
Worst-Case Versus Average Case

Complexity of Ray-Shooting

L�aszl�o Szirmay-Kalos, G�abor M�arton

Department of Control Engineering and Information Technology,

Technical University of Budapest,

Budapest, M}uegyetem rkp. 11, H-1111, HUNGARY

szirmay@fsz.bme.hu

Abstract: This paper examines worst-case and average-case complexity mea-

sures of ray-shooting algorithms in order to �nd the answer to the question why

computer graphics practitioners prefer heuristic methods to extensively studied

worst-case optimal algorithms. It demonstrates that ray-shooting requires at least

logarithmic time in the worst-case and discusses the strategies how to design such

worst-case optimal algorithms. It also examines the lower-bounds of storage com-

plexity of logarithmic-time algorithms and concludes that logarithmic time has

very high price in terms of required storage. In order to �nd average-case mea-

sures, a probabilistic model of the scene is established. We conclude that algo-

rithms optimized for the average-case are not only much simpler to implement,

but have moderate storage requirement and can even run faster for the majority

of problems.

1 Introduction

Computer graphics examines the light-object interaction of surfaces in 3D

space. In order to determine the reected light of a surface point, the objects
that radiate light onto this point must be known. For a single direction, this

requires the emanation of a half-line | called ray | from the surface point

and the computation of the object that is �rst intersected by this ray.

1

This fundamental geometric problem is called ray-shooting. For the

complete solution of the rendering problem, a lot of rays should be shot and

traced, thus it is worth preprocessing the scene into a data structure that

makes ray-shooting more e�ective.

From practical point of view, e�ective solution means inventing tricky

algorithms and demonstrating by simulation that these algorithms are really

faster for the examined test cases. From theoretical point of view, however,

we must formally prove that an algorithm has better complexity character-

istics than the others. Complexity measures express the rate of increase of

the required time and memory space as the size of the problem grows. The

size of the problem is the number of the objects in the scene for the ray-

shooting problem. In this paper the number of objects, computation time

and required storage are denoted by letter n, T (n) and S(n) respectively.
The time and space complexities impose constraints on the functions T (n)
and S(n). A function g(n) is said to be in O(f(n)) if there exist positive con-

stants c and N so that g(n) < c � f(n) if n > N . Thus notation O describes
an upper bound. Notation
, on the other hand, de�nes a lower bound: a
function g(n) is in
(f(n)) if there exist positive constants c and N so that

g(n) > c � f(n) if n > N . Finally, if g(n) is both in O(f(n)) and in
(f(n)),
then g(n) is said to be in �(f(n)).

The main objective of complexity analysis is to �nd algorithms that have
reasonable resource requirements in this asymptotic sense. The required time
is expressed by the number of constant time operations needed to complete

the algorithm. Before carrying out such an analysis, we have to de�ne what
kind of operations can be used to de�ne the algorithm. In the generally

accepted algebraic decision tree model, the following operation type is
allowed: an algebraic function is evaluated and according to its result a deci-
sion is made to select the next operation. In this framework, the computation

can be visualized by a binary tree that is divided into two branches by every

single decision (this is why the model is called the algebraic decision tree
model).

In the classical approach algorithms are optimized for the worst case,
thus complexity measures also express the resource requirements of the worst

arrangement of input of a given size.

Thus the worst-case complexity measure is:

T (n) = max
o1;:::;on2O

tn(o1; : : : ; on); (1)

2

where oi represents the parameter set de�ning object i in the scene. The

vector o1; : : : ; on of object parameters represents the input of the algorithm

and is also called the input con�guration.

Worst-case complexity means that the computation time and space must

be below the given limits for any input con�guration of given size. Computer

graphics algorithms optimized for the worst case were usually born in the

framework of computational geometry which works with constructs such as

hyperplanes, cuttings, etc., thus it usually restricts the type of objects to

those that are bounded by planar faces.

The practice of computer graphics, on the other hand, has produced its

own techniques, that can be called heuristic methods. These heuristic

methods do not aim at worst-case optimization but rather aim at optimizing

for the average case. In the framework of average case complexity evaluation,
algorithms are optimized for the majority of the possible inputs not for the
worst of them. More precisely, the complexity measure will be the expected

value of the running time instead of the maximum running time. If the so-
lution for an input con�guration takes very long time, but this con�guration
has very low or even zero probability, then this does not make too much

di�erence in the average case complexity of the algorithm.
Thus the de�nition of the average-case complexity measure is:

T (n) = E[tn] =
Z

o12O

� � �
Z

on2O

tn(o1; : : : ; on) fn(o1; : : : ; on) do1 � � �don; (2)

where oi is the parameter set of object i as before and fn is the probability

density of the possible input con�gurations.
The naive solution of the ray-shooting problem, when each object is tried

to be intersected, and then the nearest intersection is retained, requires ob-

viously linear time both in the worst-case and in the average-case. However,
having preprocessed the object space into a sophisticated data structure, this
problem can be solved more e�ectively.

2 Previous work

One of the earliest results on the complexity of ray-shooting has been pub-

lished by Glassner [Ge89], who stated that his octree based acceleration tech-

nique runs in logarithmic time, but his statements has been neither precisely

3

formulated nor proven. For example, he must have meant average-case com-

plexity since the octree algorithm is de�nitely not a worst-case logarithmic

method (it is easy to construct an object space for which the octree-based

algorithm would run in linear time; a simple example is when all objects

have a common point or are very close to each-other since this makes a cell

contain O(n) number of objects), but he did not specify the assumptions of

the underlying probabilistic model.

Later on ray-shooting received attention in computational geometry where

worst-case sub-linear algorithms have been proposed. However, to make the

tools of computational geometry feasible, they consider only objects bounded

by planar faces, although one of the most important features of ray-tracing

is that it can handle arbitrary object types for which ray-object intersection

test can be implemented.
An excellent coverage is presented by Mark de Berg [dB92] who analyzed

di�erent special cases such as ray shooting with rays from �xed point or into

�xed direction in a space of axis parallel polyhedra, c-oriented polyhedra,
arbitrary curtains and general polyhedra. His main idea was to transform
the ray-shooting problem into an equivalent 5D point-location problem using

Pl�ucker representation of the line of the ray and the lines of edges of the
triangles composing the polyhedra. For point-location, then, logarithmic

algorithms are available using, for example, cuttings. The resulting algorithm
can solve the ray-shooting problem in logarithmic time using O(n4+�) storage
and preprocessing time (more precisely, for any � > 0, there exists a data

structure of size O(n4+�) that answers intersection queries in logarithmic
time).

Others took a di�erent compromise between the worst-case running time
and the required storage. Chazelle [CEG+89], for example, proposed an
algorithm using Pl�ucker coordinates that runs in O(log2 n) time but requires

only O(n2+�) storage space.

Pellegrini, on the other hand, investigated global rays and came to the
conclusion that tracing m rays among n triangles can be done in roughly

O(m0:8n0:8) time [Pel93].
The paper of Schmitt, M�uller and Leister [SML88] contains space/query-

time lower bounds for ray shooting iso-oriented rectangles. One of their

propositions states that it is possible to preprocess n iso-oriented rectangles
within P (n) = O(npolylogn) time into a data structure of size O(npolylogn)

so that an arbitrary ray query for a closest rectangle can be answered within

4

Q(n) = O(n�polylogn) time, � = log 1+
p
5

2
� 0:695 (polylog stands for logc

for some c � 0). Their other proposition states that it is possible to prepro-

cess n iso-oriented rectangles within P (n) = O(n3polylogn) time into a data

structure of size O(n3polylogn), so that an arbitrary ray query for a closest

rectangle can be answered within Q(n) = O(log3 n) time.

These worst-case optimal algorithms are not only very di�cult to imple-

ment but also not feasible in practice due to their prohibitive memory and

preprocessing requirements. In today's complex computer graphics scenes n

is in the order of 104 : : : 107, which prohibits the use of O(n4) or even O(n2)

memory to obtain logarithmic or O(log2 n) query times respectively.

According to a generally accepted criterion, a \good" ray-shooting al-

gorithm runs in sub-linear time after sub-quadratic preprocessing and uses

linear memory space. Thus instead of implementing the algorithms invented

in computational geometry, computer graphics practitioners prefer heuristic
ray-shooting speed-up techniques, including, for example,

� regular space partitioning [FTK86][AK89],

� octree [Gla84][AK89],

� ray coherence methods [OM87][HMSK92],

� ray classi�cation [Gla84][AK89],

� Voronoi diagram based space partitioning [M�ar95a],

These algorithms are usually not analyzed formally. From worst-case
complexity point of view, these algorithms are even worse than the naive
solution. However, for the majority of the cases they seem to be better

than that. Inventors of such algorithms usually intuitively justify why these
methods are expected to run faster for \normal environments" than the naive
implementation and demonstrate this statement by simulation [OM87].

3 Structure of this paper

This paper examines ray-shooting algorithms from the point of view of both

worst-case and average-case complexity evaluation. On the side of worst-case

5

analysis, it tries to �nd the theoretical limits of such approaches and to sum-

marize the di�erent possibilities for the elaboration of such algorithms. In or-

der to demonstrate the possibilities, the paper proposes an algorithm, called

the complementer plane algorithm, that can solve the ray-shooting prob-

lem in logarithmic time having constructed an appropriate data-structure.

In the second section of this paper, we turn our attention to algorithms

optimized for the average case. A very simple method, called the provoca-

tive algorithm, is presented, and it is demonstrated that the average case

time complexity of this method is constant, which is much better than that

could be provided by the worst-case optimal algorithms. Finally, classical,

heuristic ray-tracing acceleration techniques are examined in the context of

the provocative algorithm and it is shown that they also have very appealing

average-case time complexities.

4 Worst-case optimal ray-shooting algorithms

4.1 Lower-bound for the worst case time complexity

of ray-shooting

The lower-bounds of the complexity are inherent properties of the problem
itself that is to be solved, not of the algorithm. We have to prove that no
algorithm can be found for the given problem, that is capable to solve it

with better than this lower-bound complexity. In the algebraic decision tree
model, this is usually done by determining the size of the tree based on the

number of possible outcomes of the algorithm.

object 1 object 2

object 3

object 4 object n

at least n leaves

at least log n levels

Figure 1: Computation tree

6

The ray-shooting algorithm can result in at least n+1 di�erent outputs,

since generally any object can be �rst intersected by the ray in addition to

generating no intersection if the ray parameters are chosen appropriately,

thus the computation tree of ray-shooting has at least n+ 1 di�erent leaves

(�gure 1). Since a binary tree that has at least n leaves should have at least

logn di�erent levels, the algorithm must make at least logn di�erent deci-

sions in the worst-case to reach the leaf, that is to �nd the output. It means

that no algorithm can be expected that solves the ray-shooting problem in

better than logarithmic time.

4.2 Analysis of the space containing the objects and

the ray

In ray-shooting �ve independent real parameters de�ne the ray unambigu-
ously. Usually, three scalars specify the origin of the ray in a Cartesian

coordinate system while the remaining two scalars de�ne the direction of the
ray. For di�erent �ve-tuples, the ray may intersect di�erent objects. The col-

lection of those �ve-tuples, that represent rays intersecting the same object,
forms a cell in the 5-dimensional space of ray parameters. The intersection
of these cells | called sub-cells | de�ne those rays that intersect not only

a single object but several objects. Since a set of objects may be intersected
from two, opposite directions, more than one sub-cells may represent the
same collection of objects. For each cell or sub-cell, the object which is �rst

intersected by a ray can be identi�ed.
Ray-shooting can also be regarded as a point location in this 5D space

where the territories of classi�cation are the sub-cells.

object 1 is intersected

object 2 is intersected

both objects are intersected
but object 1 is intersected firstboth objects are intersected

but object 2 is intersected first

cell

subcell
subcell holes

Figure 2: Visualization of the 5D space of ray parameters

7

The complexity of the arrangement of cells and subcells will determine the

complexity of data structures needed to e�ectively search in this arrangement.

For algorithms discussed below, two measures are crucial:

1. The number of subcells, which means the number of di�erent collections

of objects intersected by the same ray.

2. The number of holes between cells, that is the number of equivalence

classes of those rays which do not intersect any object. Two rays are

said to belong the same equivalence class if the supporting lines of rays

can be moved to each other without intersecting any object.

In order to establish lower-bounds for these measures for a class of object

types, arbitrary representative from this class can be used. Obviously, a
worst-case lower-bound that is valid for a special type will also be valid
worst-case lower-bound for general object types including the selected one.

Thus, for the sake of simplicity, we can restrict the objects to lines.

4.3 A lower-bound for the number of collections of ob-

jects intersected by a ray

First of all, we show that for every four lines, it is possible to �nd a ray which
intersects each of them if the lines are generally positioned and oriented in

the space.
Let us represent the four lines (~r1(t1); ~r2(t2); ~r3(t3); ~r4(t4)) and the ray

(~ray(t�)) by their origin and direction vector:

~r1(t1) = ~r1(0) + ~v1 � t1;

~r2(t2) = ~r2(0) + ~v2 � t2;

~r3(t3) = ~r3(0) + ~v3 � t3;

~r4(t4) = ~r4(0) + ~v4 � t4;

~ray(t�) = ~rray(0) + ~vray � t
�: (3)

The ray intersects all the four lines if:

~ri(ti) = ~ri(0) + ~vi � ti = ~ray(t�i) = ~rray(0) + ~vray � t
�
i ; i = 1; 2; 3; 4 (4)

This is a system of bi-linear equations where the number of unknown scalar

parameters is 14 while the number of scalar equations is 12. Thus it can

8

be solved if the equations are independent, which is true if no line is paral-

lel with the plane (if any) generated by other two lines. The solution will

correspond to the ray that intersects all the four lines, thus the existence of

the intersecting ray has been proven. Note that the fact that the number of

unknown parameters is greater than the number of equations does not mean

that there are many solutions to this geometric problem since the same line

may be expressed algebraically by many di�erent ways. In fact, for a line,

only 4 parameters are independent from the 6 (3 for the origin and 3 for the

direction), thus concerning the really independent parameters, the number

of equations equals to the number of unknowns.

Since any four lines can be intersected by a ray, the number of object

collections is not lower than the number of di�erent combinations of four

elements from a set of n number of elements, which is obviously
�
n

4

�
= �(n4).

4.4 A lower-bound for the number of equivalence classes

of rays generating no intersection

The restriction of objects to lines allows us to use a result of McKenna and
O'Rourke [MO88], which states that the number of such equivalence classes
is also in �(n4).

Using this result let us examine the decision tree of the ray-shooting again.
In the decision tree, di�erent leaves either correspond to di�erent objects
intersected �rst or correspond to no intersection at all. For a moment, let us

assume that we are only interested in whether or not a given ray intersects
any object. This simpli�es the ray-shooting problem to a simple decision

whether or not the ray corresponds to any of those ray classes which do not
generate intersections. Since these ray-classes are disjoint, this is obviously
a membership problem, for which the Dopkin-Lipton [DL79] or the Steel-

Yao [SY82] theorem on the properties of the decision trees of the associated
membership problems can be applied.

According to the Dopkin-Lipton theorem which is valid for linear deci-
sion trees, the number of leaves of the decision tree cannot be lower than the
number of disjoint connected cells. In linear decision trees, the allowed oper-

ations are the evaluation of a polynomial of degree 1 and a branching based

on the result. Since the number of disjoint connected cells is not lower than
�(n4) (the number of ray classes representing no intersection), the number

9

of the leaves and consequently the number of the nodes of the decision tree

are also in
(n4).

Logarithmic search algorithms generate data structures that store some

ordering to be followed during the search. Since the number of paths of

computation is
(n4), even if the information used by di�erent paths di�ers

in only a single bit, the required storage is in
(n4). This data structure

is built up in the pre-processing phase, where the time complexity cannot

be less than the size of the data structure, since this determines the output

size of the pre-processing phase. Thus the storage complexity and the pre-

processing time of logarithmic ray-shooting algorithms are in
(n4).

In order to speed-up ray-shooting, we usually use linear constructs such

as bounding planes for which the linear decision tree model seems to be

adequate.
If the linear decision tree model may seem restrictive, we can apply the

Steel-Yao theorem which allows any polynomials of at most degree d to be

the nodes of the decision tree, and states that a single leaf of the decision tree
may be associated with at most d(2d�1)m+h�1 number of cells, wherem is the
number of query parameters (5 for ray-shooting) and h is the distance of the

leaf from the root of the tree. For logarithmic search algorithms, h = c�logn+
�(logn) where �(x) represents any function for which limx!1�(x)=x = 0.

Thus d(2d� 1)m+h�1 = �(nc log(2d�1)), which makes the number of leaves be
in
(n4�c log(2d�1)). This means that a tradeo� might be established between
the complexity of the computations in a single node and the required storage,

but the existence of such a method is not proven yet.

4.5 Construction of logarithmic-time ray-shooting al-

gorithms

Logarithmic-time ray-shooting algorithms can be constructed by applying
the divide-and-conquer approach. This method attacks a problem of size

n by subdividing it into smaller problems of the same type and in a single
phase of the search it selects that smaller problem which solves the original
problem.

Let us assume that the problems generated by the subdivision are of size

at most n=r(n), where r(n) > 1. If the solution time of a problem of size n
is Q(n) and the time of decomposition is d(n), then the following recurrence

10

expression can be established for Q(n):

Q(n) = Q(n=r(n)) + d(n) (5)

The algorithm is exactly logarithmic (�(logn)) if Q(n) = c � logn +

�(logn). Substituting this into equation 5, we get:

c � logn +�(logn) = c � log(n=r(n)) + d(n) + �(logn=r) (6)

Thus the following relation must hold asymptotically:

lim
n!1

d(n)

logn
= lim

n!1

log r(n)

logn
� c: (7)

This means that if log r(n)= logn converges to zero, then d(n) must be a sub-

logarithmic function of n. For example, if r(n) and d(n) are both constant,
then this condition holds. On the other hand, if log r(n) is in �(logn), then
d(n) can also be in �(logn).

Based on these two extreme cases, two di�erent approaches to logarithmic
ray-shooting algorithms can be elaborated:

1. The case when r(n) = 2 and d(n) is constant takes us to the simple

binary search. The objects should be pre-processed into one (or more)
list(s) ordered by conditions on the ray parameter. These conditions

determine whether the object intersected �rst is in the upper or lower
sections of the list. Starting at the center of the list, the corresponding
conditions must be examined. If this condition is true, then the upper

half of the list is processed in a similar way. For false value, the lower
part is examined. The algorithm stops when the examined conditions

identify a single object.

2. If both log r(n) and d(n) are in �(logn), then the algorithm will be

based on recursive subdivision of the object space [dB92]. Here objects

should be assigned to r(n) = O(logn) (not necessarily disjoint) groups

of size O(n=r), and a search algorithm must be elaborated which is able
to decide which group contains the �rst intersection in O(logn) time.

This paper focuses on ray shooting algorithms of the �rst type.

11

4.6 Binary search type ray-shooting algorithms

Binary search is a well-known technique that can identify an object in an

ordered set in logarithmic time.

However, this simple approach does not work in its original form for ray

shooting, since it is impossible to generate a single order of objects where half

of the objects can be eliminated executing a constant time test on the ray

parameters. In order to prove it indirectly, let us assume that the objects

are points and it is possible to subdivide them into two subsets for which

constant time selection is possible.

subset A subset B

ray 1

ray 2

selected point in B

Figure 3: Indirect proof for that no single order exists in ray-shooting

At least one subset from the two | let it be subset A | has O(n)
size. Let us select a single point in the other subset | called subset B |

and consider only those rays that pass through this point and if they pass
through a point in A, the point in A is in front of the point in B. Clearly, if

such a ray passes through a point in A, then B must be eliminated, otherwise
A must be eliminated. This means that our assumed-to-be algorithm would
determine in constant time whether or not the ray passes through any point

(object) in A. However, this is impossible due to the pigeon-hole theorem,
since the information that can be processed in constant time cannot store the
required parameters of the points in A if n goes to in�nity. Consequently,

no single order on objects exists in the general case, that can be used for
applying binary search to identify the �rst object intersected by a ray.

However, generating di�erent orders to di�erent collection of rays, binary
search will be feasible. To avoid the previous problem, collection of rays must

be formed in such a way that if a subset of objects is eliminated for some

ray, then the number of those eliminated objects, which can be intersected

12

�rst by a ray in the collection, should be bounded by a constant number.

An appropriate collection of rays can be selected by identifying those rays

whose supporting lines intersect the same group of objects. For convex and

disjoint objects, the sequence of objects intersected by the supporting line

can follow an ascending or descending order of a �xed series, thus this series

can be used as the basis of ordering.

The logarithmic search on this set can be carried out in the following way.

First the object in the middle of the list is tested for a possible intersection.

If the ray does not have intersection with the object (just its supporting

line has), then this object as well as all objects in the �rst half of the list

are \behind" the starting point of the ray, thus this half of the list can be

eliminated from the further search. If the ray does have intersection with this

object, then the �rst intersection obviously cannot happen with an object in
the second half of the list, thus this half can be eliminated.

In this search a single cycle takes constant time and eliminates approx-

imately half of the objects. Thus the solution is available in logarithmic
time.

This approach starts by the identi�cation of that group of objects that are

intersected by the line of the given ray, then the �rst intersection is found by
a logarithmic search based on an order de�ned for this group. Note that this

step solves only the second half of the query problem (see �gure 4). First,
the group of intersection objects must be found, which cannot require more
than logarithmic time if the complete algorithm needs to be logarithmic.

preprocessing

selection of
group of objects
intersected by
the line of ray

binary search
for the first
intersected object

data structure

selected
groupray parameters

object intersected
first by the ray

object scene

query

Figure 4: Dataow of binary search type ray-shooting algorithms

13

Clearly, we need special representations and search methods that assign

the given ray to those objects which are intersected by the line of the ray.

4.7 A Method with Worst-Case Optimal Query Time

In the subsequent sections a worst-case optimal algorithm is presented for

demonstration purposes. This algorithm is of binary search type.

For the sake of simplicity, the complementer plane algorithm is introduced

�rst in the 2D at-land, then it is generalized to real 3D space.

α
x

y

b

c

ray

complementer plane

Figure 5: Representation of the ray

First of all, we �nd an appropriate representation for the ray. An arbitrary
ray in the d-dimensional space can be de�ned unambiguously by 2d � 1
independent parameters. Usually, d of the parameters are used to de�ne

the coordinates of the origin in a Cartesian coordinate system and d � 1
parameters describe the direction of the ray. In our representation still d� 1

parameters are used for the direction, but the origin is described in an unusual
way. First of all, a plane is de�ned which is perpendicular to the direction of
the ray and contains the origin of the coordinate system. This plane is called

the complementer plane. The origin of the ray is de�ned by the projection of
the ray on this complementer plane and by the signed distance of the starting

point from this plane.

On the complementer plane of any ray, the objects of the scene can be
represented by generating a subdivision induced by the projection of the

objects onto this plane. Since several objects may be projected onto the
same point, for each homogenous territory of the subdivision, an ordered list

of objects is assigned. The ordering of the list should reect spatial relation

of the objects, that is, for example the distance from the complementer plane.

14

x

y
ray

complementer plane

1 2

3

4
5

{}

{1}

{}
{2}

{2,4}
{3,2,4}{3,4}

{3}
{3,5}

{5}
{}

territories of
the subdivision

ordered list
for each territory

Figure 6: Organization of the data structure

If this data structure is available, then ray shooting with a ray starts by
identifying the territory to which the origin of the ray corresponds. Then the

corresponding ordered list is searched for a possible intersection. Finding
that territory of a subdivision which contains a known point is called the
point location problem, which is a classical problem in computational

geometry. In this simpli�ed case, point location works on a single line where
the territories are intervals. Here, the solution time is a logarithmic function

of the involved territories, if, for instance, territories are stored in a balanced
binary tree (actually, an ordered array would also do; the usage of balanced
binary tree enables the incremental construction in an e�cient way). Since

the number of the territories is a linear function of the number of objects,
the time of point location is at most a logarithmic function of the number of
objects. Similarly, searching in an ordered list can also be done in logarithmic

time, with the aid of balanced binary trees. Consequently, the solution of
the ray shooting is logarithmic for any ray and object con�guration.

We still have a problem which should be taken care of. The number of
possible projection diagrams is in�nite, thus they cannot be generated in a

preprocessing phase and cannot be stored in a �nite data structure.

However, fortunately, the number of topologically di�erent projection di-

agrams is �nite since the structure of projection diagrams changes at discrete

steps where there is a common tangent of two objects in the scene (see �g-

ure 7).

We can generate metrically unevaluated projection diagrams that will

15

v3
v1

v4

v
2

r1

r2
1

2

Figure 7: Changes of the structure of projection diagrams

v3

v1

v2

v4
-v1

-v
2

-v 4

-v
3

{} {1} {} {2} {}
{}

{1}
{1,2}

{2}

{} {}
{2}
{1,2}
{2}
{}{}

{2}

{1,2}
{1}

{}

{}
{2}
{2,1}
{2}
{}

{} {1} {} {2}
{}

{}
{1}

{2,1}
{2}

{}

{}

{2}

{2,1}
{1}

{}

Figure 8: Diagrams of di�erent topology

16

represent a set of metrically di�erent but topologically equivalent real pro-

jection diagrams. These metrically unevaluated diagrams should be parame-

terized on-the-y with the actual ray parameters. A metrically unevaluated

projection diagram will correspond to not only a single ray, but a set of

rays and the metrical parameters of its subdivision is determined from the

given ray parameters. Since the run-time parameterization does not modify

the complexity, the complementer plane algorithm will �nd the solution in

logarithmic time.

When it comes to 3D generalization, an appropriate representation of the

homogeneous territories on a 2D plane must be found.

Let us de�ne an arbitrary line | called the base line | on the com-

plementer plane and let us orthographically project the endpoints and the

intersection points of the projection of the objects onto this line.

O(n) slabs2

O(n) boundary curves in a single slab

intervals defining the slabs

base line

homogeneous territories

Figure 9: Organization of the 2D complementer plane

The endpoints and the intersection points de�ne slabs perpendicular to

the base line. The number of slabs is in O(n2) since the number of endpoints
of n objects is in O(n) and the number of intersections is in O(n2), provided

that the objects are convex. The slabs are de�ned by their orthogonal pro-

jection onto the base line, which is a collection of non-overlapping intervals.
As in the case of 2D at-land, the intervals are stored in a balanced binary

tree. In each slab the boundary curves of the projections are non-intersecting,
since intersection points can only be on the boundaries of the slabs. Between

17

these non-intersecting boundary curves the ordering relation of \above" can

be de�ned if the objects are convex, which allows us to store these boundary

curves in a balanced binary tree. The number of boundary curves in a single

slab is O(n).

The territories of the subdivision will be those regions of the slabs which

are bounded by two subsequent boundary curves.

query point which is above the boundary curve

chord

base line

boundary curve

Figure 10: Classi�cation of query point as \above" or \below" a boundary
curve

Using this data structure, the point-location problem on the 2D comple-
menter plane can be solved in the following way:

1. First the point of interest is projected onto the base line.

2. Using a binary search on O(n2) intervals, the slab corresponding to the
query-point is identi�ed.

3. Applying another binary search, the homogeneous territory inside the
slab is found. During the search, only ray-object tests and simple
comparisons are used. To decide whether or not the query-point is

above a boundary curve, the ray de�ned by the complementer plane
with the query point is tried to be intersected with the object whose

projection is this boundary curve. If the ray intersects the object,

then the point is classi�ed as \above" or \below" according to whether

the boundary curve is an upper or lower curve of the projection. If

no intersection occurs, then the query point is compared to the chord

18

of the curve in between the sides of the slab (�gure 10). For convex

objects, this comparison tells us whether the point is below or above

the projection of the object, thus it also enables us to classify the point

as \above" or \below" the boundary curve. Note that the chord has

been chosen to decide whether the point is outside because it is above

the projection of the object, or it is outside because it is below the

projection of the object. This above-below information is needed to

guide further binary searches and it is not provided by the ray-object

intersection calculation.

Step 1 requires constant time, step 2 needs O(logn2) = O(logn) time, so

does step 3. Consequently, the point location using this data structure can

be solved in logarithmic time.

The other part of the algorithm that searches the ordered list of objects
associated with the homogeneous territory is the same as in 2D at-land,
and therefore runs in O(logn) time.

The worst-case storage complexity is determined by the number of topo-
logically di�erent projection diagrams, the number of homogeneous territo-
ries of a single projection diagram and the maximum size of an associated

list of objects. The size of a list of objects is obviously in O(n). The number
of the territories of a single projection diagram equals to the number of slabs

(O(n2)) multiplied by the maximum regions inside a slab (O(n)), thus it is
in O(n3).

In order to calculate the number of topologically di�erent projection di-

agrams, we have to realize that, as the direction changes, the topology of
projection diagrams changes at discrete steps where the direction is parallel

to a common tangent of two objects.
For a pair of objects, the directions, where a change occurs, correspond

to \circles" on the directional hemisphere (by \circle" we mean a closed

curve that is topologically equivalent to a real circle, but not necessarily
geometrically as shown in �gure 11). Since each pair of objects introduces
4, that is constant number of \circles" on the direction circle, the number of

\circles" is O(n2). M number of \circles" induce a subdivision on the surface

of the directional hemisphere, where the number of territories is O(M2); this

comes from the fact that the number of edges in the subdivision is O(M2)
(each of the M circles can intersect at most M � 1 other circles), and each

edge belongs to exactly 2 territories.

19

object 1

object 2

directions in which the ray intersects both objects

Figure 11: Directions where the topology of projection diagrams changes

Since M is O(n2) in our case, the number of regions is O(n4).
Each region of the subdivision corresponds to those directions which have

topologically equivalent projection diagrams, thus the number of topologi-
cally di�erent projection diagrams is in O(n4).

Summarizing, the storage complexity of the complementer plane algo-

rithm is O(n8).
A very high price must be paid for the appealing logarithmic time com-

plexity of the complementer plane algorithm in terms of storage required.
Although, there are possibilities to reduce this storage requirement and to
get closer to the O(n4) theoretical limit, using sophisticated techniques, such

as for example list compression [ST86], [Veg93]. List compression is based
on the recognition that neighboring slabs are very similar, thus it is not very
economical to store the associated binary trees of size O(n) independently for

all the O(n2) slabs. Since the number of regions without slabs is O(n2) this
can reduce the the number of territories of a projection diagram from O(n3)

to O(n2). However, the resulting storage complexity is still prohibitive.

5 Ray-shooting algorithms optimized for the

average case

Having got acquainted with this worst-case optimal algorithm, it is no sur-
prise that if we look around in practical implementations, these worst-case

20

optimal algorithms can hardly be found and simple heuristic algorithms seem

to be more accepted. Concerning the reasons we should mention that these

algorithms are di�cult to implement and their memory requirements are

prohibitive.

But what is more interesting, not even running time measurements justify

the use of such di�cult approaches. Heuristic methods, with proven very bad

worst case complexities, seem to run faster than these worst-case optimized

ones. The resolution of this contradiction is the di�erence of worst case and

average case complexities.

To carry out the average case analysis, the probability distribution of

the possible input con�gurations must be known (equation 2). In practical

situations, this probability distribution is not available, therefore it must be

estimated, that is, a model of the con�guration space must be established.
Such a model cannot be very complicated, because that would make the
calculation of the expectation of the computation time impossible.

A possible, but also justi�able input con�guration model for ray-shooting
is the following:

1. The object space consists of spheres of the same radius r.

2. The sphere centers are uniformly distributed in space.

Since the complexity analysis is interested in asymptotic behavior when the

number of objects goes to in�nity, uniform distribution in a �nite space
would not be feasible. Instead, the space should also be expanded as the
number of objects grows to sustain constant average object density. This is

a classical method in probability theory, and its known result is the Poisson
point process [Lam72] (a Poisson point process N(A) counts the number of

points in subsets A of S in a way that a) N(A) follows Poisson distribution
of parameter �V (A) where � is a positive constant called \intensity" and
V (A) is the volume of A; b) for disjoint A1; A2; : : : An sets random variables

N(A1); N(A2); : : :N(An) are independent [KT75]).

This Poisson point process will be the basis of our input con�guration
model. Therefore, the input con�guration model is re�ned further to the

following:

1. The object space consists of spheres of the same radius r.

21

2. The shape centers are the realizations of a Poisson point process of

intensity �.

Having constructed a model of the con�guration space, we can start the

complexity analysis of the candidate algorithms. First, a very simple, but

fundamental method is analyzed, which is called the provocative algorithm.

5.1 Provocative Ray-shooting algorithm

For the sake of simplicity, assume that the ray origin is �xed to the eye posi-

tion. The basic idea of this provocative algorithm is that in the preprocessing

phase the objects are sorted according to their distance from this eye posi-

tion. When it comes to ray-shooting, the objects are tested for intersection

with the given ray in the order of their distance from the eye position no

matter whether or not they are in the direction determined by the ray. This
algorithm is simple, it has linear storage complexity and requires modest
(O(n logn)) time in the preprocessing phase. Its worst case time complexity

is linear, because we can easily construct an object con�guration and a query
ray where this algorithm will try all the objects before it �nds the nearest

intersection (�gure 12, for example, if n = 6). Thus in the worst case it is
not better than the naive implementation of ray shooting.

1.

2.

3.

4.

5.

6.

ray

Figure 12: Provocative algorithm

Now let us turn to the average case. The provocative algorithm takes the

objects in the given order, carries out a ray-object intersection test and stops

if an intersection is found. Thus, in order to �nd the average time complexity,

we have to calculate the expected number of ray-object tests needed before

the �rst intersection is found.

22

r
r

R+r

R=distance of the first intersection

r = radius of the spheres

V(R)

Figure 13: Region of interest

Assume that the distance of the �rst intersection is R. The probability

conditioned by this distance that M objects have been tested before �nding
the intersection equals to the probability that the sphere of radius R minus

the sausage-like cell of �gure 13 contains M object centers.
According to the properties of Poisson point processes we have:

PrfM testsjintersection at Rg =
(�V (R))M

M !
e��V (R) (8)

where V (R) is the volume of the sphere minus the sausage like cell. The
conditional expected value derived from this is:

E[number of testsjintersection at R] = �V (R) + 1 (9)

For volume V (R), upper and lower bounds can be derived:

(R + r)3
4�

3
� r2�R� r3

4�

3
� V (R) � (R + r)3

4�

3
� r2�R (10)

Note that V (R) equals to the lower-bound if R > 2r. The upper-bound is
only necessary for small R values which generate strange looking cells (left

of �gure 14).
The unconditional expected value can be calculated by the total expected

value theorem [Lam72], using the probability density of the distance of the

�rst intersection ft:

E[number of tests] =

1Z

0

E[number of testsjintersection at R] � ft(R) dR

(11)

23

In order to determine the probability density ft(R), �rst the probability

distribution function is calculated:

Ft(R) = Prft � Rg = 1� Prft > Rg: (12)

The complementer probability distribution Prft > Rg expresses the prob-
ability that there is no ray-object intersection closer than R. This event is

equivalent to another event that there is no sphere center in the cell of points

not farther than r from the ray segment of length R.

r

r

R

r

r

R

Figure 14: Volume where there are no sphere centers for R � 2r and R > 2r

The shapes of this cell are shown in �gure 14 for the two distinctive cases
corresponding to R � 2r and R > 2r. The volume v(R) of the cell is:

v(R) =

8><
>:

4r3�
3

+ r2�R if R > 2r ;

11�
6
r2R� 2�

3
R2r + �

12
R3 if R � 2r :

(13)

According to the Poisson point process assumption, the complementer
probability distribution is:

Prft > Rg = e��v(R): (14)

Consequently, the probability density, as the derivative of the probability
distribution is:

ft(R) = ��
dv(R)

dR
e��v(R) =

8>><
>>:
e���(

4r
3

3
+r2R) � �r2� if R > 2r

e���(
11

6
r2R� 2

3
R2r+R

3

12
) � ��(11

6
r2 � 4

3
Rr + R2

4
) < 3r2�� if R � 2r

(15)

For the case of R < 2r, we get rid of the complicated expression by using

an upper-bound in equation 15.

24

Substituting the probability density into equation 11, the following upper-

bound is derived for the expected number of objects tested before the inter-

section.

E[number of tests] =

2rZ

0

(�V (R) + 1) � ft(R) dR+

1Z

2r

(�V (R) + 1) � ft(R) dR <

2rZ

0

(�V (R) + 1) � 3r2�� dR +

1Z

0

(�V (R) + 1) � e���(
4r

3

3
+r2R) � �r2� dR (16)

A lower-bound can also be obtained in a similar way:

E[number of tests] >

1Z

0

(�V (R) + 1) � e���(
4r

3

3
+r2R) � �r2� dR (17)

Using the bounds for the volume V (R) given in equation 10, we end up

with the following bounds for the expected number of ray-object intersection
tests:

4e�r
3�

3(�r3�)2
�(4; �r3�)��r3� < E[number of tests] <

4e�r
3�

3(�r3�)2
�(4; �r3�)+5�r3�+74�2r6�2;

(18)

where �(x; z) denotes the incomplete �{function:

�(x; z) =

zZ

0

txe�t dt: (19)

The expression is quite complicated, but the important observation is
that the bounds are �nite and they do not grow forever as the number of
objects goes to in�nity. Thus the average time complexity of the provocative

algorithm is constant and is independent of the number of objects in the

asymptotic case. Formally, the time complexity is O(1).
This is much better than the complexity of the worst case optimal algo-

rithms which are logarithmic even in the average case.

25

5.2 Classical heuristic ray-shooting algorithms

The provocative algorithm can be regarded as a common idea in almost

every heuristic ray-tracing speed-up technique, including, for example, reg-

ular space partitioning [FTK86][AK89], octree [Gla84] [AK89], ray coher-

ence methods [OM87][HMSK92], ray classi�cation [Gla84][AK89], Voronoi

diagram based space partitioning [M�ar95a].

These methods overcome the limitation of the provocative algorithm that

assumes �xed eye position, that is, their data structures try to express the

distance from all possible positions. Since it would require in�nite storage

space, these algorithms use some approximation that subdivides the space

into �nite equivalent regions from where the objects can roughly be sorted

according to their distance.

On the other hand, these algorithms further restrict the search space by
decreasing the possible directions in which intersections are tested. This can

enhance the speed by a linear factor.
However, the basic idea is still the same, thus these algorithms can also

be expected to run in constant time in the average case. A rigorous theo-

retical analysis has been carried out to prove that formally in [MSK95] and
[M�ar95b]. It turned out that constant time behavior is really true for the

classical speed-up methods, with the exception of the octree method, since
the administration of the octree has a slight (logarithmic) overhead.

Table 1 summarizes the results for these heuristic ray-tracing acceleration

techniques. The question mark in the row of ray classi�cation indicates that
it was not possible to analyze preprocessing time and memory requirement
separately since the ray classi�cation data structure is built in a \lazy eval-

uation" fashion during the tracing phase instead of a separate preprocessing
phase.

Table 2 surveys the worst-case complexity of these algorithms in order to
allow comparison. It illustrates that the heuristic algorithms are much better
in the average case than in the worst case.

5.3 Simulation results

Simulations have also been carried out in order to illustrate the theoretical

results [M�ar95b]. Tables 3{6 show some of the simulation results, where n

is the number of spheres in the scene, a is the width of spatial subdivision

26

Average case Q(n) query time P (n) preprocessing time M(n) memory

provocative algorithm O(1) O(n logn) O(n)

regular space partitioning O(1) O(n) O(n)

octree O(1){O(logn) O(n logn) O(n)

ray coherence O(1) O(n2+1=3 logn) O(n2+1=3)

ray classi�cation O(1) ? ?

Voronoi{diagram O(1) O(n1+1=3) O(n)

Table 1: Average-case complexity measures

Worst-case Q(n) query-time P (n) preprocessing time M(n) memory

provocative algorithm O(n) O(n logn) O(n)

regular space partitioning O(n) O(n2) O(n2)

octree O(n) O(n2) O(n2)

ray coherence O(n) O(n3 logn) O(n3)

ray classi�cation O(n) ? ?

Voronoi{diagram O(n) O(n2) O(n2)

Table 2: Worst-case complexity measures

27

cubes, NI stands for the number of intersection tests, N is the side resolution

of the directional cube in the case of ray coherence method, NI is the mea-

sured average of NI, and M is the measured average memory requirement in

Megabytes. Each of the values NI was calculated as the average with respect

to more than one million random rays shot into a scene consisting of spheres

of equal radii and random centers of intensity �. The size of the virtual mem-

ory was about 100 Mb; this posed the upper limit for the number of spheres.

The value c, also shown in the header of the tables, is another measure of

object density: it is the percentage of space occupied by the objects, that is

the occupancy ratio; in fact c = 100 � 4�r3�=3.
The theoretical values are shown as intervals in the tables. The results

of the octree method are not shown, since it does not result in savings in

intersection tests (it does, however, save number of cell-steps).
Two kinds of deviations can be observed in the tables comparing the

theoretically predicted and the measured values. The �rst kind of deviation

is that measured values are much better (lower) in the case of small occupancy
ratios than the predicted ones. The reason is that the number of spheres is
�nite in the simulation, and the probability that a ray does not intersect any

of the spheres increases as the occupancy ratio decreases; in the Poisson{
model, however, any ray intersects at least one sphere (actually an in�nite

number of spheres) with probability 1. In other words, the situation of small
occupancy can hardly be well simulated. The second kind of deviation is
that for the spatial subdivision methods (regular grid, Voronoi-diagram),

the measured number of intersection tests are worse (higher) in the case of
large occupancy ratios than the predicted ones. The reason is that in our

implementation the criterion of putting an object onto the list assigned to
a given spatial cell is not perfectly that the object intersects the cell but
weaker than that: an object is put onto the list if there is no face of the cell

the plane of which separates the object from the cell.
There is one more interesting observation in the case of regular space

partitioning (Table 3). There is a small but persistent uctuation in the

average number of intersection tests (NI), with local minima at n = 50000
and n = 500000, which is independent of c. The cause of the phenomenon lies

in the way the algorithm has been implemented. According to the widely

accepted heuristics [FTK86] on the one hand, the number of cubes in the
space partitioning is chosen to be proportional to the number of objects. On

the other hand, the preprocessing algorithm that builds the space subdivision

28

regular space partitioning, r = 1, a 2 [1; 2]��1=3

c [%] � E [NI] n NI M [Mb]

0.5 0.00119 [483.6, 1154.3] 10000 48.5 0.8

20000 87.7 1.5

50000 55.1 4.0

100000 93.6 7.7

200000 161.8 15.2

500000 95.1 39.3

1.0 0.00239 [304.6, 747.7] 10000 47.2 0.8

20000 82.5 1.6

50000 51.2 4.1

100000 82.4 7.8

200000 136.0 15.3

500000 77.3 39.9

2.0 0.00477 [191.9, 490.5] 10000 44.9 0.8

20000 75.4 1.6

50000 45.4 4.1

100000 69.6 7.9

200000 110.0 15.5

500000 60.4 40.8

5.0 0.01190 [104.2, 290.1] 10000 40.5 0.8

20000 63.9 1.6

50000 37.0 4.3

100000 53.5 8.2

200000 82.4 15.9

500000 44.3 42.3

10.0 0.02390 [65.6, 202.9] 10000 36.9 0.9

20000 56.5 1.7

50000 31.7 4.5

100000 45.3 8.5

200000 69.2 16.3

500000 37.1 44.1

20.0 0.04770 [41.3, 150.0] 10000 33.8 0.9

20000 52.0 1.7

50000 28.7 4.8

100000 40.8 8.9

200000 62.8 16.8

500000 33.8 46.7

50.0 0.11900 [22.4, 114.3] 10000 32.9 1.0

20000 50.5 1.8

50000 28.0 5.4

100000 39.5 9.7

200000 60.6 18.0

500000 33.0 52.1

Table 3: Regular space partitioning | simulation results
29

has been implemented in a recursive (divide-and-conquer) fashion, hence the

resolution of the subdivision should be a power of 2 in each of the three

spatial directions. These two facts imply that as the number of objects is

increasing, the overall resolution of the subdivision drastically increases (by

a factor of 8) each time when the number of objects exceeds a power of 8.

In the range 50000{500000 there are exactly two powers of 8: the �rst one is

215 = 32768 (between 20000 and 50000) 218 = 262144 (between 200000 and

500000). And the higher the resolution of the subdivision, the less number

of intersection tests needed.

ray coherence, r = 1, N = 100

c [%] � E [NI] n NI M [Mb]

0.5 0.00119 [9.0, 115.9] 10000 3.8 2.1

20000 2.8 4.1

50000 2.8 10.8

100000 2.7 22.3

1.0 0.00239 [6.1, 38.7] 10000 3.8 2.2

20000 2.8 4.4

50000 2.7 11.5

100000 2.5 24.2

2.0 0.00477 [4.9, 16.1] 10000 3.7 2.4

20000 2.6 4.7

50000 2.4 12.6

100000 2.2 26.7

5.0 0.01190 [4.3, 7.8] 10000 3.5 2.7

20000 2.3 5.3

50000 2.0 14.7

100000 1.8 31.9

10.0 0.02390 [4.1, 6.1] 10000 3.2 2.9

20000 2.0 6.1

50000 1.7 17.1

100000 1.6 37.8

20.0 0.04770 [4.0, 5.6] 10000 3.0 3.3

20000 1.8 7.1

50000 1.6 20.5

100000 1.4 46.3

50.0 0.11900 [3.9, 6.4] 10000 2.8 4.1

20000 1.6 9.1

50000 1.5 27.5

100000 1.4 63.8

Table 4: Ray coherence method | simulation results

30

ray classification, r = 1, a 2 [1; 2]��1=3

c [%] � E [NI] n NI M [Mb]

0.5 0.00119 [63.4, 1470.2] 10000 78.3 22.5

20000 142.9 43.7

1.0 0.00239 [32.9, 594.4] 10000 73.1 22.9

20000 129.2 44.4

2.0 0.00477 [19.2, 275.4] 10000 66.3 23.5

20000 112.4 45.3

5.0 0.01190 [10.8, 119.8] 10000 55.7 24.4

20000 89.2 46.8

10.0 0.02390 [7.5, 71.6] 10000 48.0 25.4

20000 74.8 48.3

20.0 0.04770 [5.5, 46.5] 10000 42.7 26.6

20000 64.3 48.9

50.0 0.11900 [3.9, 29.9] 10000 39.2 28.8

20000 59.7 51.7

Table 5: Ray classi�cation | simulation results

5.4 Towards general object spaces

The average case analysis has been based on the model of the input con�gu-

ration space, which involves two basic assumptions: the objects are spheres
of the same radius and are uniformly distributed. The credits of the results
thus depend highly on whether or not this model is acceptable for practi-

cal situations. In order to improve the realism of the underlying model, we
examined the e�ect of allowing spheres to have di�erent radii from a �nite

set [MSK95]. Although this makes the average case analysis more compli-
cated numerically, the time complexity of the heuristic ray-tracing algorithm
mentioned above is still in O(1).

The second step of generalization is the introduction of arbitrary object
types instead of dealing with only spheres. Even if the scene consists of

arbitrary objects, spheres can be used as virtual bounding boxes. Using the

results valid for spheres, the �rst bounding box can be found in constant time
in the average case. However, �nding a bounding box does not necessarily

mean �nding the object intersected by a ray. Assume that the objects are
\well-shaped", which means that the probability that the intersection with

the bounding volume implies the intersection with the object itself is greater

than a given constant (for instance, lines are not \well-shaped" objects). In

31

Voronoi-diagram, r = 1

c [%] � E [NI] n NI M [Mb]

0.5 0.00119 [7.5, 5571.7] 10000 19.2 7.5

20000 23.0 15.0

50000 27.9 37.3

1.0 0.00239 [4.7, 2218.4] 10000 17.7 7.5

20000 20.9 15.0

50000 24.6 37.3

2.0 0.00477 [3.0, 886.2] 10000 16.4 7.5

20000 18.6 15.0

50000 21.2 37.4

5.0 0.01190 [1.6, 266.7] 10000 15.6 7.5

20000 17.4 15.0

50000 18.6 37.6

10.0 0.02390 [1.1, 110.1] 10000 17.1 7.6

20000 18.9 15.2

50000 19.7 37.9

20.0 0.04770 [0.7, 48.1] 10000 24.5 7.8

20000 26.8 15.6

50000 28.7 39.0

50.0 0.11900 [0.4, 20.8] 10000 82.3 10.1

20000 77.6 19.1

50000 82.8 48.2

Table 6: Voronoi-diagram | simulation results

32

the scene of well-shaped objects, the probability distribution of the number of

those ray and bounding-volume intersections that do not result in ray-object

intersections follow a geometric series, thus its expected value is constant.

Thus O(1) average running time is also valid for arbitrary \well-shaped"

objects.

The other fundamental assumption of the input con�guration model is

that the objects are uniformly distributed, which led us to the application

of Poisson point processes. Is it valid for practical cases? Unfortunately, no

such practical data is available, therefore this question cannot be answered.

If it were not true, then the provocative algorithm, for instance, would not

necessarily run in constant time. It is also indicated by the fact that the

worst-case complexity of the algorithm is di�erent from the average-case

complexity. However, even for the most malicious distribution, the algorithm
is not worse than shown by its worst-case complexity which is O(n).

Conclusions

This paper reviewed the worst-case and average-case complexity analysis
of the ray-shooting problem. It has been demonstrated that ray-shooting

algorithms run at least in logarithmic time in the worst case and these log-
arithmic algorithms require very high storage space and preprocessing time.
A general framework has also been presented to discuss the construction of

such algorithms. An algorithm, called the complementer plane algorithm
has been introduced, that really has the optimal logarithmic worst-case time
complexity.

The storage requirement makes the practical use of worst-case optimal
algorithms questionable and increases the importance of average-case opti-

mal methods. The paper presented a framework, called input con�guration
model, for the analysis of average-case complexity of ray-shooting algorithms.

It has been shown that a very simple algorithm, called the provocative algo-

rithm, runs in constant time in the average case, so do most of the heuristic

ray-tracing methods.

33

6 Acknowledgements

This work has been supported by the National Scienti�c Research Fund

(OTKA), ref.No.: F 015884 and the Austrian-Hungarian Action Fund, ref.No.:

29p4, 32�ou9 and 34�ou28.

References

[AK89] James Arvo and David Kirk. A survey of ray tracing acceleration

techniques. In Andrew S. Glassner, editor, An Introduction to

Ray Tracing, pages 201{262. Academic Press, London, 1989.

[CEG+89] B. Chazelle, H. Edelsbrunner, L. Guibas, R. Pollack, and
M. Sharir. Lines in space | combinatorics, algorithms and ap-

plications. In Proc. 21st ACM Symp. on Theory of Computing,
pages 382{393, 1989.

[dB92] M. de Berg. E�cient Algorithms for Ray Shooting and Hidden

Surface Removal. PhD thesis, Rijksuniversiteit te Utrecht, The
Nederlands, 1992.

[DL79] D. P. Dopkin and R. Lipton. On the complexity of computations

under varying set of primitives. Journal of Computer and Systems
Science, 18:86{91, 1979.

[FTK86] Akira Fujimoto, Tanaka Takayuki, and Iwata Kansei. Arts: Ac-
celerated ray-tracing system. IEEE Computer Graphics and Ap-

plications, 6(4):16{26, 1986.

[Ge89] A.S. Glassner (editor). An Introduction to Ray Tracing. Aca-
demic Press, London, 1989.

[Gla84] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE

Computer Graphics and Applications, 4(10):15{22, 1984.

[HMSK92] T. Horv�ath, P. M�arton, G. Risztics, and L. Szirmay-Kalos. Ray

coherence between sphere and a convex polyhedron. Computer

Graphics Forum, 2(2):163{172, 1992.

34

[KT75] S. Karlin and M. T. Taylor. A First Course in Stochastic Pro-

cesses. Academic Press, New York, 1975.

[Lam72] John F. Lamperti. Stochastic Processes. Springer-Verlag, 1972.

[M�ar95a] G�abor M�arton. Acceleration of ray tracing via voronoi-diagrams.

In Alan W. Paeth, editor, Graphics Gems V, pages 268{284. Aca-

demic Press, Boston, 1995.

[M�ar95b] G�abor M�arton. Stochastic Analysis of Ray Tracing Algorithms.

PhD thesis, Department of Process Control, Technical University

of Budapest, Budapest, Hungary, 1995.

[MO88] M. McKenna and J. O'Rourke. Arrangements of lines in 3-space:

A data structure with applications. In Proc. 4th ACM Symp. on

Computational Geometry, pages 371{380, 1988.

[MSK95] G�abor M�arton and L�aszl�o Szirmay-Kalos. On average-case com-
plexity of ray tracing algorithms. In Winter School of Com-

puter Graphics '95, pages 187{196, Plzen, Czech Republic, 14{18

February 1995.

[OM87] Masataka Ohta and Mamoru Maekawa. Ray coherence theorem

and constant time ray tracing algorithm. In T. L. Kunii, editor,
Computer Graphics 1987. Proc. CG International '87, pages 303{
314, 1987.

[Pel93] M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica,
9:471{494, 1993.

[SKe95] L. Szirmay-Kalos (editor). Theory of Three Dimensional Com-

puter Graphics. Akad�emia Kiad�o, Budapest, 1995.

[SML88] Alfred Schmitt, Heinrich M�uller, and Wolfgang Leister. Ray trac-

ing algorithms | theory and practice. In R. A. Earnshow, editor,

Theoretical Foundations of Computer Graphics and CAD, pages
997{1030. Springer-Verlag, Berlin, Heidelberg, 1988. NATO ASI

Series, Vol. F40.

35

[ST86] N. Sarnak and R. E. Tarjan. Planar point location using persis-

tent search trees. Communications of the ACM, 29(7):669{679,

1986.

[SY82] J. M. Steel and A. C. Yao. Lower bounds for algebraic decision

trees. Journal of Algorithms, 3:1{8, 1982.

[Veg93] G. Vegter. The visibility complex. In Proceedings of 9th Annual

ACM Symp. on Computational Geometry, pages 328{337, 1993.

36

