
Chapter 10

RADIOSITY METHOD

The radiosity method is based on the numerical solution of the shading
equation by the �nite element method. It subdivides the surfaces into
small elemental surface patches. Supposing these patches are small, their
intensity distribution over the surface can be approximated by a constant
value which depends on the surface and the direction of the emission. We

can get rid of this directional dependency if only di�use surfaces are allowed,
since di�use surfaces generate the same intensity in all directions. This is
exactly the initial assumption of the simplest radiosity model, so we are also
going to consider this limited case �rst. Let the energy leaving a unit area
of surface i in a unit time in all directions be Bi, and assume that the light

density is homogeneous over the surface. This light density plays a crucial
role in this model and is also called the radiosity of surface i.
The dependence of the intensity on Bi can be expressed by the following

argument:

1. Consider a di�erential dA element of surface A. The total energy
leaving the surface dA in unit time is B � dA, while the ux in the
solid angle d! is d� = I � dA � cos � � d! if � is the angle between the
surface normal and the direction concerned.

2. Expressing the total energy as the integration of the energy contribu-
tions over the surface in all directions and assuming di�use reection
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only, we get:
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(10:1)

since d! = sin� d�d�.

Consider the energy transfer of a single surface on a given wavelength.

The total energy leaving the surface (Bi � dAi) can be divided into its own

emission and the di�use reection of the radiance coming from other surfaces

(�gure 10.1).
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Figure 10.1: Calculation of the radiosity

The emission term is Ei � dAi if Ei is the emission density which is also
assumed to be constant on the surface.

The di�use reection is the multiplication of the di�use coe�cient %i and
that part of the energy of other surfaces which actually reaches surface i.
Let Fji be a factor, called the form factor, which determines that fraction
of the total energy leaving surface j which actually reaches surface i.

Considering all the surfaces, their contributions should be integrated,

which leads to the following formula of the radiosity of surface i:

Bi � dAi = Ei � dAi + %i �
Z
Bj � Fji � dAj: (10:2)
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Before analyzing this formula any further, some time will be devoted to

the meaning and the properties of the form factors.

The fundamental law of photometry (equation 3.15) expresses the en-

ergy transfer between two di�erential surfaces if they are visible from one

another. Replacing the intensity by the radiosity using equation 10.1, we

get:

d� = I � dAi � cos �i � dAj � cos�j
r2

= Bj � dAi � cos �i � dAj � cos �j
� � r2 : (10:3)

If dAi is not visible from dAj, that is, another surface is obscuring it from

dAj or it is visible only from the \inner side" of the surface, the energy ux

is obviously zero. These two cases can be handled similarly if an indicator

variable Hij is introduced:

Hij =

8<
:
1 if dAi is visible from dAj

0 otherwise

(10:4)

Since our goal is to calculate the energy transferred from one �nite sur-
face (�Aj) to another (�Ai) in unit time, both surfaces are divided into

in�nitesimal elements and their energy transfer is summed or integrated,
thus:

��ji =
Z

�Ai

Z
�Aj

Bj �Hij � dAi � cos �i � dAj � cos �j
� � r2 : (10:5)

By de�nition, the form factor Fji is a fraction of this energy and the total
energy leaving surface j ( Bj ��Aj ):

Fji =
1

�Aj

�
Z

�Ai

Z
�Aj

Hij � dAi � cos �i � dAj � cos �j
� � r2 : (10:6)

It is important to note that the expression of Fji ��Aj is symmetrical with
the exchange of i and j, which is known as the reciprocity relationship:

Fji ��Aj = Fij ��Ai: (10:7)

We can now return to the basic radiosity equation. Taking advantage

of the homogeneous property of the surface patches, the integral can be
replaced by a �nite sum:

Bi ��Ai = Ei ��Ai + %i �
X
j

Bj � Fji ��Aj: (10:8)
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Applying the reciprocity relationship, the term Fji � �Aj can be replaced

by Fij ��Ai:

Bi ��Ai = Ei ��Ai + %i �
X
j

Bj � Fij ��Ai: (10:9)

Dividing by the area of surface i, we get:

Bi = Ei + %i �
X
j

Bj � Fij: (10:10)

This equation can be written for all surfaces, yielding a linear equation

where the unknown components are the surface radiosities (Bi):
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or in matrix form, having introduced matrix Rij = %i � Fij:

(1�R) �B = E (10:12)

(1 stands for the unit matrix).
The meaning of Fii is the fraction of the energy reaching the very same

surface. Since in practical applications the elemental surface patches are
planar polygons, Fii is 0.
Both the number of unknown variables and the number of equations are

equal to the number of surfaces (N). The solution of this linear equation
is, at least theoretically, straightforward (we shall consider its numerical as-
pects and di�culties later). The calculated Bi radiosities represent the light
density of the surface on a given wavelength. Recalling Grassman's laws,

to generate color pictures at least three independent wavelengths should be

selected (say red, green and blue), and the color information will come from
the results of the three di�erent calculations.
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Thus, to sum up, the basic steps of the radiosity method are these:

1. Fij form factor calculation.

2. Describe the light emission (Ei) on the representative wavelengths, or

in the simpli�ed case on the wavelength of red, green and blue colors.

Solve the linear equation for each representative wavelength, yielding

B�1
i , B�2

i ... B�n
i .

3. Generate the picture taking into account the camera parameters by

any known hidden surface algorithm. If it turns out that surface i is

visible in a pixel, the color of the pixel will be proportional to the cal-

culated radiosity, since the intensity of a di�use surface is proportional

to its radiosity (equation 10.1) and is independent of the direction of

the camera.

Constant color of surfaces results in the annoying e�ect of faceted objects,
since the eye psychologically accentuates the discontinuities of the color

distribution. To create the appearance of smooth surfaces, the tricks of
Gouraud shading can be applied to replace the jumps of color by linear
changes. In contrast to Gouraud shading as used in incremental methods,
in this case vertex colors are not available to form a set of knot points
for interpolation. These vertex colors, however, can be approximated by

averaging the colors of adjacent polygons (see �gure 10.2).
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Figure 10.2: Color interpolation for images created by the radiosity method

Note that the �rst two steps of the radiosity method are independent
of the actual view, and the form factor calculation depends only on the
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geometry of the surface elements. In camera animation, or when the scene

is viewed from di�erent perspectives, only the third step has to be repeated;

the computationally expensive form factor calculation and the solution of

the linear equation should be carried out only once for a whole sequence.

In addition to this, the same form factor matrix can be used for sequences,

when the lightsources have time varying characteristics.

10.1 Form factor calculation

The most critical issue in the radiosity method is e�cient form factor cal-

culation, and thus it is not surprising that considerable research e�ort has

gone into various algorithms to evaluate or approximate the formula which

de�nes the form factors:

Fij =
1

�Ai

�
Z

�Ai

Z
�Aj

Hij � dAi � cos�i � dAj � cos �j
� � r2 : (10:13)

As in the solution of the shading problem, the di�erent solutions represent
di�erent compromises between the conicting objectives of high calculation
speed, accuracy and algorithmic simplicity.

In our survey the various approaches are considered in order of increasing
algorithmic complexity, which, interestingly, does not follow the chronolog-
ical sequence of their publication.

10.1.1 Randomized form factor calculation

The randomized approach is based on the recognition that the formula
de�ning the form factors can be taken to represent the probability of a

quite simple event if the underlying probability distributions are de�ned
properly.
An appropriate such event would be a surface j being hit by a particle

leaving surface i. Let us denote the event that a particle leaves surface dAi

by PLS(dAi). Expressing the probability of the \hit" of surface j by the

total probability theorem we get:

Prfhit �Ajg =
Z

�Ai

Prfhit �Aj j PLS(dAi)g � PrfPLS(dAi)g: (10:14)
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The hitting of surface j can be broken down into the separate events of

hitting the various di�erential elements dAj composing �Aj. Since hitting

of dAk and hitting of dAl are exclusive events if dAk 6= dAl:

Prfhit �Aj j PLS(dAi)g =
Z

�Aj

Prfhit dAj j PLS(dAi)g: (10:15)

Now the probability distributions involved in the equations are de�ned:

1. Assume the origin of the particle to be selected randomly by uniform

distribution:

PrfPLS(dAi)g = 1

�Ai

� dAi: (10:16)

2. Let the direction in which the particle leaves the surface be selected
by a distribution proportional to the cosine of the angle between the
direction and the surface normal:

Prfparticle leaves in solid angle d!g = cos�i � d!
�

: (10:17)

The denominator � guarantees that the integration of the probability over
the whole hemisphere yields 1, hence it deserves the name of probability
density function. Since the solid angle of dAj from dAi is dAj � cos �j=r2
where r is the distance between dAi and dAj, and �j is the angle of the
surface normal of dAj and the direction of dAi, the probability of equa-

tion 10.15 is:
Prfhit dAj j PLS(dAi)g =

PrfdAj is not hidden from dAi ^ particle leaves in the solid angle of dAjg

=
Hij � dAj � cos�j � cos�i

r2 � � (10:18)

where Hij is the indicator function of the event \dAj is visible from dAi".
Substituting these into the original probability formula:

Prfhitg = 1

�Ai

�
Z

�Ai

Z
�Aj

Hij � dAi � cos�i � dAj � cos �j
� � r2 : (10:19)

This is exactly the same as the formula for form factor Fij. This proba-
bility, however, can be estimated by random simulation. Let us generate n
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particles randomly using uniform distribution on the surface i to select the

origin, and a cosine density function to determine the direction. The origin

and the direction de�ne a ray which may intersect other surfaces. That

surface will be hit whose intersection point is the closest to the surface from

which the particle comes. If shooting n rays randomly surface j has been

hit kj times, then the probability or the form factor can be estimated by

the relative frequency:

Fij � kj

n
: (10:20)

Two problems have been left unsolved:

� How can we select n to minimize the calculations but to sustain a

given level of accuracy?

� How can we generate uniform distribution on a surface and cosine

density function in the direction?

Addressing the problem of the determination of the necessary number of

attempts, we can use the laws of large numbers.
The inequality of Bernstein and Chebyshev [R�en81] states that if the

absolute value of the di�erence of the event frequency and the probability
is expected not to exceed � with probability �, then the minimum number
of attempts (n) is:

n � 9 log 2=�

8�2
: (10:21)

The generation of random distributions can rely on random numbers of
uniform distribution in [0::1] produced by the pseudo-random algorithm of
programming language libraries. Let the probability distribution function of
the desired distribution be P (x). A random variable x which has P (x) prob-
ability distribution can be generated by transforming the random variable r

that is uniformly distributed in [0::1] applying the following transformation:

x = P�1(r): (10:22)
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10.1.2 Analytic and geometric methods

The following algorithms focus �rst on the inner section of the double in-

tegration, then estimate the outer integration. The inner integration is

given some geometric interpretation which is going to be the base of the

calculation. This inner integration has the following form:

diFij =
Z

�Aj

Hij � cos�i � cos �j
� � r2 dAj: (10:23)
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Figure 10.3: Geometric interpretation of hemisphere form factor algorithm

Nusselt [SH81] has realized that this formula can be interpreted as pro-
jecting the visible parts of �Aj onto the unit hemisphere centered above

dAi, then projecting the result orthographically onto the base circle of this
hemisphere in the plane of dAi (see �gure 10.3), and �nally calculating
the ratio of the doubly projected area and the area of the unit circle (�).
Due to the central role of the unit hemisphere, this method is called the

hemisphere algorithm.

Later Cohen and Greenberg [CG85] have shown that the projection cal-
culation can be simpli�ed, and more importantly, supported by image syn-

thesis hardware, if the hemisphere is replaced by a half cube. Their method
is called the hemicube algorithm.
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Beran-Koehn and Pavicic have demonstrated in their recent publication

[BKP91] that the necessary calculations can be signi�cantly decreased if a

cubic tetrahedron is used instead of the hemicube.

Having calculated the inner section of the integral, the outer part must

be evaluated. The simplest way is to suppose that it is nearly constant on

�Ai, so the outer integral is estimated as the multiplication of the inner

integral at the middle of �Ai and the area of this surface element:

Fij =
1

�Ai

Z
�Ai

diFij dAi � diFij =
Z

�Aj

Hij � cos �i � cos�j
� � r2 dAj: (10:24)

More accurate computations require the evaluation of the inner integral

in several points on �Ai and some sort of numerical integration technique

should be used for the integral calculation.

10.1.3 Analytic form factor computation

The inner section of the form factor integral, or as it is called the form factor
between a �nite and di�erential area, can be written as a surface integral
in a vector space, denoting the vector between dAi and dAj by ~r, the unit

normal to dAi by ~ni, and the surface element vector ~nj � dAj by d ~Aj:

diFij =
Z

�Aj

Hij � cos �i � cos�j
� � r2 dAj = �

Z
�Aj

Hij � (~ni � ~r)
� � j~rj4 �~r d

~Aj =
Z

�Aj

~w d ~Aj:

(10:25)

If we could �nd a vector �eld ~v, such that rot ~v = ~w, the area integral
could be transformed into the contour integral

R
~vd~l by Stoke's theorem.

This idea has been followed by Hottel and Saro�n [HS67], and they were
successful in providing a formula for the case when there are no occlusions,
or the visibility term Hij is everywhere 1:

diFij =
1

2�

L�1X
l=0

angle(~Rl; ~Rl�1)

j~Rl � ~Rl�1j
(~Rl � ~Rl�1) � ~ni (10:26)

where

1. angle(~a;~b) is the signed angle between two vectors. The sign is pos-

itive if ~b is rotated clockwise from ~a looking at them in the opposite
direction to ~ni,



10.1. FORM FACTOR CALCULATION 275

2. � represents addition modulo L. It is a circular next operator for

vertices,

3. L is the number of vertices of surface element j,

4. ~Rl is the vector from the di�erential surface i to the lth vertex of the

surface element j.

We do not aim to go into the details of the original derivation of this

formula based on the theory of vector �elds, because it can also be proven

relying on geometric considerations of the hemispherical projection.

10.1.4 Hemisphere algorithm

First of all the result of Nusselt is proven using �gure 10.3, which shows
that the inner form factor integral can be calculated by a double projection
of �Aj, �rst onto the unit hemisphere centered above dAi, then to the base
circle of this hemisphere in the plane of dAi, and �nally by calculating the
ratio of the double projected area and the area of the unit circle (�). By
geometric arguments, or by the de�nition of solid angles, the projected area

of a di�erential area dAj on the surface of the hemisphere is dAj � cos�j=r2.
This area is orthographically projected onto the plane of dAi, multiplying
the area by factor cos �i. The ratio of the double projected area and the
area of the base circle is:

cos�i � cos �j
� � r2 � dAj: (10:27)

Since the double projection is a one-to-one mapping, if surface �Aj is
above the plane of Ai, the portion, taking the whole �Aj surface into ac-
count, is: Z

�Aj

Hij � cos�i � cos �j
� � r2 dAj = diFij: (10:28)

This is exactly the formula of an inner form factor integral.

Now we turn to the problem of the hemispherical projection of a

planar polygon. To simplify the problem, consider only one edge line of
the polygon �rst, and two vertices, ~Rl and ~Rl�1, on it (�gure 10.4). The

hemispherical projection of this line is a half great circle. Since the radius



276 10. RADIOSITY METHOD

-

+

+

R l R l 1+

ni

Figure 10.4: Hemispherical projection of a planar polygon

of this great circle is 1, the area of the sector formed by the projections
of ~Rl and ~Rl�1 and the center of the hemisphere is simply half the angle
of ~Rl and ~Rl�1. Projecting this sector orthographically onto the equatorial
plane, an ellipse sector is generated, having the area of the great circle sector
multiplied by the cosine of the angle of the surface normal ~ni and the normal
of the segment (~Rl � ~Rl�1).

The area of the doubly projected polygon can be obtained by adding
and subtracting the areas of the ellipse sectors of the di�erent edges, as
is demonstrated in �gure 10.4, depending on whether the projections of
vectors ~Rl and ~Rl�1 follow each other clockwise. This sign value can also
be represented by a signed angle of the two vectors, expressing the area of

the double projected polygon as a summation:

L�1X
l=0

1

2
� angle(~Rl; ~Rl�1)

(~Rl � ~Rl�1)

j~Rl � ~Rl�1j
� ~ni: (10:29)

Having divided this by � to calculate the ratio of the area of the double

projected polygon and the area of the equatorial circle, equation 10.26 can
be generated.

These methods have supposed that surface �Aj is above the plane of

dAi and is totally visible. Surfaces below the equatorial plane do not pose
any problems, since we can get rid of them by the application of a clipping
algorithm. Total visibility, that is when visibility term Hij is everywhere 1,
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however, is only an extreme case in the possible arrangements. The other

extreme case is when the visibility term is everywhere 0, and thus the form

factor will obviously be zero.

When partial occlusion occurs, the computation can make use of these

two extreme cases according to the following approaches:

1. A continuous (object precision) visibility algorithm is used in the form

factor computation to select the visible parts of the surfaces. Having

executed this step, the parts are either totally visible or hidden from

the given point on surface i.

2. The visibility term is estimated by �ring several rays to surface el-

ement j and averaging their 0/1 associated visibilities. If the result

is about 1, no occlusion is assumed; if it is about 0, the surface is
assumed to be obscured; otherwise the surface i has to be subdivided,
and the whole step repeated recursively [Tam92].

10.1.5 Hemicube algorithm

The hemicube algorithm is based on the fact that it is easier to project onto
a planar rectangle than onto a spherical surface. Due to the change of the
underlying geometry, the double projection cannot be expected to provide
the same results as for a hemisphere, so in order to evaluate the inner form

factor integral some corrections must be made during the calculation. These
correction parameters are generated by comparing the needed terms and the
terms resulting from the hemicube projections.
Let us examine the projection onto the top of the hemicube. Using geo-

metric arguments and the notations of �gure 10.5, the projected area of a

di�erential patch dAj is:

T (dAj) = Hij �
�
R

r

�2
� dAj � cos �j

cos �i
= Hij � dAj � cos �j � cos�i

� � r2 � �

(cos �i)4

(10:30)
since R = 1= cos �i.

Looking at the form factor formula, we notice that a weighted area is to

be calculated, where the weight function compensates for the unexpected

�=(cos�i)
4 term. Introducing the compensating function wz valid on the top

of the hemicube, and expressing it by geometric considerations of �gure 10.5
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Figure 10.5: Form factor calculation by hemicube algorithm

which supposes an (x; y; z) coordinate system attached to the dAi, with axes
parallel with the sides of the hemicube, we get:

wz(x; y) =
(cos �i)

4

�
=

1

�(x2 + y2 + 1)2
: (10:31)

Similar considerations can lead to the calculation of the correction terms
of the projection on the side faces of the hemicube:
If the side face is perpendicular to the y axis, then:

wy(x; z) =
z

�(x2 + z2 + 1)2
(10:32)

or if the side face is perpendicular to the x axis:

wx(y; z) =
z

�(z2 + y2 + 1)2
: (10:33)

The weighted area de�ning the inner form factor is an area integral of a
weight function. If �Aj has a projection onto the top of the hemicube only,

then:

diFij =
Z

�Aj

T (dAj) � cos
4 �i

�
: (10:34)
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Instead of integrating over �Aj, the same integral can also be calculated

on the top of the hemicube in an x; y; z coordinate system:

diF
top
ij =

Z
T (�Aj)

Hij(x; y) � 1

�(x2 + y2 + 1)2
dxdy (10:35)

since cos �i = 1=(x2 + y2 + 1)1=2. Indicator Hij(x; y) shows whether �Aj is

really visible through hemicube point (x; y; 1) from �Ai or if it is obscured.

This integral is approximated by a �nite sum having generated a P � P

raster mesh on the top of the hemicube.

diF
top
ij =

Z
T (�Aj)

Hij(x; y) � wz(x; y)dxdy �

P=2�1X
X=�P=2

P=2�1X
Y=�P=2

Hij(X;Y ) � wz(X;Y )
1

P 2
: (10:36)

The only unknown term here is Hij, which tells us whether or not surface

j is visible through the raster cell called \pixel" (X;Y ). Thanks to the
research that has been carried out into hidden surface problems there are
many e�ective algorithms available which can also be used here. An obvious
solution is the application of simple ray tracing. The center of dAi and the
pixel de�nes a ray which may intersect several other surfaces. If the closest
intersection is on the surface j, then Hij(X;Y ) is 1, otherwise it is 0.

A faster solution is provided by the z-bu�er method. Assume the color
of the surface �Aj to be j, the center of the camera to be dAi and the
3D window to be a given face of the hemicube. Having run the z-bu�er
algorithm, the pixels are set to the \color" of the surfaces visible in them.
Taking advantage of the above de�nition of color (color is the index of the

surface), each pixel will provide information as to which surface is visible in
it. We just have to add up the weights of those pixels which contain \color"

j in order to calculate the di�erential form factor diF
top
ij .

The projections on the side faces can be handled in exactly the same
way, except that the weight function has to be selected di�erently (wx or

wy depending on the actual side face). The form factors are calculated as a

sum of contributions of the top and side faces.
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The complete algorithm, to calculate the Fij form factors using the z-

bu�er method, is:

for i = 1 to N do for j = 1 to N do Fij = 0;

for i = 1 to N do

camera = center of �Ai;

for k = 1 to 5 do // consider each face of the hemicube

window = kth face of the hemicube;

for x = 0 to P � 1 do

for y = 0 to P � 1 do pixel[x; y] = 0;

Z-BUFFER ALGORITHM (color of surface j is j)

for x = 0 to P � 1 do for y = 0 to P � 1 do

if (pixel[x; y] > 0) then

Fi;pixel[x;y] += wk(x� P=2; y � P=2)=P 2;
endfor

endfor

endfor

In the above algorithm the weight function wk(x�P=2; y�P=2)=P 2 must
be evaluated for those pixels through which other surfaces are visible and
must be added to that form factor which corresponds to the visible surface.
This is why values of weight functions at pixel centers are called delta form
factors. Since the formula for weight functions contains many multiplica-

tions and a division, its calculation in the inner loop of the algorithm can
slow down the form factor computation. However, these weight functions
are common to all hemicubes, thus they must be calculated only once and
then stored in a table which can be re-used whenever a value of the weight
function is needed.

Since the z-bu�er algorithm has O(N � P 2) worst case complexity, the
computation of the form factors, embedding 5N z-bu�er steps, is obviously
O(N2 �P 2), where N is the number of surface elements and P 2 is the number

of pixels in the z-bu�er. It is important to note that P can be much less
than the resolution of the screen, since now the \pixels" are used only to
approximate an integral �nitely. Typical values of P are 50 : : : 200.

Since the z-bu�er step can be supported by a hardware algorithm this

approach is quite e�ective on workstations supported by graphics accelera-
tors.
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10.1.6 Cubic tetrahedral algorithm

The hemicube algorithm replaced the hemisphere by a half cube, allowing

the projection to be carried out on �ve planar rectangles, or side faces of

the cube, instead of on a spherical surface. The number of planar surfaces

can be decreased by using a cubic tetrahedron as an intermediate surface

[BKP91], [BKP92].

z

x
y dA

i

Figure 10.6: Cubic tetrahedral method

An appropriate cubic tetrahedron may be constructed by slicing a cube by
a plane that passes through three of its vertices, and placing the generated
pyramid on surface i (see �gure 10.6). A convenient coordinate system is

de�ned with axes perpendicular to the faces of the tetrahedron, and setting
scales to place the apex in point [1; 1; 1]. The base of the tetrahedron will
be a triangle having vertices at [1; 1;�2], [1;�2; 1] and [�2; 1; 1].
Consider the projection of a di�erential surface dAj on a side face per-

pendicular to x axis, using the notations of �gure 10.7. The projected area

is:

dA0j =
dAj � cos�j

cos�
� j
~Rj2
r2

: (10:37)

The correction term, to provide the internal variable in the form factor
integral, is:

dAj � cos�j � cos �i
� � r2 = dA0j �

cos�i � cos �
� � j~Rj2

= dA0j � w(~R): (10:38)
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Figure 10.7: Projection to the cubic tetrahedron

Expressing the cosine of angles by a scalar product with ~R pointing to the
projected area:

cos � =
~R � [1; 0; 0]

j~Rj ; cos �i =
~R � [1; 1; 1]

j~Rj � j[1; 1; 1]j : (10:39)

Vector ~R can also be de�ned as the sum of the vector pointing to the
apex of the pyramid ([1; 1; 1]) and a linear combination of side vectors of
pyramid face perpendicular to x axis:

~R = [1; 1; 1] + (1 � u) � [0;�1; 0] + (1� v) � [0; 0;�1] = [1; u; v]: (10:40)

This can be turned to the previous equation �rst, then to the formula of
the correction term:

w(u; v) =
u+ v + 1

� � p3 � (u2 + v2 + 1)2
: (10:41)

Because of symmetry, the values of this weight function | that is the
delta form factors | need to be computed and stored for only one-half

of any face when the delta form factor table is generated. It should be
mentioned that cells located along the base of the tetrahedron need special
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treatment, since they have triangular shape. They can either be simply

ignored, because their delta form factors are usually very small, or they

can be evaluated for the center of the triangle instead of the center of the

rectangular pixel.

10.2 Solution of the linear equation

The most obvious way to solve a linear equation is to apply the Gauss

elimination method [PFTV88]. Unfortunately it fails to solve the radiosity

equation for more complex models e�ectively, since it has O(N3) complex-

ity, and also it accumulates the round of errors of digital computers and

magni�es these errors to the extent that the matrix is close to singular.

Fortunately another technique, called iteration, can overcome both prob-
lems. Examining the radiosity equation,

Bi = Ei + %i
X
j

Bj � Fij

we will see that it gives the equality of the energy which has to be radiated
due to emission and reection (right side) and the energy really emitted
(left side). Suppose that only estimates are available for Bj radiosities,
not exact values. These estimates can be regarded as right side values,
thus having substituted them into the radiosity equation, better estimates
can be expected on the left sides. If these estimates were exact | that is

they satis�ed the radiosity equation |, then the iteration would not alter
the radiosity values. Thus, if this iteration converges, its limit will be the
solution of the original radiosity equation.
In order to examine the method formally, the matrix version of the ra-

diosity equation is used to describe a single step of the iteration:

B(m+ 1) = R �B(m) +E: (10:42)

A similar equation holds for the previous iteration too. Subtracting the

two equations, and applying the same consideration recursively, we get:

B(m+1)�B(m) = R � (B(m)�B(m�1)) = R
m � (B(1)�B(0)): (10:43)

The iteration converges if

lim
m!1

kB(m+ 1) �B(m)k = 0; that is if lim
m!1

kRmk = 0
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for some matrix norm. Let us use the kRk1 norm de�ned as the maximum

of absolute row sums

kRk1 = max
i
fX

j

Fij � %ig (10:44)

and a vector norm that is compatible with it:

kbk1 = max
i
fjbijg: (10:45)

Denoting kRk by q, we have:
kB(m+ 1)�B(m)k = kRm � (B(1)�B(0))k � kRkm � kB(1)�B(0)k =

qm � kB(1)�B(0)k (10:46)

according to the properties of matrix norms. Since Fij represents the portion
of the radiated energy of surface i, which actually reaches surface j,

P
j Fij

is that portion which is radiated towards any other surface. This obviously
cannot exceed 1, and for physically correct models, di�use reectance %i < 1,

giving a norm that is de�nitely less than 1. Consequently q < 1, which
provides the convergence with, at least, the speed of a geometric series.
The complexity of the iteration solution depends on the operations needed

for a single step and the number of iterations providing convergence. A
single step of the iteration requires the multiplication of an N dimensional

vector and an N�N dimensional matrix, which requires O(N2) operations.
Concerning the number of necessary steps, we concluded that the speed

of the convergence is at least geometric by a factor q = kRk1. The in�nite
norm of R is close to being independent of the number of surface elements,
since as the number of surface elements increases, the value of form fac-

tors decreases, sustaining a constant sum of rows, representing that portion
of the energy radiated by surface i, which is gathered by other surfaces,
multiplied by the di�use coe�cient of surface i. Consequently, the number
of necessary iterations is independent of the number of surface elements,

making the iteration solution an O(N2) process.

10.2.1 Gauss{Seidel iteration

The convergence of the iteration can be improved by the method of Gauss{

Seidel iteration. Its basic idea is to use the new iterated values immediately
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when they are available, and not to postpone their usage until the next

iteration step. Consider the calculation of Bi in the normal iteration:

Bi(m+ 1) = Ei +Ri;1 �B1(m) +Ri;2 �B2(m) + :::+Ri;N �BN(m): (10:47)

During the calculation of Bi(m + 1), values B1(m + 1); :::; Bi�1(m + 1)

have already been calculated, so they can be used instead of their previous

value, modifying the iteration, thus:

Bi(m+ 1) = Ei +Ri;1 �B1(m+ 1) + : : :+Ri;i�1 �Bi�1(m+ 1)+

Ri;i+1 �Bi+1(m) + : : :+ Ri;N �BN (m) (10:48)

(recall that Ri;i = 0 in the radiosity equation).

A trick, called successive relaxation, can further improve the speed of
convergence. Suppose that during themth step of the iteration the radiosity
vector B(m+ 1) was computed. The di�erence from the previous estimate
is:

�B = B(m+ 1)�B(m) (10:49)

showing the magnitude of di�erence, as well as the direction of the im-
provement in N dimensional space. According to practical experience, the

direction is quite accurate, but the magnitude is underestimated, requiring
the correction by a relaxation factor !:

B
�(m+ 1) = B(m) + ! ��B: (10:50)

The determination of ! is a crucial problem. If it is too small, the con-
vergence will be slow; if it is too great, the system will be unstable and
divergent. For many special matrices, the optimal relaxation factors have

already been determined, but concerning our radiosity matrix, only practi-
cal experiences can be relied on. Cohen [CGIB86] suggests that relaxation
factor 1.1 is usually satisfactory.

10.3 Progressive re�nement

The previously discussed radiosity method determined the form factor ma-

trix �rst, then solved the linear equation by iteration. Both steps require
O(N2) time and space, restricting the use of this algorithm in commercial
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applications. Most of the form factors, however, have very little e�ect on

the �nal image, thus, if they were taken to be 0, a great amount of time

and space could be gained for the price of a negligible deterioration of the

image quality. A criterion for selecting unimportant form factors can be

established by the careful analysis of the iteration solution of the radiosity

equation:

Bi(m+ 1) = Ei + %i
X
j

Bj(m) � Fij = Ei +
X
j

(Bi due to Bj(m))

(Bi due to Bj) = %i �Bj � Fij: (10:51)

If Bj is small, then the whole column i of R will not make too much

di�erence, thus it is not worth computing and storing its elements. This

seems acceptable, but how can we decide which radiosities will be small, or
which part of matrix R should be calculated, before starting the iteration?
We certainly cannot make the decision before knowing something about the
radiosities, but we can de�nitely do it during the iteration by calculating a

column of the form factor matrix only when it turns out that it is needed,
since the corresponding surface has signi�cant radiosity.
Suppose we have an estimateBj allowing for the calculation of the contri-

bution of this surface to all the others, and for determining a better estimate
for other surfaces by adding this new contribution to their estimated value.

If an estimateBj increases by �Bj, due to the contribution of other surfaces
to this radiosity, other surface radiosities should also be corrected accord-
ing to the new contribution of Bj, resulting in an iterative and progressive
re�nement of surface radiosities:

Bnew
i = Bold

i + %i � (�Bj) � Fij: (10:52)

Note that, in contrast to the previous radiosity method when we were
interested in how a surface gathers energy from other surfaces, now the di-

rection of the light is followed focusing on how surfaces shoot light to other

surfaces. A radiosity increment of a surface, which has not yet been used
to update other surface radiosities, is called unshot radiosity. In fact, in
equation 10.52, the radiosity of other surfaces should be corrected according

to the unshot radiosity of surface j. It seems reasonable to select for shoot-

ing that surface which has the highest unshot radiosity. Having selected a
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surface, the corresponding column of the form factor matrix should be calcu-

lated. We can do that on every occasion when a surface is selected to shoot

its radiosity. This reduces the burden of the storage of the N �N matrix

elements to only a single column containing N elements, but necessitates

the recalculation of the form factors. Another alternative is to store the al-

ready generated columns, allowing for reduction of the storage requirements

by omitting those columns whose surfaces are never selected, due to their

low radiosity. Let us realize that equation 10.52 requires F1j; F2j; : : : ; FNj,

that is a single column of the form factor matrix, to calculate the radiosity

updates due to �Bj. The hemicube method, however, supports \parallel"

generation of the rows of the form factor matrix, not of the columns. For

di�erent rows, di�erent hemicubes have to be built around the surfaces.

Fortunately, the reciprocity relationship can be applied to evaluate a single

column of the matrix based on a single hemicube:

Fji ��Aj = Fij ��Ai =) Fij = Fji � �Aj

�Ai

(i = 1; :::; N) (10:53)

These considerations have formulated an iterative algorithm, called pro-

gressive re�nement. The algorithm starts by initializing the total (Bi)
and unshot (Ui) radiosities of the surfaces to their emission, and stops if the
unshot radiosity is less than an acceptable threshold for all the surfaces:

for j = 1 to N do Bj = Ej; Uj = Ej

do

j = Index of the surface of maximum Uj;

Calculate Fj1, Fj2 ,..., FjN by a single hemicube;
for i = 1 to N do

�Bi = %i � Uj � Fji ��Aj=�Ai;
Ui += �Bi;
Bi += �Bi;

endfor

Uj = 0;

error = maxfU1; U2; :::; UNg;
while error > threshold;

This algorithm is always convergent, since the total amount of unshot
energy decreases in each step by an attenuation factor of less than 1. This
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statement can be proven by examining the total unshot radiosities during

the iteration, supposing that Uj was maximal in step m, and using the

notation q = kRk1 again:

NX
i

Ui(m+1) =
NX
i6=j

Ui(m)+Uj �
NX
i

%i �Fij = (
NX
i

Ui(m))�Uj+Uj

NX
i

%i �Fij �

� (
NX
i

Ui(m))�(1�q)�Uj � (1� 1� q

N
)�

NX
i

Ui(m) = q� �
NX
i

Ui(m) (10:54)

since q = maxifPN
i %i � Fijg < 1 and Uj � PN

i Ui=N , because it is the

maximal value among Ui-s.

Note that, in contrast to the normal iteration, the attenuation factor q�

de�ning the speed of convergence now does depend on N , slowing down the
convergence by approximatelyN times, and making the number of necessary
iterations proportional to N . A single iteration contains a single loop of
length N in progressive re�nement, resulting in O(N2) overall complexity,
taking into account the expected number of iterations as well. Interestingly,

progressive re�nement does not decrease the O(N2) time complexity, but in
its simpler form when the form factor matrix is not stored, it can achieve
O(N) space complexity instead of the O(N2) behavior obtained by the
original method.

10.3.1 Application of vertex-surface form factors

In the traditional radiosity and the discussed progressive re�nement meth-
ods, the radiosity distributions of the elemental surfaces were assumed to be
constant, as were the normal vectors. This is obviously far from accurate,
and the e�ects need to be reduced by a bilinear interpolation of Gouraud

shading at the last step of the image generation. In progressive re�nement,

however, the linear radiosity approximation can be introduced earlier, even
during the phase of the calculation of radiosities. Besides, the real surface
normals in the vertices of the approximating polygons can be used resulting

in a more accurate computation.

This method is based on the examination of energy transfer between a
di�erential area (dAi) around a vertex of a surface and another �nite surface

(�Aj), and concentrates on the radiosity of vertices of polygons instead of
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the radiosities of the polygons themselves. The normal of dAi is assumed

to be equal to the normal of the real surface in this point. The portion

of the energy landing on the �nite surface and the energy radiated by the

di�erential surface element is called the vertex-surface form factor (or

vertex-patch form factor).

The vertex-surface form factor, based on equation 10.6, is:

F v
ij =

1

dAi

�
Z
dAi

Z
�Aj

Hij �dAi � cos �i � dAj � cos �j
� � r2 =

Z
�Aj

Hij �cos �i � cos�j
� � r2 dAj:

(10:55)

This expression can either be evaluated by any discussed method or by

simply �ring several rays from dAi towards the centers of the patches gen-

erated by the subdivision of surface element �Aj. Each ray results in a

visibility factor of either 0 or 1, and an area-weighted summation has to be
carried out for those patches which have visibility 1 associated with them.

Suppose that in progressive re�nement total and unshot radiosity esti-
mates are available for all vertices of surface elements. Unshot surface ra-
diosities can be approximated as the average of their unshot vertex radiosi-
ties. Having selected the surface element with the highest unshot radiosity
(Uj), and having also determined the vertex-surface form factors from all

the vertices to the selected surface (note that this is the reverse direction),
the new contributions to the total and unshot radiosities of vertices are:

�Bv
i = %i � Uj � F v

ij: (10:56)

This has modi�ed the total and unshot radiosities of the vertices. Thus,
estimating the surface radiosities, the last step can be repeated until con-
vergence, when the unshot radiosities of vertices become negligible. The
radiosity of the vertices can be directly turned to intensity and color in-

formation, enabling Gouraud's algorithm to complete the shading for the
internal pixels of the polygons.

10.3.2 Probabilistic progressive re�nement

In probabilistic form factor computation, rays were �red from surfaces to

determine which other surfaces can absorb their radiosity. In progressive

re�nement, on the other hand, the radiosity is shot proportionally to the
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precomputed form factors. These approaches can be merged in a method

which randomly shoots photons carrying a given portion of energy. As in

progressive re�nement, the unshot and total radiosities are initialized to the

emission of the surfaces. At each step of the iteration a point is selected at

random on the surface which has the highest unshot radiosity, a direction

is generated according to the directional distribution of the radiation (co-

sine distribution), and a given portion, say 1=nth, of the unshot energy is

delivered to that surface which the photon encounters �rst on its way.

The program of this algorithm is then:

for j = 1 to N do Bj = Uj = Ej

do

j = Index of the surface of maximum Uj

~p = a random point on surface j by uniform distribution
~d = a random direction from ~p by cosine distribution

if ray(~p; ~d) hits surface i �rst then
Ui += %i � Uj=n;
Bi += %i � Uj=n;

endif

Uj -= Uj=n;
error = maxfU1; U2; :::; UNg;

while error > threshold;

This is possibly the simplest algorithm for radiosity calculation. Since it
does not rely on form factors, shading models other than di�use reection
can also be incorporated.

10.4 Extensions to non-di�use

environments

The traditional radiosity methods discussed so far consider only di�use re-

ections, having made it possible to ignore directional variation of the radia-
tion of surfaces, since di�use reection generates the same radiant intensity

in all directions. To extend the basic method taking into account more
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terms in the general shading equation, directional dependence has to be

built into the model.

The most obvious approach is to place a partitioned sphere on each ele-

mental surface, and to calculate and store the intensity in each solid angle

derived from the partition [ICG86]. This partitioning also transforms the

integrals of the shading equations to �nite sums, and limits the accuracy

of the direction of the incoming light beams. Deriving a shading equa-

tion for each surface element and elemental solid angle, a linear equation

is established, where the unknown variables are the radiant intensities of

the surfaces in various solid angles. This linear equation can be solved by

similar techniques to those discussed so far. The greatest disadvantage of

this approach is that it increases the number of equations and the unknown

variables by a factor of the number of partitioning solid angles, making the

method prohibitively expensive.

More promising is the combination of the radiosity method with ray trac-
ing, since the respective strong and weak points of the two methods tend
to complement each other.

10.4.1 Combination of radiosity and ray tracing

In its simplest approach, the �nal, view-dependent step of the radiosity
method involving Gouraud shading and usually z-bu�ering can be replaced
by a recursive ray tracing algorithm, where the di�use component is deter-
mined by the surface radiosities, instead of taking into consideration the
abstract lightsources, while the surface radiosities are calculated by the

methods we have discussed, ignoring all non-di�use phenomena. The result
is much better than the outcome of a simple recursive ray tracing, since the
shadows lose their sharpness. The method still neglects some types of cou-
pling, since, for example, it cannot consider the di�use reection of a light
beam coherently reected or refracted onto other surfaces. In �gure 10.8,

for example, the vase should have been illuminated by the light coherently

reected o� the mirror, but the algorithm in question makes it dark, since
the radiosity method ignores non-di�use components. A possible solution
to this problem is the introduction and usage of extended form factors

[SP89].

A simpli�ed shading model is used which breaks down the energy radiated
by a surface into di�use and coherently reected or refracted components.
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Figure 10.8: Coherent-di�use coupling: The vase should have been illuminated

by the light reected o� the mirror

An extended form factor F �
ij, by de�nition represents that portion of the

energy radiated di�usely by surface i which actually reaches surface j ei-
ther by direct transmission or by single or multiple coherent reections or

refractions. The use of extended form factors allows for the calculation of
the di�use radiance of patches which takes into account not only di�use but
also coherent interreections. Suppose di�use radiance Bi of surface i needs
to be calculated. Di�use radiance Bi is determined by the di�use radiation
of other surfaces which reaches surface i and by those light components

which are coherently reected or refracted onto surface i. These coherent
components can be broken down into di�use radiances and emissions which
are later coherently reected or refracted several times, thus similar expres-
sion holds for the di�use radiance in the improved model as for the original,
only the normal form factors must be replaced by the extended ones. The

extended radiosity equation de�ning the di�use radiance of the surfaces in

a non-di�use environment is then:

Bi � dAi = Ei � dAi + %i �
Z
Bj � F �

ji � dAj: (10:57)

Recursive ray tracing can be used to calculate the extended form factors.

For each pixel of the hemicube a ray is generated which is traced backward
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�nding those surfaces which can be visited along this ray. For each surface

found that portion of its di�usely radiated energy which reaches the previous

surface along the ray should be computed | this is a di�erential form factor

| then the attenuation of subsequent coherent reections and refractions

must be taken into consideration by multiplying the di�erential form factor

by the product of the refractive and reective coe�cients of the surfaces

visited by the ray between the di�use source and surface i. Adding these

portions of possible contribution for each pixel of the hemicube also taking

the hemicube weighting function into account, the extended form factors can

be generated. Having calculated the extended form factors, the radiosity

equation can be solved by the method discussed, resulting in the di�use

radiosities of the surfaces.

Expensive ray-tracing can be avoided and normal form factors can be

worked with if only single, ideal, mirror-like coherent reections are allowed,

because this case can be supported by mirroring every single surface onto
the reective surfaces. We can treat these reective surfaces as windows
onto a \mirror world", and the normal form factor between the mirrored
surface and another surface will be responsible for representing that part of
energy transfer which would be represented by the di�erence of the extended
and normal form factors [WCG87].

If the di�use radiosities of the surfaces are generated, then in the second,
view-dependent phase another recursive ray-tracing algorithm can be ap-
plied to generate the picture. Whenever a di�use intensity is needed this
second pass ray-tracing will use the radiosities computed in the �rst pass.
In contrast to the naive combination of ray-tracing and radiosity, the dif-

fuse radiosities are now correct, since the �rst pass took not only the di�use
interreections but also the coherent interreections and refractions into
consideration.

10.5 Higher order radiosity approximation

The original radiosity method is based on �nite element techniques. In
other words, the radiosity distribution is searched in a piecewise constant

function form, reducing the original problem to the calculation of the values

of the steps.
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The idea of piecewise constant approximation is theoretically simple and

easy to accomplish, but an accurate solution would require a large number

of steps, making the solution of the linear equation di�cult. Besides, the

constant approximation can introduce unexpected artifacts in the picture

even if it is softened by Gouraud shading.

This section addresses this problem by applying a variational method for

the solution of the integral equation [SK93].

The variational solution consists of the following steps [Mih70]:

1. It establishes a functional which is extreme for a function (radiosity

distribution) if and only if the function satis�es the original integral

equation (the basic radiosity equation).

2. It generates the extreme solution of the functional byRitz's method,
that is, it approximates the function to be found by a function series,
where the coe�cients are unknown parameters, and the extremum is

calculated by making the partial derivatives of the functional (which
is a function of the unknown coe�cients) equal to zero. This results
in a linear equation which is solved for the coe�cients de�ning the
radiosity distribution function.

Note the similarities between the second step and the original radiosity
method. The proposed variational method can, in fact, be regarded as a
generalization of the �nite element method, and, as we shall see, it contains
that method if the basis functions of the function series are selected as

piecewise constant functions being equal to zero except for a small portion
of the surfaces. Nevertheless, we are not restricted to these basis functions,
and can select other function bases, which can approximate the radiosity
distribution more accurately and by fewer basis functions, resulting in a
better solution and requiring the calculation of a signi�cantly smaller linear

equation.
Let the di�use coe�cient be %(p) at point p and the visibility indicator

between points p and p0 be H(p; p0). Using the notations of �gure 10.9, and

denoting the radiosity and emission at point p by B(p) and E(p) respec-
tively, the basic radiosity equation is:

B(p) � dA = E(p) � dA+ %(p) �
Z
A

B(p0) f(p; p0) dA0 � dA (10:58)
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Figure 10.9: Geometry of the radiosity calculation

where f(p; p0) is the point-to-point form factor:

f(p; p0) = H(p; p0)
cos �(p) � cos�(p0)

r2�
: (10:59)

Dividing both sides by dA, the radiosity equation is then:

B(p) = E(p) + %(p) �
Z
A

B(p0) f(p; p0) dA0: (10:60)

Let us de�ne a linear operator L:

LB(p) = B(p)� %(p) �
Z
A

B(p0) f(p; p0) dA0: (10:61)

Then the radiosity equation can also be written as follows:

LB(p) = E(p): (10:62)

The solution of the radiosity problem means to �nd a function B satisfying
this equation. The domain of possible functions can obviously be restricted

to functions whose square has �nite integration over surface A. This func-

tion space is usually called L2(A) space where the scalar product is de�ned
as:

hu; vi =
Z
A

u(p) � v(p) dA: (10:63)
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If L were a symmetric and positive operator, that is, for any u; v in L2(A),

hLu; vi = hu;Lvi (10:64)

were an identity and

hLu; ui � 0 ^ hLu; ui = 0 if and only if u = 0; (10:65)

then according to the minimal theorem of quadratic functionals [Ode76] the

solution of equation 10.62 could also be found as the stationary point of the

following functional:

hLB;Bi � 2hE;Bi+ hE;Ei: (10:66)

Note that hE;Ei makes no di�erence in the stationary point, since it does
not depend on B, but it simpli�es the resulting formula.

To prove that if and only if some B0 satis�es

LB0 = E (10:67)

for a symmetric and positive operator L, then B0 is extreme for the func-
tional of equation 10.66, a sequence of identity relations based on the as-
sumption that L is positive and symmetric can be used:

hLB;Bi � 2hE;Bi + hE;Ei = hLB;Bi � 2hLB0; Bi+ hE;Ei =

hLB;Bi � hLB0; Bi � hB0;LBi+ hE;Ei =
hLB;Bi � hLB0; Bi � hLB;B0i+ hLB0; B0i � hLB0; B0i+ hE;Ei =

hL(B �B0); (B �B0)i � hLB0; B0i + hE;Ei: (10:68)

Since only the term hL(B � B0); (B � B0)i depends on B and this term
is minimal if and only if B � B0 is zero due to the assumption that L is

positive, therefore the functional is really extreme for that B0 which satis�es

equation 10.62.
Unfortunately L is not symmetric in its original form (equation 10.61)

due to the asymmetry of the radiosity equation which depends on %(p) but
not on %(p0). One possible approach to this problem is the subdivision of

surfaces into �nite patches having constant di�use coe�cients, and working
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with multi-variate functionals, but this results in a signi�cant computational

overhead.

Now another solution is proposed that eliminates the asymmetry by cal-

culating B(p) indirectly through the generation of B(p)=
q
%(p). In order to

do this, both sides of the radiosity equation are divided by
q
%(p):

E(p)q
%(p)

=
B(p)q
%(p)

�
q
%(p)

Z
A

B(p0)q
%(p0)

q
%(p0) f(p; p0) dA0: (10:69)

Let us de�ne B�(p), E�(p) and g(p; p0) by the following formulae:

B�(p) =
B(p)q
%(p)

; E�(p) =
E(p)q
%(p)

; g(p; p0) = f(p; p0)
q
%(p)%(p0):

(10:70)

Using these de�nitions, we get the following form of the original radiosity

equation:

E�(p) = B�(p) �
Z
A

B�(p0) g(p; p0) dA0: (10:71)

Since g(p; p0) = g(p0; p), this integral equation is de�ned by a symmetric

linear operator L�:
L�B�(p) = B�(p)�

Z
A

B�(p0) g(p; p0) dA0: (10:72)

As can easily be proven, operator L� is not only symmetric but also
positive taking into account that for physically correct models:Z

A

Z
A

B(p0)g(p; p0) dA0dA �
Z
A

B(p) dA: (10:73)

This means that the solution of the modi�ed radiosity equation is equiv-
alent to �nding the stationary point of the following functional:

I(B�) = hL�B�; B�i � 2hE�; B�i+ hE�; E�i =Z
A

(E�(p) �B�(p))
2
dA�

Z
A

Z
A

B�(p) B�(p0) g(p; p0) dA dA0: (10:74)

This extreme property of functional I can also be proven by generating

the functional's �rst variation and making it equal to zero:

0 = �I =
@I(B�+ � �B)

@�
j�=0: (10:75)
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Using elementary derivation rules and taking into account the following

symmetry relation:

Z
A

Z
A

B�(p) �B(p0) g(p; p0) dAdA0 =
Z
A

Z
A

�B(p) B�(p0) g(p; p0) dAdA0

(10:76)

the formula of the �rst variation is transformed to:

0 = �I =
Z
A

[E�(p) �B�(p) +
Z
A

B�(p0) � g(p; p0) dA0] � �B dA: (10:77)

The term closed in brackets should be zero to make the expression zero for

any �B variation. That is exactly the original radiosity equation, hence

�nding the stationary point of functional I is really equivalent to solving

integral equation 10.71.
In order to �nd the extremum of functional I(B�), Ritz's method is used.

Assume that the unknown function B� is approximated by a function series:

B�(p) �
nX

k=1

ak � bk(p) (10:78)

where (b1; b2; :::; bn) form a complete function system (that is, any piecewise
continuous function can be approximated by their linear combination), and

(a1; a2; :::; an) are unknown coe�cients. This assumption makes functional
I(B�) an n-variate function I(a1; :::; an), which is extreme if all the partial
derivatives are zero. Having made every @I=@ak equal to zero, a linear
equation system can be derived for the unknown ak-s (k = f1; 2; :::; ng):

nX
i=0

ai[
Z
A

bi(p)bk(p)dA�
Z
A

Z
A

bk(p)bi(p
0)g(p; p0) dAdA0] =

Z
A

E�(p)bk(p)dA:

(10:79)
This general formula provides a linear equation for any kind of complete

function system b1; :::; bn, thus it can be regarded as a basis of many dif-

ferent radiosity approximation techniques, because the di�erent selection of

basis functions, bi, results in di�erent methods of determining the radiosity
distribution.
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Three types of function bases are discussed:

� piecewise constant functions which lead to the traditional method,

proving that the original approach is a special case of this general

framework,

� piecewise linear functions which, as we shall see, are not more di�cult

than the piecewise constant approximations, but they can provide

more accurate solutions. It is, in fact, a re�ned version of the method

of \vertex-surface form factors",

� harmonic (cosine) functions where the basis functions are not of �nite

element type because they can approximate the radiosity distribution

everywhere not just in a restricted part of the domain, and thus fall

into the category of global element methods.

piecewise constant

piecewise linear

harmonic (cosine)

Figure 10.10: One-dimensional analogy of proposed basis functions

10.5.1 Piecewise constant radiosity approximation

Following a �nite element approach, an appropriate set of bk functions can

be de�ned having broken down the surface into �A1, �A2,...,�An surface
elements:

bk(p) =

8<
:
1 if p is on �Ak

0 otherwise

(10:80)
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If the emission E and the di�use coe�cient % are assumed to be con-

stant on the elemental surface �Ak and equal to Ek and %k respectively,

equation 10.79 will have the following form:

ak�Ak �
nX
i=0

ai[
Z

�Ak

Z
�Ai

g(p; p0) dAdA0] =
Ekp
%k
�Ak: (10:81)

According to the de�nition of basis function bk, the radiosity of patch k is:

Bk = B�
k

p
%k = ak

p
%k: (10:82)

Substituting this into equation 10.81 and using the de�nition of g(p; p0) in

equation 10.70, we get:

Bk�Ak � %k

nX
i=0

Bi[
Z

�Ak

Z
�Ai

f(p; p0) dAdA0] = Ek�Ak: (10:83)

Let us introduce the patch-to-patch form factor as follows:

Fki =
1

�Ak

Z
�Ak

Z
�Ai

f(p; p0) dAdA0: (10:84)

Note that this is the usual de�nition taking into account the interpretation
of f(p; p0) in equation 10.59.
Dividing both sides by �Ak, the linear equation is then:

Bk � %k

nX
i=0

BiFki = Ek: (10:85)

This is exactly the well known linear equation of original radiosity method
(equation 10.10). Now let us begin to discuss how to de�ne and use other,
more e�ective function bases.

10.5.2 Linear �nite element techniques

Let us decompose the surface into planar triangles and assume that the

radiosity variation is linear on these triangles. Thus, each vertex i of the

triangle mesh will correspond to a \tent shaped" basis function bi that is 1
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at this vertex and linearly decreases to 0 on the triangles incident to this

vertex.

Placing the center of the coordinate system into vertex i, the position

vector of points on an incident triangle can be expressed by a linear combi-

nation of the edge vectors ~a;~b:

~p = �~a+ �~b (10:86)

with �; � � 0 ^ � + � � 1.

1

b  (p)i basis function

Figure 10.11: Linear basis function in three dimensions

Thus, the surface integral of some function F on a triangle can be written
as follows: Z

�A

F (~p)dA =

1Z
�=0

1��Z
�=0

F (�; �)j~a�~bjd�d� =

2�A

1Z
�=0

1��Z
�=0

F (�; �) d�d�: (10:87)

If F (�; �) is a polynomial function, then its surface integration can be de-
termined in closed form by this formula.
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The basis function which is linearly decreasing on the triangles can be

conveniently expressed by �; � coordinates:

bk(�; �) = 1� �� �;

bk0(�; �) = �;

bk00(�; �) = �;

bi = 0 if i 6= k; k0; k00

(10:88)

where k, k0 and k00 are the three vertices of the triangle.

Let us consider the general equation (equation 10.79) de�ning the weights

of basis functions; that is the radiosities at triangle vertices for linear �nite

elements. Although its integrals can be evaluated directly, it is worth ex-

amining whether further simpli�cation is possible. Equation 10.79 can also

be written as follows:Z
A

[
nX
i=0

aifbi(p) �
Z
A

bi(p
0)g(p; p0) dA0g �E�(p)] � bk(p) dA = 0 (10:89)

The term enclosed in brackets is a piecewise linear expression according to
our assumption if E� is also linear. The integration of the product of this
expression and any linear basis function is zero. That is possible if the term

in brackets is constantly zero, thus an equivalent system of linear equations
can be derived by requiring the closed term to be zero in each vertex k (this
implies that the function will be zero everywhere because of linearity):

ak �
nX
i=0

ai

Z
A

bi(p
0)g(pk; p

0) dA0 = E�
k ; k = f1; 2; :::ng (10:90)

As in the case of piecewise constant approximation, the di�use coe�cient
%(p) is assumed to be equal to %k at vertex k, and using the de�nitions of

the normalized radiosities we can conclude that:

ak = B�
k =

Bkp
%k
; E�

k =
Ekp
%k
: (10:91)

Substituting this into equation 10.90 and taking into account that bi is zero

outside �Ai, we get:

Bk � %k

nX
i=0

Bi[
Z

�Ai

bi(p
0)f(pk; p

0)

s
%(p0)

%i
dA0] = Ek: (10:92)
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Let us introduce the vertex-patch form factor Pki:

Pki =
Z

�Ai

bi(p
0)f(pk; p

0)

s
%(p0)

%i
dA0: (10:93)

If the di�use coe�cient can be assumed to be (approximately) constant on

the triangles adjacent to vertex i, then:

Pki �
Z

�Ai

bi(p
0)f(pk; p

0) dA0: (10:94)

The linear equation of the vertex radiosities is then:

Bk � %k

nX
i=0

BiPki = Ek: (10:95)

This is almost the same as the linear equation describing the piecewise
constant approximation (equation 10.85), except that:

� Unknown parametersB1; :::; Bk represent now vertex radiosities rather

than patch radiosities. According to Euler's law, the number of ver-
tices of a triangular faced polyhedron is half of the number of its faces
plus two. Thus the size of the linear equation is almost the same as
for the number of quadrilaterals used in the original method.

� There is no need for double integration and thus the linear approxi-
mation requires a simpler numerical integration to calculate the form
factors than constant approximation.

The vertex-patch form factor can be evaluated by the techniques devel-

oped for patch-to-patch form factors taking account also the linear variation
due to bi. This integration can be avoided, however, if linear approxima-
tion of f(pk; p

0) is acceptable. One way of achieving this is to select the
subdivision criterion of surfaces into triangles accordingly.

A linear approximation can be based on point-to-point form factors be-

tween vertex k and the vertices of triangle �A0. Let the f(pk; p) values of

the possible combinations of point pk and the vertices be F1; F2; F3 respec-
tively. A linear interpolation of the point-to-point form factor between pk
and p0 = �0~a0 + �0~b0 is:

f(pk; p
0) = �0F1 + �0F2 + (1 � �0 � �0)F3: (10:96)
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Using this assumption the surface integral de�ning Pki can be expressed

in closed form.

10.5.3 Global element approach | harmonic

functions

In contrast to previous cases, the application of harmonic functions does

not require the subdivision of surfaces into planar polygons, but deals with

the original geometry. This property makes it especially useful when the

view-dependent rendering phase uses ray-tracing.

Suppose surface A is de�ned parametrically by a position vector function,

~r(u; v), where parameters u and v are in the range of [0; 1].

Let a representative of the basis functions be:

bij = cos(i�u) � cos(j�v) = C i
uC

j
v (10:97)

(C i
u substitutes cos(i�u) for notational simplicity). Note that the basis

functions have two indices, hence the sums should also be replaced by double
summation in equation 10.79. Examining the basis functions carefully, we
can see that the goal is the calculation of the Fourier series of the radiosity
distribution.
In contrast to the �nite element method, the basis functions are now non-

zero almost everywhere in the domain, so they can approximate the radiosity

distribution in a wider range. For that reason, approaches applying this kind
of basis function are called global element methods.
In the radiosity method the most time consuming step is the evalua-

tion of the integrals appearing as coe�cients of the linear equation sys-
tem (equation 10.79). By the application of cosine functions, however, the

computational time can be reduced signi�cantly, because of the orthogonal
properties of the trigonometric functions, and also by taking advantage of
e�ective algorithms, such as Fast Fourier Transform (FFT).

In order to illustrate the idea, the calculation ofZ
A

E�(p)bkl(p) dA

for each k; l is discussed. Since E�(p) = E�(~r(u; v)), it can be regarded

as a function de�ned over the square [0; 1]2. Using the equalities of surface



10.5. HIGHER ORDER RADIOSITY APPROXIMATION 305

integrals, and introducing the notation J(u; v) = j@~r=@u�@~r=@vj for surface
element magni�cation, we get:

Z
A

E�(p)bkl(p) dA =

1Z
0

1Z
0

E�(~r(u; v))bkl(u; v)J(u; v) dudv: (10:98)

Let us mirror the function E�(~r) � J(u; v) onto coordinate system axes

u and v, and repeat the resulting function having its domain in [�1; 1]2
in�nitely in both directions with period 2. Due to mirroring and periodic

repetition, the �nal function Ê(u; v) will be even and periodic with period

2 in both directions. According to the theory of the Fourier series, the

function can be approximated by the following sum:

Ê(u; v) �
mX
i=0

mX
j=0

EijC
i
uC

j
v : (10:99)

All the Fourier coe�cientsEij can be calculated by a single, two-dimensional
FFT. (A D-dimensional FFT of N samples can be computed by taking
DND�1 number of one-dimensional FFTs [Nus82] [PFTV88].)
Since Ê(u; v) = E�(~r) � J(u; v) if 0 � u; v � 1, this Fourier series and the

de�nition of the basis functions can be applied to equation 10.98, resulting

in: Z
A

E�(p)bkl(p) dA =

1Z
u=0

1Z
v=0

mX
i=0

mX
j=0

EijC
i
uC

j
v � bkl(u; v) dudv =

mX
i=0

mX
j=0

Eij

1Z
0

C i
uC

k
udu

1Z
0

Cj
vC

l
vdv =

8>>>>>>>>>><
>>>>>>>>>>:

E0;0 if k = 0 and l = 0

E0;l=2 if k = 0 and l 6= 0

Ek;0=2 if k 6= 0 and l = 0

Ek;l=4 if k 6= 0 and l 6= 0

(10:100)

Consequently, the integral can be calculated in closed form, having re-

placed the original function by Fourier series. Similar methods can be used
to evaluate the other integrals. In order to computeZ

A

bij(p)bkl(p)dA

J(u; v) must be Fast Fourier Transformed.
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To calculate Z
A

Z
A

bk(p)b
0
i(p)g(p; p

0) dAdA0

the Fourier transform of

g(p(u; v); p0(u0; v0)) � J(u; v)J(u0; v0)

is needed. Unfortunately the latter requires a 4D FFT which involves

many operations. Nevertheless, this transform can be realized by two two-

dimensional FFTs if g(p; p0) can be assumed to be nearly independent of

either p or p0, or it can be approximated by a product form of p and p0

independent functions.

Finally, it should be mentioned that other global function bases can

also be useful. For example, Chebyshev polynomials are e�ective in ap-
proximation, and similar techniques to FFT can be developed for their

computation.


