh 

corresponding to a single base mesh quad, and outputs the mesh as a triangle strip. 

 

  
Figure 4. Topology of the processed quad and its neighboring quads of the base mesh 

assuming valence 5 at each vertex. 

 

A single quad of vertices v1, v2, v3, v4 with adjacency information is shown in 

Figure 4. This figure corresponds to the case when all vertices have valence 5, i.e. the 

most complicated case that we consider. If a vertex had valence 4 or 3, then connected 

quads and their vertices would be missing from Figure 4. To describe topology, extra 

vertex indices of adjacent quads are also added to the quad information. The order of 

these extra vertex indices follow the order of quads connected only to v1, then to v2, 

etc. If v1 has valence 5, then two adjacent quads are connected only to v1, which are 

surrounded by five extra vertices v11, v12, v13, v14, and v15. These extra vertices are 

called the ear of v1. If the vertex had valence four or three, then the ear would have 

three or one vertices, respectively.  

The CPU program sends a sequence of quad indices as a “vertex stream”. The 

vertex shader simply passes these indices to the geometry shader. The geometry 

shader takes the quad index and addresses buffers to get the quad, vertex,  and 

adjacency information. We use a quadBuffer that specifies the vertex indices of a 

given quad, a vertPosBuffer that stores vertex coordinates in modeling space, a 

vertValenceBuffer that gives the valence of a vertex, and finally an 

adjacencyBuffer that lists the vertex indices of the four ears of the given quad. The 

adjacency buffer always reserves space according to the valence 5 case, thus it 



 

 

allocates 20 items for each quad. These buffers and their organization are shown in 

Figure 5. The CPU is responsible for filling up these buffers and uploading them to 

the GPU memory. 

 

 
 

Figure 5. Organization of quad, vertex, valence and adjacency buffers. 

 

Using these buffers the geometry shader collects the vertices of the processed 

and its adjacent quads, applies subdivision rules, and outputs a vertex array encoding 

the triangle strips of the refined mesh. The algorithm executes one or more 

subdivisions directly. Note that neighboring quads in higher order subdivisions can be 

unambiguously defined by the vertices of the base mesh, thus the information input by 

the geometry shader is enough to produce arbitrary subdivisions.  

In the following subsection we present the algorithm of zero and one 

subdivision step. Theoretically, multi-level subdivisions could be realized by the 

multiple execution of the single-level subdivision step. However, this requires loops 

and the storage of the temporary meshes. Thus we also present a direct solution that 

immediately provides a level 2 subdivision of the base mesh. 

 

Level 0 subdivision 

Level 0 subdivision means no subdivision at all. The geometry shader just 

assembles a triangle strip of two triangles defining a single base mesh quad. We 

included this trivial case here to highlight the responsibilities of the geometry shader, 

such as fetching the indexed vertices from buffers, transforming them from modeling 



 

 

space to clipping space, and outputting the quad in the form of a triangle strip. A 

simplified version of the geometry shader, which gets the index of the current quad in 

input variable p_quadIndex, is: 

 
void Subdiv0Function(uint p_quadIndex, /* index of the quad */ 

                     inout TriangleStream<PS_INPUT> p_stream) 

{ 

  PS_INPUT output; 

  // get vertex indices of the quad 

  uint4 quadInd = quadBuffer.Load(p_quadIndex); 

   

  // get vertices 

  float3 v1 = vertPosBuffer.Load(quadInd.x); 

  float3 v2 = vertPosBuffer.Load(quadInd.y); 

  float3 v3 = vertPosBuffer.Load(quadInd.z); 

  float3 v4 = vertPosBuffer.Load(quadInd.w); 

     

  // assemble a strip of two triangles   

  output.Pos = mul(float4(v1, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul(float4(v3, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul(float4(v2, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul(float4(v4, 1), mWorldViewProj ); p_stream.Append(output); 

  p_stream.RestartStrip();  

} 

 

It may seem strange that points are transformed to clipping space by the 

geometry shader and not by the vertex shader. The explanation of this choice is that 

we send quad indices down the pipeline, and not vertices. Thus, the vertex shader 

cannot access vertex information directly.  
 

Level 1 subdivision 

The level 1 subdivision takes the quad of Figure 4 and generates two triangle 

strips encoding four quads of vertices a1, a2, …, a9 as shown by Figure 6.  

 

 
 

Figure 6. Topology of the processed quad and its level 1 subdivision. 

 

The geometry shader calls function GetEar() that takes the base index of an 

ear, iBase,  and its valence, and returns the vertices of the ear. In order to simplify 

the handling of different valence cases, the last vertex index of the ear is also stored in 

variable vvLast.  



 

 

 
void GetEar(in uint iBase, in uint valence, 

            out float3 vv1, out float3 vv2, out float3 vv3,  

            out float3 vv4, out float3 vv5, out float3 vvLast)  

{ 

  float3 vv1 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase)); 

  float3 vv2 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 1)); 

  float3 vv3 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 2)); 

  float3 vv4 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 3)); 

  float3 vv5 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 4)); 

  float3 vvLast = vertPosBuffer.Load(adjacencyBuffer.Load(iBase +(valence - 3)*2)); 

} 

 

Assuming only valence four vertices the code of the geometry shader is as follows: 

 
void Subdiv1Function(uint p_quadIndex, inout TriangleStream<PS_INPUT> p_stream) 

{ 

  PS_INPUT output; 

  // get vertex indices of the quad 

  uint4 quadInd = quadBuffer.Load(p_quadIndex); 

  // get the vertices  

  float3 v1 = vertPosBuffer.Load(quadInd.x); 

  float3 v2 = vertPosBuffer.Load(quadInd.y); 

  float3 v3 = vertPosBuffer.Load(quadInd.z); 

  float3 v4 = vertPosBuffer.Load(quadInd.w); 

  // get valence values of the vertices 

  uint val1 = vertValenceBuffer.Load(quadInd.x); 

  uint val2 = vertValenceBuffer.Load(quadInd.y); 

  uint val3 = vertValenceBuffer.Load(quadInd.z); 

  uint val4 = vertValenceBuffer.Load(quadInd.w); 

  // the base index of the vertices of a quad in the adjacency buffer 

  int quadBase = 20 * p_quadIndex; 

  // get four ears one by one 

  float3 v11, v12, v13, v14, v15, v1Last; 

  GetEar(quadBase,      val1, v11, v12, v13, v14, v15, v1Last); 

  float3 v21, v22, v23, v24, v25, v2Last; 

  GetEar(quadBase + 5,  val2, v21, v22, v23, v24, v25, v2Last); 

  float3 v31, v32, v33, v34, v35, v3Last; 

  GetEar(quadBase + 10, val3, v31, v32, v33, v34, v35, v3Last); 

  float3 v41, v42, v43, v44, v45, v4Last; 

  GetEar(quadBase + 15, val4, v41, v42, v43, v44, v45, v4Last); 

  // new vertices: 1 face point and 4 edge points 

  float3 a5 = (v1 + v2 + v3 + v4) / 4; 

  float3 a2 = (6 * (v1 + v2) + v1Last + v21 + v3 + v4) / 16; 

  float3 a6 = (6 * (v2 + v4) + v2Last + v41 + v1 + v3) / 16; 

  float3 a8 = (6 * (v4 + v3) + v4Last + v31 + v1 + v2) / 16; 

  float3 a4 = (6 * (v3 + v1) + v3Last + v11 + v2 + v4) / 16; 

  // modification of the original vertices if valence is 4 

  a1 = (36 * v1 + 6 * (v11 + v13 + v2 + v3) + v3Last + v12 + v21 + v4) / 64; 

  a3 = (36 * v2 + 6 * (v21 + v23 + v1 + v4) + v1Last + v22 + v41 + v3) / 64; 

  a7 = (36 * v3 + 6 * (v31 + v33 + v1 + v4) + v4Last + v32 + v11 + v2) / 64; 

  a9 = (36 * v4 + 6 * (v41 + v43 + v2 + v3) + v2Last + v42 + v31 + v1) / 64; 

  // optionally caculate texture, normal, bi-normal data here 

  // . . . 

  // transform vertices and emit 2 triangle strips 

  output.Pos = mul( float4(a1, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a4, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a2, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a5, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a3, 1), mWorldViewProj ); p_stream.Append(output);  

  output.Pos = mul( float4(a6, 1), mWorldViewProj ); p_stream.Append(output); 

  p_stream.RestartStrip();  

  output.Pos = mul( float4(a4, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a7, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a5, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a8, 1), mWorldViewProj ); p_stream.Append(output);   

  output.Pos = mul( float4(a6, 1), mWorldViewProj ); p_stream.Append(output); 

  output.Pos = mul( float4(a9, 1), mWorldViewProj ); p_stream.Append(output); 

  p_stream.RestartStrip(); 

} 



 

 

 

If the program needs to be prepared not only for valence 4, the part entitled 

“modification of the original vertices” should be changed introducing several 

branches according to the actual valence. For example, the computation of vertex 

position a1 would look like this: 

 
// modification of the original vertices 

if (val1 == 3) 

  a1 = (15*v1 + 6*(v11 + v2 + v3) + v3Last + v21 + v4) / 36; 

else if (val1 == 4) 

  a1 = (36*v1 + 6*(v11 + v13 + v2 + v3) + v3Last + v12 + v21 + v4) / 64; 

else 

  a1 = (65*v1 + 6*(v11 + v13 + v15 + v2 + v3) + v3Last + v12 + v14 + v21 + v4) / 100; 

 

In addition to the position of the new vertices, their texture coordinate, normal 

vector, tangent and bitangent should also be computed if we wish to present a textured 

model with bump or displacement mapping. The linear interpolation of per vertex 

data of the base mesh is the most efficient solution for generating this information for 

the new vertices 

Level 2 subdivision 

A level 2 subdivision generates four triangle strips that correspond to 16 quads 

and 25 vertices, b1, b2, …, b25 (Figure 7). These vertices can be calculated from the 

original vertices v1,…, v4 and from the ears, similarly to the level 1 subdivision. 

However, the code is much longer; therefore we do not include it here. Our solution 

first calculates the vertices of level 1 subdivision (a1, a2, …, a9), that serves as an aid 

to determine the vertices of level 2. 

 
 

Figure 7. Topology of the processed quad and its subdivisions of level 2.  

 

Level 3 and more subdivisions 

The strategy used for level 2 can be followed to deeper levels since higher 

order subdivisions can be unambiguously defined by the vertices of the neighboring 



 

 

quads that are the information input of the geometry shader. However, extending the 

subdivision level challenges the current output limit of the Direct3D 10 geometry 

shader. Currently maximum 1024 float (dword) values can be emitted in a geometry 

shader run. When 64 quads are emitted (144 triangle strip vertices), maximum 7 float 

values per vertex would reach this limit. For a textured and normal mapped model, a 

float4 position, a float2 texture coordinate pair, a float3 normal, and a float3 bi-

tangent require 12 float values per vertex. So the practical limit of the subdivision is 

level 2, which provides enough quality for games. On the other hand, a level 3 

subdivision would produce 64 times more quads (triangles) than the original base 

mesh, which is prohibiting in real-time applications anyway.  

Implementation 
 The implementation is based on the August 2007 DirectX SDK using the latest 

NVIDIA driver 162.22. Texture mapping, normal mapping, and per-pixel lighting 

were used in the pixel shader to enhance the visual quality.  

A lizard rendered by the algorithm is in Figure 8. The original base mesh has 

1300 quads. Our measurements show that on an NVIDIA 8800GTX video card the 

level 0, level 1, and level 2 subdivisions are processed with 900, 240, and 25 FPS, 

respectively. In comparison, we also implemented a CPU version of the same 

algorithm and run it on an Intel Core2 Duo, 2.66Ghz computer. When the CPU 

executed level 1 subdivision, we could obtain 1.46 FPS, which means that the GPU 

implementation is more than 170 times faster.  

Conclusion 
 This article presents a geometry shader program to render Catmull-Clark 

subdivision surfaces assuming valence 3, 4, and 5 vertices. To solve the problem of 

accessing the adjacency information of quads, only the quad indices are sent down the 

pipeline and the geometry shader builds up the subdivided meshes from buffers. The 

algorithm renders level 1 and level 2 subdivisions efficiently. 
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Figure 8. The diffuse map, the normal map, the base mesh in the 3D editor, and the 

subdivided mesh rendered by the discussed algorithm.  
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