
Quadratic Shading and its Hardware Implementation

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris
Department of Control Engineering and Information Technology,

Technical University of Budapest

Budapest, P�azm�any P. 1/D, H-1117, HUNGARY

(abbas,szirmay)@seeger.iit.bme.hu

Abstract. Rendering systems often represent curved surfaces as a mesh of planar polygons that

are shaded to restore a smooth appearance. Gouraud shading uses linear color interpolation and its

hardware implementation is relatively easy, but it handles specular highlights incorrectly and introduces

annoying artifacts called Mach banding over the edges of the polygon mesh. In software rendering Phong

shading has been more popular, because it can realistically handle specular materials. Since it requires

the rendering equation to be evaluated for each pixel, its hardware support poses problems. This paper

presents a nonlinear, i.e. quadratic interpolation scheme which is in between Gouraud shading and

Phong shading. It can also be implemented in hardware as Gouraud shading but its shading quality is

comparable with that of the Phong shading. The software simulation and the VHDL description of the

shading hardware are also presented.

Keywords: Re
ectance function, BRDF representation, hardware rendering, incremental concept,

interpolation, Gouraud and Phong shading.

1. Introduction

Computer graphics aims at rendering complex virtual world models and presenting the

image for the user. To obtain an image of a virtual world, surfaces visible in pixels are

determined, and the rendering equation or its simpli�ed form is used to calculate the

intensity of these surfaces, de�ning the color values of the pixels. The rendering equation

[9] expresses the output radiance Iout(~x; ~V) of a surface point ~x at direction ~V as the

function of the local surface properties and the incoming radiance I in emitted by the

light sources or re
ected o� other surfaces from direction ~L:

Iout(~x; ~V) =

Z

0

I in(~x; ~L) � fr(~L; ~x; ~V) � cos �
ind!~L

(1)

where �in is the angle between the incoming direction ~L and the surface normal at the

re
ection point ~x, i.e. cos �in = ~L �
~N if the vectors have unit length, fr is the BRDF

(bi-directional re
ected distributed function), and
0 is the set of possible incoming

directions forming a hemisphere.

If the indirect illumination coming from other surfaces is ignored and only directional

and positional light sources are present, I in is a Dirac-delta type function which simpli�es

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

2 Quadratic Shading and its Hardware Implementation

Lightsource 1

Lightsource 2

V

N

L 1

L2

xWindow

θ
θ

1

2Eye

Fig. 1. Radiance calculation in local illumination methods

the integral to a discrete sum:

Iout(~x; ~V) =
X
l

I inl (~x; ~Ll) � fr(~Ll; ~x; ~V) � cos �
in
l (2)

where I inl is the incoming radiance generated by light source l (�gure 1). Note that

this model does not account for the multiple re
ections of the light, only the direct

illumination of the light sources is considered.

The BRDF function fr is responsible for the optical properties of the surface. In

practice BRDF functions are mathematical formulae that have some free parameters

that can be set to mimic a given material.

2. Gouraud and Phong shading

The radiance values are needed for each pixel, which, in turn, require the rendering to

be solved for the visible surface. The rendering equation, even in its simpli�ed form,

contains a lot of complex operations, including the computation of the vectors, their

normalization and the evaluation of the output radiance, which makes the process rather

resource demanding.

The speed of rendering could be signi�cantly increased if it were possible to carry

out the expensive computations just for a few points or pixels, and the rest could be

approximated from these representative points by much simpler expressions. One way

of obtaining this is the tessellation of the original surfaces to polygon meshes and using

the vertices of the polygons as representative points. In this paper only triangle mesh

models are considered, thus the geometry should be approximated by a triangle mesh

before the algorithms can be used. It is assumed that the geometry has been transformed

to the screen coordinate system suitable for visibility calculations and projection. In the

screen coordinate system the X;Y coordinates of a point are equal to the corresponding

coordinates of that pixel in which this point can be seen, and the Z coordinate increases

with the distance from the viewer, thus it is the basis of visibility calculations (�gure 2).

Note, on the other hand, that the vectors used by the rendering equation are not trans-

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris 3

formed, because the viewing transformation is not angle preserving thus it may distort

the angles between them.

V

L
N

World coordinate system

y

x

z

Screen

X

Y

Z

Screen coordinate system

Eye at infinity

.

Camera window

Eye at finite distance

Viewing transformation

Single pixel V

L
N

Lightsource

Fig. 2. Transformation to the screen coordinate system

As mentioned, interpolation can be used to speed up the rendering of the triangle

mesh, where the expensive computations take place just at the vertices and the data

of the internal points are interpolated. A simple interpolation scheme would compute

the color and linearly interpolate it inside the triangle (Gouraud shading [1]). However,

specular re
ections may introduce strong non-linearity, thus linear interpolation can

introduce severe artifacts (left of �gure 3). The core of the problem is that the color can

be a strongly non-linear function of the pixel coordinates, especially if specular highlights

occur on the triangle, and this non-linear function can hardly be well approximated by

a linear function.

The artifacts of Gouraud shading can be eliminated by a non-linear interpolation

called Phong shading [2] (right of �gure 3). In Phong shading, vectors used by the

rendering equation are interpolated from the real vectors at the vertices of the approx-

imating triangle. In simpler algorithms only the normal vectors are interpolated while

the light and view vectors are constant. In more precise computations, the view and light

vectors are also interpolated. The interpolated vectors are normalized and the rendering

equation is evaluated at each pixel for di�use and specular re
ections and for each light

source, which is rather time consuming. The main problem of Phong shading is that it

requires complex operations on the pixel level, thus its hardware implementation is not

feasible. Originally, the interpolating function is linear. For example, the normal vector

of a pixel (X;Y) is
~N(X;Y) = a1(X;Y) � ~N1 + a2(X;Y) � ~N2 + a3(X;Y) � ~N3 (3)

where ai(X;Y) = aixX + aiyY + ai0 (i = 1; 2; 3) is a linear weighting function and ~Ni is

the normal vector at vertex i. The interpolation criterion requires that ai(X;Y) = 1 at

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

4 Quadratic Shading and its Hardware Implementation

vertex i and 0 in the other two vertices. From this criterion, the parameters (aix; aiy; ai0)

of each weighting function can be determined.

Fig. 3. Comparison of linear interpolation i.e. Gouraud shading (left) and non-linear interpolation by
Phong shading (right).

The superior rendering quality of Phong shading forced research to try to �nd a

reasonable compromise between Gouraud and Phong algorithms, that keeps the image

quality but also allows for hardware implementation. In Textronix terminals, for exam-

ple, the method called pseudo-Phong shading was implemented. Pseudo-Phong shading

recursively decomposes the triangles into small triangles setting the vectors at the ver-

tices according to a linear formula, and uses Gouraud shading when the small triangles

are rendered. If the sizes of the small triangles are comparable to the size of the pixels,

then this corresponds to Phong shading. However, when they are close to the origi-

nal triangle, this corresponds to Gouraud shading. Another family of algorithms used

highlight tests [6] to determine whether or not a specular highlight intersects the trian-

gle. If there is no intersection, then Gouraud shading is used, otherwise the triangle is

rendered with Phong shading. Du� [3] extended the incremental approach of Gouraud

shading to Phong shading. He obtained the re
ected radiance of a single light source as

a direct function of the pixel coordinates and evaluated this function using forward dif-

ferences. Based on this, Bishop proposed a simpli�cation using Taylor's approximation

in [4]. The determination of the derivatives of the re
ected radiance is quite complicated

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris 5

and requires expensive computation, and this computation must be repeated at each

pixel for di�use and specular re
ections and for each light source. Besides, according

to the nature of Taylor's series, the approximation is good around the point where the

derivatives were computed. Neighboring triangles may have di�erent color variation on

their edges, which leads to Mach banding over the edges of the triangles. Claussen [7]

compared di�erent simpli�cation strategies of the Phong illumination formulae and vec-

tor interpolation. Spherical interpolation elegantly traces back the interpolation to the

interpolation of a single angle inside a scan-line [5]. However, �nding the parameters

of a scan-line is also rather complicated and the method requires the evaluation of the

rendering equation at each pixel and for each light source. The computational cost is

also proportional to the number of light sources.

In this paper we propose a new interpolation scheme that uses appropriately selected

quadratic functions which can be implemented in hardware and can be initialized without

the computational burden of the Taylor's series approach. Unlike previous techniques the

new method can simultaneously handle arbitrary number of light sources and arbitrary

BRDF models.

3. Quadratic color interpolation

Our approach is in between Gouraud shading and Phong shading. The rendering equa-

tion is evaluated in a few representative points and the interpolation is done in color space

as in Gouraud shading. However, the interpolation is not linear, but rather quadratic.

Since the quadratic function has six degrees of freedom, the rendering equation will be

evaluated at six representative points on the triangle and the color is interpolated from

the colors of these representative points. Let us approximate the color inside the triangle

by the following two-variate quadratic function:

I(X;Y) = T5X
2 + T4XY + T3Y

2 + T2X + T1Y + T0: (4)

To �nd the unknown parameters T0; : : : ; T5, the color obtained from the rendering equa-

tion is substituted into this scheme at six points, and the six variate linear equation is

solved for the parameters. The selection of these representative points should take into

account di�erent criteria. The error should be roughly uniform inside the triangle but

should be less on the edges and on the vertices in order to avoid Mach banding. On

the other hand, the resulting linear equation should be easy to solve in order to save

computation time. An appropriate selection meeting both requirements uses the three

vertices:

I(X1; Y1) = I1; I(X2; Y2) = I2; I(X3; Y3) = I3;

and other three points on the edges half way between the two vertices, as follows:

I(
X1 +X2

2
;
Y1 + Y2

2
) = I12; I(

X1 +X3

2
;
Y1 + Y3

2
) = I13; I(

X2 +X3

2
;
Y2 + Y3

2
) = I23:

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

6 Quadratic Shading and its Hardware Implementation

Translating the triangle to have its bottom vertex at the coordinate origin yields:

I1 = T0;

I2 = T5X
2
2 + T4X2Y2 + T3Y

2
2 + T2X2 + T1Y2 + T0;

I12 = T5
X2
2

4
+ T4

X2Y2

4
+ T3

Y 2
2

4
+ T2

X2

2
+ T1

Y2

2
+ T0;

I3 = T5X
2
3 + T4X3Y3 + T3Y

2
3 + T2X3 + T1Y3 + T0;

I13 = T5
X2
3

4
+ T4

X3Y3

4
+ T3

Y 2
3

4
+ T2

X3

2
+ T1

Y3

2
+ T0;

I23 = T5
(X2 +X3)

2

4
+ T4

X2 +X3

2
�

Y2 + Y3

2

+ T3
(Y2 + Y3)

2

4
+ T2

X2 +X3

2
+ T1

Y2 + Y3

2
+ T0:

This system of linear equations can be solved in a straightforward way resulting in:

T0 = I1;

T1 =
C3X2 � C2X3

X2Y3 � Y2X3

;

T2 =
C2Y3 � C3Y2

X2Y3 � Y2X3

;

T3 =
2C12 � T5X

2
2 � T4X2Y2

Y 2
2

;

T4 =
(4C13Y2 � C23Y3)(2X

2
2Y3 � 2X2Y2X3)� (4C12Y3 � C23Y2)(2Y2X

2
3 � 2X2X3Y3)

(2X2
2Y3 � 2X2Y2X3)(Y2X3Y3 �X2Y

2
3)� (X2Y2Y3 � Y 2

2 X3)(2Y2X
2
3 � 2X2X3Y3)

;

T5 =
(4C12Y3 � C23Y2)(Y2X3Y3 �X2Y

2
3)� (4C13Y2 � C23Y3)(X2Y2Y3 � Y 2

2 X3)

(2X2
2Y3 � 2X2Y2X3)(Y2X3Y3 �X2Y

2
3)� (X2Y2Y3 � Y 2

2 X3)(2Y2X
2
3 � 2X2X3Y3)

;

where

C2 = 4I12 � 3I1 � I2;

C12 = I1 + I2 � 2I12;

C3 = 4I13 � 3I1 � I3;

C13 = I1 + I3 � 2I13;

C23 = 4I1 � 4I12 � 4I13 + 4I23:

The values from T0; : : : ; T5 should be substituted in equation (4) where it will be

simpli�ed to a linear function by the incremental concept. The calculation of these

parameters contains 25 additions, 51 multiplications, and 5 divisions.

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris 7

4. Highlight test

The method proposed in the previous section approximates the radiance by a quadratic

function. If the triangles are too big and the radiance changes quickly due to a highlight,

then this approximation can still be inaccurate. In order to avoid this problem, the

accuracy of the approximation is estimated, and if it exceeds a certain threshold, then

the triangle is adaptively subdivided into 4 triangles by halving the edges.

Test
point

Difference of the
test pairs is small

Difference of the
 test pairs is big

X1,Y1

X2,Y2

X3,Y3

X1+X2

X2+X3
2 2

2 2

2 2

X1+X3

, Y2+Y3

Y1+Y2,

Y1+Y3,

Fig. 4. Highlight test and adaptive subdivision

Recall that the knot points of the interpolation are the vertices and the middle points

of the edges. Thus a reasonable point where the error can be measured is the center of

the triangle. This leads to the following highlight test algorithm. Having computed the

T0; : : : ; T5 parameters, the re
ected radiance is estimated at the center of the triangle

and the result is compared with the result of the evaluation of the shading formula. In

case of big di�erence, adaptive subdivision takes place. Note that the overhead of one

more shading evaluation is a�ordable.

5. Hardware implementation of the quadratic interpolation

This section reviews the implementation strategies of simple functions on scan-lines that

are used to �ll horizontal sided image space triangles. If the image space triangle is not

formed as horizontal sided triangle, then it should be divided into two parts, a lower

and an upper. In this section we will consider only the lower horizontal sided triangle.

Image space triangle and horizontal sided triangle are shown in �gure 5.

If we implemented equation (4) directly, the hardware should compute
oating point

multiplications and additions for each value, which are rather demanding. To eliminate

the multiplications, we introduce the incremental concept which traces back the eval-

uation of the function I(X;Y) to the computation of an increment from the previous

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

8 Quadratic Shading and its Hardware Implementation

Image space
 triangle

x

y

 Single
 scan-line

Single
 pixel

X1,Y1

X2,Y2

X3,Y3

 Horizontal
 sided triangle
 (lower part)

y

xX1,Y1

X2,Y2

 Horizontal
 sided triangle
 (upper part)

Fig. 5. Image space triangle and horizontal sided triangle

values, for instance, from I(X � 1; Y). The increments can then be evaluated by simple

additions. The triangle �lling algorithm should generate the sequence of (X;Y) integer

values called pixels that are inside a horizontal sided triangle. The algorithm generates

the pixels scan-line by scan-line. In a single scan-line the Y coordinate is constant.

To simplify equation (4), we introduce the incremental concept for the scan-lines and

for their start edges. First, the quadratic function is reduced to a linear one for the

scan-lines:

I(X + 1; Y) = I(X;Y) + �I(X;Y)

where

�I(X;Y) = 2T5X + T4Y + T5 + T2: (5)

Then we apply the incremental concept once more for the linear function �I(X;Y)

to obtain the incremental value inside the scan-line:

�I(X + 1; Y) = �I(X;Y) + 2T5:

When we step onto the next scan-line, Y is incremented, and the start Xstart and the

end Xend coordinates should be determined by the following equations:

Xstart(Y) =
Y � Y1

Y2 � Y1
� (X2 �X1) +X1;

Xend(Y) =
Y � Y1

Y3 � Y1
� (X3 �X1) +X1:

Since Xstart(Y) and Xend(Y) are linear functions, they can be simpli�ed by applying

the incremental concept:

Xstart(Y + 1) = Xstart(Y) +Astart;

Xend(Y + 1) = Xend(Y) +Aend;

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris 9

where

Astart =
X2 �X1

Y2 � Y1
; Aend =

X3 �X1

Y3 � Y1
:

Now let us discuss the computation on the start edge. When the algorithm steps onto

the next scan-line, both I(X;Y) and �I(X;Y) should be recomputed with the data of

the new scan-line. The incremental concept can also be used for these computations,

which traces back these updates to two additions. The �rst application of the incremental

concept reduces the computation of the quadratic function I(X;Y) to a linear one:

I(X +Astart; Y + 1) = I(X;Y) + �Istart(X;Y)

where

�Istart(X;Y) = T5A
2
start + (2T5X + T4Y + T4 + T2)Astart + T4X + 2T3Y + T3 + T1:

Applying the incremental concept once more for the linear function �Istart(X;Y),

we obtain a constant addition:

�Istart(X +Astart; Y + 1) = �Istart(X;Y) + 2(T5A
2
start + T4Astart + T3):

To obtain the incremental value �I(X;Y) at the start edge, we should apply the

incremental concept only once since it is already a linear function (equation (5)):

�I(X +Astart; Y + 1) = �I(X;Y) + 2T5Astart + T4:

Let us group these formulae in the following algorithm:

Xstart = X1, Xend = X1

Istart(X;Y) = T5X
2
start + T4XstartYstart + T3Y

2
start + T2Xstart + T1Ystart + T0

�Istart(X;Y) = T5A
2
start + (2T5Xstart + T4Ystart + T4 + T2)Astart

+T4Xstart + 2T3Ystart + T3 + T1
�I(Xstart; Y) = 2T5Xstart + T4Ystart + T5 + T2
for Y = Y1 to Y2 do

I(X;Y) = Istart(X;Y)

�I(X;Y) = �I(Xstart; Y)

for X = Xstart to Xend do

write(X , Y , I(X;Y))

I(X;Y) += �I(X;Y)

�I(X;Y) += 2T5
endfor

�I(Xstart; Y) += 2T5Astart + T4
Istart(X;Y) += �Istart(X;Y)

�Istart(X;Y) += 2(T5A
2
start + T4Astart + T3)

Xstart += Astart

Xend += Aend

endfor

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

10 Quadratic Shading and its Hardware Implementation

Note that function I and the parameters are not integers, and if we ignored the

fractional part, the incremental formula would accumulate the error to an unacceptable

level. The realization of
oating point arithmetic is not at all simple. Non-integers,

fortunately, can also be represented in �xed point form where the low bI bits of the

code word represent the fractional part. From a di�erent point of view, a code word

having binary code C represents the real number C � 2�bI . The number of bits in the

fractional part has to be set to avoid incorrect I calculations due to the cumulative error

in I . Since the maximum length of the iteration is M = max(Y2 � Y1) +max(X2 �X1);

and the maximum error introduced by a single step of the iteration is less than 2�bI ,

the cumulative error is maximum M � 2�bI . Incorrect calculations of I is avoided if

the cumulative error is less than 1, i.e. bI > log2M . Since the results are expected in

integer form, they must be converted to integers at the �nal stage of the calculation. The

round function �nding the nearest integer for a real number, however, is quite diÆcult to

implement in hardware. Fortunately, the Round function can be replaced by the Trunc

function generating the integer part of a real number if 0:5 is added to the number to be

converted. The implementation of the Trunc function poses no problem for �xed point

representation, since just the bits corresponding to the fractional part must be neglected.

2T

I(X,Y)

I start

∆

∆ I (X,Y)

Σ

Σ

Σ

Σ

Register

Register

start
2

start

 counter

X

CLK

X
X

 comp.

>

<

comp.

 counter

Y1

STOP

Y

<

Y2

>

>

>

>

<

start

end

Register

X

X

Y

Y

2(T A
5 4 3

T TA+ +)

5

(X,Y)

start

Register

Register

Σ

>

2T
5

Astart +T4

∆ I ,Y)

I(X,Y)

(X start

L S

S L

load

load

Fig. 6. Hardware implementation of two-variate quadratic functions

The hardware implementation is shown in �gure 6. In �gure 6 the registers usually

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris 11

have two data inputs L and S. L is the input to the register when the load signal is

active, and S is the input to the register for each clock. The clock signal of the subsystem

responsible for the internal pixels of the scan-lines is the system clock. However, the clock

signal controlling the elements that compute the interpolation at the start edge is the

output of the comparator detecting the end of the scan-line.

6. Simulation results

The proposed algorithm has been implemented �rst in Microsoft Visual C++ and tested

as a software. In �gures 9, 10 and 11 spheres tessellated on di�erent levels are compared.

Gouraud shading evaluates the rendering equation for every vertex, quadratic shading

for every vertex and edge centers and Phong shading for each pixel. The di�erence of

the algorithms is signi�cant when the tessellation is not very high. The measured times

of drawing of the coarsely tessellated spheres are as follows: Gouraud shading 230 msec,

quadratic shading 250 msec, and Phong shading 450 msec. Note that Gouraud shading

performs poorly on coarsely tessellated surfaces, but the visual quality of quadratic

shading and Phong shading is similar. On the other hand, concerning the speed and the

suitability for hardware implementation, quadratic shading is close to Gouraud shading.

Figure 8 shows a more complex scene with normal tessellation level. Looking at these

images we can conclude that quadratic shading is visually superior to Gouraud shading

and indistinguishable from classical Phong shading.

Having tested the software implementation, the hardware realization was speci�ed in

VHDL and simulated in ModelTech environment. The timing diagram of the algorithm

is shown by �gure 7. The delay times are according to XILINX XCV300-6 FPGA. In

this �gure we can follow the operation of the hardware. The hardware can generate

one pixel per one clock cycle. The length of the clock cycle | which is also the pixel

drawing time | depends on FPGA devices and on the screen memory access time. For

the mentioned device it can be less than 50 nsec. While the hardware draws the actual

triangle, the software can compute the initial values for the next triangle, so initialization

and triangle drawing are executed parallely.

7. Conclusions

This paper proposed a new rendering strategy where the color is evaluated by the ren-

dering equation at six representative points, three on the vertices and the other three

halfway between the vertices, then it is interpolated inside the triangle according to a

quadratic scheme. The algorithm has also been transformed to a hardware design that

has been simulated in VHDL demonstrating that 50 nsec pixel drawing time can be

obtained. Even if the screen has about 1000� 1000 resolution, the complete image can

be redrawn 16 times per second which provides the illusion of continuous motion.

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

12 Quadratic Shading and its Hardware Implementation

Fig. 7. Timing diagram of the hardware generated by the VHDL simulator

Fig. 8. The mesh of a chicken (left) and its image rendered by classical Phong shading (middle) and by

quadratic shading (right)

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris 13

Fig. 9. Rendering coarsely tessellated spheres (168 triangles) of specular exponents n = 5 (top) and
n = 50 (bottom) with Gouraud shading (left), quadratic shading (middle) and Phong shading

(right)

Fig. 10. Rendering moderately tessellated spheres (374 triangles) of specular exponents n = 5 (top) and

n = 50 (bottom) with Gouraud shading (left), quadratic shading (middle) and Phong shading

(right)

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

14 Quadratic Shading and its Hardware Implementation

Fig. 11. Rendering highly tessellated spheres (690 triangles) of specular exponents n = 5 (top) and

n = 50 (bottom) with Gouraud shading (left), quadratic shading (middle) and Phong shading

(right)

References

1971
[1] H. Gouraud. Computer display of curved surfaces. ACM Transactions on Computers, C-20(6):623{

629, 1971.

1975
[2] B. T. Phong. Illumination for computer generated images. Communications of the ACM, 18:311{317,

1975.

1979
[3] T. Du�. Smoothly shaded rendering of polyhedral objects on raster displays. In Computer Graphics

(SIGGRAPH '79 Proceedings), 1979.

1986
[4] G. Bishop and D.M. Weimar. Fast phong shading. Computer Graphics, 20(4):103{106, 1986.

1989
[5] A. M. Kuijk and E. H. Blake. Faster phong shading via angular interpolation. Computer Graphics

Forum, pages 315{324, 1989.
[6] A. Watt. Fundamentals of Three-dimensional Computer Graphics. Addision-Wesley, 1989.

1990
[7] U. Claussen. On reducing the phong shading method. Computer & Graphics, pages 73{81, 1990.

1994
[8] L. Szirmay-Kalos and G. M�arton. On hardware implementation of scan-conversion algorithms. In

8th Symp. on Microcomputer Appl., Budapest, Hungary, 1994.

1995
[9] L. Szirmay-Kalos (editor). Theory of Three Dimensional Computer Graphics. Akad�emia Kiad�o,

Budapest, 1995. http://www.iit.bme.hu/~szirmay.

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

Abbas Ali Mohamed, L�aszl�o Szirmay-Kalos, Tam�as Horv�ath and Tibor F�oris 15

Ali Abbas Mohammed is a Ph.D. student at the Department of

Control Engineering and Information Technology of the Budapest

University of Technology and Economics. He received M.Sc. de-

gree from the same university in 1997. His research interests in-

clude computer graphics hardware, especially the implementation

of shading algorithms using high-level logic synthesis and VHDL.

L�aszl�o Szirmay-Kalos was graduated from the Technical Uni-

versity of Budapest in 1987 and received Ph.D. degree from the

Hungarian Academy of Sciences in 1992. Currently he works as an

associate professor at the Department of Control Engineering and

Information Technology of the Budapest University of Technol-

ogy and Economics where he heads the computer graphics group.

His research interests include global illumination rendering, quasi-

Monte Carlo techniques, visualization and object-oriented meth-

ods (homepage: http://www.iit.bme.hu/ szirmay).

Tam�as Horv�ath is senior lecturer at the Department of Control

Engineering and Information Technology of the Budapest Uni-

versity of Technology and Economics. He is involved in advance

digital design, high-level logic synthesis and their application in

computer graphics.

Tibor F�oris is a chief software engineer at the Hungarian Telem-

atics Co. and also holds a part time position at the Budapest

University of Technology and Economics. He participated in var-

ious research and development projects including software devel-

opment for special purpose graphics hardware, the development

of process visualisation and �nancial information systems.

Machine GRAPHICS & VISION vol. 0, no. 0, 0000, pp.

