
 1

Ray Tracing Effects without Tracing Rays

László Szirmay-Kalos, Barnabás Aszódi, and István Lazányi

Budapest University of Technology and Economics, Hungary

Introduction

The basic operation of rendering is tracing a ray from its origin point at a direction to

find that point which is the source of illumination. The identification of the points

visible from the camera requires rays that have the same origin. However, in

reflection, refraction and caustic computations rays are not so coherent, but we need

to trace just a single ray from each of many origins. Graphics processing units (GPU)

trace rays of the same origin very efficiently by taking a “photo” from the common

origin point, but they are far slower to process incoherent rays.

Figure 1. Steps of environment mapping

A GPU friendly approximation technique to compute reflection is environment

mapping [Blinn76], which assumes that the hit point of the ray is very far, and thus it

becomes independent of the ray origin. In this case reflection rays can be supposed to

share the same reference point, so we get that case back for which the GPU is an

optimal tool. To render a reflective or refractive object, environment mapping takes

images about the environment from the center of the object, then the environment of

the object is replaced by a cube textured by these images (figure 1). When the

incoming illumination from a direction is needed, instead of sending a ray, the result

is looked up in the images constituting the environment map.

A fundamental problem of environment mapping is that the environment map is the

correct representation of the direction dependent illumination only at a single point,

the reference point of the object. For other points, accurate results can only be

expected if the distance of the point of interest from the reference point is negligible,

compared to the distance from the surrounding geometry. However, when the object

size and the scale of its movements are comparable with the distance from the

surrounding surface, errors occur, which create the impression that the object is

independent of its illuminating environment.

To attack this problem, we alter the environment map lookup to provide different

local illumination information for every point, based on the relative location from the

reference point. At a given time, we have just a single environment map for a

reflective object, but make localized illumination lookups. Localized image based

 2

lighting has also been proposed by Bjorke [Bjorke04], where a proxy geometry (e.g. a

sphere or a cube) of the environment is intersected by the reflection ray to obtain the

visible point. Unlike Bjorke’s approach, we rely solely on environment map lookups.

All the geometric information required by the localization process is stored in the

environment map. This information is the distance of the source of the illumination

from the reference point where the environment map was taken. The algorithm is

simple and can be executed by current vertex and pixel shaders at very high frame

rates. In the following sections we present the basic idea and the DirectX/HLSL

implementation, finally we also apply the method for caustics generation.

Localization of the environment map

The idea to localize environment maps is discussed using the notations of figure 2. Let

us assume that center o of our coordinate system is the reference point of the

environment map and we are interested in the illumination of point x from direction

R . We suppose that direction vector R has unit length.

Figure 2. Notations of environment map localization. The reference point of the

environment map is .o We need the illumination of point q being at direction R and

distance d from shaded point x . The approximation method finds ray parameter ld ,

and consequently point l on the ray and point l on the surface.

When shading point x classical environment mapping would look up the illumination

selected by direction R , that is, it would use the radiance of point r . However, r is

usually not equal to point q , which is in direction R from x , and thus satisfies the

following ray equation for some distance d :

   q x R d (1)

Our localization method finds an approximation of d using an iterative process

working with distances between the environment and reference point o . The required

distance information can be computed during the generation of the environment map.

While a normal environment map stores the illumination for each direction in R,G,B

channels, now we also obtain the distance of the visible point for these directions and

store it, for example, in the alpha channel. We call these extended environment maps

as distance impostors.

 3

Figure 3. Iterative refinement of the ray parameter assuming that the environment is

planar between points p and l corresponding to overshooting point p and

undershooting point l , respectively.

Suppose that we have two initial guesses of the ray parameter pd and ld , and

consequently two points p and l that are on the ray, but are not necessarily on the

surface, and their projections p and l onto the surface from the reference point.

(figure 3). The accuracy of this approximation can also be checked by reading the

distance stored with the direction of l in the environment map (l ) and comparing it

with l  . If point l were on the surface, then the two distances would be equal. If

visible point approximation l is in front of the surface, that is l l   , the current

approximation is an undershooting of distance parameter d . On the other hand, the

case when point l is behind the surface (l l  ) is called overshooting.

If the two guesses were of different type (i.e. one is an undershooting while the other

is overshooting), then the environment surface should intersect the ray between these

two points. In order to find a better approximation we assume that the environment

surface is a plane between the two guesses and compute the intersection
newl between

the planar surface and the ray. Then the iteration can proceed replacing either p or l

and by
newl depending on whether

newl is an overshooting or undershooting.

In order to compute the intersection point we have to consider the cases separately

when projected point l is equal to r since in this case the ray parameter becomes

infinite. In this case the new ray parameter approximation is

1
  

       
  

l p

p
d d r

p
 (2)

If none of the two points is equal to r , then the ray parameter corresponding to the hit

point is:

1
()

     
    

           
new l l p

l l
d d d d

l l p p
 (3)

Having found the new ray parameter, we can obtain the point on the ray, then looking

up the environment map, the point projected onto the environment surface.

 4

To start the iteration process we need an undershooting approximation and an

overshooting approximation. Note that point r corresponds to infinite ray parameter,

thus it is the projected point of a sure overshooting. On the other hand, if the object

does not intersect the environment, then shaded point x is an undershooting.

From mathematical point of view, the proposed iteration method solves the ray

equation with the false position root finding method [Weissten03], which converges

surely. Note that even with guaranteed convergence, the proposed method is not

necessarily equivalent to exact ray tracing in the limiting case. Errors may be due to

the discrete surface approximation, or to view dependent occlusions. For example,

should the ray hit a point that is not visible from the reference point of the

environment map, the presented approximation scheme would obviously be unable to

find that. However, when the object is curved and moving, these errors can hardly be

recognized visually.

Environment mapping with distance impostors

The computation of distance impostors is very similar to that of classical environment

maps. The only difference is that the distance from the reference point is also

calculated, which can be stored in a separate texture or in the alpha channel of the

environment map. Since the distance is a non linear function of the homogeneous

coordinates of the points, correct results can be obtained only by letting the pixel

shader compute the distance values.

Having the distance impostor, we can place an arbitrary object in the scene and

illuminate it with its environment map using custom vertex and pixel shader

programs. The vertex shader transforms object vertices (pos) to normalized screen

space by the model-view-projection transformation (TMVP), and also to the coordinate

system of the environment map first applying the modeling transform (TM), then

translating to the reference point (refpos). View vector V and normal N are also

obtained in world coordinates. Note that the normal vector is transformed with the

inverse transpose of the modeling transform (TMIT).

OUT.hpos = mul(TMVP, IN.pos); // to normalized screen space

float3 xw = mul(TM, IN.pos).xyz; // to model space

OUT.x = xw - refpos; // to space of environment map

OUT.N = mul(TMIT, IN.norm).xyz; // normal vector

OUT.V = xw – eyepos; // view vector

Having the graphics hardware computed the homogeneous division and filled the

triangle with linearly interpolating all vertex data, the pixel shader is called to find ray

hit l and to look up the cube map in this direction. The HLSL code of function Hit

computing hit point approximation l with the false position method is shown below:

float3 Hit(float3 x, float3 R, sampler mp) {

 float rl = texCUBE(mp, R).a; // |r|

 float pun = length(x)/texCUBE(mp, x).a; // |p|/|p’|

 float dun = 0, dov = 0, pov;

 float dl = rl * (1 – pun); // eq. 2

 float3 l = x + R * dl; // ray equation

 5

 for(int i = 0; i < NITER; i++) { // iteration

 float llp = length(l)/texCUBE(mp,l).a; // |l|/|l’|

 if (llp < 0.999) { // undershooting

 dun = dl; pun = llp; // last undershooting

 dl += (dov == 0) ? rl * (1 - llp) : // eq. 2

 (dl-dov) * (1-llp)/(llp-pov); // eq. 3

 } else if (llp > 1.001) { // overshooting

 dov = dl; pov = llp; // last overshooting

 dl += (dl-dun) * (1-llp)/(llp-pun); // eq. 3

 }

 l = x + R * dl; // ray equation

 }

 return l; // computed hit point

}

This function gets ray origin x and direction R, as well as cube map mp, and returns

hit point approximation l. We suppose that the distance values are stored in the alpha

channel of the environment map. Note that variables dun and dov store the last

undershooting and overshooting ray parameters. If there has been no overshooting

approximation, point r takes the role of the overshooting point.

The pixel shader calls function Hit and looks up the cube map again to find

illumination I of the visible point, and computes the reflection by multiplying with

the Fresnel function:

N = normalize(N); V = normalize(V);

R = reflect(V, N); // reflection dir.

float3 l = Hit(x, R, envmap); // ray hit

float3 I = texCUBE(envmap, l).rgb; // radiance of the hit point

return I * Fresnel(N, R); // reflected radiance

We applied an approximation of the Fresnel function, which is similar to the Schlick’s

approximation [Schlick94] in terms of computational cost, but can take into account

not only refraction index n but also extinction coefficient k , which is essential for

realistic metals [Lazanyi05]:
2 2 5

2 2

(1) 4 (1)
()

(1)

    
  

 

n k n N R
F N R

n k

Standard

environment map

distance impostor

with 1 iteration

distance impostor

with 3 iterations

ray traced reference

260 FPS 202 FPS 140 FPS

Figure 4. Comparison of classical and localized environment map reflections with ray

traced reflections placing the reference point at the center of the room and moving a

reflective sphere to different locations.

 6

Figure 4 compares the images rendered by the proposed method with standard

environment mapping and ray tracing. Note that for such scenes where the

environment is convex from the reference point of the environment map, and there are

larger planar surfaces, the new algorithm converges very quickly. The FPS values are

measured with 10241024 resolution on an NV6800GT.

2 iterations 3 iterations 4 iterations 10 iterations

166 FPS 144 FPS 126 FPS 74 FPS

Figure 5. A more difficult case when the tops of the columns are not visible from the

reference point of the environment map.

Figure 5 shows a more difficult case where the columns are bigger. Note that the

convergence is still pretty fast, but the reflection of the top of the columns is not

exactly what we expect. We can observe that the edge of the column is blurred,

because the top of the column is not visible from the reference point of the

environment map, but are expected to show up in the reflection. In such cases the

algorithm can go only to the edge of the column and substitutes the reflection of the

occluded points by the blurred image of the edge.

Figure 6. Reflective and refractive objects.

 7

The proposed method can be used not only for reflection but also for refraction

calculations if the reflect operation is replaced by the refract function in the

pixel shader (figure 6).

Application to caustics generation

The method presented so far can compute the hit point after the reflection or

refraction of the visibility ray. If we replace the eye by a light source, the same

method can also be used to determine the ideal bounce of the light ray, which is the

cause of caustic effects [Szirmay05].

Figure 7. Caustics generation with environment maps

When rendering the scene from the point of view of the light source, the view plane is

placed between the light and the refractor (figure 7). The image on this view plane is

called caustic map. Note that this step is very similar to the generation of depth

images for shadow maps.

Supposing that the surface is an ideal reflector or refractor, point l that receives the

illumination of a light source after a reflection or refraction can be obtained by the

proposed approximate ray tracing, and particularly by calling the Hit function. The

photon hit parameters are stored in that caustic map pixel through which the primary

light ray arrived at the caustic generator object. There are several alternatives to

represent a photon hit. Considering that the reflected radiance caused by a photon hit

is the product of the BRDF and the power of the photon, the representation of the

photon hit should identify the surface point and its BRDF. A natural identification is

the texture coordinates of that surface point, which is hit by the ray. A caustic map

pixel stores the identification of the texture map, u and v texture coordinates, and

finally the luminance of the power of the photon. The photon power is computed from

the power of the light source and the solid angle subtended by the caustic map pixel.

The identification of u and v texture coordinates from the direction of the photon hit

requires another texture lookup. Suppose that together with the environment map, we

also render another map, called uvmap, which has the same structure, but stores the

u v coordinates and the texture id in its pixels. Having found the direction of the

photon hit, this map is read to obtain the texture coordinates, which are finally written

into the caustic map.

 8

The vertex shader of caustic map generation transforms the points and illumination

direction L to the coordinate system of the environment map.

OUT.hpos = mul(TMVP, IN.pos); // to normalized screen space

float3 xw = mul(TM, IN.pos).xyz; // to model space

OUT.x = xw - refpos; // to space of environment map

OUT.N = mul(TMIT, IN.norm); // normal vector

OUT.L = xw – lightpos; // light vector

Then the pixel shader computes the location of the photon hit and puts it into the

target pixel:

N = normalize(N); L = normalize(L);

R = refract(L, N, 1/n); // or reflect ...

float3 l = Hit(x, R, envmap); // hit point of the photon

float3 hituv = texCUBE(uvmap, l).xyz; // uv of the hit point

return float4(hituv, power); // store into caustmap

In order to recognize those texels of the caustic map where the refractor is not visible,

we initialize the caustic map with 1 alpha values. Checking the sign of the alpha

later, we can decide whether or not it is a photon hit.

The generated caustic map is used to project caustic textures onto surfaces, or to

modify their light map in the next rendering pass. Every photon hit should be

multiplied by the BRDF, and the product is used to modulate a small filter texture,

which is added to the texture of the surface. The filter texture corresponds to Gaussian

filtering in texture space. In this pass we render as many small quadrilaterals (two

adjacent triangles in DirectX) or point sprites as texels the caustic map has. The

caustic map texels are addressed one by one with variable caustcoord in the vertex

shader shown below. The center of these quadrilaterals is the origo, and their size

depends on the support of the Gaussian filter. The vertex shader changes the

coordinates of the quadrilateral vertices and centers the quadrilateral at the u v

coordinates of the photon hit in texture space if the alpha value of the caustic map

texel addressed by caustcoord is positive, and moves the quadrilateral out of the

clipping region if the alpha is negative. This approach requires the texture memory

storing the caustic map to be fed back to the vertex shader, which is possible on 3.0

compatible vertex shaders. The vertex shader of projecting caustic textures onto

surfaces is as follows:

float4 ph = tex2Dlod(caustmap, IN.caustcoord); // photon hit uv

OUT.filtcoord = IN.pos.xy; // filter coords

OUT.texcoord.x = ph.x + IN.pos.x / 2; // billboard uv

OUT.texcoord.y = ph.y - IN.pos.y / 2;

OUT.hpos.x = ph.x * 2 - 1 + IN.pos.x; // billboard address

OUT.hpos.y = 1 - ph.y * 2 + IN.pos.y;

OUT.hpos.w = 1;

if (ph.a < 0) OUT.hpos.z = 2; // not a hit: ignore

else OUT.hpos.z = 0; // valid hit:

OUT.power = ph.a; // photon power

Note that the original x y coordinates of quadrilateral vertices are copied as filter

texture coordinates, and are also moved to the position of the photon hit in the texture

space of the surface. The output position register (hpos) also stores the texture

 9

coordinates converted from 2[0 1] to 2[1 1]  which corresponds to rendering to this

space. The w and z coordinates of the position register are used to ignore those caustic

map elements which have no associated photon hit.

The pixel shader computes the color contribution as the product of the photon power,

filter value and the BRDF:

float3 brdf = tex2d(textureid, texcoord);

float w = tex2d(filter, filtcoord);

return power * w * brdf;

The target of this rendering is the light map or the modified texture map. Note that the

contribution of different photons should be added, thus we should set the blending

mode to “add” before executing this phase.

Figure 8. Real-time caustics caused by a glass sphere (1 3 n), rendered by the

proposed method at 50 FPS

Figure 8 shows the implementation of the caustics generation, when a 64 64

resolution caustic map is obtained in each frame, which is fed back to the vertex

shader. Note that even with shadow, reflection, and refraction computation, the

method executing 10 iterations runs with 50 FPS.

Conclusions

We proposed a localization method for environment maps, which uses the distance

values stored in environment map texels. The localization method is equivalent to

approximate ray-tracing, which solves the ray equation by numerical root finding. The

proposed solution can introduce effects in games that are usually simulated by ray

tracing, such as reflections and refractions on curved surfaces, and caustics.

References

[Blinn76] Blinn J. F., Newell M. E. Texture and reflection in computer generated

images. Communications of the ACM 19, 10 (1976), pp 542-547.

 10

[Bjorke04] Bjorke K. Image-based lighting. In GPU Gems. Fernando R. (editor).

NVidia, (2004), pp 307-322.

[Weisstein03] Weisstein E. W. Method of False Position. MathWorld – A Wolfram

Web Resource. http://mathworld.wolfram.com/MethodofFalsePosition.html.

[Schlick94] Schlick C. A customizable reflectance model for everyday rendering. In

Fourth Eurographics Workshop on Rendering. (1993), pp. 73-83.

[Lazanyi05] Lazányi I., Szirmay-Kalos, L. Fresnel term approximations for metals. In

WSCG 2005. Short papers. (2005), pp 77-80.

[Szirmay05]: Szirmay-Kalos, L. Lazányi, I., Aszódi, B., Premecz, M. Approximate

ray-tracing on the GPU with distance impostors. Computer Graphics Forum 24, 3

(Eurographics 2005 Proceedings).

http://mathworld.wolfram.com/MethodofFalsePosition.html

