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Abstract. In inverse problems like tomography reconstruction we need
to solve an over-determined linear system corrupted with noise. The ML-
EM algorithm finds the solution for Poisson noise as the fixed point
of iterating a forward projection and a non-linear back projection. In
tomography we have several hundred million equations and unknowns.
The elements of the huge matrix are high-dimensional integrals, which
cannot be stored, but must be re-computed with Monte Carlo (MC)
quadrature when needed. In this paper we address the problems of how
the quadrature error affects the accuracy of the reconstruction, whether
it is possible to modify the back projection to speed up convergence
without compromising the accuracy, and whether we should always take
the same MC estimate or modify it in every projection.

1 Introduction

In Positron Emission Tomography (PET) we need to find the spatial density
of radioactive tracer materials [4]. The tracer density is computed from the
statistics of detected hits, which is the inverse problem of particle transport in
scattering and absorbing media. Inverse problems are usually solved iteratively,
by alternating the simulation of the forward problem and a correction step.

The output of the reconstruction is the activity density that is defined on a
3D voxel grid x = (x1, x2, . . . , xNvoxel

). The inputs of the reconstruction algo-
rithm are the measured coincident photon hits in detector pairs, called LORs:
y = (y1, y2, . . . , yNLOR

). Using maximum likelihood estimation (ML-EM), vector
x is found by maximizing the probability of the actually measured data y [5], al-
ternating forward projection and back projection that together update estimate
x(n):

Forward: ỹ = A · x(n), Back:
x(n+1)

x(n)
=

AT · y
ỹ

AT · 1
where vector division is defined in an element-wise manner, ALV or A in short
is the System Matrix (SM ), which is the probability that a photon pair born in
voxel V is detected by LOR L of expected value ỹL.

The true solution x∗ of the reconstruction is the fixed point of this scheme,
which satisfies:

AT · y

A · x∗ = AT · 1. (1)



In tomography we have several hundred million LORs and voxels, thus an SM
may have more than 1016 elements. To handle the huge SM, it can be factored
[3], and simpler physical phenomena may be obtained by on-the-fly analytic ap-
proximations. However, as these approximations are part of an iteration process,
even a small error can accumulate unacceptably. Accurate and consistent esti-
mations can be obtained with MC quadrature, but its computational burden is
high [1]. There is an important difference between applying MC for estimating a
quadrature and using MC as a part of an iteration process [6]. While the goal is
an integral quadrature, the convergence rate is known and the error can be min-
imized by variance reduction techniques and increasing the number of samples.
When MC is applied in an iteration, the accuracy of a single estimate is not so
relevant since later iteration steps may correct the error of an earlier estimate.
However, decreasing the samples in a single step means that we can make more
iterations under the given budget of samples or computation time.

This paper examines the process of iteration with random MC estimates.
Furthermore, we also investigate the potential of using simplified back projection
matrices to speed up the projection.

2 Error and convergence analysis

SM estimations may be different in forward projection and back projection, and
due to the numerical errors both differ from the exact matrix. Let us denote the
forward projection SM by F = A+∆F and the back projection estimation by
B = A+∆B. We use the following notations for the normalized back projectors

ĀLV =
ALV∑
L′ BL′V

, B̄LV =
BLV∑
L′ BL′V

=⇒ B̄ = Ā+∆B̄ and ∆B̄ · 1 = 0.

Note that ∆B̄ · 1 = 0 is the consequence of the normalization of matrix ∆B̄,
i.e. each element is divided by the row sum.

The question is how these approximations modify the convergence and the
fixed point of the iteration scheme. Let us express the activity estimate in step n
as x(n) = x∗ +∆x(n). Substituting this into the iteration formula and replacing
the terms by first order Taylor’s approximations we obtain:

∆x(n+1) ≈
(
1− ⟨x∗

V ⟩ · B̄T · ⟨yL
ỹ2L

⟩ · F
)
·∆x(n)+⟨x∗

V ⟩·B̄T ·⟨yL
ỹL

⟩·∆ỹ

ỹ
−∆B̄

T · y
ỹ
.

where ⟨x∗
V ⟩ is an N2

voxel element diagonal matrix of true voxel values, ⟨ yL

ỹα
L
⟩ is

an N2
LOR element diagonal matrix of ratios yL

ỹα
L
, and ∆ỹ = ∆F · x is the error

of the expected LOR hits made in the forward projection. Note that Taylor’s
approximation is acceptable only if function 1/y can be well approximated by a
line in ỹL ±∆ỹL. The iteration is convergent if

T = 1− ⟨x∗
V ⟩ · B̄T · ⟨yL

ỹ2L
⟩ · F



is a contraction after certain number of iterations (note that T is not constant
but depends on x(n) via ỹL). Even for convergent iteration, the limiting value
will be different from x∗ due to the errors of the forward and back projections:

∆x(∞) = S ·
(
∆B̄

T · y
ỹ
−AT · ⟨yL

ỹL
⟩ · dỹ

ỹ

)
where S =

(
AT · ⟨yL

ỹ2L
⟩ ·A

)−1

.

(2)
We can make several observations examining these formulae:

1. As measured hits yL are Poisson distributed with expectations ỹL, ratios

yL/ỹL have expected value 1 and variance 1/ỹL, thus E[∆B̄
T · y/ỹ] = 0

and even the variance caused by the back projector error diminishes when
the measurement is high dose and thus the result is statistically well defined.
Thus, for high dose measurement, the error made in forward projection is
mainly responsible for the accuracy of the reconstruction, which adds the
following error in each iteration step:

⟨x∗
V ⟩ · B̄T · ⟨yL

ỹL
⟩ · ∆ỹ

ỹ
= ⟨x∗

V ⟩ · B̄T · ⟨yL
ỹL

⟩ · ∆F · x
ỹ

(3)

2. If the back projection accuracy is not so important, it is worth using a
modified normalized SM B̄ to increase the contraction ofT and thus speeding
up the iteration.

3 ML-EM iteration using MC quadrature

In tomography the size of the SM is enormous, thus matrix elements cannot be
pre-computed and stored, but must be re-computed each time with MC quadra-
ture when a matrix element is needed. It means that forward projector F and
back projector B̄ are random variables. We use unbiased MC estimates, i.e.

E[F] = A, E[B̄] = Ā.

As these estimates are re-made in every iteration, we can choose whether the
same random estimate is used in all iterations, the estimate is modified in each
iteration, or even between the forward projection and back projection. Note that
as we have to re-compute the matrix elements anyway, the computation costs of
different options are the same, the algorithms differ only in whether or not the
seed of the random number generator is reset.

The contribution to the error of a single iteration is defined by Eq. 3. Errors
of different iteration steps accumulate. However, the accuracy can be improved if
we use an MC estimation where the expectation value of this contribution is zero
since it means that the error contributions of different iteration steps compensate
each other and we may get a precise reconstruction even with inaccurate SM
estimates. So, our goal is to guarantee that

E

[
⟨x∗

V ⟩ · B̄T · ⟨yL
ỹL

⟩ · ∆F · x
ỹ

]
= E

[
⟨x∗

V ⟩ · (ĀT +∆B̄
T
) · ⟨yL

ỹL
⟩ · ∆F · x

ỹ

]
= 0



which, taking into account that both the forward projector and the back projec-
tor are unbiased estimators, is held if

E

[
∆B̄T · ⟨yL

ỹL
⟩ ·∆F

]
= 0.

Note that this is true if the forward projector is statistically independent from
the back projector, but is false when they are correlated. This means that it is
worth using independent random samples in each iteration and re-sampling even
between forward projection and back projections.

To demonstrate this, we analyze a simple analytical problem, when an SM
of dimensions NLOR = 1000 and Nvoxel = 500 is defined as the sum of two
Gaussian density functions.
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Fig. 1. The measured function (left), the distribution of the hits in different LORs
for the high dose case (middle), and the MC estimate of the SM (1 column is shown)
obtained with 105 random samples.

The ground truth activity is another simple function of the left of Fig. 1. The
measured values are obtained by sampling Poisson distributed random variables
setting their means to the product of the SM and the reference activity. We
examined a high dose and a low dose case, which differ in a factor of 10 of their
activities. The middle of Fig. 1 shows the measurement of the high activity case.
The error of the reconstruction is tested with random SM approximations, which
are obtained by replacing the 5 · 105 analytical SM elements by unbiased MC
estimates calculated with 104, 105, and 106 discrete samples in total, respectively.

In the first set of experiments we examine the L2 error of the reconstruction
process of the fixed case, i.e. when the same SM approximation is used in all
iteration steps (Fig. 2). These results indicate that working with the same MC
estimate during an EM iteration is generally a bad idea. Reconstructing with
a modified SM means that we altered the physical model, so the EM iteration
converges to a different solution. Matched sampling takes the same samples in
the forward and back projections of a single iteration but regenerates samples
for each iteration. Matched sampling does not help, the error curves are quite
similar to those of generated with fixed SM.



Independent sampling, where samples of forward projection are independent
of the samples in back projection, has advantages and disadvantages as well. If
the sample number is small, then the error curves are strongly fluctuating. The
explanation is that matrix T is just probably a contraction, so the iteration have
convergent and divergent stages. If the number of samples is higher, then the
iteration gets similar to iterating with the analytic SM.
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Fig. 2. L2 error curves of different sampling strategies and the reconstructed results.
Fixed sampling takes the same samples in every projection. Matched sampling keeps
the samples of forward even for back projection of the same iteration step. Independent
sampling uses different random numbers in all projections.

4 Speeding up the convergence with simplified back
projectors

We concluded that the reconstruction accuracy of high dose measurements is
just slightly affected by the accuracy of the back projector. In a special case
when B = A ·P where P is an invertible square matrix of N2

voxel elements, the
fixed point is preserved, which can be seen if both sides of Eq. 1 are multiplied



with matrix P. The convergence speed depends on the contraction of matrix T,
which is strong if

⟨x∗
V ⟩ · B̄T · ⟨yL

ỹ2L
⟩ ·A

is close to the identity matrix. We need to find matrix P so that for every voxel
V just the most significant ALV elements are kept while others are replaced
by zero during the multiplication with P. As the SM represents a sequence of
physical phenomena, this means ignoring voxel space blurring effects.

Using the example of the previous section, we examined the convergence
of the reconstruction for different activity levels (recall that back projection
accuracy becomes important only for low dose measurements).
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Fig. 3. Convergence in L2 for matched and simplified back projectors for different
activities.

The results are shown by Fig. 3. Note that simplified and original back pro-
jectors converge to the same result, the approximation is more accurate when
the measurement is of high dose. The initial convergence of the simplified back
projector is much faster and it becomes poorer only when the iteration overfits
the result and therefore the iteration is worth stopping anyway (such overfitting
may be avoided with regularization).

5 Application in 3D Positron Emission Tomography

To test the presented method with a realistic 3D PET reconstruction, we took a
LOR-centric, i.e. ray-based forward projection and a voxel-based back projection
(Fig. 4). The forward projection samples are multiple rays or line segments
connecting two uniformly distributed points on the two crystals’ surfaces of the
LOR. The line integral is evaluated between the two endpoints by sampling
points being equal size but having a random starting offset. In back projection,



a discrete point is sampled in each voxel and the solid angles subtended from
this point by the two crystals’ surfaces of each LOR are randomly sampled by a
line. The SM element can then be computed from the solid angle, and the total
attenuation of the line between the two detectors.

foward projection back projection

Fig. 4. Forward projection samples are line segments connecting uniformly distributed
sample points on the crystals. Back projection samples are points in voxels and then
points of detectors.

Wemodeled the Mediso’s small animal nanoScan PET/CT [2], which consists
of twelve detector modules of 81×39 crystals detectors of surface size 1.12×1.12
mm2, thus the total number of LORs is 180 million when crystals of a module
are connected by LORs to crystals of three opposite modules. We examined
the Micro Derenzo phantom with rod diameters 1.0, 1.1, . . . , 1.5 mm in different
segments. The Derenzo is virtually filled with 1.6 MBq activity and we simulated
a 1000 sec measurement.

The error curves and slices of reconstructions when the random number gen-
erator is reset in each iteration and when independent samples are generated are
shown by Fig. 5. We considered the cases when integrals are estimated with many
and with fewer samples. Note that for low sampling density fixed iteration di-
verges, while independent sampling oscillates. For higher sampling density, both
of them are stable and independent sampling has better results. Examining the
reconstruction results we can observe that fixed sampling distorts the uniform
activity distribution in rods, while independent sampling better preserves the
ground truth.

6 Conclusion

This paper proposed the application of independent sampling and simplified back
projector in inverse problems when elements are re-computed in each iteration
step. The independent re-sampling has the advantage that it can gather more
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Fig. 5. L2 error curves and reconstructions of the Derenzo phantom.

information about the system, probably not in a single step but as iteration
proceeds. This additional information helps increase the accuracy. Independent
sampling in forward and back projectors has a drawback that solution oscillates
if the sample density is low, so sample numbers should be carefully selected.
We also shown that if back projector is properly simplified, then not only its
computation can be speeded up, but also the iteration can be made faster.
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