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Abstract. This paper proposes a Monte Carlo algorithm for gamma-
photon transport, that partially reuses random paths and is appropriate
for parallel GPU implementation. According to the requirements of the
application of the simulation results in reconstruction algorithms, the
method aims at similar relative rather than absolute errors of the de-
tectors. The resulting algorithm is SIMD-like, which is a requirement
of efficient GPU implementation, i.e. all random paths are built with
the same sequence of instructions, thus can be simulated on parallel
threads that practically have no conditional branches. The algorithm is
a combined method that separates the low-dimensional part that can-
not be well mimicked by importance sampling and computes it by a
deterministic quadrature, while the high-dimensional part that is made
low-variation by importance sampling is handled by the Monte Carlo
method. The deterministic quadrature is based on a geometric interpre-
tation of a direct, i.e. non-scattered effect of a photon on all detectors.

1 Introduction

The simulation of gamma photon transport in scattering media is important
in engineering simulations, nuclear technology, radiotherapy, PET/SPECT re-
construction, etc. In Positron Emission Tomography (PET) a pair of gamma
photons is born from each positron–electron collision [Gea07]. Due to the spe-
cial character of PET several simplifying assumptions can be made. Assuming
that the electron and the positron are “not moving” before collision, the energy
E of the photons can be obtained from the rest mass me of the colliding particles
and the speed of light c, E = mec

2 = 0.511 MeV. As these photons fly in the
medium, they might collide with the electrons of the material. The probability
that such collision happens in unit distance is the cross section σ. During such
collision the photon may get scattered, absorbed according to the photoelectric
effect and new photon pair may be generated, but in our energy range only scat-
tering is relevant. When scattering happens, there is a unique correspondence
between the relative scattered energy and the cosine of the scattering angle, as
defined by the Compton formula:

ε =
1

1 + ε0(1− cos θ)
=⇒ cos θ = 1− 1− ε

ε0ε
,

where ε = E1/E0 expresses the ratio of the scattered energy E1 and the incident
energy E0, and ε0 = E0/(mec

2) is the incident energy relative to the energy of



the electron. The differential of the scattering cross section at point x, i.e. the
probability density that the photon is scattered from direction ω′ into differential
solid angle dω in direction ω, is given by the Klein-Nishina formula:

dσs(x, cos θ, ε0)
dω

= C(x)(ε + ε3 − ε2 sin2 θ), where cos θ = ω · ω′.

In this equation C(x) is a material property at point x that is proportional to
the number of electrons in a unit volume material. Note that the Klein-Nishina
formula depends on incident energy ε0 indirectly through sin θ.

The probability density of the scattering direction can be expressed as the
product of the total scattering cross section, which is the probability of scattering
in a unit distance,

σs(x, ε0) =
∫

Ω

dσs(x, cos θ, ε0)
dω

dω = 2πC(x)

1∫

−1

ε + ε3 − ε2 sin2 θd cos θ,

and of the material invariant phase function describing the conditional proba-
bility density of the scattering direction given that scattering happened:

P (cos θ, ε0) =
1

σs(x, ε0)
dσs(x, cos θ, ε0)

dω
=

ε + ε3 − ε2 sin2 θ

σs(x, ε0)/C(x)
.

As photons travel in the considered volume, they may get scattered several
times before they leave the volume or are captured by a detector. We need to
compute the expected landing energy at a detector of area AD:

D =
∫

ω∈ΩH

∫

x∈AD

1∫

ε0=0

F (x, ω, ε0)ε0dε0dxdω,

where ΩH is the hemisphere above the detector plane.
Probability density F (x,ω, ε0) that a photon of energy ε0 is at point x and

traveling in direction ω satisfies a Fredholm type integral equation:

ω ·∇F (x, ω, ε0) = −σs(x, ε0)F (x,ω, ε0) +
∫

Ω

F (x, ω′, ε′0)
dσs(x,ω′ · ω, ε′0)

dω′
dω′,

(1)
where Ω is the directional sphere, and ε′0, ε0, and ω · ω′ are related by the
Compton formula. If ε0 = 1, then source term E(x) should also be added to
the right side, that expresses the probability density of newly generated gamma
photons at point x and at a uniformly distributed direction.

The system contains detectors forming a grid of typical resolution 256 ×
256. Thus, for every initial sample point x0 we have to compute roughly 105

functionals of density F , which can be expressed as a Neumann series of integrals
of ever increasing dimension for every detector [SK08]. Equation 1 is usually
solved by Monte Carlo simulation that directly mimics the physical process.

A typical algorithm is the following:



for each sample do
terminated = FALSE;
Generate initial sample with energy ε0 = mec

2 and direction ω;
while not terminated do

Traverse line segment of direction ω and of the sampled length;
if detector d is hit then

Add photon energy to detector d;
terminated = TRUE;

else if examined volume is left then terminated = TRUE;
else

Sample new direction ω and relative energy change ε;
ε0 = εε0;

endif
endwhile

endfor

There are several problems with this approach. Due to the high number of
voxels and detectors, such simulation may take days or even weeks of compu-
tation on conventional computers. As we compute not a single integral but a
high number of functionals, the integrands contain factors representing scatter-
ing inside the volume and a factor representing the detector response, which
is typically an indicator function. Volume scattering and free path can be well
mimicked by importance sampling, but the detector sensitivity is not, which
causes high variance sampled estimates. Mimicking the physical process, the
absolute errors of the detectors will be similar. However, in the application of
the computed result, we rather need similar relative errors since reconstruction
algorithms take the ratio of measured and simulated detector responses [SV82].

In this paper we propose an approach that simultaneously solves all men-
tioned problems. The high computational power is provided by a Graphics Pro-
cessing Unit (GPU) programmed under CUDA [NVI07]. GPUs have special
parallel architecture, and are effective only for Single Instruction Multiple Data
(SIMD) like algorithms. It means that we may run hundreds of parallel threads,
but — to get high performance — all threads should execute the very same
instruction at a time on different data. Thus, we eliminate conditionals from
the Monte Carlo algorithm and ensure that all threads always execute the same
sequence of instructions.

2 New algorithm

In order to re-use a single random sample for all detectors and guarantee similar
relative error everywhere, the path simulation is decomposed to a random path
building part and to a deterministic splitting, called connection part. During the
path building part, certain number of random scattering points, called virtual
sources [SKSS08] are generated in the volume. Then, the deterministic splitting
part connects all virtual soruces to all detectors and computes the impact of this



random path to each of the detectors (Fig. 1). As the deterministic connection
does not consider additional scattering events, only the accumulated extinction
needs to be calculated between the scattering points and the detectors.

Fig. 1. The simulated physical process and the decomposition of the computation to
Monte Carlo simulation and to classical quadrature.

The path building part involves free-path sampling, termination handling,
and scattering angle sampling. The deterministic part computes accumulated
extinction. In the following subsections we discuss how these elementary tasks
can be attacked by programs having minimal dynamic loops and branching in-
structions.

2.1 Free path sampling

The cumulative probability density of the length along a ray of origin x and
direction ω is CDF (S) = 1 − exp

(
− ∫ S

0
σs(x + ωs)ds

)
, which can be sampled

by transforming a uniformly distributed random variable r1 and finding S = n∆s
where a running sum exceeds the threshold of the transformed variable:

n−1∑

i=0

σs(x + ωi∆s)∆s ≤ − log r1 <

n∑

i=0

σs(x + ωi∆s)∆s.

In order to get the energy dependent total scattering cross section, we build
a one-dimensional texture (Fig. 2) in the preprocessing phase, that stores nor-
malized values

T1(ε0) = 2π

1∫

−1

ε + ε3 − ε2(1− cos2 θ)d cos θ, where ε =
1

1 + ε0(1− cos θ)



for ε0 = 1/128, 2/128, . . . , 1. During sampling, σs(y) is obtained as the product of
the normalized values and the density of electrons C, that is σs(y) = T1(ε0)C(y).
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Fig. 2. Contents of textures T1(ε0) = σs/C (left) and T2 (ε0, r2) = cos θ (right).

2.2 Termination handling

The random path is terminated when the photon leaves the examined volume,
which means that we have paths of random length, which are difficult to sim-
ulate on a SIMD machine (in fact, the longest path will determine the time of
computation, which is unacceptable). Thus, in order not to waste time for the
computation of very long paths, the maximum path lengths are set determinis-
tically. We generate N1 paths of length 1, N2 paths of length 2, etc., finally NL

paths of length L. Simultaneously, we assign weight w = 1/(N1 + . . . + NL) to
the first scattering points, weight w = 1/(N2+ . . .+NL) to the second scattering
points, etc. It can happen that a path of lengths N leaves the volume before the
Nth scattering point. Such cases are handled by assigning energy ε0 = 0 to such
virtual sources falling outside the volume.

Path lengths are set to ensure that the number of samples generating first,
second, etc. virtual sources will be proportional to a geometric series 1, λ, λ2,
etc. where λ approximates the probability of leaving the volume.

2.3 Scattering direction

The cumulative probability distribution of the cosine of the scattering angle is

CDF (cos θ, ε0) =
2π

T1(ε0)

cos θ∫

−1

ε + ε3 − ε2(1− cos2 Θ)d cos Θ.



The cumulative distribution is just a one-variate integral for a given incident en-
ergy ε0. Let us compute these integrals for cos θ ∈ [−1, 1] in a pre-processing
phase for regularly sampled values. We set up a 128 × 128 resolution two-
dimensional array, called texture T2(u, v) (Fig. 2), addressed by texture coor-
dinates u, v in [0,1] and in the texel addressed by u, v we store cos θ obtained as
the solution of v = CDF (cos θ, u). Note that this texture is independent of the
material properties and should be computed only once during pre-processing.

During particle tracing the direction sampling is executed in the following
way. Random or quasi-random sample r2 ∈ [0, 1) is obtained and we look up
texture T2(u, v) with it and with the incident energy ε0 resulting in scattering
angle cos θ = T2 (ε0, r2), and consequently in the relative scattered energy. Note
that the texture lookup automatically involves bi-linear interpolation of the pre-
computed data at no additional cost. The other spherical coordinate φ is sampled
from uniform distribution, i.e. φ = 2πr3 where r3 is a uniformly distributed
random value in the unit interval. Let us establish a Cartesian coordinate system
i, j,k where k = ω′ is the incident direction, i = k× v/|k× v|, j = i× k. Here
v is an arbitrary vector that is not parallel with ω′. Using these unit vectors,
the scattering direction is ω = sin θ cos φi + sin θ sin φj + cos θk.

2.4 Deterministic detector response calculation

Having the random scattering points in the volume, each of them is treated as
an individual virtual source and their contributions to all detectors are obtained.

Solving equation 1 for a single virtual source of position x, incident photon
direction ω′, incident energy ε0, and weight w when additional scattering is
ignored, we get the following detector response:

D ≈ w exp
(
−

∑
σs(i)∆s

)
εε0P (ω′ · ω, ε0)∆ω,

where ∆ω is the solid angle in which the detector is visible from the scattering
point, which can be cheaply approximated or can even be analytically computed
[Eri90]. Attenuation exp (−∑

σs(i)∆s) is obtained by ray-marching between the
detector and the virtual source. Relative energy change ε is computed from ε0
and cos θ = ω · ω′ using the Compton formula.

3 Results

The proposed method has been implemented in CUDA and run on nVidia
GeForce 8800 GFX graphics hardware. We took a 1283 voxel array of a human
head to describe the electron density C(x). The detector modul has 256 × 256
detectors. The primary source is placed at the center of the head.

The distribution of the virtual sources is shown by Fig. 3. The detector images
of the scattered contribution (the direct contribution is computed separately
and is not included in the error analysis) and the respective error and time
graphs are in Fig. 4 and Fig. 5, respectively. Note that we could obtain the
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Fig. 3. Distribution of the scattering points in the volume.
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Fig. 4. Detector images after different number of photon paths.

result of the scattered contribution within 10% relative L1 error using as few
as 1000 photon paths. The explanation is that due to deterministic connection,
these photon paths correspond to about 2000 virtual sources, which translate to
2000 samples in each detector (the real effective sample number is smaller since
photons may fly out the examined volume). The simulation of 1000 photon paths
of length 2, including the deterministic connection of each scattering point with
all 2562 detectors, requires just 3.5 seconds on the GPU. This allows interactive
placement of the source inside the volume.

4 Conclusions

This paper proposed a Monte Carlo gamma photon transport solver running on
the massively parallel GPU hardware. The algorithm provides the same relative
accuracy at each detectors since PET reconstruction algorithms will use ratios of
measured and computed detector responses. In order to meet the requirements
of SIMD processing concepts of the GPU, we eliminated the conditional loops
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Fig. 5. The relative L1 error and the computation time in seconds with respect to the
number of photon paths. The length of the paths is 2.

from the algorithm. As a result, the GPU is able to solve the transport problem
interactively, while such simulations typically take hours on a single CPUs.
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