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Introduction 
 

The basic operation of rendering is tracing a ray from its origin point at a direction to 

find that point which is the source of illumination. The identification of the points 

visible from the camera requires rays that have the same origin. However, in 

reflection, refraction and caustic computations rays are not so coherent, but we need 

to trace just a single ray from each of many origins. Graphics processing units (GPU) 

trace rays of the same origin very efficiently by taking a “photo” from the common 

origin point, but they are far slower to process incoherent rays. 

 

Figure 1. Steps of environment mapping 

 

A GPU friendly approximation technique to compute reflection is environment 

mapping [Blinn76], which assumes that the hit point of the ray is very far, and thus it 

becomes independent of the ray origin. In this case reflection rays can be supposed to 

share the same reference point, so we get that case back for which the GPU is an 

optimal tool. To render a reflective or refractive object, environment mapping takes 

images about the environment from the center of the object, then the environment of 

the object is replaced by a cube textured by these images (figure 1). When the 

incoming illumination from a direction is needed, instead of sending a ray, the result 

is looked up in the images constituting the environment map. 

 

A fundamental problem of environment mapping is that the environment map is the 

correct representation of the direction dependent illumination only at a single point, 

the reference point of the object. For other points, accurate results can only be 

expected if the distance of the point of interest from the reference point is negligible, 

compared to the distance from the surrounding geometry. However, when the object 

size and the scale of its movements are comparable with the distance from the 

surrounding surface, errors occur, which create the impression that the object is 

independent of its illuminating environment. 

 

To attack this problem, we alter the environment map lookup to provide different 

local illumination information for every point, based on the relative location from the 

reference point. At a given time, we have just a single environment map for a 

reflective object, but make localized illumination lookups. Localized image based 
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lighting has also been proposed by Bjorke [Bjorke04], where a proxy geometry (e.g. a 

sphere or a cube) of the environment is intersected by the reflection ray to obtain the 

visible point. Unlike Bjorke’s approach, we rely solely on environment map lookups. 

All the geometric information required by the localization process is stored in the 

environment map. This information is the distance of the source of the illumination 

from the reference point where the environment map was taken. The algorithm is 

simple and can be executed by current vertex and pixel shaders at very high frame 

rates. In the following sections we present the basic idea and the DirectX/HLSL 

implementation, finally we also apply the method for caustics generation. 

 

Localization of the environment map 
 

The idea to localize environment maps is discussed using the notations of figure 2. Let 

us assume that center o  of our coordinate system is the reference point of the 

environment map and we are interested in the illumination of point x  from direction 

R . We suppose that direction vector R  has unit length.  

 

 
Figure 2. Notations of environment map localization. The reference point of the 

environment map is .o  We need the illumination of point q  being at direction R and 

distance d from shaded point x . The approximation method finds ray parameter ld , 

and consequently point l on the ray and point l  on the surface. 

 

When shading point x  classical environment mapping would look up the illumination 

selected by direction R , that is, it would use the radiance of point r . However, r  is 

usually not equal to point q , which is in direction R  from x , and thus satisfies the 

following ray equation for some distance d :  

   q x R d       (1) 

 

Our localization method finds an approximation of d  using an iterative process 

working with distances between the environment and reference point o . The required 

distance information can be computed during the generation of the environment map. 

While a normal environment map stores the illumination for each direction in R,G,B 

channels, now we also obtain the distance of the visible point for these directions and 

store it, for example, in the alpha channel. We call these extended environment maps 

as distance impostors. 
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Figure 3. Iterative refinement of the ray parameter assuming that the environment is 

planar between points p and l  corresponding to overshooting point p  and 

undershooting point l , respectively.  

 

Suppose that we have two initial guesses of the ray parameter pd  and ld , and 

consequently two points p  and l  that are on the ray, but are not necessarily on the 

surface, and their projections p  and l  onto the surface from the reference point. 

(figure 3). The accuracy of this approximation can also be checked by reading the 

distance stored with the direction of l  in the environment map ( l  ) and comparing it 

with l  . If point l were on the surface, then the two distances would be equal. If 

visible point approximation l is in front of the surface, that is l l   , the current 

approximation is an undershooting of distance parameter d . On the other hand, the 

case when point l  is behind the surface ( l l  ) is called overshooting.  

 

If the two guesses were of different type (i.e. one is an undershooting while the other 

is overshooting), then the environment surface should intersect the ray between these 

two points. In order to find a better approximation we assume that the environment 

surface is a plane between the two guesses and compute the intersection 
newl  between 

the planar surface and the ray. Then the iteration can proceed replacing either p  or l  

and by 
newl  depending on whether 

newl  is an overshooting or undershooting. 

 

In order to compute the intersection point we have to consider the cases separately 

when projected point l is equal to r  since in this case the ray parameter becomes 

infinite. In this case the new ray parameter approximation is 

1
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If none of the two points is equal to r , then the ray parameter corresponding to the hit 

point is: 
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Having found the new ray parameter, we can obtain the point on the ray, then looking 

up the environment map, the point projected onto the environment surface. 
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To start the iteration process we need an undershooting approximation and an 

overshooting approximation. Note that point r  corresponds to infinite ray parameter, 

thus it is the projected point of a sure overshooting. On the other hand, if the object 

does not intersect the environment, then shaded point x  is an undershooting.  

 

From mathematical point of view, the proposed iteration method solves the ray 

equation with the false position root finding method [Weissten03], which converges 

surely. Note that even with guaranteed convergence, the proposed method is not 

necessarily equivalent to exact ray tracing in the limiting case. Errors may be due to 

the discrete surface approximation, or to view dependent occlusions. For example, 

should the ray hit a point that is not visible from the reference point of the 

environment map, the presented approximation scheme would obviously be unable to 

find that. However, when the object is curved and moving, these errors can hardly be 

recognized visually. 

 

Environment mapping with distance impostors 
 

The computation of distance impostors is very similar to that of classical environment 

maps. The only difference is that the distance from the reference point is also 

calculated, which can be stored in a separate texture or in the alpha channel of the 

environment map. Since the distance is a non linear function of the homogeneous 

coordinates of the points, correct results can be obtained only by letting the pixel 

shader compute the distance values. 

 

Having the distance impostor, we can place an arbitrary object in the scene and 

illuminate it with its environment map using custom vertex and pixel shader 

programs. The vertex shader transforms object vertices (pos) to normalized screen 

space by the model-view-projection transformation (TMVP), and also to the coordinate 

system of the environment map first applying the modeling transform (TM), then 

translating to the reference point (refpos). View vector V and normal N are also 

obtained in world coordinates. Note that the normal vector is transformed with the 

inverse transpose of the modeling transform (TMIT). 

 
OUT.hpos = mul(TMVP, IN.pos);  // to normalized screen space 

float3 xw = mul(TM, IN.pos).xyz; // to model space 

OUT.x = xw - refpos;   // to space of environment map 

OUT.N = mul(TMIT, IN.norm).xyz;  // normal vector 

OUT.V = xw – eyepos;   // view vector 

 

Having the graphics hardware computed the homogeneous division and filled the 

triangle with linearly interpolating all vertex data, the pixel shader is called to find ray 

hit l  and to look up the cube map in this direction. The HLSL code of function Hit 

computing hit point approximation l  with the false position method is shown below: 

 
float3 Hit(float3 x, float3 R, sampler mp) { 

   float rl = texCUBE(mp, R).a;                 // |r| 

   float pun = length(x)/texCUBE(mp, x).a;      // |p|/|p’| 

   float dun = 0, dov = 0, pov; 

   float dl = rl * (1 – pun);                   // eq. 2 

   float3 l = x + R * dl;             // ray equation 
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   for(int i = 0; i < NITER; i++) {   // iteration 

      float llp = length(l)/texCUBE(mp,l).a;   // |l|/|l’| 

      if (llp < 0.999) {     // undershooting 

         dun = dl; pun = llp;    // last undershooting 

         dl += (dov == 0) ? rl * (1 - llp) : // eq. 2 

               (dl-dov) * (1-llp)/(llp-pov); // eq. 3 

      } else if (llp > 1.001) {         // overshooting 

         dov = dl; pov = llp;    // last overshooting 

         dl += (dl-dun) * (1-llp)/(llp-pun); // eq. 3 

      } 

      l = x + R * dl;     // ray equation 

   } 

   return l;      // computed hit point 

} 

 

This function gets ray origin x and direction R, as well as cube map mp, and returns 

hit point approximation l. We suppose that the distance values are stored in the alpha 

channel of the environment map. Note that variables dun and dov store the last 

undershooting and overshooting ray parameters. If there has been no overshooting 

approximation, point r  takes the role of the overshooting point.  

 

The pixel shader calls function Hit and looks up the cube map again to find 

illumination I of the visible point, and computes the reflection by multiplying with 

the Fresnel function: 

 
N = normalize(N); V = normalize(V); 

R = reflect(V, N);                  // reflection dir. 

float3 l = Hit(x, R, envmap);       // ray hit 

float3 I = texCUBE(envmap, l).rgb; // radiance of the hit point 

return I * Fresnel(N, R);  // reflected radiance 

 

We applied an approximation of the Fresnel function, which is similar to the Schlick’s 

approximation [Schlick94] in terms of computational cost, but can take into account 

not only refraction index n  but also extinction coefficient k , which is essential for 

realistic metals [Lazanyi05]: 
2 2 5
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Standard 

environment map 

distance impostor 

with 1 iteration 

distance impostor 

with 3 iterations 

ray traced reference 

260 FPS 202 FPS 140 FPS  

Figure 4. Comparison of classical and localized environment map reflections with ray 

traced reflections placing the reference point at the center of the room and moving a 

reflective sphere to different locations.  
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Figure 4 compares the images rendered by the proposed method with standard 

environment mapping and ray tracing. Note that for such scenes where the 

environment is convex from the reference point of the environment map, and there are 

larger planar surfaces, the new algorithm converges very quickly. The FPS values are 

measured with 10241024 resolution on an NV6800GT. 

 

    
2 iterations 3 iterations 4 iterations 10 iterations 

166 FPS 144 FPS 126 FPS 74 FPS 

Figure 5. A more difficult case when the tops of the columns are not visible from the 

reference point of the environment map. 

 

Figure 5 shows a more difficult case where the columns are bigger. Note that the 

convergence is still pretty fast, but the reflection of the top of the columns is not 

exactly what we expect. We can observe that the edge of the column is blurred, 

because the top of the column is not visible from the reference point of the 

environment map, but are expected to show up in the reflection. In such cases the 

algorithm can go only to the edge of the column and substitutes the reflection of the 

occluded points by the blurred image of the edge. 

 

      
Figure 6. Reflective and refractive objects. 
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The proposed method can be used not only for reflection but also for refraction 

calculations if the reflect operation is replaced by the refract function in the 

pixel shader (figure 6). 

 

Application to caustics generation 

 
The method presented so far can compute the hit point after the reflection or 

refraction of the visibility ray. If we replace the eye by a light source, the same 

method can also be used to determine the ideal bounce of the light ray, which is the 

cause of caustic effects [Szirmay05]. 

 

 
Figure 7. Caustics generation with environment maps 

 

When rendering the scene from the point of view of the light source, the view plane is 

placed between the light and the refractor (figure 7). The image on this view plane is 

called caustic map. Note that this step is very similar to the generation of depth 

images for shadow maps.  

 

Supposing that the surface is an ideal reflector or refractor, point l  that receives the 

illumination of a light source after a reflection or refraction can be obtained by the 

proposed approximate ray tracing, and particularly by calling the Hit function. The 

photon hit parameters are stored in that caustic map pixel through which the primary 

light ray arrived at the caustic generator object. There are several alternatives to 

represent a photon hit. Considering that the reflected radiance caused by a photon hit 

is the product of the BRDF and the power of the photon, the representation of the 

photon hit should identify the surface point and its BRDF. A natural identification is 

the texture coordinates of that surface point, which is hit by the ray. A caustic map 

pixel stores the identification of the texture map, u  and v  texture coordinates, and 

finally the luminance of the power of the photon. The photon power is computed from 

the power of the light source and the solid angle subtended by the caustic map pixel. 

 

The identification of u  and v  texture coordinates from the direction of the photon hit 

requires another texture lookup. Suppose that together with the environment map, we 

also render another map, called uvmap, which has the same structure, but stores the 

u v  coordinates and the texture id in its pixels. Having found the direction of the 

photon hit, this map is read to obtain the texture coordinates, which are finally written 

into the caustic map. 

 



 8 

The vertex shader of caustic map generation transforms the points and illumination 

direction L to the coordinate system of the environment map. 

 
OUT.hpos = mul(TMVP, IN.pos);  // to normalized screen space 

float3 xw = mul(TM, IN.pos).xyz; // to model space 

OUT.x = xw - refpos;   // to space of environment map 

OUT.N = mul(TMIT, IN.norm);   // normal vector 

OUT.L = xw – lightpos;   // light vector 

 

Then the pixel shader computes the location of the photon hit and puts it into the 

target pixel:  

 
N = normalize(N); L = normalize(L); 

R = refract(L, N, 1/n);    // or reflect ... 

float3 l = Hit(x, R, envmap);   // hit point of the photon 

float3 hituv = texCUBE(uvmap, l).xyz; // uv of the hit point 

return float4(hituv, power);    // store into caustmap 

 

In order to recognize those texels of the caustic map where the refractor is not visible, 

we initialize the caustic map with 1  alpha values. Checking the sign of the alpha 

later, we can decide whether or not it is a photon hit. 

 

The generated caustic map is used to project caustic textures onto surfaces, or to 

modify their light map in the next rendering pass. Every photon hit should be 

multiplied by the BRDF, and the product is used to modulate a small filter texture, 

which is added to the texture of the surface. The filter texture corresponds to Gaussian 

filtering in texture space. In this pass we render as many small quadrilaterals (two 

adjacent triangles in DirectX) or point sprites as texels the caustic map has. The 

caustic map texels are addressed one by one with variable caustcoord in the vertex 

shader shown below. The center of these quadrilaterals is the origo, and their size 

depends on the support of the Gaussian filter. The vertex shader changes the 

coordinates of the quadrilateral vertices and centers the quadrilateral at the u v  

coordinates of the photon hit in texture space if the alpha value of the caustic map 

texel addressed by caustcoord is positive, and moves the quadrilateral out of the 

clipping region if the alpha is negative. This approach requires the texture memory 

storing the caustic map to be fed back to the vertex shader, which is possible on 3.0 

compatible vertex shaders. The vertex shader of projecting caustic textures onto 

surfaces is as follows: 

 
float4 ph = tex2Dlod(caustmap, IN.caustcoord); // photon hit uv 

OUT.filtcoord = IN.pos.xy;     // filter coords 

OUT.texcoord.x = ph.x + IN.pos.x / 2;  // billboard uv 

OUT.texcoord.y = ph.y - IN.pos.y / 2; 

OUT.hpos.x = ph.x * 2 - 1 + IN.pos.x;  // billboard address 

OUT.hpos.y = 1 - ph.y * 2 + IN.pos.y; 

OUT.hpos.w = 1; 

if (ph.a < 0) OUT.hpos.z = 2;    // not a hit: ignore 

else          OUT.hpos.z = 0;    // valid hit: 

OUT.power = ph.a;             // photon power 

 

Note that the original x y  coordinates of quadrilateral vertices are copied as filter 

texture coordinates, and are also moved to the position of the photon hit in the texture 

space of the surface. The output position register (hpos) also stores the texture 
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coordinates converted from 2[0 1]  to 2[ 1 1]   which corresponds to rendering to this 

space. The w and z coordinates of the position register are used to ignore those caustic 

map elements which have no associated photon hit. 

 

The pixel shader computes the color contribution as the product of the photon power, 

filter value and the BRDF: 

 
float3 brdf = tex2d(textureid, texcoord); 

float  w    = tex2d(filter, filtcoord); 

return power * w * brdf; 

 

The target of this rendering is the light map or the modified texture map. Note that the 

contribution of different photons should be added, thus we should set the blending 

mode to “add” before executing this phase. 

 

      
Figure 8. Real-time caustics caused by a glass sphere ( 1 3 n ), rendered by the 

proposed method at 50 FPS 

 

Figure 8 shows the implementation of the caustics generation, when a 64 64  

resolution caustic map is obtained in each frame, which is fed back to the vertex 

shader. Note that even with shadow, reflection, and refraction computation, the 

method executing 10 iterations runs with 50 FPS. 

 

Conclusions 

 

We proposed a localization method for environment maps, which uses the distance 

values stored in environment map texels. The localization method is equivalent to 

approximate ray-tracing, which solves the ray equation by numerical root finding. The 

proposed solution can introduce effects in games that are usually simulated by ray 

tracing, such as reflections and refractions on curved surfaces, and caustics.  
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