
Technical Report/TR-186-2-98-23 (23 August 1998)

Stochastic Iteration for Non-diffuse Global Illumination

László Szirmay-Kalos

Department of Control Engineering and Information Technology, Technical University of Budapest
Budapest, M˝uegyetem rkp. 11, H-1111, HUNGARY

szirmay@fsz.bme.hu

Abstract
This paper presents a single-pass, view-dependent method to solve the rendering equation, using a stochastic
iterational scheme where the transport operator is selected randomly in each iteration. The requirements of con-
vergence are given for the general case. To demonstrate the basic idea, a very simple, continuous random transport
operator is examined, which gives back the light tracing algorithm incorporating Russian roulette. Then, a new
mixed continuous and finite-element based iteration method is proposed, which uses ray-bundles to transfer the
radiance in single random direction. The resulting algorithm is fast, it provides initial results in seconds and accu-
rate solutions in minutes and does not suffer from the error accumulation problem and the high memory demand
of other finite-element and hierarchical approaches.

Keywords: Rendering equation, global radiance, Monte-Carlo in-
tegration, light-tracing, global ray-bundle tracing.

1. Introduction

Global illumination algorithms aim at obtaining the power
detected by a collection of measuring devices. The measure-
ment process is characterized by the following equationZ

S

Z



L(~y; !) � cos � �W e(~y; !) d~y d! =ML; (1)

whereL(~y; !) is theradianceandW e(~y; !) is thesensitiv-
ity of the measuring device. A measuring device can detect,
for example, the power leaving a set of points in a set of di-
rections or the power reaching the eye through pixelP . A
simple, but widely used measurement operator, which uses
filter � defined on pixel contribution areaSP , isZ

SP

L(h(~p;�!f ); !f) � �(~p) d~p; (2)

where!f is the direction from~p towards the eye position.

The evaluation of the detected power requires the radi-
ance at points where the measuring device is focused to. The
radiance function can be obtained by solving therendering

equation14 that has the following form:

L = Le + T L: (3)

In this integral equation, operatorT describes the light trans-
port

T L(~x; !) =

Z



L(h(~x;�!0); !0) �fr(!
0; ~x; !) � cos �0 d!0

(4)
whereL(~x; !) andLe(~x; !) are the radiance and emission
of the surface in point~x at direction!, 
 is the directional
sphere,h(~x; !0) is the visibility function defining the point
that is visible from point~x at direction!0, fr(!0; ~x; !) is the
bi-directional reflection/refraction function, and�0 is the an-
gle between the surface normal and direction�!0 (figure 1).

Since the rendering equation contains the unknown radi-
ance function both inside and outside the integral, in order to
express the solution, this coupling should be resolved. The
possible solution techniques fall into one of the following
three categories: inversion, expansion or iteration.

1.1. Inversion

Inversiongroups the terms that contain the unknown func-
tion on the same side of the equation and applies formally
an inversion operation:

(1� T )L = Le =) L = (1� T )
�1Le: (5)
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Figure 1: Geometry of the rendering equation

Thus the measured power is

ML =M(1� T )�1Le: (6)

However, sinceT is infinite dimensional, it cannot be in-
verted in closed form. Thus it should be approximated by a
finite dimensional mapping, that is usually given as a ma-
trix. The inversion is then the solution of the resulting linear
equation.

1.2. Expansion

Expansionsubstitutes functionL in the right side by the
complete right side (which equals toL) recursively. If the
integral operator is a contraction, this provides the solution
in the form of an infinite Neumann series:

L = Le+T L = Le+T (Le+T L) = Le+T Le+T 2L =

Le + T Le + T
2(Le + T L) = : : : =

1X
i=0

T
iLe: (7)

Thus the measured power is

ML =

1X
i=0

MT
iLe: (8)

The main problem of expansion techniques is that they re-
quire the evaluation of very high dimensional integrals that
appear as terms in the infinite series. In order to avoid dimen-
sional explosion — i.e. evaluating aD-dimensional integral
with O(MD) time complexity — Monte-Carlo or quasi-
Monte Carlo techniques should be used.

On the other hand, expansion techniques also have an im-
portant advantage. Namely, they do not use temporary repre-
sentations of the complete radiance function, thus do not ne-
cessitate finite-element approximations. Consequently, these
algorithms can work with the original geometry without tes-
sellating the surfaces to planar polygons.

In computer graphics the first Monte-Carlo random walk
algorithm — calleddistributed ray-tracing— was proposed
by Cook et al.9, which spawned to a set of variations, in-
cluding path tracing14, light-tracing11, bi-directional path
tracing16; 46, Monte-Carlo radiosity31; 18; 23, and two-pass
methodswhich combine radiosity and ray-tracing30; 50; 48.

To reduce the variance of the Monte-Carlo integration,
most of these methods incorporate some form of theimpor-
tance sampling35. The importance can be based on the local
BRDFs11; 16, on the direct illumination32, on both45; 17, or
can even be explored adaptively47.

Expansion techniques generate random walks indepen-
dently. It can be an advantage, since these algorithms can be
parallelized easily. However, it also means that these meth-
ods “forget” the previous history of walks and cannot reuse
the visibility information gathered in previous walks, thus
they are not as fast as they could be.

Some sort of reusing the visibility information for many
walks happens, for example, in themulti-path methods. They
are essentially random walk methods, but in their single step
many random walks are advanced parallely. Sbert26; 28; 27

proposed a complete family of multi-path methods, that are
based on random global lines, which is the basic “engine” to
advance the walks. A single global line transfers the reflected
power of all those patches that are intersected by this line to
the direction of this line. The global line also transfers a por-
tion of the emission of the intersection patches. Thus a line
initiates those walks that would start in a patch intersected by
this line, and continues those previous walks which carried
some power onto the intersected patches.

1.3. Iteration

Iterational techniquesrealize that the solution of integral
equation (3) is the fixed point of the following iterational
scheme

Ln = Le + T Ln�1; (9)

thus if operatorT is a contraction, then this scheme will
converge to the solution from any initial functionL0.

The measured power can be obtained as a limiting value

ML = lim
n!1

MLn; (10)

In order to store the approximating functionsLn, usu-
ally finite-element techniques are applied, as for example,
in diffuse radiosity8, or in non-diffuse radiosity using parti-
tioned hemisphere13, directional distributions33 or illumina-
tion networks4.

Compared to expansion techniques, iteration has both ad-
vantages and disadvantages. Its important advantage is that
it can potentially reuse all the information gained in previ-
ous computation steps, thus iteration is expected to be faster
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than expansion. Iteration can also be seen as a single infi-
nite length random walk. If implemented carefully, iteration
does not reduce the number of estimates for higher order in-
terreflections, thus it is more robust when rendering highly
reflective scenes than expansion.

The property that iteration requires tessellation and finite-
element representation is usually considered as a disadvan-
tage. And indeed, sharp shadows and highlights on highly
specular materials can be incorrectly rendered and light-
leaks may appear, not to mention the unnecessary increase
of the complexity of the scene description (think about,
for example, the definition of the original and tessellated
sphere). However, finite-element representation can also
provide smoothing during all stages of rendering, which re-
sults in more visually pleasing and dot-noise free images.

Iteration has two critical problems. On the one hand,
since the domain ofLn is 4 dimensional, an accurate finite-
element approximation usually requires very many basis
functions, which, in turn, need a lot of storage space. Al-
though,hierarchical methods12; 2, waveletor multiresolution
methods7; 29 andclustering34; 6; 36 can help, the memory re-
quirements are still prohibitive for complex scenes.

On the other hand, when finite element techniques are ap-
plied, operatorT is only approximated, which introduces
some non-negligible error in each step. If the contraction ra-
tio of the operator is�, then the total accumulated error will
be approximately1=(1��) times the error of a single step39,
which can be unacceptable for highly reflective scenes. For
highly reflective scenes, the iteration is slow and the result
is inaccurate if the approximation of the operator is not very
precise. Very accurate approximations of the transport oper-
ator, however, require a lot of computation time and storage
space.

We have to mention a radiosity technique that also aims
at solving the problems of deterministic iteration by incor-
porating some level of randomness (or quasi-randomness).
Since the main problem of deterministic approaches is the
approximation of the transport operator and the application
of this approximation, a crucial part of designing such an
the algorithm is finding an accurate and “small” approxima-
tion. In thewell-distributed ray-sets20; 3 a discrete approxi-
mation of the transport operator is generated adaptively as
a set of carefully selected rays, taking into account the im-
portant patches and directions. The adaptation strategy is to
refine the discrete approximation — i.e. adding or deleting
rays from the set — when the iteration with the coarse ap-
proximation is already stabilized. Since the discrete approxi-
mation of the transport operator is not constant but gets finer
in subsequent phases, the error accumulation problem can be
controlled but is not eliminated.

Both the problem of prohibitive memory requirements
and the problem of error accumulation can be successfully
attacked bystochastic iteration.

2. Stochastic iteration

The basic idea of stochastic iteration is that instead of ap-
proximating operatorT in a deterministic way, a much sim-
pler random operator is used during the iteration which “be-
haves” as the real operator just in the “average” case.

The concept of stochastic iteration has been proposed and
applied for the diffuse radiosity problem in18; 19; 21; 39, that
is for the solution of finite-dimensional linear equations.

In this section we generalize the fundamental concepts to
solve integral equations, then the generalized method will be
used for attacking non-diffuse global illumination problems.

Suppose that we have a random linear operatorT
� so that

E[T
�L] = T L (11)

for any integrable functionL.

During stochastic iteration a random sequence of oper-
atorsT �1 ; T

�
2 ; : : : T

�
i : : : is generated, which are instantia-

tions of T �, and this sequence is applied to the radiance
function:

Ln = Le + T
�

n Ln�1: (12)

Since in computer implementations the calculation of a
random operator may invoke finite number of random num-
ber generator calls, we are particularly interested in those
random operators which have the following construction
scheme:

1. Random “point”pi is found from a finite dimensional
set� using probability densityprob(p). This probability
density may or may not depend on functionL.

2. Usingpi a “deterministic” operatorT �(pi) is applied to
radianceL.

Pointpi is called therandomization pointsince it is respon-
sible for the random nature of operatorT �.

Using a sequence of random transport operators, the mea-
sured power

Pn =MLn (13)

will also be a random variable which does not converge but
fluctuates around the real solution. Thus the solution can be
found by averaging the estimates of the subsequent itera-
tional steps.

Formally the sequence of the iteration is the following:

P1 = ML1 =M(Le + T
�

1 L
e
)

P2 = ML2 =M(Le + T
�

2 L
e + T

�

2 T
�

1 L
e)

...

PM = MLM =M(Le + T
�

MLe + T
�

MT
�

M�1L
e
+ : : :)
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Averaging the firstM steps, we obtain:

~P =
1

M

MX
i=1

MLi =

M(Le +
1

M

MX
i=1

T
�

i L
e
+

1

M

M�1X
i=1

T
�

i+1T
�

i L
e
+ : : :) =

M(Le+
1

M

MX
i=1

T �
i
Le+

M � 1

M
�

1

M � 1

M�1X
i=1

T �
i+1

T �
i
Le+: : :):

(14)

In order to prove that~P really converges to the solution
of the integral equation, first it is shown that the expectation
value of

T
�

i+kT
�

i+k�1 : : : T
�

i+1T
�

i L
e

is T k+1Le. For k = 0, it comes directly from the require-
ment of equation (11). Fork = 1, thetotal expectation value
theoremcan be applied:

E[T
�

i+1T
�

i L
e
] =

Z
�

E[T
�

i+1T
�

i L
e
jpi+1 = p] � prob(p) dp:

(15)
Since for a fixedpi+1 = p, operatorT �i+1 becomes a deter-
ministic linear operator, its order can be exchanged with that
of the expected value operator:

E[T
�

i+1T
�

i L
e
jpi+1 = p] = T

�

i+1(p) (E[T
�

i L
e
]) : (16)

Using requirement (11) for the expected value we further
obtain

E[T
�

i+1T
�

i L
e
jpi+1 = p] = T

�

i+1(p)(T L
e
): (17)

Substituting this back to equation (15), we get

E[T
�

i+1T
�

i L
e
] =

Z
�

T
�

i+1(p)(T L
e
) � prob(p) dp =

E[T
�

i+1(T L
e
)] = T (T Le) = T

2Le: (18)

which concludes our proof for thek = 1 case. The very
same idea can be used recursively for more than two terms.

Returning to the averaged solution~P , its expected value
is then

E[ ~P ] =

M(Le+T Le+
M � 1

M
T 2Le+

M � 2

M
T 3Le+: : :+

1

M
TMLe);

(19)
which converges to the real solution

M(Le + T Le + T
2Le + T

3Le + : : :)

if M goes to infinity.

Note also that there is some power “defect” because of
the missing higher order terms for finiteM values. Denoting
the contraction ratio of the integral operatorT by �, and as-
suming that the measuring device is calibrated to show unit
power for unit homogeneous radiance, this defect can be es-
timated as follows:

j�P j = jM(
1

M
T 2Le +

2

M
T 3Le + : : :

M � 1

M
T MLe + TM+1Le + TM+2Le + : : :)j �

�2

M
� jjLejj � (1 + 2�+ 3�2 + : : :

+(M � 1)�M�2 +M�M�1 +M�M + : : :) =

�2

M
� jjLejj �

"
d

d�

 
M�1X
i=1

�i

!
+M �

�M�1

1� �

#
�

1

M
�

�2

(1� �)2
� jjLejj: (20)

This can be neglected for high number of iterations, or can
even be reduced by ignoring the first few iterations in the
averaged result18; 26.

Finally, it must be explained why random variable~P con-
verges to its expected value. Looking at formula (14) we can
realize that it consists of sums of the following form:

1

M � k
�

M�kX
i=1

T
�

i+kT
�

i+k�1 : : : T
�

i+1T
�

i L
e:

According to the theorems of large numbers, and particularly
to the Bernstein25 theorem, these averages really converge to
the expected value if the terms in the average are not highly
correlated (note that here the terms are not statistically inde-
pendent as assumed by most of the laws of large numbers).
It means that random variablesT �i+kT

�

i+k�1 : : : T
�
i L

e and
T
�

j+kT
�

j+k�1 : : : T
�

j L
e should not have strong correlation if

i 6= j. This is always true if the sequence of operators are
generated from independent random variables, which will be
the case in the proposed algorithm.

2.1. Other averaging techniques

In the previous section we solved the problem that stochas-
tic iteration is not convergent by simply averaging the val-
ues generated during iteration. There are other averaging
schemes, on the other hand, that use even more combina-
tions of the preceding random operators. In the subsequent
sections two such schemes are presented.
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2.1.1. Semi-iteration

Semi-iteration18 uses the following formulae to derive a new
value from the previous one:

L0n = Le + T
�

n Ln�1;

Ln = �n � L
0

n + (1� �n) � Ln�1;

~Pn = MLn; (21)

where�n is an appropriate sequence that converges to 0, as
for example,�n = 1=n.

To allow comparison, the corresponding formulae of the
normal iteration are also presented here:

Ln = Le + T
�

n Ln�1;

~Pn = �n � MLn + (1� �n) � Pn�1 (22)

Note that the fundamental difference is that semi-iteration
uses the average of the previous samples not only in the final
estimate but also to continue iteration. Semi-iteration thus
can use all combinations of the preceding random operators
to compute the actual result. However, it also has energy de-
fect.

2.1.2. D-step iteration

Let us approach stochastic iteration from the direction of re-
ducing the bias of finite-length random walks. The bias can
be eliminated using a simple correction of the emission func-
tionLe when calculating higher order interreflections.

Note that a global walk of lengthD provides the following
terms:

Le + T
�

1 L
e
+ T

�

(1;2)L
e : : :+ T

�

(1;D)L
e;

where

T
�

(i;j) = T
�

j T
�

j�1 : : : T
�

i+1T
�

i :

Thus having computed the first walk, we also have an esti-
mate forT �

(1;D)
Le = T

�

DT
�

D�1 : : : T
�
2 T

�
1 L

e. Let us use this
estimate to correct the emission function in the higher order
terms when the second walk is computed:

Le+T �D+1(L
e
+T

�

(1;D)L
e
)+: : :+T �(D+1;2D)(L

e
+T

�

(1;D)L
e
) =

Le + T
�

D+1L
e + : : :+ T

�

(D+1;2D)L
e+

T
�

(1;D+1)L
e
+ : : :+ T

�

(1;2D)L
e: (23)

This gives us estimates not only for the bounces from 0 toD
but also for the bounces fromD + 1 to 2D. Again the last-
bounce will storeT �

(1;D)
Le+ T �

(1;2D)
Le, which can be used

to compensate the emission. Thus after the second step we
have estimates for the 0 to3D bounces. Asymptotically, this
method will generate estimates for all bounces. However, if
M global walks are generated, then the number of estimates
for bounces of 0 toD isM , for bounces ofD + 1 to 2D is

M � 1, for bounces2D+1 to 3D isM � 2 etc., which still
results in some small energy defect.

Compared to semi-iterative techniques, this estimator has
only a “finite-memory” thus it uses just a limited combi-
nation of preceding operators. However, its energy defect
is significantly smaller than that of the normal and semi-
iteration.

This type of iteration takesD steps before making an it-
eration step, which allows the combination of the steps in
more sophisticated ways. Such a combination happens in bi-
directional path-tracing using multiple deterministic steps16

and also in global ray-bundle tracing37.

3. Definition of the random transport operator

In order to use this general stochastic iterational scheme in
practice, the key problem is the definition of the random
transport operator. This operator should meet the require-
ment of equation (11), should be easy to compute and it
should allow the compact representation of theT �i L func-
tions.

Generally the domain ofL is a 4-dimensional continu-
ous space, so is the domain ofT �i L (for ray-bundle tracing
only 2-dimensional continuous space). Considering the re-
quirement of compact representation, we have to avoid the
representation of these functions over the complete domain.

Thus those transport operators are preferred, which re-
quire the value ofL just in a few “domain points” (e.g. in a
single “domain point”). Note that the evaluation ofT �i L now
consists of the following steps: first a randomization pointpi
is found to define random operatorT �i , which in turn deter-
mines at which domain point the value ofL is required. Up
to now, we have had complete freedom to define the set of
randomization points. One straightforward way is defining
this set to be the same as (or a superset of) the domain of the
radiance function and using random transport operators that
require the value of the radiance function at their random-
ization points. Although this equivalence is not obligatory, it
can significantly simplify the computations, since when the
randomization point is generated, the required domain point
is also known.

Using random operators that evaluate the radiance in a
single point is not enough in itself, since even a single
“point” can result in a continuousT �i L function, which must
be stored and re-sampled in the subsequent iteration step and
also by the measurement. The solution is the postponing of
the complete calculation ofT �i L until it is known where its
value is needed in the next iteration step and by the mea-
suring device. In this way, the random operator should be
evaluated twice but just for two points. Once for the actual
and the previous “points” resulting in[T �(pi)L(pi)](pi+1),
and once forpeye which is needed by the measuring device
and for previous point providing[T �(pi)L(pi)](peye).
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The complete iteration goes as follows:

P = 0
Findp1 randomly
L(p1) = Le(p1)

for i = 1 to M do
Pnew = Le(peye) + [T �(pi)L(pi)](peye)

P =MPnew � 1=i+ (1� 1=i) � P

Findpi+1 randomly
L(pi+1) = Le(pi+1) + [T �(pi)L(pi)](pi+1)

endfor
Display final image

Note that using normal iteration we have to store the ra-
dianceL just in a single pointpi, while in semi-iteration all
the previous points should be remembered. In semi-iteration
the important feature that the transport operator should be
evaluated just for a single point pairpi; pi+1 is lost. In the
case ofD-step iteration, the computation needs to be done
at a finite number of point pairs whose number is limited
by
�
D

2

�
. For semi-iteration, however, there is no such up-

per limit, which eventually results in requiring the complete
representation of the function. This can be allowed in diffuse
case, but not in the general case, thus in methods handling
the non-diffuse case normal iteration is preferred,D-step it-
eration is still allowed, but we have to avoid semi-iteration,
despite of its better combination capability.

In the following sections two stochastic iteration schemes
are considered from the many possible alternatives. The
first alternative serves solely demonstration purposes and
gives back the well-known light-tracing algorithm incor-
porating Russian roulette. The second alternative is a new
and more effective version of the global ray-bundle tracing
algorithm41; 37.

4. Single ray based transport operator

In the method presented in this section, the random trans-
port operator uses a single ray having random origin~yi and
direction!i generated with a probability that is proportional
to the cosine weighted radiance of this point at the given di-
rection.

This ray transports the whole power

� =

Z
S

Z



L(~y; !0) cos �~y d!
0 d~y:

to that point~x which is hit by the ray. Formally, the random
transport operator is

(T
�L)(~x; !) = � � �(~x� h(~y; !i)) � fr(!i; ~x; !): (24)

Let us prove that this random operator meets the require-
ment of equation (11). The probability density of selecting

surface point~y and direction!0 is

dPrf~y; !0g

d~y d!~y
=

L(~y; !0) � cos �~y
�

(25)

dx

dy
y

x

y

x

ω

θ

θ

d

ωd y

x

Figure 2: Symmetry of solid angles of shooting and gather-
ing

Using the definition of the solid angle

d!~y =
d~x � cos �0

~x

jj~y � ~xjj2

we can obtain a symmetry relation (figure 2) for the shooting
and gathering solid angles:

d~y � d!~y � cos �~y = d~y �
d~x � cos �0

~x

jj~y � ~xjj2
� cos �~y =

d~x �
d~y � cos �~y
jj~y � ~xjj2

� cos �0~x = d~x � d!0~x � cos �
0

~x: (26)

Thus the probability of selecting~y; !0 can also be ex-
pressed in the following way:

dPrf~y; !0g =
L(~y; !0) � cos �~y

�
� d~y d!~y =

L(h(~x;�!0); !0) � cos �~x
�

� d~x d!0~x: (27)

Now we can easily prove that the random transport oper-
ator meets requirement (11) since

E[(T
�L)(~x; !)] =Z

S

Z



� � �(~x� h(~y; !0)) � fr(!
0; ~x; !) dPrf~y; !0g =

Z



L(h(~x;�!0); !0)�cos �0~x�fr(!
0; ~x; !) d!0~x = (T L)(~x; !):

(28)

Note that the result of the application of the random op-
erator can be a single point that receives all the power and
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reflects some part of it or the result can be no point at all if
the ray leaves the scene.

Suppose that the first random operatorT
�
1 is applied toLe

which may transfer all power

�1 =

Z
S

Z



Le(~y1; !1) cos �~y1 d!1 d~y1;

to a single point~x1 = h(~y1; !1) using probability density

dPr1f~y1; !1g

d~y1d!1
=

Le(~y1; !1) � cos �~y1
�

:

Before continuing with the second step of the iteration,
the radiance should be measured, that is, an image estimate
should be computed fromLe + T

�
1 L

e. We can separately
calculate the effect of the lightsources on the image and then
add the effect ofT �1 L

e. Note thatT �1 L
e is concentrated in a

single point, thus its contribution can be computed by trac-
ing a ray from the eye to this point, and if this point is not
occluded, then evaluating thefr(!1; ~x; !eye) �� expression.

The second operatorT �2 should be applied to

L1 = Le + T
�

1 L
e;

thus both the total power� and the probability density have
been modified:

�2 =

Z
S

Z



L1(~y2; !2) cos �~y2 d!2 d~y2 = �1�(1+a~x1(!1))

wherea~x1 is thealbedoat point~x1 defined by

a~x(!) =

Z



fr(!; ~x; !
0
) cos �0~x d!

0;

and the new probability density is

dPr2f~y2; !2g

d~y2d!2
=

L1(~y2; !2) � cos �~y2
�

=

Le(~y2; !2) � cos �~y2 + fr(!1; ~y2; !2) cos �~y2 � �(~y2 � ~x1)

�1(1 + a~x1(!1))

Sampling according to this mixed, discrete-continuous prob-
ability density can be realized in the following way. First it
is decided randomly whether we sampleLe or the newly
generated point using probabilities1=(1 + a~x1(!1)) and
a~x1(!1)=(1+a~x1(!1)), respectively. IfLe is selected, then
the sampling process is the same as before, i.e. a random
point and a random direction are found with probability den-
sity

Le(~y2; !2) cos �~y2
�1

:

However, if the new point is chosen, then the direction of
the next transfer is found with probability density

fr(!1; ~y2; !2) cos �~y2
a~x1(!1)

:

In either case, a ray defined by the selected point and di-
rection is traced, and the complete power�2 = �1 � (1 +

a~x1(!
0
1)) is transferred to that point which is hit by the ray.

The subsequent steps of the iteration are similar.

Interestingly this iteration is a sequence of variable length
random walks, since at each step the point that is last hit by
the ray is only selected with a given probability as the start-
ing point of the next ray. The algorithm selects a point from a
lightsource and then starts a random walk. The walk finishes
after each step with probability1=(1 + a~xi(!i)) and also
when the ray hits no object. If a walk finishes, another walk
is initiated from the lightsource. When the walk is continued,
the transferred power is weighted by(1 + a~xi(!i)), which
provides unbiased estimate even if less number of samples
are used to simulate higher order bounces. This technique is
called theRussian roulette1; 33.

5. Ray-bundle based transfer

In this section another alternative of the random transport
operator is introduced, which results in a new and efficient
global illumination algorithm. The random approximation of
the transport operator transfers the radiance of all surface
points of the scene in a single random direction.

In order to store the temporary radiance during the iter-
ation, finite element techniques are used, that tessellate the
surfaces into elementary planar patches and assume that a
patch has uniform radiance in a given direction (note that
this does not mean that the patch has the same radiance in ev-
ery direction, thus the non-diffuse case can also be handled).
According to the concept of finite-elements, the radiance, the
emission and the BRDF of patchi are assumed to be inde-
pendent of the actual point inside the patch, and are denoted
by Li(!), Lei (!) and ~fi(!;!

0), respectively. It means that
the radiance function is approximated in the following form:

L(~x; !) �
X
i

Li(!) � bi(~x); (29)

wherebi(~x) is 1 on patchi and 0 otherwise.

TheLi(!) patch radiance can be considered as the av-
erage of the radiances of the points on the patch. Since the
application of the random transport operator may result in
a radiance that is not in the form of equation (29), a “pro-
jected” transport operatorTF should be used that is extended
by this averaging operation (formally it is a projection to an
adjoint base):

(TFL)ji(!) =
1

Ai

�

Z
Ai

T L(~x; !) d~x =

1

Ai

�

Z



Z
Ai

L(h(~x;�!0); !0) � cos �0 � ~fi(!
0; !) d~x d!0:

(30)
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Taking into account that the integrand of the inner surface
integral is piece-wise constant, it can also be presented in
closed form:Z

Ai

L(h(~x;�!0); !0) � cos �0 � ~fi(!
0; !) d~x =

nX
j=1

~fi(!
0; !) �A(i; j; !0) � Lj(!

0
); (31)

whereA(i; j; !0) expresses the projected area of patchj that
is visible from patchi in direction!0. In the unoccluded case
this is the intersection of the projections of patchi and patch
j onto a plane perpendicular to!0. If occlusion occurs, the
projected areas of other patches that are in between patchi
and patchj should be subtracted as shown in figure 3.

A

A

’

j

i
A(i,j,    )

projection of

projection of

Akprojection of

ω

’ω

Ak

Ai

A j

’ω

projection plane

Figure 3: Interpretation ofA(i; j; !0)

Using equation (31) the projected transport operator can
be obtained as:

(TFL)ji(!) =

Z



nX
j=1

~fi(!
0; !) �

A(i; j; !0)

Ai

� Lj(!
0) d!0:

(32)

Note that equation (32) is highly intuitive as well. The ra-
diance of a patch is the sum of the emission and the reflection
of all incoming radiances. The role of the patch-direction-
patch “form-factors” is played byA(i; j; !0)=Ai.

Let us define a random operatorT � that behaves like the
projected transport operator in the average case in the fol-
lowing way:

A random direction is selected using a uniform distribu-
tion and the radiance of all patches is transferred into this
direction.

Formally, the definition is

(T
�
(!0)L(!0))ji(!) = 4��

nX
j=1

~fi(!
0; !)�

A(i; j; !0)

Ai

�Lj(!
0
);

(33)
If the directions!0 is sampled from a uniform distribution,
then according to equation (32) the expectation value is of
the application of this operator is

E[(T
�
(!0)L(!0))ji(!)] =

Z



(T
�
(!0)L(!0))ji(!)

d!0

4�
= (TFL)ji(!): (34)

In the definition of the random operator! is the actually
generated and!0 is the previously generated directions. Thus
a “randomization point” is a global direction in this method.

The resulting algorithm is quite simple. In a step of the
stochastic iteration an image estimate is computed by reflect-
ing the previously computed radiance estimate towards the
eye, and a new direction is found and this direction together
with the previous direction are used to evaluate the random
transport operator.

The complete algorithm — which requires just one vari-
able for each patchi, the previous radianceL[i] — is sum-
marized in the following:

Generate the first random global direction!1
for each patchi doL[i] = Le

i
(!1)

for m = 1 to M do // iteration cycles
Calculate the image estimate relfecting
the incoming radianceL[1]; L[2]; : : : L[n] from!m towards the eye
Average the estimate with the Image
Generate random global direction!m+1

for each patchi do
Lnew[i] = Le

i
(!m+1)+

4� �
P

n

j=1

~fi(!m; !m+1) �A(i; j; !m)=Ai � L[j]

endfor
endfor
Display Image

There are basically two different methods to calculate the
image estimate. On the one hand, evaluating the BRDF once
for each patch a radiance value is assigned to them using

Leye[i] = Lei (!eye)+4��

nX
j=1

~fi(!m; !eye)�
A(i; j; !m)

Ai

�L[j];

then in order to avoid “blocky” appearance, bi-linear
smoothing can be applied.

Using Phong interpolation, on the other hand, the radiance
is evaluated at each point visible through a given pixel us-
ing the incoming radiance field, the surface normal and the
BRDF of the found point. In order to speed up this proce-
dure, the surface visible at each pixel, the visibility direction
and the surface normal can be determined in a preprocessing
phase and stored in a map. Phong interpolation is more time
consuming but the generated image is not only numerically
precise, but is also visually pleasing.

Note that due to the inherent symmetryA(i; j; !0) =

A(j; i;�!0), the algorithm can easily be generalized to si-
multaneously handle bi-directional transfers.
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6. Calculation of the radiance transport in a single
direction

To evaluate the transport operator, we need to know which
patches are visible from a given patch, and then we have to
weight the radiances of visible patches by the ratio of their
visible sizes and the size of the given patch.

This requires the solution of a global visibility problem,
where the eye position visits all surface points but the view-
ing direction is fixed to the selected random direction.

transillumination direction

transillumination
plane

5

4

3

2

1

Figure 4: Global visibility algorithms

4 54 5

3

Image seen from patch 3 Image seen from patch 2

Figure 5: Scene as seen from two subsequent patches

Looking at figure 4, it is easy to see that the global vis-
ibility problem can be solved in an incremental way if the
patches are visited in the order of their position in the transil-
lumination direction. In fact, what is visible from a patch dif-
fers just in a single patch from what is visible from the next
patch. This single patch may appear as a new and may hide
other patches (figure 5). The required sorting is not obvi-
ous if the patches overlap in the transillumination direction,
but this can be solved in a way as proposed in the painter’s
algorithm22. On the other hand, in our case the patches are
usually small, thus simply sorting them by their center intro-
duces just a negligible error.

At a given point of all global visibility algorithms the ob-
jects visible from the points of a patch must be known. This
information is stored in a data structure called thevisibil-
ity map. The visibility map can also be regarded as an image
on the plane perpendicular to the transillumination direction.
This plane is called thetransillumination plane(figure 4).

The algorithms to generate the visibility map can be either
discrete or continuous.

For discrete algorithmsthat decompose the transillumi-
nation plane to small pixels of size�P , the visibility map
is simply a rasterized image where each pixel can store ei-
ther the index of the visible patch or the radiance of the vis-
ible point. Discretization may introduce errors. Having ex-
amined this phenomenon both theoretically and numerically,
we concluded that the stochastic nature of the algorithm can
compensate for this error if the projected patch sizes do not
fall below the pixel size37.

Discrete algorithms determine the visible patches through
a discretized window assuming the eye to be on patchi, the
window to be on the transillumination plane and the color of
patchj to bej if the patch is facing to patchi and to be0
otherwise.

visibility map 1

1

2

3

4

visibility map 2visibility map 3visibility map 4

4

0

0

transillumination direction

4
4
4
4

4

0

0

4
4
4
4

3
3
3
3
3
3
3
3
3
3
0
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4
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2
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2
2
3
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3
3
3
3
0

0
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2
2
1
1
1
1
1
1
3
3
0

0

Figure 6: Application of painter’s algorithm

If the patches are sorted in the transillumination direction
and processed in this order, the computation ofA(i; j; !0)
requires the determination of the pixel values inside the pro-
jection of patchi. Then, to proceed with the next patch in the
given order, the pixels covered by patchi are filled withi if
patchi is not front facing and 0 otherwise. The two steps can
be done simultaneously by a modified scan-conversion algo-
rithm that reads the value of the image buffer before modi-
fying it.

This is summarized in the following algorithm38:

Sort patches in direction!0 (painter’s algorithm)
Clear image
for each patchi in the sorted orderdo

if patchi is front facingthen
for each pixel of patchi

j = Read pixel
A(i; j; !0) += �P
Write 0 to the pixel

endfor
elseRender patchi with color i

endfor
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Error of stochastic iteration in the Cornell box

stochastic iteration (rand)
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QMC iteration (pi^n)

Figure 7: Ray-bundle based stochastic iteration with random and quasi-random numbers and the used test scene

6.1. Can we use quasi-Monte Carlo techniques in
iteration?

Stochastic iteration can also be viewed as a single walk
which uses a single sequence of usually 4-dimensional ran-
domization points (for ray-bundle tracing 2-dimensional
randomization points), and theT �i+kT

�

i+k�1 : : : T
�
i L

e terms
are used in integral quadratures simultaneously for allk.

It means that the randomization points should support not
only 4-dimensional integration, but using subsequent pairs
also 8-dimensional integration, using the subsequent triplets
12-dimensional integration, etc. Sequences that supportk-
dimensional integrals when subsequentk-tuples are selected
are calledk-uniform sequences15. The widely used Halton
or Hammersley sequences are only 1-uniform, thus theoreti-
cally they should provide false results.

This is obvious for the Hammersley sequence, in which
the first coordinate is increasing. Such a sequence would
search for only those multiple reflections where the angle
corresponding to the first coordinate always increases in sub-
sequent reflections.

It is less obvious, but is also true for the Halton sequence.
Due to its construction using radical inversion, the subse-
quent points in the sequence are rather far, thus only those re-
flections are considered, where the respective angle changes
drastically.

In order to avoid this problem without getting rid of
the quasi-Monte Carlo sequences,39 proposed the random
scrambling of the sample points. The same problem arises,
for example, when generating uniform distributions on a
sphere, for which5 proposed to increase the dimension of
the low-discrepancy sequence.

Note that this problem is specific to quasi-Monte Carlo
integration and does not occur when classical Monte-Carlo
method is used to select the sample points (a random se-
quence is1-uniform15).

In order to demonstrate these problems, we tested the
ray-bundle based iteration for different random (i.e. pseudo-
random) and low-discrepancy sequences. The test scene was
the Cornell box. In figure 7 we can see that the Hammers-
ley sequence gives completely wrong result and the Halton
sequence also deteriorates from the real solution. The two
random generators (rand and drand48), however, performed
quite-well.

The figure also included a modification of theqn = f�ng
quasi-Monte Carlo sequence (operatorfg selects the frac-
tional part of a number). This is believed to be (but has not
been proven to be)1-uniform10. However, this sequence
is very unstable numerically, therefore we used theqn =

f(� � 2) � qn�1 mod100000g scheme.

7. Simulation results

The presented algorithm has been implemented in C++ in
OpenGL environment.

Figure 8 shows a scene as rendered after 500 iterations
and after 3000 iterations when the algorithm is fully con-
verged. This pair of images demonstrates that this algorithm
can provide good image quality even after relatively few
number of iterations. The scene contains specular, metallic
objects tessellated to 9519 patches. The calculation of the
left image took 9 minutes on a SGI O2 computer.

Figure 9 shows a scene containing 56745 patches after
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Figure 8: A scene of a Beethoven and a teapot rendered by stochastic iteration after 500 iterations (left) and when fully
converged (right)

Figure 9: A golden sphere-flake illuminated by area lightsources
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12 Szirmay-Kalos / Stochastic Iteration for Non-diffuse Global Illumination

300 stochastic iterations, which provide an accuracy within
5 percents (30 minutes computation time).

The speed of convergence has been measured for the
sphere-flake (figure 9) and for the room containing a
Beethoven and a teapot (figure 8). The measurement results
are shown in figure 10. Note that the algorithm converges
faster for sphere-flake scene, which is due to the larger light-
sources.

0.01

0.1

1

1 10 100 1000

L1
 e

rr
or

iterations

Error in Stochastic Iteration

flake sceen
room with beethoven and a teapot

Figure 10: Convergence of stochastic iteration for the two
described scenes

Figures 11, 12 and 13 show a fractal terrain containing
59614 patches with different lighting conditions and wave
sizes (45 minutes computation time).

8. Conclusions

This paper presented a general methodology called stochas-
tic iteration to solve the rendering problem of complex
scenes including also glossy surfaces. In a particular real-
ization of this method, we applied ray-bundle tracing that
forms bundles of parallel rays that can be traced efficiently
using, for example, the painter’s algorithm.

The memory requirement is comparable to that of the dif-
fuse radiosity algorithms although the new algorithm is also
capable to handle non-diffuse reflections or refractions.

The time complexity of the algorithm depends on the
used global visibility algorithm. Since the global painter’s
algorithm hasO(n log n) average time complexity (n is the
number of patches), the resulting algorithm is superior to
the classical, non-hierarchical radiosity algorithms that have
O(n2) complexity.

The computation time for a single global radiance trans-
fer depends on the total surface area and the resolution of the
visibility map. Since only the expected value of the visible
surface area should be accurately computed, and an actual
rasterization can be very coarse, lower resolution visibility
maps can also be used. The limit is when the projected patch

size becomes comparable to the pixel size, since classical
filling algorithms always generate an approximation whose
height and width are at least 1. This problem can be solved
by modifying the filling algorithm to handle patches or spans
randomly if their width or height is less than 1. These low
resolution maps increase the variance, thus slow down the
convergence a little bit, but still provide unbiased results and
significantly reduce the computation time of a single trans-
fer.

Considering the future improvements, we intend to incor-
porate an adaptive tessellation method into the algorithm.
Note that when computing the radiance transport for a given
patch, the variation of the incoming radiance can also be eas-
ily estimated. If this variation exceeds a given limit, then
we cannot assume that the outgoing radiance of the patch
is homogeneous, thus the patch has to be subdivided. This
tessellation scheme is much more robust than those meth-
ods which examine the radiosity gradient. This tessellation
scheme also detects highlights that are completely inside
a patch and can even provide information where the patch
should be subdivided. Considering this, the method is also
able to dodiscontinuity meshing.

The algorithm seems to be particularly efficient to handle
participating media since it can handle very many parallel
lines simultaneously. Participating media can be modeled as
a set of partly transparent “points” that always project onto
a single pixel in the visibility map. Since this point field can
be rendered very quickly, the radiance transfer in a single
direction can be computed very efficiently.

Finally, since the iteration is basically view-independent,
just the result of each iteration step is projected to the eye,
images for many cameras can be computed simultaneously,
which can be used to produce animation. Since the radiance
is stored in the object space, if the surfaces are not highly
specular, then the same radiance information remains valid
for a wider range of viewing directions. It means that when
producing camera animation, the images must be computed
by stochastic iteration just for a few camera orientations
(viewing directions), and for the inbetweening frames, the
radiance of the patches can be interpolated. In order to save
space, the radiance is stored just for a few directions at less
specular surfaces.
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Figure 11: A mountain with a nearby “moon” and “wavy” water

Figure 12: A mountain at noon with smooth lake
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