

Fast Evaluation of Subdivision Surfaces on
Direct3D 10 Graphics Hardware

György Antal and László Szirmay-Kalos

Introduction
Subdivision surfaces are rapidly becoming popular in computer graphics since

subdivision algorithms can easily provide coarser or smoother versions of a base mesh

of arbitrary topology. It means that only the simple base mesh should be stored in the

model and passed to the graphics API, but the rendered surface will still be smooth.

However, GPU based subdivision refinement has not appeared in games so far,

because of performance issues and the difficult integration of the subdivision

tessellation into the incremental polygon rendering pipeline.

Our proposed solution computes subdivisions in the geometry shader unit of

Direct3D 10 compatible GPUs. The recursions of subdivisions are unfolded into one

single geometry shader run, so this is a single pass algorithm. It operates without

loops and without auxiliary texture memory write, so the method is inherently fast.

The geometry shader subdivides each quad of the base mesh and directly generates an

output vertex array encoding the triangle strips of the refined mesh. Each quad is sent

as a point down the pipeline and information on vertex locations and connected quads

is read from prepared buffers by the geometry shader. Since the current Direct3D 10

specification limits the number of vertices emitted per run, our algorithm cannot

subdivide infinitely. Practically two subdivision levels are easily achievable, which

provides high enough quality for games.

Our program uses Catmull-Clark subdivision scheme [Catmull78], but other

schemes, such as Loop, Butterfly, and Kobbelt can also be implemented similarly.

Extraordinary points, i.e. vertices having valence other than four, are handled

correctly. The program also has features needed by games, like texture mapping and

normal mapping (bumps). The method does not require pre-processing. We just have

to upload buffers describing vertex locations, vertex indices of quads, and vertex

indices of adjacent quads. These buffers can be prepared during the creation of the

model.

Catmull-Clark Subdivision
Subdivision schemes take a mesh of large polygons, subdivide the polygons,

and modify the position of the vertices to make the resulting mesh have a smoother

appearance (Figure 1). The Catmull-Clark scheme is a particularly popular method,

which produces quads in each subdivision. The base mesh can have arbitrary topology

that is converted to a quad mesh in the first step.

Figure 1. Original mesh and its level 1 and level 2 subdivisions applying the

smoothing step once and twice, respectively.

In this article we assume that the base mesh is also built of quads. This is not a

serious limitation since should not the base mesh be a quad mesh, the first step is

implemented separately, then the discussed algorithm can execute the further

refinement steps.

Figure 2. One smoothing step of the Catmull-Clark subdivision scheme supposing

valence 4 vertices. First the face points are obtained, then the edge midpoints are

moved, and finally the original vertices are refined according to the weighted sum of

its neighboring edge and face points.

Let us consider a three-dimensional quadrilateral mesh (Figure 2). In the first

step the Catmull-Clark scheme obtains face points as the average of the vertices of

each face polygon. Then edge points are computed in the vicinity of the middle of the

original edges by averaging the vertices at the ends of the edge and face points of

polygons meeting at this edge. Finally, the original vertices are moved to the weighted

average of the face points of those faces that share this vertex, and of edge points of

those edges that are connected to this vertex. Connecting the edge points with the face

points, we create a refined surface that has four times more quadrilaterals.

The location of the new face and edge points, and of the modified original

vertices can also be directly expressed from the vertices of the original polygon and of

its neighboring polygons. The weights used to compute these points are shown in

Figure 3. Note that the weights in the formula of the modified original vertices depend

on how many edges meet in this particular vertex. The number of meeting edges is

called the valence. Figure 3 shows the weights for valence values 3, 4, and 5,

respectively. Vertices of valence greater than 5 are very rare in models. On the other

hand, it is possible to convert these models to have vertices of at most valence 5. Thus

we assume that valence 5 is the maximum and that it is the modeler’s responsibility to

create the mesh accordingly.

Figure 3. Weighting of the original vertices for face points, edge points, and for

modified original vertices, respectively. The formula of the positions of the modified

original vertices depends on the valence of the vertex.

Each subdivision step multiplies the number of quadrilaterals in the mesh by

four. Thus, if the subdivision is executed on the CPU, then the data of the subdivided

geometry uploaded on the GPU increases dramatically. To attack this problem, not

only the rendering, but also the subdivision operation should be executed on the GPU.

In the following section such a solution is presented.

Subdivision on the GPU
Subdivision algorithms take the base mesh and replace each polygon by a

series of polygons. Unfortunately, this operation does not fit into earlier GPU

architectures (Direct3D 9 or Shader Model 3 and earlier), because they were not able

to modify the topology of the uploaded geometry, neither could they introduce new

primitives in the rendering pipeline. Although Direct3D 9 or earlier GPUs cannot

render subdivision surfaces in a single pass, they can execute subdivision algorithms

in multiple passes [Bunnel05]. These implementations store the vertices in textures

and recognize that subdivision schemes are very similar to filtering these geometry

images. They refine the geometry stored in textures by the fragment shader, and

transform the refined vertices in the next pass by the vertex shader. Every refinement

level needs a new pass. These methods require a lot of texture fetches and

cumbersome offline preparation of the input data before sending the geometry to the

pipeline.

A straightforward single pass implementation of subdivision algorithms has

become possible with the introduction of the geometry shader in Direct3D 10 GPUs.

The Geometry Shader Approach for Subdivision
Surfaces

In the new Direct3D 10 compatible GPUs, the geometry goes through the

vertex shader, then the geometry shader processes primitives one by one and outputs

an array of triangles that are rasterized later in the pipeline [Blythe06]. When a

triangle is processed by the geometry shader, the information on adjacent triangles is

also available. However, the Catmull-Clark scheme works with quads and not with

triangles, and subdivision rules need information about adjacent quads. Direct3D does

not support quads and neither does it provide the geometry shader with their required

adjacency. To solve this problem, in our solution quads encoded as points are sent

down the pipeline. The geometry shader assembles the subdivided mesh

corresponding to a single base mesh quad, and outputs the mesh as a triangle strip.

Figure 4. Topology of the processed quad and its neighboring quads of the base mesh

assuming valence 5 at each vertex.

A single quad of vertices v1, v2, v3, v4 with adjacency information is shown in

Figure 4. This figure corresponds to the case when all vertices have valence 5, i.e. the

most complicated case that we consider. If a vertex had valence 4 or 3, then connected

quads and their vertices would be missing from Figure 4. To describe topology, extra

vertex indices of adjacent quads are also added to the quad information. The order of

these extra vertex indices follow the order of quads connected only to v1, then to v2,

etc. If v1 has valence 5, then two adjacent quads are connected only to v1, which are

surrounded by five extra vertices v11, v12, v13, v14, and v15. These extra vertices are

called the ear of v1. If the vertex had valence four or three, then the ear would have

three or one vertices, respectively.

The CPU program sends a sequence of quad indices as a “vertex stream”. The

vertex shader simply passes these indices to the geometry shader. The geometry

shader takes the quad index and addresses buffers to get the quad, vertex, and

adjacency information. We use a quadBuffer that specifies the vertex indices of a

given quad, a vertPosBuffer that stores vertex coordinates in modeling space, a

vertValenceBuffer that gives the valence of a vertex, and finally an

adjacencyBuffer that lists the vertex indices of the four ears of the given quad. The

adjacency buffer always reserves space according to the valence 5 case, thus it

allocates 20 items for each quad. These buffers and their organization are shown in

Figure 5. The CPU is responsible for filling up these buffers and uploading them to

the GPU memory.

Figure 5. Organization of quad, vertex, valence and adjacency buffers.

Using these buffers the geometry shader collects the vertices of the processed

and its adjacent quads, applies subdivision rules, and outputs a vertex array encoding

the triangle strips of the refined mesh. The algorithm executes one or more

subdivisions directly. Note that neighboring quads in higher order subdivisions can be

unambiguously defined by the vertices of the base mesh, thus the information input by

the geometry shader is enough to produce arbitrary subdivisions.

In the following subsection we present the algorithm of zero and one

subdivision step. Theoretically, multi-level subdivisions could be realized by the

multiple execution of the single-level subdivision step. However, this requires loops

and the storage of the temporary meshes. Thus we also present a direct solution that

immediately provides a level 2 subdivision of the base mesh.

Level 0 subdivision

Level 0 subdivision means no subdivision at all. The geometry shader just

assembles a triangle strip of two triangles defining a single base mesh quad. We

included this trivial case here to highlight the responsibilities of the geometry shader,

such as fetching the indexed vertices from buffers, transforming them from modeling

space to clipping space, and outputting the quad in the form of a triangle strip. A

simplified version of the geometry shader, which gets the index of the current quad in

input variable p_quadIndex, is:

void Subdiv0Function(uint p_quadIndex, /* index of the quad */

 inout TriangleStream<PS_INPUT> p_stream)

{

 PS_INPUT output;

 // get vertex indices of the quad

 uint4 quadInd = quadBuffer.Load(p_quadIndex);

 // get vertices

 float3 v1 = vertPosBuffer.Load(quadInd.x);

 float3 v2 = vertPosBuffer.Load(quadInd.y);

 float3 v3 = vertPosBuffer.Load(quadInd.z);

 float3 v4 = vertPosBuffer.Load(quadInd.w);

 // assemble a strip of two triangles

 output.Pos = mul(float4(v1, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(v3, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(v2, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(v4, 1), mWorldViewProj); p_stream.Append(output);

 p_stream.RestartStrip();

}

It may seem strange that points are transformed to clipping space by the

geometry shader and not by the vertex shader. The explanation of this choice is that

we send quad indices down the pipeline, and not vertices. Thus, the vertex shader

cannot access vertex information directly.

Level 1 subdivision

The level 1 subdivision takes the quad of Figure 4 and generates two triangle

strips encoding four quads of vertices a1, a2, …, a9 as shown by Figure 6.

Figure 6. Topology of the processed quad and its level 1 subdivision.

The geometry shader calls function GetEar() that takes the base index of an

ear, iBase, and its valence, and returns the vertices of the ear. In order to simplify

the handling of different valence cases, the last vertex index of the ear is also stored in

variable vvLast.

void GetEar(in uint iBase, in uint valence,

 out float3 vv1, out float3 vv2, out float3 vv3,

 out float3 vv4, out float3 vv5, out float3 vvLast)

{

 float3 vv1 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase));

 float3 vv2 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 1));

 float3 vv3 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 2));

 float3 vv4 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 3));

 float3 vv5 = vertPosBuffer.Load(adjacencyBuffer.Load(iBase + 4));

 float3 vvLast = vertPosBuffer.Load(adjacencyBuffer.Load(iBase +(valence - 3)*2));

}

Assuming only valence four vertices the code of the geometry shader is as follows:

void Subdiv1Function(uint p_quadIndex, inout TriangleStream<PS_INPUT> p_stream)

{

 PS_INPUT output;

 // get vertex indices of the quad

 uint4 quadInd = quadBuffer.Load(p_quadIndex);

 // get the vertices

 float3 v1 = vertPosBuffer.Load(quadInd.x);

 float3 v2 = vertPosBuffer.Load(quadInd.y);

 float3 v3 = vertPosBuffer.Load(quadInd.z);

 float3 v4 = vertPosBuffer.Load(quadInd.w);

 // get valence values of the vertices

 uint val1 = vertValenceBuffer.Load(quadInd.x);

 uint val2 = vertValenceBuffer.Load(quadInd.y);

 uint val3 = vertValenceBuffer.Load(quadInd.z);

 uint val4 = vertValenceBuffer.Load(quadInd.w);

 // the base index of the vertices of a quad in the adjacency buffer

 int quadBase = 20 * p_quadIndex;

 // get four ears one by one

 float3 v11, v12, v13, v14, v15, v1Last;

 GetEar(quadBase, val1, v11, v12, v13, v14, v15, v1Last);

 float3 v21, v22, v23, v24, v25, v2Last;

 GetEar(quadBase + 5, val2, v21, v22, v23, v24, v25, v2Last);

 float3 v31, v32, v33, v34, v35, v3Last;

 GetEar(quadBase + 10, val3, v31, v32, v33, v34, v35, v3Last);

 float3 v41, v42, v43, v44, v45, v4Last;

 GetEar(quadBase + 15, val4, v41, v42, v43, v44, v45, v4Last);

 // new vertices: 1 face point and 4 edge points

 float3 a5 = (v1 + v2 + v3 + v4) / 4;

 float3 a2 = (6 * (v1 + v2) + v1Last + v21 + v3 + v4) / 16;

 float3 a6 = (6 * (v2 + v4) + v2Last + v41 + v1 + v3) / 16;

 float3 a8 = (6 * (v4 + v3) + v4Last + v31 + v1 + v2) / 16;

 float3 a4 = (6 * (v3 + v1) + v3Last + v11 + v2 + v4) / 16;

 // modification of the original vertices if valence is 4

 a1 = (36 * v1 + 6 * (v11 + v13 + v2 + v3) + v3Last + v12 + v21 + v4) / 64;

 a3 = (36 * v2 + 6 * (v21 + v23 + v1 + v4) + v1Last + v22 + v41 + v3) / 64;

 a7 = (36 * v3 + 6 * (v31 + v33 + v1 + v4) + v4Last + v32 + v11 + v2) / 64;

 a9 = (36 * v4 + 6 * (v41 + v43 + v2 + v3) + v2Last + v42 + v31 + v1) / 64;

 // optionally caculate texture, normal, bi-normal data here

 // . . .

 // transform vertices and emit 2 triangle strips

 output.Pos = mul(float4(a1, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a4, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a2, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a5, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a3, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a6, 1), mWorldViewProj); p_stream.Append(output);

 p_stream.RestartStrip();

 output.Pos = mul(float4(a4, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a7, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a5, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a8, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a6, 1), mWorldViewProj); p_stream.Append(output);

 output.Pos = mul(float4(a9, 1), mWorldViewProj); p_stream.Append(output);

 p_stream.RestartStrip();

}

If the program needs to be prepared not only for valence 4, the part entitled

“modification of the original vertices” should be changed introducing several

branches according to the actual valence. For example, the computation of vertex

position a1 would look like this:

// modification of the original vertices

if (val1 == 3)

 a1 = (15*v1 + 6*(v11 + v2 + v3) + v3Last + v21 + v4) / 36;

else if (val1 == 4)

 a1 = (36*v1 + 6*(v11 + v13 + v2 + v3) + v3Last + v12 + v21 + v4) / 64;

else

 a1 = (65*v1 + 6*(v11 + v13 + v15 + v2 + v3) + v3Last + v12 + v14 + v21 + v4) / 100;

In addition to the position of the new vertices, their texture coordinate, normal

vector, tangent and bitangent should also be computed if we wish to present a textured

model with bump or displacement mapping. The linear interpolation of per vertex

data of the base mesh is the most efficient solution for generating this information for

the new vertices

Level 2 subdivision

A level 2 subdivision generates four triangle strips that correspond to 16 quads

and 25 vertices, b1, b2, …, b25 (Figure 7). These vertices can be calculated from the

original vertices v1,…, v4 and from the ears, similarly to the level 1 subdivision.

However, the code is much longer; therefore we do not include it here. Our solution

first calculates the vertices of level 1 subdivision (a1, a2, …, a9), that serves as an aid

to determine the vertices of level 2.

Figure 7. Topology of the processed quad and its subdivisions of level 2.

Level 3 and more subdivisions

The strategy used for level 2 can be followed to deeper levels since higher

order subdivisions can be unambiguously defined by the vertices of the neighboring

quads that are the information input of the geometry shader. However, extending the

subdivision level challenges the current output limit of the Direct3D 10 geometry

shader. Currently maximum 1024 float (dword) values can be emitted in a geometry

shader run. When 64 quads are emitted (144 triangle strip vertices), maximum 7 float

values per vertex would reach this limit. For a textured and normal mapped model, a

float4 position, a float2 texture coordinate pair, a float3 normal, and a float3 bi-

tangent require 12 float values per vertex. So the practical limit of the subdivision is

level 2, which provides enough quality for games. On the other hand, a level 3

subdivision would produce 64 times more quads (triangles) than the original base

mesh, which is prohibiting in real-time applications anyway.

Implementation
 The implementation is based on the August 2007 DirectX SDK using the latest

NVIDIA driver 162.22. Texture mapping, normal mapping, and per-pixel lighting

were used in the pixel shader to enhance the visual quality.

A lizard rendered by the algorithm is in Figure 8. The original base mesh has

1300 quads. Our measurements show that on an NVIDIA 8800GTX video card the

level 0, level 1, and level 2 subdivisions are processed with 900, 240, and 25 FPS,

respectively. In comparison, we also implemented a CPU version of the same

algorithm and run it on an Intel Core2 Duo, 2.66Ghz computer. When the CPU

executed level 1 subdivision, we could obtain 1.46 FPS, which means that the GPU

implementation is more than 170 times faster.

Conclusion
 This article presents a geometry shader program to render Catmull-Clark

subdivision surfaces assuming valence 3, 4, and 5 vertices. To solve the problem of

accessing the adjacency information of quads, only the quad indices are sent down the

pipeline and the geometry shader builds up the subdivided meshes from buffers. The

algorithm renders level 1 and level 2 subdivisions efficiently.

Acknowledgments
The lizard model is the courtesy of Bay Raitt, the facial modeler of Gollum from the

movie Lord of the Rings.

Figure 8. The diffuse map, the normal map, the base mesh in the 3D editor, and the

subdivided mesh rendered by the discussed algorithm.

References
[Blythe06] David Blythe, “The Direct3D 10 System,” in SIGGRAPH 2006

Proceedings, 2006, pp 724-734.

[Bunnel05] Bunnel, Michael, “Adaptive Tessellation of Subdivision Surfaces with

Displacement Mapping,” in GPU Gems 2 (Edited by Matt Pharr), Addison Wesley,

2005, pp 109-122.

[Catmull78] Catmull, E. and Clark, J., “Recursively generated B-spline surfaces on

arbitrary topological meshes,” Computer Aided Design, Volume 10, 1978, pp 350-

355.

