
Chapter 9

RECURSIVE RAY

TRACING

9.1 Simpli�cation of the illumination

model

The light that reaches the eye through a given pixel comes from the surface
of an object. The smaller the pixel is, the higher the probability that

only one object a�ects its color, and the smaller the surface element that
contributes to the light ray. The energy of this ray consists of three main
components. The �rst component comes from the own emission of the
surface. The second component is the energy that the surface re
ects into
the solid angle corresponding the the pixel, while the third is the light energy

propagated by refraction. The origin of the re
ective component is either a
lightsource (primary re
ection) or the surface of another object (secondary,
ternary, etc. re
ections). The origin of the refracted component is always
on the surface of the same object, because this component is going through
its interior. We have seen in chapter 3 that the intensity of the re
ected

light can be approximated by accumulating the following components:

� an ambient intensity I0, which is the product of the ambient re
ection

coe�cient ka of the surface and a global ambient intensity Ia assumed

to be the same at each spatial point

235

236 9. RECURSIVE RAY TRACING

� a di�use intensity Id, which depends on the di�use re
ection coe�cient

kd of the surface and the intensity and incidence angle of the light

reaching the surface element from any direction

� a specular intensity Is, which depends on the specular re
ection co-

e�cient ks of the surface and the intensity of the light. In addition,

the value is multiplied by a term depending on the angle between the

theoretical direction of re
ection and the direction of interest and a

further parameter n called the specular exponent

� a re
ection intensity Ir, which is the product of the (coherent) re
ec-

tive coe�cient kr of the surface and the intensity of the light coming

from the inverse direction of re
ection.

Refracted light can be handled similarly.

The following simpli�cations will be made in the calculations:

� Light rays are assumed to have zero width. This means that they
can be treated as lines, and are governed by the laws of geometric
optics. The ray corresponding to a pixel of the image can be a line
going through any of its points, in practice the ray is taken through

its center. A consequence of this simpli�cation is that the intersection
of a ray and the surface of an object becomes a single point instead
of a �nite surface element.

� Di�use and specular components in the re
ected light are considered
only for primary re
ections; that is, secondary, ternary, etc. inco-
herent re
ections are ignored (these can be handled by the radiosity
method). This means that if the di�use and specular components are

to be calculated for a ray leaving a given surface point, then the pos-
sible origins are not searched for on the surfaces of other objects, but
only the lightsources will be considered.

� When calculating the coherent re
ective and refractive components
for a ray leaving a given surface point, its origin is searched for on the

surface of the objects. Two rays are shot towards the inverse direction

of re
ection and refraction, respectively, and the �rst surface points

that they intersect are calculated. These rays are called the children

of our original ray. Due to multiple re
ections and refractions, child

9.1. SIMPLIFICATION OF THE ILLUMINATION MODEL 237

rays can have their own children, and the family of rays corresponding

to a pixel forms a binary tree. In order to avoid in�nite recurrence,

the depth of the tree is limited.

� Incoherent refraction is completely ignored. Implying this would cause

no extra di�culties | we could use a very similar model to that for

incoherent re
ection | but usually there is no practical need for it.

lightsource

eye

image
plane

s

s
r

r

t

t
r

pixel

Figure 9.1: Recursive ray tracing

These concepts lead us to recursive ray tracing. Light rays will be traced

backwards (contrary to their natural direction), that is from the eye back to
the lightsources. For each pixel of the image, a ray is shot through it from

the eye, as illustrated in �gure 9.1. The problem is the computation of its
color (intensity). First we have to �nd the �rst surface point intersected by
the ray. If no object is intersected, then the pixel will either take the color

of the background, the color of the ambient light or else it will be black. If
a surface point is found, then its color has to be calculated. This usually

means the calculation of the intensity components at the three representa-
tive wavelengths (R;G;B), that is, the illumination equation is evaluated in

order to obtain the intensity values. The intensity corresponding to a wave-
length is composed of ambient, di�use, specular, coherent re
ective and

coherent refractive components. For calculating the di�use and specular

238 9. RECURSIVE RAY TRACING

components, a ray is sent towards each lightsource (denoted by s in �gure

9.1). If the ray does not hit any object before reaching the lightsource, then

the lightsource illuminates the surface point, and the re
ected intensity is

computed, otherwise the surface point is in shadow with respect to that

lightsource. The rays emanated from the surface point towards the light-

sources are really called shadow rays. For calculating coherent re
ective

and refractive components, two rays are sent towards the inverse direction

of re
ection and refraction, respectively (denoted by r and t in �gure 9.1).

The problem of computing the color of these child rays is the same as for

the main ray corresponding to the pixel, so we calculate them recursively:

for each pixel p do

r = ray from the eye through p;

color of p = Trace(r, 0);
endfor

The subroutine Trace(r, d) computes the color of the ray r (a dth order
re
ective or refractive ray) by recursively tracing its re
ective and refractive

child rays:

Trace(r, d)

if d > dmax then return background color; endif
q = Intersect(r); // q: object surface point

if q = null then

return background color;
endif

c = AccLightSource(q); // c: color

if object (q) is re
ective (coherently) then
rr = ray towards inverse direction of re
ection;
c += Trace(rr, d + 1);

endif

if object (q) is refractive (coherently) then

rt = ray towards inverse direction of refraction;
c += Trace(rt, d+ 1);

endif

return c;

end

9.1. SIMPLIFICATION OF THE ILLUMINATION MODEL 239

The conditional return at the beginning of the routine is needed in order to

avoid in�nite recurrence (due to total re
ection, for example, in the interior

of a glass ball). The parameter dmax represents the necessary \depth" limit.

It also prevents the calculation of too \distant" generations of rays, since

they usually hardly contribute to the color of the pixel due to attenuation

at object surfaces. The function Intersect(r) gives the intersection point

between the ray r and the surface closest to the origin of r if it �nds it, and

null otherwise. The function AccLightSource(q) computes the accumu-

lated light intensities coming from the individual lightsources and reaching

the surface point q. Usually it is also based on function Intersect(r), just

like Trace(r):

AccLightSource(q)
c = ambient intensity + own emission; // c: color

for each lightsource l do
r = ray from q towards l;
if Intersect(r) = null then

c += di�use intensity;
c += specular intensity;

endif

endfor

return c;
end

The above routine does not consider the illumination of the surface point
if the light coming from a lightsource goes through one or more transpar-
ent objects. Such situations can be approximated in the following way.
If the ray r in the above routine intersects only transparent objects with

transmission coe�cients k
(1)
t ; k

(2)
t ; : : : ; k

(N)
t along its path, then the di�use

and specular components are calculated using a lightsource intensity of

k
(1)
t � k(2)t � : : : � k(N)

t � I instead of I, where I is the intensity of the light-

source considered. This is yet another simpli�cation, because refraction on
the surface of the transparent objects is ignored here.
It can be seen that the function Intersect(r) is the key to recursive

ray tracing. Practical observations show that 75{95% of calculation time

240 9. RECURSIVE RAY TRACING

is spent on intersection calculations during ray tracing. A brute force

approach would take each object one by one in order to check for possible

intersection and keep the one with the intersection point closest to the origin

of r. The calculation time would be proportional to the number of objects in

this case. Note furthermore that the function Intersect(r) is the only step

in ray tracing where the complexity of the calculation is inferred from the

number of objects. Hence optimizing the time complexity of the intersection

calculation would optimize the time complexity of ray tracing | at least

with respect to the number of objects.

9.2 Acceleration of intersection

calculations

Let us use the notation Q(n) for the time complexity (\query time") of
the routine Intersect(r), where n is the number of objects. The brute
force approach, which tests each object one by one, requires a query time
proportional to n, that is Q(n) = O(n). It is not necessary, however, to test
each object for each ray. An object lying \behind" the origin of the ray, for

example, will de�nitely not be intersected by it. But in order to be able to
exploit such situations for saving computation for the queries, we must have
in store some preliminary information about the spatial relations of objects,
because if we do not have such information in advance, all the objects will
have to be checked| we can never know whether the closest one intersected

is the one that we have not yet checked. The required preprocessing will
need computation, and its time complexity, say P (n), will appear. The
question is whether Q(n) can be reduced without having to pay too much
in P (n).
Working on intuition, we can presume that the best achievable (worst-

case) time complexity of the ray query is Q(n) = O(log n), as it is demon-

strated by the following argument. The query can give us n + 1 \combi-
natorially" di�erent answers: the ray either intersects one of the n objects

or does not intersect any of them. Let us consider a weaker version of our

original query: we do not have to calculate the intersection point exactly,
but we only have to report the index of the intersected object (calculating

the intersection would require only a constant amount of time if this index

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 241

is known). A computer program can be regarded as a numbered list of in-

structions. The computation for a given input can be characterized by the

sequence i1; i2; : : : ; im of numbers corresponding to the instructions that the

program executed, where m is the total number of steps. An instruction

can be of one of two types: it either takes the form X f(X), where X is

the set of variables and f is an algebraic function, or else it takes the form

\IF f(X) � 0 THEN GOTO iyes ELSE GOTO ino", where � is one of the

binary relations =; <;>;�;�. The �rst is called a decision instruction; the

former is called a calculational instruction. Computational instructions do

not a�ect the sequence i1; i2; : : : ; im directly, that is, if ij is a calculational

instruction, then ij+1 is always the same. The sequence is changed directly

by the decision instructions: the next one is either iyes or ino. Thus, the

computation can be characterized by the sequence iD1 ; i
D
2 ; : : : ; i

D
d of deci-

sion instructions, where d is the number of decisions executed. Since there

are two possible further instructions (iyes and ino) for each decision, all the
possible sequences can be represented by a binary tree, the root of which
represents the �rst decision instruction, the internal nodes represent inter-
mediate decisions and the leaves correspond to terminations. This model
is known as the algebraic decision tree model of computation. Since
di�erent leaves correspond to di�erent answers, and there are n+1 of them,

the length dmax of the longest path from the root to any leaf cannot be
smaller than the depth of a balanced binary tree with n + 1 leaves, that is
dmax =
(log n).
The problem of intersection has been studied within the framework of

computational geometry, a �eld of mathematics. It is called the ray shoot-

ing problem by computational geometers and is formulated as \given n

objects in 3D-space, with preprocessing allowed, report the closest object
intersected by any given query ray". Mark de Berg [dB92] has recently
developed e�cient ray shooting algorithms. He considered the problem for
di�erent types of objects (arbitrary and axis parallel polyhedra, triangles

with angles greater than some given value, etc.) and di�erent types of

rays (rays with �xed origin or direction, arbitrary rays). His most general
algorithm can shoot arbitrary rays into a set of arbitrary polyhedra with
n edges altogether, with a query time of O(log n) and preprocessing time

and storage of O(n4+"), where " is a positive constant that can be made

as small as desired. The question of whether the preprocessing and storage
complexity are optimal is an open problem. Unfortunately, the complexity

242 9. RECURSIVE RAY TRACING

of the preprocessing and storage makes the algorithm not too attractive for

practical use.

There are a number of techniques, however, developed for accelerating

intersection queries which are suitable for practical use. We can consider

them as heuristic methods for two reasons. The �rst is that their ap-

proach is not based on complexity considerations, that is, the goal is not a

worst-case optimization, but rather to achieve a speed-up for the majority of

situations. The second reason is that these algorithms really do not reduce

the query time for the worst case, that is Q(n) = O(n). The achievement

is that average-case analyses show that they are better than that. We will

overview a few of them in the following subsections.

9.2.1 Regular partitioning of object space

Object coherence implies that if a spatial point p is contained by a given
object (objects), then other spatial points close enough to p are probably
contained by the same object(s). On the other hand, the number of objects
intersecting a neighborhood �p of p is small compared with the total number
of objects, if the volume of �p is small enough. It gives the following idea

for accelerating ray queries. Partition the object space into disjoint cells
C1; C2; : : : ; Cm, and make a list Li for each cell Ci containing references to
objects having non-empty intersection with the cell. If a ray is to be tested,
then the cells along its path must be scanned in order until an intersection
with an object is found:

Intersect(r)
for each cell Ck along r in order do

if r intersects at least one object on list Lk then

q = the closest intersection point;
return q;

endif

endfor

return null;

end

Perhaps the simplest realization of this idea is that the set of cells,
C1; C2; : : : ; Cm, consists of congruent axis parallel cubes, forming a regular

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 243

r

r

r
r

1 2 R

1

2

R

}b

}b

}b

a

Figure 9.2: Regular partitioning of object space

spatial grid. The outer cycle of the above routine can then be implemented
by an incremental line drawing algorithm; Fujimoto et al. [FTK86], for
instance, used a 3D version of DDA (digital di�erential analyzer) for this
task. If the resolution of the grid is the same, say R, in each of the three

spatial directions, then m = R3. The number of cells, k, intersected by a
given ray is bounded by:

k � 1 + 7(R � 1) (9:1)

where equality holds for a ray going diagonally (from one corner to the
opposite one) through the \big cube", which is the union of the small cells.

Thus:
k = O(R) = O(3

p
m): (9:2)

If we set m = O(n), where n is the number of objects, and the objects are so

nicely distributed that the length of the lists Li remains under a constant

value (jLij = O(1)), then the query time Q(n) can be as low as O(3
p
n).

In fact, if we allow the objects to be only spheres with a �xed radius r,

and assume that their centers are uniformly distributed in the interior of

a cube of width a, then we can prove that the expected complexity of the

query time can be reduced to the above value by choosing the resolution R

properly, as will be shown by the following stochastic analysis. One more

244 9. RECURSIVE RAY TRACING

assumption will obviously be needed: r must be small compared with a. It

will be considered by examining the limiting case a!1 with r �xed and

n proportional to a3. The reason for choosing spheres as the objects is that

spheres are relatively easy to handle mathematically.

b

b

b

rr

r

r
r r

r

D

C

i

i

:

Figure 9.3: Center of spheres intersecting a cell

If points p1; : : : ; pn are independently and uniformly distributed in the
interior of a set X, then the probability of the event that pi 2 Y � X is:

Prfpi 2 Y g = jY jjXj (9:3)

where j � j denotes volume. Let X be a cube of width a, and the resolution of
the grid of cells be R in all three spatial directions. The cells C1; C2; : : : ; Cm

will be congruent cubes of width b = a=R and their number is m = R3, as
shown in �gure 9.2. A sphere will appear on the list Li corresponding to
cell Ci if it intersects the cell. The condition of this is that the center of

the sphere falls into a rounded cube shaped region Di around the cell Ci,
as shown in �gure 9.3. Its volume is:

jDij = b3 + 6b2r + 3br2� +
4r3�

3
: (9:4)

The probability of the event that a list Li will contain exactly k elements

| exploiting the assumption of uniform distribution | is:

PrfjLij = kg =

n

k

!
Prfp1; : : : ; pk 2 Di ^ pk+1; : : : ; pn 62 Dig

=

n

k

! jDi \Xj
jXj

!k jX nDij
jXj

!n�k

:

(9:5)

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 245

If Di is completely contained by X, then:

PrfjLij = kg =

n

k

! jDij
jXj

!k
1� jDij
jXj

!n�k

: (9:6)

Let us consider the limiting behavior of this probability for n ! 1 by

setting a ! 1 (jXj ! 1) and forcing n=jXj ! �, where � is a positive

real number characterizing the density of the spheres. Note that our uniform

distribution has been extended to a Poisson point process of intensity

�. Taking the above limits into consideration, one can derive the following

limiting behavior of the desired probability:

Pr0fjLij = kg = lim
jXj!1

n=jXj!�

PrfjLij = kg = (�jDij)k
k!

e��jDij: (9:7)

Note that the rightmost expression characterizes a Poisson distribution with
parameter �jDij, as the limit value of the binomial distribution on the right-
hand side of expression 9.6 for n!1 and n=jXj ! �. The expected length
of list Li is then given by the following formula:

E[jLij] =
1X
k=1

k � Pr0fjLij = kg = �jDij: (9:8)

Substituting expression 9.4 of the volume jDij, and bearing in mind that
n=jXj ! � and jXj = a3 = R3b3 hence b3 ! n=�R3, we can get:

E[jLij] = n

R3 + 6�1=3r
n2=3

R2 + 3�2=3r2�
n1=3

R
+ �

4r3�

3
(1 � i � R3): (9:9)

for the expected asymptotic behavior of the list length. This quantity can
be kept independent of n (it can be O(1)) if is R chosen properly. The
last term tends to be constant, independently of R. The �rst term of the

sum requires R3 =
(n), at least. The two middle terms will also converge
to a constant with this choice, since then R2 =
(n2=3) and R =
(n1=3).

The conclusion is the following: if our object space X is partitioned into

congruent cubes with an equal resolution R along all three spatial directions,
and R is kept R =
(3

p
n), then the expected number of spheres intersecting

any of the cells will be O(1), independent of n in the asymptotic sense. This
implies furthermore (cf. expression 9.1) that the number of cells along the

246 9. RECURSIVE RAY TRACING

path of an arbitrary ray is also bounded by O(3
p
n). The actual choice

for R can modify the constant factor hidden by the \big O", but the last

term of the sum does not allow us to make it arbitrarily small. The value

R = d 3
p
ne seems to be appropriate in practice (d�e denotes \ceiling", that

is the smallest integer above or equal). We can conclude that the expected

query time and expected storage requirements of the method are:

E[Q(n)] = O(R(n)) = O(3
p
n) and E[S(n)] = O(n) (9:10)

respectively, for the examined distribution of sphere centers. The behavior

b b b
b
b

b

0 - cell

1 - cell

 2 - cell

Figure 9.4: j-cells

of the preprocessing time P (n) depends on the e�ciency of the algorithm
used for �nding the intersecting objects (spheres) for the individual cells.
Let us consider the 8 neighboring cells of width b around their common
vertex. Their union is a cube of width 2b. An object can intersect any of

the 8 cells only if it intersects the cube of width 2b. Furthermore, considering
the union of 8 such cubes, which is a cube of width 4b, a similar statement
can be made, etc. In order to exploit this idea, let us choose R = 2K with
K = d(log2 n)/3e, in order to satisfy the requirementR =
(3

p
n). The term

j-cell will be used to denote the cubes of width 2jb containing 23j cells of

width b, as shown in �gure 9.4. Thus, the smallest cells Ci become 0-cells,
denoted by C

(0)
i (1 � i � 23K), and the object space X itself will appear

as the sole K-cell. The preprocessing algorithm will progressively re�ne the

partitioning of the object space, which will consist of one K-cell in the �rst

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 247

step, 8 (K � 1)-cells in the second step, and 23K = O(n) 0-cells in the last

step.

The algorithm is best shown as a recursive algorithm, which prepro-

cesses a list L(j) of objects with respect to a j-cell C
(j)
i . Provided that

the object scene containing the objects o1; : : : ; on is enclosed by a cube

(or rectangular box) X, it can be preprocessed by invoking a subroutine

call Preprocess(fo1; : : : ; ong(K), X(K)) (with K = d(log2 n)/3e), where the
subroutine Preprocess is the following:

Preprocess(L(j), C
(j)
i)

if j = 0 then Li = L(j); return ;

for each subcell C
(j�1)
k (1 � k � 8) contained by C

(j)
i do

L(j�1) = fg;
for each object o on list L(j) do

if o intersects C
(j�1)
k then

add o to L(j�1);
endif

endfor

Preprocess(L(j�1), C
(j�1)
k);

endfor

end

The algorithm can be speeded up by using the trick that if the input list

corresponding to a j-cell becomes empty (jL(j)j = 0) at some stage, then we
do not process the \child" cells further but return instead. The maximal
depth of recurrence is K, because j is decremented by 1 at each recursive
call, hence we can distinguish between K + 1 di�erent levels of execution.
Let the level of executing the uppermost call be K, and generally, the level

of execution be j if the superscript (j) appears in the input arguments. The
execution time T = P (n) of the preprocessing can be taken as the sum
T = T0 + T1 + : : :+ TK, where the time Tj is spent at level j of execution.

The routine is executed only once at level K, 8 times at level K � 1, and
generally:

Nj = 23(K�j) K � j � 0 (9:11)

times at level j. The time taken for a given instance of execution at level
j is proportional to the actual length of the list L(j) to be processed. Its

248 9. RECURSIVE RAY TRACING

expected length is equal to the expected number of objects intersecting the

corresponding j-cell C
(j)
i . Its value is:

E[jL(j)j] = �jD(j)
i j (9:12)

where D
(j)
i is the rounded cube shaped region around the j-cell C

(j)
i , very

similar to that shown in �gure 9.3, with the di�erence that the side of the

\base cube" is 2j�Ka. Its volume is given by the formula:

jD(j)
i j = 23(j�K)a3 + 6 � 22(j�K)a2r + 3 � 2j�Kar2� + 4r3�

3
(9:13)

which is the same for each j-cell. Thus, the total time Tj spent at level j

of execution is proportional to:

Nj�jD(j)
i j = �a3 + 6 � 2K�j�a2r + 3 � 22(K�j)�ar2� + 23(K�j)�

4r3�

3
: (9:14)

Let us sum these values for 1 � j � K � 1, taking the following identity
into consideration:

2i + 2i�2 + : : :+ 2i�(K�1) =
2i�K � 2i

2i � 1
(i � 1); (9:15)

where i refers to the position of the terms on the right-hand side of expres-
sion 9.14 (i = 1 for the second term, i = 2 for the third etc.). Thus the
value T1 + : : :+ TK�1 is proportional to:

(K � 1)�a3 + 6 � 2
K � 2

1
�a2r + 3 � 2

2K � 4

3
�ar2� +

23K � 8

7
�
4r3�

3
: (9:16)

Since K = O(log n) and a3 ! n=�, the �rst term is in the order of
O(n log n), and since ni=3 � 2iK < 2ni=3, the rest of the terms are only

of O(n) (actually, this is in connection with the fact that the center of the
majority of the spheres intersecting a cube lies also in the cube as the width

of the cube increases). Finally, it can easily be seen that the times T0 and

TK are both proportional to n, hence the expected preprocessing time of
the method is:

E[P (n)] = O(n log n) (9:17)

for the examined Poisson distribution of sphere centers.

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 249

We intended only to demonstrate here how a stochastic average case anal-

ysis can be performed. Although the algorithm examined here is relatively

simple compared to those coming in the following subsections, performing

the analysis was rather complicated. This is the reason why we will not

undertake such analyses for the other algorithms (they are to appear in

[M�ar94]).

9.2.2 Adaptive partitioning of object space

The regular cell grid is very attractive for the task of object space subdivi-

sion, because it is simple, and the problem of enumerating the cells along

the path of a ray is easy to implement by means of a 3D incremental line

generator. The cells are of the same size, wherever they are. Note that

we are solely interested in �nding the intersection point between a ray and

the surface of the closest object. The number of cells falling totally into
the interior of an object (or outside all the objects) can be very large, but
the individual cells do not yield that much information: each of them tells
us that there is no ray-surface intersection inside. Thus, the union of such
cells carries the same information as any of them do individually | it is

not worth storing them separately. The notion and techniques used in the
previous subsection form a good basis for showing how this idea can be
exploited.

P: partial
E: empty
F: full

P
1 2 3 4

1 2

3 4

E P P E

P P P P E P E E

P P P E

Figure 9.5: The octree structure for space partitioning

250 9. RECURSIVE RAY TRACING

If our object space is enclosed by a cube of width a, then the resolution of

subdivision, R, means that the object space was subdivided into congruent

cubes of width b = a=R in the previous subsection. We should remind the

reader that a cube of width 2jb is called a j-cell, and that a j-cell is the

union of exactly 23j 0-cells. Let us distinguish between three types of j-cell:

an empty cell has no intersection with any object, a full cell is completely

contained in one or more objects, and a partial cell contains a part of the

surface of at least one object. If a j-cell is empty or full, then we do not have

to divide it further into (j � 1)-cells, because the child cells would also be

empty or full, respectively. We subdivide only partial cells. Such an uneven

subdivision can be represented by an octree (octal tree) structure, each

node of which has either 8 or no children. The two-dimensional analogue of

the octree (the quadtree) is shown in �gure 9.5. A node corresponds to a

j-cell in general, and has 8 children ((j � 1)-cells) if the j-cell is partial, or

has no children if it is empty or full. If we use it for ray-surface intersection
calculations, then only partial cells need have references to objects, and only
to those objects whose surface intersects the cell.
The preprocessing routine that builds this structure is similar to the one

shown in the previous subsection but with the above mentioned di�erences.
If the objects of the scene X are o1; : : : ; on, then the forthcoming algorithm

must be invoked in the following form: Preprocess(fo1; : : : ; ong(K), X(K)),
where K denotes the allowed number of subdivision steps at the current
recurrence level. The initial value K = d(log2 n)/3e is proper again, since
our subdivision can become a regular grid in the worst case. The algorithm
will return the octree structure corresponding to X. The notation L(C

(j)
i)

in the algorithm stands for the object reference list corresponding to the j-
cell C

(j)
i (if it is partial), while Rk(C

(j)
i) (1 � k � 8) stands for the reference

to its kth child (null denotes no child).

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 251

The algorithm is then the following:

Preprocess(L(j), C
(j)
i)

if j = 0 then // bottom of recurrence

R1(C
(j)
i) = : : : = R8(C

(j)
i) = null;

L(C
(j)
i) = L(j); return C

(j)
i ;

endif

for each subcell C
(j�1)
k (1 � k � 8) contained by C

(j)
i do

L(j�1) = fg;
for each object o on list L(j) do

if surface of o intersects C
(j�1)
k then add o to L(j�1);

endfor

if L(j�1) = fg then // empty or full

Rk(C
(j)
i) = null;

else // partial

Rk(C
(j)
i) = Preprocess(L(j�1), C

(j�1)
k);

endif

endfor

return C
(j)
i ;

end

The method saves storage by its adaptive operation, but raises a new

problem, namely the enumeration of cells along the path of a ray during ray
tracing.
The problem of visiting all the cells along the path of a ray is known

as voxel walking (voxel stands for \volume cell" such as pixel is \picture
cell"). The solution is almost facile if the subdivision is a regular grid, but

what can we do with our octree? The method commonly used in practice is
based on a generate-and-test approach, originally proposed by Glassner
[Gla84]. The �rst cell the ray visits is the cell containing the origin of the

ray. In general, if a point p is given, then the cell containing it can be found
by recursively traversing the octree structure from its root down to the leaf
containing the point.

252 9. RECURSIVE RAY TRACING

This is what the following routine does:

Classify(p, C
(j)
i)

if C
(j)
i is a leaf (Rk(C

(j)
i)=null) then return C

(j)
i ;

for each child Rk(C
(j)
i) (1 � k � 8) do

if subcell Rk(C
(j)
i) contains p then

return Classify(p, Rk(C
(j)
i));

endif

endfor

return null;

end

The result of the function call Classify(p, X(K))) is the cell containing

a point p 2 X. It is null if p falls outside the object space X. The worst
case time required by the classi�cation of a point will be proportional to the
depth of the octree, which is K = d(log2 n)/3e, as suggested earlier. Once
the cell containing the origin of the ray is known, the next cell visited can be
determined by �rst generating a point q which de�nitely falls in the interior

of the next cell, and then by testing to �nd which cell contains q. Thus, the
intersection algorithm will appear as follows (the problem of generating a
point falling into the next cell will be solved afterwards):

Intersect(r)
omin = null; // omin: closest intersected object

p = origin of ray;

C = Classify(p, X(K));

while C 6= null do

for each object o on list L(C) do
if r intersects o closer than omin then omin = o;

endfor

if omin 6= null then return omin;
q = a point falling into the next cell;

C = Classify(q, X(K));

endwhile

return null;
end

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 253

There is only one step to work out, namely how to generate a point q

which falls de�nitely into the neighbor cell. The point where the ray r exits

the actual cell can easily be found by intersecting it with the six faces of the

cell. Without loss of generality, we can assume that the direction vector of

r has nonnegative x; y and z components, and its exit point e either falls in

the interior of a face with a normal vector incident with the x coordinate

axis, or is located on an edge of direction incident with the z axis, or is a

vertex of the cell | all the other combinations can be handled similarly. A

proper q can be calculated by the following vector sums, where ~x; ~y and ~z

represent the (unit) direction vectors of the coordinate axes, and b = a2�K

is the side of the smallest possible cell, and the subscripts of q distinguish

between the three above cases in order:

q1 = e+
b

2
~x; q2 = e+

b

2
~x+

b

2
~y and q3 = e+

b

2
~x+

b

2
~y +

b

2
~z: (9:18)

For the suggested value of the subdivision parameterK, the expected query
time will be E[Q(n)] = O(3

p
n log n) per ray if we take into consideration

that the maximumnumber of cells a ray intersects is proportional to R = 2K

(cf. expression 9.1), and the maximum time we need for stepping into the

next cell is proportional to K.

9.2.3 Partitioning of ray space

A ray can be represented by �ve coordinates, x; y; z; #; ' for instance, the

�rst three of which give the origin of the ray in the 3D space, and the
last two de�ne the direction vector of the ray as a point on the 2D surface
of the unit sphere (in polar coordinates). Thus, we can say that a ray r

can be considered as a point of the 5D ray-space <5 = E3 � O2, where
the �rst space is a Euclidean space, the second is a spherical one, and
their Cartesian product is a cylinder-like space. If our object space, on

the other hand, contains the objects o1; : : : ; on, then for each point (ray)
r 2 <5, there is exactly one i(r) 2 f0; 1; : : : ; ng assigned, where i(r) = 0 if

r intersects no object, and i(r) = j if r intersects object oj �rst. We can

notice furthermore that the set of rays intersecting a given object oj | that
is the regions R(j) = fr j i(r) = jg | form connected subsets of <5, and

R(0) [R(1)[: : :[R(n) = <5, that is, the n+1 regions form a subdivision
of the ray space. This leads us to hope that we can construct a ray-object

254 9. RECURSIVE RAY TRACING

intersection algorithm with a good (theoretically optimal O(log n)) query

time based on the following locus approach: �rst we build the above

mentioned subdivision of the ray space in a preprocessing step, and then,

whenever a ray r is to be tested, we classify it into one of the n+1 regions,

and if the region containing r is R(j), then the intersection point will be on

the surface of oj . The only problem is that this subdivision is so di�cult to

calculate that nobody has even tried it yet. Approximations, however, can

be carried out, which Arvo and Kirk in fact did [AK87] when they worked

out their method called ray classi�cation. We shall outline their main

ideas here.

z

x

y

D(z)

D(y)

D(x)

Figure 9.6: The direction cube

A crucial problem is that the ray space <5 is not Euclidean (but cylinder-
like), hence it is rather di�cult to treat computationally. It is very in-
convenient namely, that the points representing the direction of the rays
are located on the surface of a sphere. We can, however, use a more suit-
able representation of direction vectors which is not \curved". Directions

will be represented as points on the surface of the unit cube, instead of

the unit sphere, as shown in �gure 9.6. There are discontinuities along
the edges of the cube, so the direction space will be considered as a col-
lection D(x);D(�x);D(y);D(�y);D(z);D(�z) of six spaces (faces of the unit

cube), each containing the directions with the main component (the one

with the greatest absolute value) being in the same coordinate direction

(x;�x; y;�y; z;�z). If the object scene can be enclosed by a cube E |

containing the eye as well | then any ray occurring during ray tracing must

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 255

fall within one of the sets in the collection:

H = fE�D(x); E�D(�x); E�D(y); E�D(�y); E�D(z); E�D(�z)g: (9:19)
Each of the above six sets is a 5D hypercube. Let us refer to this collection

H as the bounding hyperset of our object scene.

Figure 9.7: Beams of rays in 3D space

The hyperset H will be recursively subdivided into cells H(1); : : : ; H(m)

(each being an axis parallel hypercube), and a candidate list L(H(i)) will
be associated with each cell H(i) containing references to objects that are
intersected by any ray r 2 H(i). Each such hypercube H(i) is a collection
of rays with their origin in a 3D rectangular box and their direction falling
into an axis parallel 2D rectangle embedded in the 3D space. These rays

form an unbounded polyhedral volume in the 3D space, called a beam,
as shown in �gure 9.7. An object appears on the list associated with the
5D hypercube if and only if it intersects the 3D beam corresponding to the
hypercube. At each step of subdivision a cell will be divided into two halves
along one of the �ve directions. If we normalize the object scene so that the

enclosing cube E becomes a unit cube, then we can decide to subdivide a
5D cell along one of its longest edges. Such a subdivision can be represented
by a binary tree, the root of which corresponds to H itself, the two children
correspond to the two halves of H, etc. In order to save computation, the
subdivision will not be built completely by a separate preprocessing step,

but rather the hierarchy will be constructed adaptively during ray tracing

by lazy evaluation. Arvo and Kirk suggested [AK87] terminating this
subdivision when either the candidate list or the hypercube fall below a
�xed size threshold. The heuristic reasoning is that \a small candidate

set indicates that we have achieved the goal of making the associated rays

inexpensive to intersect with the environment", while \the hypercube size
constraint is imposed to allow the cost of creating a candidate set to be

256 9. RECURSIVE RAY TRACING

amortized over many rays" (cited from [AK87]). The intersection algorithm

then appears as follows, where Rl(H
0) and Rr(H

0) denote the left and right

children of cell H 0 in the tree structure, nmin is the number under which

the length of an object list is considered to be as \small enough", and wmin

denotes the minimal width of a cell (width of cells is taken as the smallest

width along the �ve axes).

Intersect(r)

H 0 = Classify(r, H);

while jL(H 0)j > nmin and jH 0j > wmin do

H 0

l , H
0

r = two halves of H 0; L(H 0

l) = fg; L(H 0

r) = fg;
for each object o on list L(H 0) do

if o intersects the beam of H 0

l then add o to L(H 0

l);

if o intersects the beam of H 0

r then add o to L(H 0

r);
endfor

Rl(H
0) = H 0

l; Rr(H
0) = H 0

r; H
0 = Classify(r, H 0);

endwhile

omin = null; // omin: closest intersected object

for each object o on list L(H 0) do
if r intersects o closer than omin then omin = o; endif

endfor

return omin;
end

The routine Classify(r, H 0) called from the algorithm �nds the smallest
5D hypercube containing the ray r by performing a binary search in the
tree with root at H 0.

9.2.4 Ray coherence theorems

Two rays with the same origin and slightly di�ering directions probably
intersect the same object, or more generally, if two rays are close to each

other in the 5D ray space then they probably intersect the same object.

This is yet another guise of object coherence, and we refer to it as ray
coherence. Closeness here means that both the origins and the directions

are close. The ray classi�cation method described in the previous section
used a 5D subdivision along all the �ve ray parameters, the �rst three of

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 257

which represented the origin of the ray in the 3D object space, hence every

ray originating in the object scene is contained in the structure, even those

that have their origins neither on the surface of an object nor in the eye

position. These rays will de�nitely not occur during ray tracing. We will

de�ne equivalence classes of rays in an alternative way: two rays will be

considered to be equivalent if their origins are on the surface of the same

object and their directions fall in the same class of a given partition of the

direction space. This is the main idea behind the method of Ohta and

Maekawa [OM87]. We will describe it here in some detail.

Let the object scene consist of n objects, including those that we would

like to render, the lightsources and the eye. Some, say m, of these n objects

are considered to be ray origins, these are the eye, the lightsources and the

re
ective/refractive objects. The direction space is partitioned into d num-

ber of classes. This subdivision can be performed by subdividing each face

of the direction cube (�gure 9.6) into small squares at the desired resolution.
The preprocessing step will build a two-dimensional array O[1 : : :m; 1 : : : d],
containing lists of references to objects. An object ok will appear on the list
at O[i; j] if there exists a ray intersecting ok with its origin on oi and direc-
tion in the jth direction class. Note that the cells of the array O correspond
to the \equivalence classes" of rays de�ned in the previous paragraph. If this

array is computed, then the intersection algorithm becomes very simple:

Intersect(r)

i = index of object where r originates;
j = index of direction class containing the direction of r;
omin = null; // omin: closest intersected object

for each object o on list O[i; j] do
if r intersects o closer than omin then

omin = o;
endif

endfor

return omin;

end

The computation of the array O is based on the following geometric con-

siderations. We are given two objects, o1 and o2. Let us de�ne a set V (o1; o2)
of directions, so that V contains a given direction � if and only if there exists

258 9. RECURSIVE RAY TRACING

a ray of direction � with its origin on o1 and intersecting o2, that is:

V (o1; o2) = f� j 9r : org(r) 2 o1 ^ dir(r) = � ^ r \ o2 6= ;g (9:20)

where org(r) and dir(r) denote the origin and direction of ray r, respectively.

We will call the set V (o1; o2) the visibility set of o2 with respect to o1 (in

this order). If we are able to calculate the visibility set V (oi; ok) for a pair of

objects oi and ok, then we have to add ok to the list of those cells in the row

O[i; 1 : : : d] of our two-dimensional array which have non-empty intersection

with V (oi; ok). Thus, the preprocessing algorithm can be the following:

Preprocess(o1; : : : ; on)

initialize each list O[i; j] to fg;
for each ray origin oi (1 � i � m) do

for each object ok (1 � k � n) do

compute the visibility set V (oi; ok);
for each direction class �j with �j \ V (oi; ok) 6= ; do

add ok to list O[i; j];
endfor

endfor

endfor

end

α
α c

2

r
2

r1
c1

Figure 9.8: Visibility set of two spheres

The problem is that the exact visibility sets can be computed only for a
narrow range of objects. These sets are subsets of the surface of the unit

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 259

P

Q

p
1

p
2

p
3

p
4

q
1

q2

q
3

q4

q
5

q6

Figure 9.9: Visibility set of two convex hulls

sphere | or alternatively the direction cube. Ohta and Maekawa [OM87]
gave the formula for a pair of spheres, and a pair of convex polyhedra. If
S1 and S2 are spheres with centers c1; c2 and radii r1; r2, respectively, then
V (S1; S2) will be a spherical circle. Its center is at the spherical point cor-
responding to the direction ~c1c2 and its (spherical) radius is given by the
expression arcsinf(r1 + r2)=jc1 � c2jg, as illustrated in �gure 9.8. If P and

Q are convex polyhedra with vertices p1; : : : ; pn and q1; : : : ; qm, respectively,
then V (P;Q) will be the spherical convex hull of n�m spherical points corre-
sponding to the directions ~p1q1; : : : ; ~p1qm; : : : ; ~pnq1; : : : ; ~pnqm (see �gure 9.9).
It can be shown [HMSK92] that for a mixed pair of a convex polyhedron P
with vertices p1; : : : ; pn and a sphere S with center c and radius r, V (P; S)

is the spherical convex hull of n circles with centers at ~p1c; : : : ; ~pnc and radii
arcsinfr=jp1 � cjg; : : : ; arcsinfr=jpn � cjg. In fact, these circles are nothing
else than the visibility sets V (p1; S); : : : ; V (pn; S), corresponding to the ver-
tices of P . This gives the idea of a generalization of the above results in the
following way [MRSK92]: If A and B are convex hulls of the sets A1; : : : ; An

and B1; : : : ; Bm, respectively, then V (A;B) will be the spherical convex hull

of the visibility sets V (A1B1); : : : ; V (A1Bm); : : : ; V (AnB1); : : : ; V (AnBm).

Note that disjointness for the pairs of objects was assumed so far, because
if the objects intersect then the visibility set is the whole sphere surface
(direction space).

Unfortunately, exact expression of visibility sets is not known for further

types of objects. We can use approximations, however. Any object can be

260 9. RECURSIVE RAY TRACING

enclosed by a large enough sphere, or a convex polyhedron, or a convex hull

of some sets. The simpler the enclosing shell is, the easier the calculations

are, but the greater the di�erence is between the real and the computed

visibility set. We always have to �nd a trade-o� between accuracy and

computation time.

9.3 Distributed ray tracing

Recursive ray tracing is a very elegant method for simulating phenomena

such as shadows, mirror-like re
ections, and refractions. The simpli�cations

in the illumination model | point-like lightsources and point-sampling (in-

�nitely narrow light rays) | assumed so far, however, cause sharp shadows,

re
ections and refractions, although these phenomena usually occur in a
blurred form in reality.

Perhaps the most elegant method among all the proposed approaches to
handle the above mentioned blurred (fuzzy) phenomena is the so-called dis-
tributed ray tracing due to Cook et al. [CPC84]. The main advantage of
the method is that phenomena like motion blur, depth of �eld, penumbras,
translucency and fuzzy re
ections are handled in an easy and somewhat

uni�ed way with no additional computational cost beyond those required
by spatially oversampled ray tracing. The basic ideas can be summarized
as follows. Ray tracing is a kind of point sampling and, as such, is a
subject to aliasing artifacts (see chapter 11 on Sampling and Quantization
Artifacts). The usual way of reducing these artifacts is the use of some post-

�ltering technique on an oversampled picture (that is, more image rays are
generated than the actual number of pixels).
The key idea is, that oversampling can be made not only in space but

also in the time (motion sampling), on the area of the camera lens or the
entire shading function. Furthermore, \not everything must be sampled

everywhere" but rather the rays can be distributed. In the case of motion
sampling, for example, instead of taking multiple time samples at every

spatial location, the rays are distributed in time so that rays at di�erent

spatial locations trace the object scene at di�erent instants of time.

9.3. DISTRIBUTED RAY TRACING 261

Distributing the rays o�ers the following bene�ts at little additional cost:

� Distributing re
ected rays according to the specular distribution func-

tion produces gloss (fuzzy re
ection).

� Distributing transmitted rays produces blurred transparency.

� Distributing shadow rays in the solid angle of the lightsources pro-

duces penumbras.

� Distributing rays on the area of the camera lens produces depth of

�eld.

� Distributing rays in time produces motion blur.

Oversampled ray traced images are generated by emanating more than one
ray through the individual pixels. The rays corresponding to a given pixel
are usually given the same origin (the eye position) and di�erent direction
vectors, and because of the di�erent direction vectors, the second and fur-
ther generation rays will generally have di�erent origins and directions, as

well. This spatial oversampling is generalized by the idea of distributing
the rays. Let us overview what distributing the rays means in concrete
situations.

Fuzzy shading

We have seen in chapter 3 that the intensity Iout of the re
ected light
coming from a surface point towards the viewing position can be expressed

by an integral of an illumination function I in(~L) (~L is the incidence direction
vector) and a re
ection function over the hemisphere about the surface point
(cf. equation 3.30):

Ioutr = kr � I inr +

2�Z
I in(~L) � cos �in �R�(~L; ~V) d!in (9:21)

where ~V is the viewing direction vector and the integration is taken over

all the possible values of ~L. The coherent re
ection coe�cient kr is in

fact a �-function, that is, its value is non-zero only at the re
ective inverse

of the viewing direction ~V . Sources of second or higher order re
ections

262 9. RECURSIVE RAY TRACING

are considered only from this single direction (the incoming intensity I inr is

computed recursively). A similar equation can be given for the intensity of

the refracted light:

Ioutt = kt � I int +

2�Z
I in(~L) � cos �in � T �(~L; ~V) d!in (9:22)

where the integration is taken over the hemisphere below the surface point

(in the interior of the object), I int is the intensity of the coherent refractive

(transmissive) illumination and kt is the coherent transmission coe�cient

(also a �-function).

The integrals in the above expressions are usually replaced by �nite sums

according to the �nite number of (usually) point-like or directional light-

sources. The e�ects produced by �nite extent lightsources can be consid-
ered by distributing more than one shadow ray over the solid angle of the
visible portion of each lightsource. This technique can produce penum-

bras. Furthermore, second and higher order re
ections need no longer be
restricted to single directions but rather the re
ection coe�cient kr can be
treated as non-zero over the whole hemisphere and more than one rays can

be distributed according to its function. This can model gloss. Finally,
distributing the refracted rays in a similar manner can produce blurred
translucency.

Depth of �eld

Note that the usual projection technique used in computer graphics in fact
realizes a pinhole camera model with each object in sharp focus. It is an
idealization, however, of a real camera, where the ratio of the focal length
F and the diameter D of the lens is a �nite positive number, the so-called
aperture number a:

a =
F

D
: (9:23)

The �nite aperture causes the e�ect called depth of �eld which means
that object points at a given distance appear in sharp focus on the image

and other points beyond this distance or closer than that are confused, that

is, they are mapped to �nite extent patches instead of points.

It is known from geometric optics (see �gure 9.10) that if the focal length

of a lens is F and an object point is at a distance T from the lens, then

9.3. DISTRIBUTED RAY TRACING 263

F/n

image
plane

lens focal
plane

K

K’

T

P

p

r
r

Figure 9.10: Geometry of lens

the corresponding image point will be in sharp focus on an image plane at
a distance K behind the lens, where F; T and K satisfy the equation:

1

F
=

1

K
+

1

T
: (9:24)

If the image plane is not at the proper distance K behind the lens but at
a distance K 0, as in �gure 9.10, then the object point maps onto a circle of
radius r:

r =
1

K
jK �K 0j F

n
: (9:25)

This circle is called the circle of confusion corresponding to the given
object point. It expresses that the color of the object point a�ects the color
of not only a single pixel but all the pixels falling into the circle.
A given camera setting can be speci�ed in the same way as in real life by

the aperture number a and the focal distance, say P (see �gure 9.10), which

is the distance of those objects from the lens, which appear in sharp focus on
the image (not to be confused with the focal length of the lens). The focal
length F is handled as a constant. The plane at distance P from the lens is

called the focal plane. Both the distance of the image plane from the lens

and the diameter (D) of the lens can be calculated from these parameters
using equations 9.24 and 9.23, respectively.

264 9. RECURSIVE RAY TRACING

In depth of �eld calculations, the eye position is imagined to be in the

center of the lens. First a ray is emanated from the pixel on the image

plane through the eye position, as in usual ray tracing, and its color, say

I0 is computed. Let the point where this \traditional" ray intersects the

focal plane be denoted by p. Then some further points are selected on the

surface of the lens, and a ray is emanated from each of them through point

p. Their colors, say I1; : : : ; Im, are also computed. The color of the pixel

will be the average of the intensities I0; I1; : : : ; Im. In fact, it approximates

an integral over the lens area.

Motion blur

Real cameras have a �nite exposure time, that is, the �lm is illuminated

during a time interval of nonzero width. If some objects are in motion,
then their image will be blurred on the picture, and the higher the speed
of an object is, the longer is its trace on the image. Moreover, the trace

of an object is translucent, that is, the objects behind it become partially
visible. This e�ect is known as motion blur. This is yet another kind of
integration, but now in time. Distributing the rays in time can easily be
used for approximating (sampling) this integral. It means that the di�erent
rays corresponding to a given pixel will correspond to di�erent time instants.

The path of motion can be arbitrarily complex, the only requirement is the
ability to calculate the position of any object at any time instant.

We have seen that distributed ray tracing is a uni�ed approach to mod-
eling realistic e�ects such as fuzzy shading, depth of �eld or motion blur.
It approximates the analytic function describing the intensity of the image
pixels at a higher level than usual ray tracing algorithms do. Generally this
function involves several nested integrals: integrals of illumination functions

multiplied by re
ection or refraction functions over the re
ection or trans-
mission hemisphere, integrals over the surface of the lens, integrals over
time, integrals over pixel area. This integral is so complicated that only
approximation techniques can be used in practice. Distributing the rays is

in fact a point sampling method performed on a multi-dimensional param-

eter space. In order to keep the computational time at an acceptably low

level, the number of rays is not increased \orthogonally", that is, instead of

adding more rays in each dimension, the existing rays are distributed with
respect to this parameter space.

