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ABSTRACT

The paper presents analytically computable scenes for testing global illumination algo-

rithms with arbitrary BRDFs. The task of these scenes is to enable us to compare global

illumination algorithms and check the correctness of the implementation. In our �rst ap-

proach a criterion is given that makes the radiance constant for an arbitrary closed scene

allowing either arbitrary BRDFs or arbitrary lightsource models. In the second approach

the geometry is assumed to be an internal surface of a sphere. Here homogeneous di�use

and mirror like re
ections can be tested with arbitrary lightsource models.

Keywords: Global illumination, BRDF sampling, albedo, test scenes, Monte-Carlo inte-

gration, rendering equation

1 Introduction

Testing graphics algorithms is rather diÆcult

since the result is a tone mapped or at least

scaled image that can only be subjectively

analyzed. If global illumination solution is

required, the image contains a lot of non-

trivial phenomena, including multiple re
ec-

tions, caustics, soft shadows, etc. The pro-

grammer tends to believe that some artifacts

are due to these phenomena instead of look-

ing for further implementation errors. The

situation gets even worse when Monte-Carlo

methods are applied, since in this case the re-

sult is a random variable that forces the de-

veloper to explain all computation errors by

random noise. To validate these algorithms

objectively and measure their convergence,

we need test scenes for which the exact so-

lution is known.

Our goal is to test global illumination al-

gorithms that solve the rendering equation

without signi�cant simpli�cations. The ren-

dering equation has the following form

L(~x; !) = Le(~x; !) + T L(~x; !):

Operator T calculates a single re
ection of

the radiance function

T L(~x; !) =
Z


0

Lin(~x;�!0) � cos �0 � fr(~x; !
0; !) d!0;

where 
0 is the hemisphere above point ~x,

L(~x; !) is the radiance of the surface in point

~x at direction !, Lin(~x;�!0) is the incom-

ing radiance from direction !0, �0 is the an-

gle between the surface normal and direction

�!0, and fr(~x; !
0; !) is the bi-directional re-


ection/refraction function (�gure 1).

Standard set of models in ray tracing were

known in the late 80's [3]. These models en-
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Figure 1: Geometry of the rendering

equation

abled to compare the resulting images and

the computation speed with other algorithms

and determined whether or not a tested algo-

rithm can be accepted. A similar approach

was proposed by Ward and Shirley for global

illumination algorithms and they also made

a set of models for testing [8, 12].

Smits and Jensen [13] introduced another set

of test scenes for di�use and ideally specu-

lar surfaces to exercise, compare and validate

di�erent global illumination algorithms. The

models and the solutions obtained with bru-

tal force path tracing are available on the in-

ternet.

Another direction of developing reference

scenes is the identi�cation of those combina-

tions of the scene geometry, lightsource inten-

sity and BRDFs, for which the solution can

be obtained analytically. An especially im-

portant class contains scenes with constant

radiance solution, since a constant value can

easily be compared with the actual solution.

A well known test scene meeting this require-

ment is the furnace [13, 10, 6] where the

environment is closed and every surface has

the same di�use albedo a and di�use emis-

sion Le. Now the solution at any point is

L(~x) = Le=(1 � a). Note the furnace pro-

vides a comfortable scene for gathering type

random walk algorithms since the emission is

the same in all directions. This does not al-

low to test many features and results in too

good performance measurements. Bekaert et.

al. used another version to compare di�use

radiosity algorithms [1]. They assumed that

the sum of the di�use emission and the dif-

fuse albedo are 1 everywhere, which results

in a constant 1 solution. In these models the

geometry is arbitrary.

Hyben and Ferko [4] proposed a completely

di�erent approach �rst in the 
atland then in

the 3D space, where the geometry is an in-

ternal surface of a circle or a sphere, the sur-

face re
ection is constant and uniform and

the emission is constant in a subset of the

sphere. In this environment the re
ected ra-

diance turns out to be constant. Later an-

other proof was given for the 3D case sup-

posing that the lightsource emission is ar-

bitrary di�use [16] and it was demonstrated

that not only the complete solution but also

the partial solutions of di�erent bounces are

constant. Recently Hyben and Ferko [5] fur-

ther enhanced their 
atland solution and al-

lowed obstacles in the sphere. Doing so, they

had to give up the bene�t that the radiance

can be obtained in closed form, and provided

the solution using a function series form with

controllable accuracy.

This paper contributes to both directions.

It extends the scenes with constant radi-

ance solution and for arbitrary BRDFs and

lightsource functions. In order to �nd ana-

lytically solvable scenes, we use reverse ap-

proach. We start with a prescribed distribu-

tion and search for closed scenes where the

radiance would be identical to the given ra-

diance. We shall show that this requirement

can be met for arbitrary closed geometry if

the local albedo and lightsource intensity sat-

is�es a given relation. We also examine how

this criterion can be met. Two special cases

are examined. In the �rst case, called BRDF

testing, we are supposed to know the BRDF

and we are looking for the lightsource which

gives constant radiance for arbitrary scene.

In the second case, called the lightsource test-

ing, we assume that the lightsources are ar-

bitrary and we set the parameters of the sur-

faces in such a way that the radiance could

be determined analytically. The paper also

investigates the test scenes of spherical ge-

ometry. It proves that in the di�use case

the lightsource function can be arbitrary and



it needs not be constant in a subset of the

surface, and a new analytically solvable case

is presented that requires the surfaces to be

ideal mirrors.

2 Scenes with constant radiance

One of the bene�ts of having analytically

computable scenes is that it can help verify

that an algorithm is computing correct solu-

tion. In these scenes all the algorithmic fea-

ture could be kept and they could give easily

representable solutions. In our approach we

aim at constant radiance solution since in this

way the reference can be de�ned by a single

scalar value.

Suppose that the radiance is constant every-

where and at every direction (L(~x; !) = ~L)

and also that the scene is a closed environ-

ment, i.e. looking at any direction we can

see a surface, thus the incoming radiance is

also constant (Lin(~x; !) = ~L). All these con-

stant values are substituted into the render-

ing equation, which expresses the radiance ~L

of point ~x at direction ! as a sum of the emis-

sion and the re
ection of all point radiances

that are visible from here. After the substi-

tution we get:

~L = Le(~x; !) + (T ~L)(~x; !) =

Le(~x; !) +

Z




~L � fr(!
0; ~x; !) � cos �0 d!0 =

Le(~x; !) + ~L �

Z




fr(!
0; ~x; !) � cos �0 d!0 =

Le(~x; !) + ~L � a(~x; !);

since the albedo is de�ned by the equation

a(~x; !) =

Z




fr(!
0; ~x; !) � cos �0 d!0: (1)

Summarizing, if the radiance is ~L at every

point and direction, then the following rela-

tion holds:

a(~x; !) = 1�
Le(~x; !)

~L
: (2)

Since the solution of the rendering equation is

unambiguous if the light transport operator

is a contraction, i.e. for close environment

the albedo is less than 1, this is a necessary

and suÆcient requirement for the radiance to

be constant. For physically plausible models,

the emission function and the albedo cannot

be negative, and the albedo cannot exceed 1.

This holds if ~L > maxLe(~x; !) � 0.

If Le is constant, then the required albedo

will also be constant. Note that this gives

back the furnace test scene as a special case.

If ~L is 1 and the albedo is direction indepen-

dent (i.e. di�use), then the lightsources are

also di�use and the sum of the albedo and

emission are 1. Note that this is the other

special case that has already been used in the

literature [1]. However, these are not the only

alternatives. The BRDFs and the emission

function should not even be di�use in order

to meet equation (2). Thus the non-di�use

rendering algorithms can also be tested with

this scene. This is, unfortunately, not as sim-

ple as for di�use scenes. If the surface re-


ection is general, complex BRDF and emis-

sion functions may show up, for which the

albedo computation and the enforcement of

equation (2) get diÆcult or even impossible.

In the next sections this problem is attacked

from two directions. First arbitrary BRDFs

are allowed and the emission is set accord-

ingly. Then the emission is given total free-

dom, and the BRDFs are de�ned to respect

equation (2).

2.1 BRDF testing

Suppose that when testing the global illumi-

nation algorithm in general we are also in-

terested in validating the BRDF models and

their importance sampling features. Thus the

material functions are expected not to change

during testing, but we are looking for the

lightsource which gives constant radiance for

arbitrary scenes:

Le(~x; !) = ~L � (1� a(~x; !)): (3)

In practice, materials are described by fr
BRDFs. This formula, on the other hand, re-



quires an emission function that can be com-

puted from the albedo. The albedo, in turn,

is the integral of the cosine weighted BRDF.

Unfortunately, this integral cannot be evalu-

ated for most of the practical BRDFs, only

for some simple ones including the di�use re-


ection and the ideal-mirror like re
ection

[7, 14]. Thus instead of computing this emis-

sion analytically, a simulation method is used

that provides a random emission function

with the mean satisfying this requirement.

Note that Monte-Carlo algorithms obtain the

solution as an average, thus this random sim-

ulation does not distort the result.
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Figure 2: Simulation of the lightsource

Assume that during the global illumination

algorithm, the value of Le(~x; !) is needed for

a particular surface point ~x and direction !.

The orientation of the surface or the normal

vector is also known. In order to �nd a ran-

dom estimate for Le(~x; !), the following sim-

ulation step is executed: !0
1
; : : : ; !0i; : : : ; !

0
M

random directions are generated using a uni-

form distribution on the hemisphere above

the surface at ~x. The angles �0i between these

directions and the surface normal, and the

BRDFs fr(!
0
i; ~x; !) for these incoming direc-

tions and for output direction ! are evalu-

ated. From the BRDF values the emission is

estimated by the following formula:

L̂e(~x; !) = ~L � (1�
2�

M

MX
i=1

fr(!
0

i; ~x; !) � cos �
0

i):

(4)

The expected value of this random estimator

is:

E[L̂e(~x; !)] =

Z




L̂e(~x; !) �
d!0

2�

where 1=(2�) is the probability density of

the choice of the incoming directions on the

upper hemisphere. Subtituting equation (4)

we can prove that the expected value of

this emission function really meets require-

ment (3):

E[L̂e(~x; !)] =

Z




~L � (1�
2�

M

MX
i=1

fr(!
0

i; ~x; !) � cos �
0

i)
d!0

2�
=

~L � (1�

Z




fr(!
0; ~x; !) � cos �0 d!0):

2.2 Lightsource testing

Let us now suppose that the lightsources are

tested together with the general features of

the global illumination algorithm, thus the

lightsources are not altered and the mate-

rial models are set to make the radiance con-

stant. It means that given an Le(~x; !) emis-

sion function, the BRDF fr(!; ~x; !
0) should

be found to satisfy the following equation

Z




fr(!
0; ~x; !) � cos �0 d!0 =

a(~x; !) = 1�
Le(~x; !)

~L
:

Note that we have constraints on the inte-

gral of the BRDF, i.e. the albedo. There

could be a lot BRDFs that can meet this re-

quirement. It could be taken into account

that a physically plausible BRDF model is

symmetric since this fact is often exploited

by global illumination algorithm. Formally,

the Helmholtz-symmetry [9] states that the

incoming and outgoing directions can be ex-

changed in the BRDF:

fr(!; ~x; !
0) = fr(!

0; ~x; !): (5)

If we are looking for the BRDF in a separable

form [11, 2], then we automatically ful�ll the

requirement of the symmetry. The separabil-

ity means that the BRDF is a product of two

similar functions parameterized by ! and !0

respectively:

fr(!
0; ~x; !) = f(~x; !) � f(~x; !0): (6)



The albedo is calculated as an integral on the

hemisphere, thus we obtain:

a(~x; !) =

Z




f(~x; !0) � f(~x; !) � cos �0 d!0 =

f(~x; !) �

Z




f(~x; !0) � cos �0 d!0: (7)

It can be noticed that the value f(~x; !) is

directly proportional to the value a(~x; !), so

there exits a parameter � for which

f(~x; !) = � � a(~x; !):

Substituting this into equation (7), we get:

a(~x; !) = �2 � a(~x; !) �

Z




a(~x; !0) � cos �0 d!0:

The unknown parameter � can be easily de-

termined

�2 =
1R




a(~x; !0) � cos �0 d!0
: (8)

Now, all the necessary relations are known so

the BRDF can be expressed from the albedo

and then from the prescribed emission func-

tion:

fr(!
0; ~x; !) = �2 � a(~x; !) � a(~x; !0) =)

fr(!
0; ~x; !) =

a(~x; !) � a(~x; !0)R



a(~x; !0) � cos �0 d!0
=

(~L� Le(~x; !)) � (~L� Le(~x; !0))

~L �
R



(~L� Le(~x; !0)) � cos �0 d!0
: (9)

Thus a correspondence is established between

the known emission function and an appro-

priate BRDF. The denominator of the BRDF

formula still contains an integral that should

be evaluated. This integral can be written

as:
Z




(~L� Le(~x; !0)) � cos �0 d!0 =

� ~L�

Z




Le(~x; !0) � cos �0 d!0: (10)

Let us �rst suppose that the total power �

and the area S of the lightsource is known

and the emission intensity is homogeneous for

di�erent points in S. In this case the integral

in equation (10) is �=S, thus the BRDF is as

follows:

fr =
(~L� Le(~x; !)) � (~L� Le(~x; !0)) � S

~L � (� ~L � S � �)
:

If the total power is not known, then a ran-

dom simulation can be executed. Whenever

the re
ection at point ~x is calculated, random

directions !0
1
; : : : ; !0i; : : : ; !

0

M are generated

using a uniform distribution on the hemi-

sphere above the surface at ~x. The angles

�0i between these directions and the surface

normal, and the emission values Le(~x; !0i) for

these directions are evaluated. The integral

of equation (10) is replaced by the following

random value:

fr =
(~L� Le(~x; !)) � (~L� Le(~x; !0))

� ~L � (~L�
2

M

PM
i=1 L

e(~x; !0i) � cos �
0
i)
:

As we did for BRDF sampling, it can be

shown that the expected value of this ran-

dom BRDF function satis�es equation (9).

Monte-Carlo global illumination algorithms

often involve BRDF sampling, which means

that directions are sampled with a probabil-

ity density that mimics the cosine weighted

BRDF. It is not easy to �nd an accu-

rate probability density for the constructed

BRDF. However, for testing purposes a sim-

ple scheme is suitable, for instance, where the

probability density is proportional to the co-

sine of the angle between the surface normal

and the generated direction.

2.3 Uniformly sampling directions on

a hemisphere

An elementary operation of both BRDF test-

ing and lightsource testing is the generation

of uniformly distributed directions on a hemi-

sphere above a surface of normal ~n. In this

section, for the sake of completeness, we re-

call an algorithm that can provide this in a

simple way. Let us place a Cartesian coordi-

nate system into the center, extend the hemi-

sphere into a sphere and enclose the sphere



by a cube [�1; 1]3. A uniformly distributed

point in this cube can be obtained by letting

the random number generator �nd numbers

x; y; z in [�1; 1]. Then we check whether or

not the point de�ned by the three numbers is

above the plane of normal ~n and is inside the

unit sphere. If both conditions are met, then

the [x; y; z] vector is normalized, that is, it is

projected to the surface of the sphere, oth-

erwise new triplets are generated. The code

of the algorithm, that uses an rnd() function

for obtaining random values in [0; 1], is the

following:

SampleHemiSphere( ~n )
while (true)

x = 2� rnd()-1
y = 2� rnd()-1
z = 2� rnd()-1
~d = [ x; y; z ]

if ~d � ~n > 0 then

l = j~dj

if l < 1 then return ~d=l
endif

endwhile

end

This algorithm generates a random direction

using less number of operations than if the

two spherical directions were sampled. If

the resulting BRDF turned out to be non-

uniform, then a Phong-like sampling would

be more appropriate. Such sampling strate-

gies can be found in [7, 14].

3 Spherical reference scene

So far we have supposed that the geometry is

arbitrary. Now a special geometry is exam-

ined that allows more freedom in setting the

BRDFs and the lightsources, but still pro-

vides analytical solution. This special geom-

etry is the internal surface of a sphere. Two

analytical solutions are given. First, it is as-

sumed that the surfaces and the lightsources

are all di�use, then the surfaces are supposed

to be perfect mirrors.

3.1 Di�use spherical scene

Let the scene be an inner surface S of a sphere

of radius R, the BRDF be constant fr = a=�

and the emission be di�use and de�ned by

Le(~x). Note that unlike in previous papers we

do not assume that the emission is constant

in a subset of the surface points, but it can

follow an arbitrary function. Using the

d!0 =
cos �~y � d~y

j~y � ~xj2

substitution for the solid angle, we obtain the

following form of the light transport opera-

tor:

(T Le)(~x; !) =

Z

S

fr �cos �~x�L
e(~y)�

cos �~y

j~y � ~xj2
d~y:

(11)

R
R

x

x

y
yθ θ

Figure 3: Geometry of the reference scene

Looking at �gure 3, we can see that inside a

sphere cos �~x = cos �~y =
j~y�~xj

2R
; thus we can

obtain the following �nal form:

(T Le)(~x; !) =

Z

S

fr�L
e(~y)�

cos �~x � cos �~y

j~y � ~xj2
d~y =

fr

4R2
�

Z

S

Le(~y) d~y = a �

R
S

Le(~y) d~y

4R2�
:

The response is equal to the product of the

albedo and the average emission of the total

spherical surface.

Using this formula recursively, the Neumann

series expansion of the solution of the render-

ing equation is:

L(~x) = Le(~x) +
1X
i=1

(T iLe)(~x) =

Le(~x) +

R
S

Le(~y) d~y

4R2�
� (a+ a2 + : : :) =



Le(~x) +

R
S

Le(~y) d~y

4R2�
�

a

1� a
:

3.2 Mirror sphere scene

Now, let us assume that the surface is a ho-

mogeneous ideal mirror which also emits light

with intensity Le. Suppose that the emission

intensity is isotropic and similar in all points,

i.e. it can be characterized by an Le(�) func-

tion where � is the angle between the emis-

sion direction and the surface normal. The

re
ected emission (T Le)(~x; !) is the emission

of the point that is visible in the mirror di-

rection of ! from ~x. If the outgoing angle

between the surface normal at ~x and ! is �,

then the incoming angle between this surface

normal and the re
ection direction is also �.

Furthermore, the outgoing angle at the visi-

ble point is also � due to the spherical geome-

try (see �gure 3). Thus the outgoing radiance

after the re
ection is kr �L
e(�) where kr is the

re
ection factor. The complete solution can

be obtained as a Neumann series:

L(�) =
1X
i=1

(T iLe)(�) =

Le(�) � (1 + kr + k2r : : :) =
Le(�)

1� kr
:

4 Simulation results

In order to demonstrate the testing power

of the proposed methods, we have selected

a Sierpienski scene and rendered with a

stochastic iteration algorithm [15]. Three

BRDF/lightsource combinations were con-

sidered: di�use with analytically computed

albedo and lightsources, di�use with simu-

lated lightsource and specular with simulated

lightsource. The average albedo in all cases

is 0.47. The exponent of the Phong re
ec-

tion has been set to 10. Recall that the pre-

sented algorithm introduces some noise con-

trolled by the number of incoming directions

M . This additional noise should be low not

to distort that of the tested algorithm. Now

the lightsources are simulated with a single

random incoming direction (M = 1). Note

that the error curves using the simulated and

the exactly computed lightsources are simi-

lar, thus even this high degree of randomiza-

tion of the lightsource does not add to much

noise. The images after 10 iteration steps are

shown in �gure 5 and the error data in �gure

4, respectively. The fully converged images

are completely white in all cases.
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Figure 4: Error curves for the three

demonstrated scenes

5 Conclusions and future work

The paper discussed the development of an-

alytically solvable scenes for the purpose of

testing Monte-Carlo global illumination algo-

rithms. Unlike other similar approaches, we

have not restricted the models only to the dif-

fuse case but also allowed for arbitrary BRDF

models and lightsources. Two fundamental

approaches have been presented. First we

proposed criteria that guarantee that the ra-

diance of a closed scene is constant. Then

a special geometry, the internal surface of a

sphere was considered. Here we have shown

that the re
ected radiance can be made con-

stant in a special di�use setting and also that

allowing only ideal re
ection the solution can

be obtained for arbitrary isotropic lightsource

models.
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Figure 5: Temporary images after 10 iterations steps for the di�use scene with computed

lightsource (left), the di�use scene with simulated lightsource (middle), and the specular

scene with simulated lightsource(right)
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