
Institute of Computer Graphics. TU Vienna TR-186-2-98-19

1

Object-Oriented Framework and Methodology to
Process Visualisation System Development

László Szirmay-Kalos
e-mail: szirmay@fsz.bme.hu

Department of Control Engineering and Information Technology,
Technical University of Budapest

Abstract

In this paper a process visualisation development system and its associated development methodology are
presented. This methodology is optimised to systems that have complex structure and are built of large number of
components belonging to relatively small number of types. In order to handle the complexity, the input
requirements of the method is as close to the ”native language” of the application as possible. The elements of the
”native language” are assumed to include engineering drawings and manuals describing the operation of
component types the system is built of. Graphics techniques are used to supply the engineering drawings into the
development system while not only the required visual appearance is described but the structure of the underlying
system is also defined. The elements of engineering drawings are dynamized to animate the graphics presentation
to reflect the current state of the monitored system. Component manuals are transformed to interface and state
definitions from which a code generator generates a C++ class for each component type. This C++ class must be
tuned to reflect the operation of a single component type. From these definitions the development system
automatically builds up the complete visualisation program, providing easy and fast application development.

Keywords: process visualisation development systems, object-oriented design, model-view-controller
paradigm.

Introduction

Process visualisation systems are used to monitor the operation of industrial processes and to
provide a graphics representation of the current state to the user. Furthermore, they also allow
the user to intervene in the process operation. A process visualisation system is informed
about the changes of the underlying process by messages encoding events or results of
measurements. In order to derive the current state of the process from these changes, a
process visualisation system incorporates a model of the monitored system. The objects of the
model correspond to physical or logical components of the monitored system. The level of
abstraction on which components are defined is determined by the level of detail the
visualisation system must provide. If all important variables of physical components were
measured and the results were sent to the related object, then the current state of the process -
that is the current state of every component - could be determined easily without requiring the
model objects to communicate with each other. In real systems, however, the majority of
components are not connected directly to measuring instruments, thus the state of their model
objects must be calculated from the state of those model objects which are updated by
messages from the process. This is possible if the model incorporates not only the objects
reflecting components, but also the structure of the underlying system and ”knows” how the
process operates. This means that the model is expected to simulate the operation of the real
system.

In an electric supply system, for example, the voltage is measured at the outputs of the
transformers, from which the voltage of all transmission lines should be calculated and
presented to the user. This can be done if the topology of the system is known and the

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

2

visualisation program is aware of the rules of operation: a transmission line is equipotential
and the two endpoints of a switch have the same voltage if the switch is closed.

In addition to simulating the real process to keep the complete model updated, a process
visualisation system should also provide graphics presentation to the user and interact with
him.

For complex processes, both the model management and the design of the graphics
presentation requires a great amount of programming effort. Since process visualisation
systems are demanded by all sectors of industry, the need to support the development of such
software products created a family of tools called Process Visualisation Development
Systems, including, for example, Fix DMACS [1], Vision [2], Visual Designer [4], PVSS [5],
Sammi[6] and SL-GMS [7].

General purpose process visualisation systems have to provide solutions for two different
problems. On the one hand, they have to support the definition of the model and its
interfacing to the process. On the other hand, they should provide the features of a user
interface development package and help interconnect the generated user interface with the
model. Systems that support only the user interface definition (e.g. DataViews [3], IlogViews
[8]) can also be used to develop process visualisation, but the developer has to add all the
functionality of the model in a separate code.

Current process visualisation development systems provide the developer with WYSWYG
style editors to define the user interface interactively and to specify how the graphics is
animated. The generated user interface consists of widgets and dynamic graphics elements. In
some visualisation development systems the set of available user interface elements is fixed,
while in others this set is extensible. The behaviour of user interface objects is controlled by
setting the properties or by adding program segments in triggers.

Model management is solved through the use of so called databases where model objects are
stored, and the records and fields from these databases are visualised. The behaviour of the
model and the co-operation between the model and the view should be defined by a separate
program written in a ordinary or graphical programming language. The applied graphical
programming languages describe the functionality as dataflow or eventflow diagrams that are
usually built up from fixed transformation elements. This approach is very popular in scientific
visualisation systems [8] where the model could be defined by a set of differential equations or
other well defined mathematical formalism. For process visualisation, however, where a model
can practically be anything that can be simulated on a computer, a restricted set of building
blocks might make the model definition cumbersome. Therefore, advanced development
systems allow user defined transformation blocks.

We can conclude that for the user interface part, process visualisation development systems
are clearly object oriented, but for the model part, they either do not provide any framework
or force the developer to follow a functional approach.

In order to evaluate a process visualisation development system and its associated development
methodology, the properties of the process to be visualised must also be taken into
consideration. This paper focuses on a large and important family of physical systems and
processes described by the following properties:

1. The physical system and its the required graphics presentation are very complex, where the
number of model objects and view elements can be thousands or even tens of thousands.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

3

2. The structure of the system is also complex. Furthermore, the components and the
structure of the real processes often vary even after the installation of the visualisation
system due to reconstruction.

3. The number of component types from which the physical system is built of, however, is
usually small (tens). The operation of a single component cannot be modelled by
mathematical structures, such as differential equations, real functions, digital networks,
etc. Instead, the operation is defined by rules describing how the component reacts to
changes on its inputs. Unlike the structure of the system, component types do not tend to
change during the life cycle of the physical system.

These features are common in the majority of the physical systems, such as in electric or water
supply; drains; train, car or flight traffic; analogue or digital networks; telecommunication
systems; etc. All of these systems are very complex, since they are built of many components
interconnected in complex ways, although they incorporate just a few component types of
relatively simple operation. The complex structure of these systems results in very complicated
global behaviour that is impossible to describe by formal rules. The component level
behaviour, however, can be defined easily.

If we used commercial process visualisation development packages to visualise these
systems, complexity would pose severe problems. Commercial development packages usually
provide sophisticated techniques to define and modify the user interface, but they do not
really support the easy definition and modification of complex models. Their model definition
” language” may be very far from the natural concepts of the system to be visualised. The
functional approach offered by these systems for the description of the behaviour of the
model require the structure of the model to be ”wired” into the code, which makes it very
complicated to maintain for complex systems. Thus the definition and validation of the model
and global behaviour of such systems could be a nightmare, and it might be necessary to start
the definition from scratch if the structure of the system changes.

The basic requirements of a visualisation development system that can overcome this
problem of model complexity are summarised, as follows:

1. The input requirements of the development system should be close to what is usually
available about the underlying system or process, thus development does not require
intensive transformation of complex system descriptions and long design cycles. The
underlying system is assumed to be defined by:

• Engineering drawings based on the symbols and the notations used in the given
branch of industry.

• Manuals of component types used in the process. These manuals contain
information about the interface or connection points of the component and its
operation. For simple components, such as pipes, switches, lamps, etc., no such
manual is necessary.

2. The model objects and view elements should be generated safely and easily, and should
not allow inconsistent modification of the model or its view. The safe generation is further
emphasised by the observation that the components and the structure of real processes
often vary even after the introduction of the visualisation system due to reconstruction. The
visualisation system must be maintained on these occasions, which is a potential source of
errors. Safe and easy definition can be provided by graphics techniques. From the graphics
representation, model objects and view elements must be generated automatically and

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

4

without programming. Since component types do not tend to change during the life cycle
of the underlying process and their number is relatively small, programming is allowed on
the level of component types, but it must be supported by automatic code generation.

3. Since the complicated global behaviour of systems under consideration is a result of great
number of components and complicated structure, the functional properties should be
defined on the component level, thus the definition of the behaviour is separated from the
definition of objects and the structure. This makes the development clearly object-oriented.
The separation of the behaviour from the structure also makes the visualisation system
adaptive to evolving system structures. If the structure changes, the program code need not
to be altered.

4. The required programming effort should be minimised and the user of the development
system should not be expected to posses deep knowledge of advanced software
engineering and user interface methods. For user interface design no coding should be
required. However, for the sake of flexibility, the available user interface elements should
also be extended by user developed ones.

5. The generated visualisation program is optimised for speed, since process visualisation
systems are real-time systems where the response time is a key factor.

Using a development system meeting these requirements, we can start with engineering
drawings describing the process to be visualised and with manuals of component types.
Applying only graphics techniques, engineering drawings are supplied into the visualisation
development system while making design decisions on the graphics interface. Design
decisions concern how the engineering drawings are imitated by graphics windows and how
these drawings are made dynamic to reflect the actual state of the process. Note that
engineering drawings affect not only the layout and the elements of the user interface, but also
determine the objects and the structure of the model. In order to preserve this information,
engineering drawings are input to the system by a special scheme editor where the topology is
also defined in addition to the screen layout (geometry). The scheme editor also requires the
identification which model object is represented by a graphics element on screen. This
solution also requires transformation tools that convert the topological data of the schemes to
the structure of the model. Manuals of component types, on the other hand, are converted to
the description of the interface (connection points) and of the internal state, from which the
development system generates C++ classes that must be tuned and extended by the
application developer to reflect how the given component operates.

From the supplied information, the process visualisation development system generates an
executable process visualisation program that can be connected to the process interface
module and then be started to monitor the operation of the underlying process. The generated
visualisation program includes an executable code linked from a visualisation kernel and the
compiled C++ classes tuned by the user, and data files that describe the graphics elements and
the layout of the views, list the objects representing physical components and define the
structure of the underlying system. All of these are generated automatically, thus the
development is easy and works mainly with concepts native to the underlying process.

The fundamental ideas behind this process visualisation development system are the
application of reusable MVC (Model-View-Controller) classes and the automatic generation
of the instances of such MVC classes from graphics definitions.

The MVC paradigm is a standardised concept to separate the user interface part from the rest
of the application [9], [10]. The MVC approach divides the application into three parts:

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

5

1. The model part represents the problem domain and has no user interface elements.
2. The view part is responsible for the outer layer that is visible to the user.
3. The controller part controls the interaction between the model and the view.

There is a one-to-one correspondence between view objects and controller objects. A model
object, however, can have many controllers and views. Generally, a controller and its view
may be associated with multiple objects. Controllers connect the separated model and the user
interface formed by view objects. Every controller object both instantiates and controls its
view object. On the other hand, controller objects maintain control and route external events,
such as user actions like mouse clicks or keyboard hits, to that model object which is
responsible for reacting to it. To do so, that controller object must be found which is the
target of an external event, then this controller can deliver the event to its model object.
Controllers carry out this search by communicating with each other and with the help of
associated view objects. The co-operation of controllers is co-ordinated by tree structures
formed by controllers and views. The trees are created during initialisation when a controller
object instantiates its view object and its subcontrollers. The top level controller is called the
main controller and is usually instantiated by the main program. When a controller receives
an external event, it may ask its view object to determine whether the event is within its view,
or it may ask its subcontrollers whether or not the event is for them. If the event is within the
view of a controller, then the controller sends a message to the model object. The model may
alter its internal state and then informs its views to update themselves accordingly. In addition
to delivering user action to model objects, controllers also convert the initial event to a
message that is meaningful in the application domain.

It should be noted that in our approach the elements of MVC layers are implemented in the
visualisation program kernel and are mainly hidden from the application developer. The
application developer need not even know what the MVC concept is when he uses the
development system. MVC objects and their interconnections are created by the kernel while
it is reading data files that describe the given application. Thus, unlike most of the interactive
programs which determine the majority of model, view and controller objects in
programming time, our approach creates them in run time.

In the following chapters of this paper, we analyse the model, view and controller layers of
the visualisation programs generated by the proposed development system and then the
development methodology is discussed. It should be noted that this paper does not intend to
invent yet another modification of the MVC paradigm, but simply discusses how the MVC
paradigm can be applied to create a process visualisation system effectively and how the
model layer should be elaborated to allow the automatic generation of the objects of this layer
from graphics definitions. In order to present the specification of various parts of the program,
the analysis models and notations of the OMT method proposed by Rumbaugh et al. [12] are
used. The examples are taken from the fields of electric power supply and train traffic control
systems. The applicability of the concepts, however, is not limited to these application areas.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

6

The architecture of the generated visualisation program

In this chapter the model, view and controller layers of a program generated by the proposed
development system is discussed.

Model layer

In a process visualisation system the model is an abstraction of the visualised system or
process. The model reflects the components and the structure of the real system and is also
responsible for simulating its operation. The objects of the model are abstractions of the
physical components and their interconnections. As stated, the definition of the behaviour of
the model can be greatly simplified and be made adaptive to evolving system structures if the
behaviour is defined on component level. This means that the operation of individual
component types (switch, transmission line, track, instrument, etc.) must be defined without
knowing anything about the global system structure. This guarantees the validity of the
behaviour in any structure.

The behaviour of a single model class representing a component type describes how a
component of this type reacts to events or messages from its environment. The environment of
a single component consists of other components, the underlying process and the user himself.
The reaction of a model object may involve the modification of the internal state and the
transfer of messages to other model objects representing connected components or directly to
the controlled process. In this way, the global behaviour of the system can be defined by the
behaviour of individual objects and their communication. The structure of the system is defined
by communication paths, that is by describing which objects can communicate with each other.
Since the structure is dynamic and the same type of components can be used in many different
points of the system, the definition of the behaviour should not contain the communication
partners. Instead, so called connection points are identified for each component type and the
communication is defined by sending messages to or receiving messages from these connection
points. The actual partner of communication will be that object which is connected to the
”other end” of the connection point.

The state of a model object holds information needed to determine the effect of future
messages. From programmer’s point of view, state is decomposed into variables. In order to
assure flexibility, these variables are not limited to the built-in types of a programming
language. In the actual implementation, the variables have dynamic type, that is, the type of a
variable is determined by the value assigned to it. The value can have the following types:

• digital if the value has finite domain (enumeration type),
• analog if the domain is a subset of real numbers,
• text if it is a (non-limited) array of characters,
• pointer that can hold the address of an arbitrary data,
• FIFO, List, etc. of those types.

Concerning practical situations a ” real component type” has just a few connection points and
its behaviour can be summarised by a couple of rules. An electric wire, for example, has two
connection points. The rule that describes the operation of the wire is the following: if one end
(connection point) is energised (the object connected to this point has sent a message that this
point is energised), then the other end is also energised, which requires a message to be sent to
the object connected to it. If the actual voltage is irrelevant and we need to know only whether

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

7

or not the wire is energised, then the wire will have a single digital variable describing if it is
energised or not. An electric switch, on the other hand, propagates the ”energised” message
from one of its connection points to the other connection point only if the switch is closed.
Thus the internal state of a switch consists of a digital variable showing whether the switch is
closed or open, and two other variables for the two endpoints describing if they are energised.
Let us take other examples from the application area of train traffic control. A track has two
connection points. Concerning the behaviour of the track, it simply passes the train arrived at
one of its connection points to the other. The track has a single variable of type FIFO of text
containing the identifiers of the trains currently travelling on it. A track-switch has three
connections. The point where a train leaves the switch depends on the state of the switch (a
single digital variable) as well as the point where the train arrived at the switch.

The classes of objects corresponding to components are specialisations of the abstract Object
class. This Object class incorporates all general characteristics that are application independent.
In order to introduce application specific features, inheritance is employed. Thus, an
application object type (switch, track, etc.) is derived from the general Object class. In the
subclasses the behaviour of the object - encoded by the SetState method - is redefined.

The application independent and application dependent parts of the model are shown in the
following OMT object-diagram [12]:

SetState
_SetState

Object

Propagate

Connection

Value

DigitalValue AnalogValue TextValue

SetState

ApplicationObject1

SetState

ApplicationObject2

operator=(Value)

Variable
target

Application independent
layer

Application dependent
layer

Figure 1: Object model of the model layer of the visualisation program

As shown in figure 1, the class called Object has central role in the model section. The most
important method of Object is _SetState which is responsible for informing the object that
something happened that might affect this object as well. Objects are connected to each-other
by Connections. An Object can have many Connections, each of them represents a single direct
communication path between two Objects. If an Object has been affected by the underlying
process, user or connected objects, then it may want to update the state of other Objects
connected to it. To do so, the Object must Propagate a message through its Connections which
call the _SetState method of that Object which is the target of this Connection.

An Object may have many Variables representing its actual state. A Variable, in turn, has its
actual Value. Value is an abstract base class for the DigitalValue, AnalogValue, TextValue, etc.
classes. The actual type of a Variable depends on the actual type of its Value received through
the overloaded assignment (=) operator. This means that each time a Value of different type is

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

8

assigned to a Variable, the Variable changes its type. This is the way how dynamic typing is
implemented.

The object model of figure 1 provides a static view of the model layer of the visualisation
program. In order to introduce its dynamic behaviour, we must consider how the model layer
reacts to events coming from outside of this layer. According to the applied MVC paradigm,
only controllers can send messages to the model objects directly. These messages deliver user
actions and events occurred in the underlying process.

The communication sequence initiated by a message from the controller of a model is
summarised in the following event-trace diagram:

Object::
object1

ConnectionVariable Object::
object2

SetState

Propagate
_SetState

operator=

Controller

_SetState

Figure 2: Event trace of the reaction of the model layer to external events delivered by a controller

If the underlying process changes or a user action occurs, the model layer of the visualisation
system should be informed. The controller layer identifies that logical Object which the new
data belongs to and gets this Object to react according to its behaviour. This is shown as a
_SetState message in figure 2. Currently, a two-level message scheme has been implemented in
this reaction, since reacting to external events usually consists of general and application
dependent parts. First, the controller sends a _SetState message to the selected object. This
method is responsible for the general reaction. For instance, having called the application
specific part this method checks whether the internal state of the object changed and have those
views updated which are associated with this model object. On the other hand, the general
reaction method activates the specific reaction method called SetState which is responsible for
the application specific features. SetState is a virtual method that is redefined on the application
dependent level.

Receiving a SetState message, an Object may alter its Variables (through operator=) and
Propagate changes to other objects connected to it through Connection objects. The connected
object will also receive a _SetState and indirectly a SetState messages. These are processed
similarly, updating Variables and sending new messages to connected objects. This means that
the effect of the external event will spread in the model and finally all affected objects will
change appropriately. It is like a room where somebody turns the light on. The primary object
is the switch which alters its state then propagates the ”energised” message to the wires
connected to it. The wires propagate other messages to other wires and finally a lamp also
receives an appropriate message causing it to alter its state and to start throwing light.

Each object may be both a receiver of a message and an initiator of a message subsequence.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

9

Examining the communication diagram of figure 2, we should realise that it is almost
independent of the actual application classes, except for the implementation of the SetState.
Application programmer can thus be relieved of interfacing the model with the external world
and interfacing different model objects.

View layer

The view must reflect the actual state of the underlying process, that is the actual state of the
objects of the model. The top-level element of the view is the MainWindow. There can be
several main-windows if the system uses multiple screens. A MainWindow instance
incorporates a control menu, message subwindow, clock and lower level view objects
responsible for graphics presentation. These objects are instances of the SchemeWindow class.
A SchemeWindow may include dynamic Drawing objects, Widgets and DialogWindows that
may be popped up in front of it. DialogWindows provide detailed, usually textual information
about a model object and its variables. DialogWindow is the top of an inheritance hierarchy
which include many different dialog window types, such as dialogs showing the values of a
variable set, time-charts, question dialogs, etc., that are useful in process visualisation
interfaces.

A Drawing or a Widget object reflects the most relevant characteristics of the actual state of a
model object or optionally of its variable.

Drawings have different subtypes, including among others:

• ColorDrawing that consists of graphics primitives including polyline, polygon, rectangle,
ellipse, text, etc. The controller of this view element can alter the colour of the primitives
before causing it to be redrawn on the screen. This type of dynamization seems to be
restrictive, but using a ”non-visible” colour we can create drawings which modify their
shape or even provide a completely different appearance to reflect the change of the state of
the visualised model object. The controller sets the colours of the graphics primitives by
telling the drawing which variation of a finite set it should use. The identification of this
variation is called the state of the drawing. The number of possible states are finite, thus a
drawing is capable to visualise a digital value.

• TextDrawing that can display dynamic text.

The Widget class has also many subtypes that are common in the actual windowing system
(currently OSF/MOTIF). Its capabilities are determined by the type of the widget. For example,
a textfield is capable to display textual data, while a scale or a scrollbar can visualise numeric
data.

All elements of the view are visually dynamic, since each time the actual state of a model
object changes, the visual appearance of the affected view elements may also change. A single
Drawing or a Widget reflects a single model object or a variable of that object. A
SchemeWindow usually has many Drawings and Widgets, thus visualises a greater part of the
underlying system.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

10

Controller layer

The controller layer connects the model layer to the view and to the process interface.

The class of the main controller is called VisualSystem and is instantiated by the main program.
Unlike in usual MVC designs, VisualSystem is not associated with the main-window of the
program. There are two reasons for that. The visualisation program can use multiple screens,
thus it may have multiple main-windows. On the other hand, a controller object should be
assigned to the process interface which can also instigate actions (it means that the process
interface is handled as a special view). We use the main controller for this purpose.
VisualSystem communicates with the process interface and deliver its messages to the
appropriate model object.

Unlike traditional MVC applications where the controller of the active window maintains
control, here VisualSystem should always have the main control since events from the process
can be expected anytime. VisualSystem parses the incoming messages and if a message encodes
user input, then it gives the control temporarily to the respective subcontroller.

According to the MVC paradigm, each view object corresponds to a controller object. It also
means that view classes should correspond to controller classes. The MainWindow,
SchemeWindow, DialogWindow, ColorDrawing, TextDrawing and Widget view classes
correspond to Screen, Scheme, Dialog, ColorSymbol, TextSymbol and WidgetSymbol controller
classes, respectively. ColorSymbol, TextSymbol and WidgetSymbol controller classes are parts
of an inheritance hierarchy having the Symbol class at its top.

VisualSystem Screen

Update
Redraw

Scheme

Update
Redraw

Symbol

ColorSymbol WidgetSymbolTextSymbol

Update

Dialog

... ...

Figure 3: Object model of the controller layer of the visualisation program

Although the dialog view-controller pairs that are readily available in the development system
seem to be sufficient in the majority of the applications, the application developer is allowed to
add his own dialog types to the system. The controller class of such a new dialog should be
defined as a subclass of the DialogWindow, thus the interface methods providing the
connection between the model and the controller can be inherited.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

11

Connections of model, view and controller layers

The connection between the model and the view is realised by controller objects. An object can
thus indirectly have dialogs, widgets and drawings located on different SchemeWindows. Direct
connections, however, exists only between controller and model objects and between controller
and view objects. Note that this is similar to the MVC++ variation [13] of the original MVC
paradigm, since we do not allow direct connections between the model and the view.

In addition to interconnecting view and model objects, the controller layer has another function
as well. It translates user-interface concepts to application domain concepts and vice-versa. For
example, a user event like a ”mouse click” may have a meaning ”close the switch” on the
application level. On the other hand, the colour of a drawing (state of a view element) must be
determined from the state of the model object, which may require computations.

In process visualisation systems, this translation process is mainly determined by the model
object and is independent of the view and controller layers. Thus, this translation functionality
may be migrated to the model classes where a default translation is provided which might be
altered using inheritance. The method that converts user actions to application concepts is
called UserAction, and the method responsible for determining the state of the views from the
state of the model object is called UpdateViews.

The controller passes and also translates messages between the model and the external world
interfaced by the view and the process interface. In a process visualisation system, message
sequences can be instigated by the process and the user. The reaction to process events slightly
differs from the reaction to user interventions, since view objects are involved only in
processing the user interventions. In the following chapter the dynamic behaviour of the two
types of reactions are discussed.

The connection of model, view and controller layers is shown in figure 4.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

12

VisualSystem

Screen

Update
Redraw

Scheme

Update
Redraw

Symbol

ColorSymbol

WidgetSymbol

TextSymbol

MainWindow

SchemeWindow

Drawing

Widget

Update

Dialog
DialogWindow

ColorDrawing

TextDrawing

_SetState
SetState
UserAction
UpdateViews

Object

operator=(Value)

Variable

Propagate

Connection

target

Value

View Controller Model

Figure 4: Connections of model, view and controller layers

Reaction to events and measurements in the process

When an event occurs in the underlying process or the result of a new measurement has to be
transferred to the model, the process interface sends a message to the main-controller
(VisualSystem). The main-controller identifies which model object this message belongs to
and sends a _SetState message to that object. The model objects start communicating through
their connection points and finally the complete model is updated.

As a part of processing the SetState message, an Object may intervene in the process. In order
to do that, the Object simply sends an Intervention message to the VisualSystem object which
transfers it to the process interface.

In
st

itu
te

 o
f

C
o

m
p

u
te

r
G

ra
p

h
ic

s.
 T

U

V
ie

n
n

a
T

R
-1

8
6

-2
-9

8
-1

9

13

P
ro

ce
ss

V
is

u
al

S
ys

te
m

O
b

je
ct

::
o

b
je

ct
1

V
ar

ia
b

le
C

o
n

n
ec

ti
o

n
O

b
je

ct
::

o
b

je
ct

2

M
ea

su
re

m
en

t

_S
et

S
ta

te

S
et

S
ta

te

o
p

er
at

o
r= P

ro
p

ag
at

e

S
ym

b
o

l:
:

sy
m

b
o

l1

S
ym

b
o

l:
:

sy
m

b
o

l2
S

ch
em

e
D

ra
w

in
g

::
d

ra
w

in
g

1
D

ra
w

in
g

::
d

ra
w

in
g

2

_S
et

S
ta

te
U

p
d

at
e

U
p

d
at

eV
ie

w
s

U
p

d
at

e

U
p

d
at

e

U
p

d
at

e

U
p

d
at

e

R
ed

ra
w

R
ed

ra
w

R
ed

ra
w

R
ed

ra
w

In
te

rv
en

ti
o

n

S
et

F
ig

u
re

 5
:
E

ve
n

t
tr

a
ce

 o
f
re

a
ct

io
n

 t
o

 p
ro

ce
ss

 e
ve

n
ts

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

14

When an Object processes a SetState message, it may alter its state by modifying the value of
its variables. Thus, the view layer should be informed to change accordingly. The model layer
tells the controller layer to make the necessary modifications in the view.

Each symbol and dialog controller object corresponds to exactly one model object, while some
of the symbols are directly connected to a single variable of that object. Whenever the
Variables of an Object change, the controls including the Dialogs and Symbols must be
Updated to ask them to update their respective view objects.

This update is straightforward for Dialogs since a dialog ”knows” what it needs from the state,
thus it can poll the required information from the Object in its Update method. Similarly, a
Symbol directly connected to a Variable is updated automatically by the new Value of the
Variable. Although a symbol type can only display a single value type, this does not introduce
any restriction into the system, since the variables are of dynamic type and their conversion is
automatic. It means, for example, that an object's variable that has currently digital type can
also be displayed by a text-symbol, since having received the variable the text-symbol gets it to
convert its value to text without examining its original type. For a digital value, the result will
be the logical name of the value (e.g. ”switch open”).

In the case of Symbols not directly tied to Variables, however, the application programmers
should provide information how the set of Variables determine the single Value which updates
the Symbol. The virtual method where it must be described is called the UpdateViews.

Note that unlike in the traditional MVC approaches where the model does not know its
controllers and views directly, here a model object does know its controllers due to
performance reasons. Unlike other interactive programs where there can be many model
objects but significantly less view and controller objects, in process visualisation programs the
number of view and controller objects even exceeds the also large number of model objects.
For example, the state of the same switch may be displayed in many different graphics schemes
and dialogs. In this case, if all controller objects were asked to poll their model objects, or the
dependant controllers and views of a model were searched in association tables, then the
overhead would result in poor performance.

When a controller object is informed that its model has changed its state, it is expected to
update its view. Dialogs and widgets can be updated independently since the screen - which is
a resource shared by different widgets - is managed by the native windowing system.
Drawings, however, are located on a single drawing-area widget of a SchemeWindow, thus
their independence could not be provided by the windowing system. Let us assume that a
drawing should be invisible to reflect some change in the model. If different drawings overlap -
which is not exceptional - then this drawing cannot be made invisible by simply redrawing it
with the background colour, since it would destroy other drawings. One obvious solution to
this problem is the complete redrawing of the SchemeWindow when a single drawing changes.
However, it is not feasible due to performance reasons. A SchemeWindow may consists of
hundreds of drawings. An external event, such as a measurement from the process or user
action, may alter many model objects and thus many drawings on the screen, which would get
all drawings to be redrawn many times as a reaction to this external event. This would result in
bad flickering and very poor response times. To overcome this problem, those regions of the
SchemeWindow should be identified which need to be updated and these regions should be
redrawn only once at the end of reacting to an external event. However, the view layer is not
aware of events coming from the monitored process, thus the time of redrawing of the user

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

15

interface is determined by the controller layer. At this time, all drawings to be modified should
be known in order to identify the regions of the SchemeWindow that must be redrawn.

Thus, when a model object tells its controller that its state has changed, the controller does not
update its the view immediately. The controller just registers that its view will have to be
updated and tells its supercontroller that its state has changed and it wants to get the control
back when the reaction of the model to the external event is over. When the sequence generated
by an external event is over, the control returns to the main controller (VisualSystem). The
main controller can now recursively ask those subcontrollers, which have active views and
have been registered, to update the views right now. When a SchemeWindow gets control, it
first asks the registered symbols to transfer the bounding box of their respective drawings, then
sets the clipping region of its view object, finally asks all - registered and non-registered -
symbols to redraw their drawings. Drawings are redrawn in a descending order of the priority
of their symbols.

Reaction to user actions

User actions are directed to widgets by the underlying windowing system using a callback
mechanism. In our system all actions are directed first to the main controller which starts a
search for the subcontroller to which this message belongs to. For dialogs and widget symbols,
this search is simple since the callback parameters can include the address of the required
control object. For colour and text symbols, however, the drawings of the active
SchemeWindow must be polled one-by-one to decide within which controller’s view the event
is. Note that unlike redrawing, here the symbols are taken in ascending order of their priorities.
If the symbol is identified, then the model object connected to this symbol is informed about
the user action.

First, a method called UserAction is activated that translates user actions to events meaningful
in the application domain, which, in turn, may activate the _SetState method. The
transformation of the user intervention into the parameters of the corresponding _SetState
message is pretty straightforward and can be defined independently of the application. In
special cases, however, it seems to be advantageous to overrule this default transformation.
Suppose, for example, that in a train traffic control system the user can drag-and-drop trains
from track to track if the measuring instruments are broken down and the traffic is followed
manually. In this example the implementation of the track’s SetState method could be simpler
if the drag-and-drop operation were transformed to a message that simulates the event that the
measuring instrument detected the train movement from one track to the other. To support
these special cases, although the visualisation system provides a default transformation, it also
allows this transformation to be redefined by the application programmer by reimplementing
the UserAction method (or a part of it).

From this point the operation is similar to that of the reaction to process events. When the
reaction is over, the VisualSystem initiates the view update phase.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

16

VisualSystem Scheme Symbol Drawing Object

pick=IsPicked()
inview=IsInView()

UserAction [pick] _SetState

UpdateViews

Update
Update

UserInput

Redraw
Redraw

Redraw

Variable Connection Object

operator=

Propagate _SetState

SetState

User

User
 Intervention

Figure 6: Event trace of reaction to user interventions

The method of defining process visualisation applications

So far, a general visualisation system has been discussed that can be adapted to solve concrete
problems. In this section, we review the methodology used to create concrete visualisation
programs and the tools supporting the various steps. This process is called the application
definition.

Application developer

Scheme
editor

Symbol
editor

Object-
type
editor

Tuning
the code

Engineering drawings

Dynamized notations

Interface of components
Behaviour of components

symbols

schemes

model object
types

object
classes

model
definition

Model
generator

Source
code

generator

Packaging
Compiler
and linker

User of the application

codeconfiguration

program kernel
visualisation

Figure 7: Dataflow of application definition

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

17

Recalling the requirements of a process visualisation development system, the application
definition should heavily rely on graphics techniques and should require programming only on
component level. The main flow of application definition is shown in figure 7.

Symbol editor

Symbol editor is a graphics tool for defining dynamic versions of engineering notations that are
called colour-symbols. The kernel of the visualisation program will generate a ColorDrawing
and ColorSymbol view-controller object pair from this definition. In order to reflect the
practical experience that systems usually consist of components of fixed size and having fixed
number of connections (resistor, instrument, valve, building, etc.) and components used to
interconnect the fixed components (wire, pipe, track, road, etc.), two types of colour-symbols
are distinguished: fixed-symbol and link-symbol.

To define a fixed-symbol, first the graphics primitives forming this symbol must be drawn.
Since a colour-symbol will reflect the state of a model object by modifying the colour of its
graphics primitives, the designer must also define the states of the symbol and assign colours to
the primitives in each state. Since ”non-visible” colour is also allowed - that can be made
visible in the symbol editor, but is invisible in the running visualisation program - symbols that
dynamically modify their shape can also be constructed. Finally, the connection points (which
reflect the interface points of the real component visualised by this symbol) must be specified.

Link-symbols, on the other hand, have no fixed geometry. Their layout will be determined by
those fixed-symbols that are connected by this link-symbol and, of course, by the ” routing”
possibilities between those fixed-symbols. Thus the definition of a link-symbol includes only
the definition of the state space and in each state the graphics attributes (e.g. colour) of the
polyline representing this link-symbol.

The object model describing the symbols created by the symbol editor is shown in figure 8.

ColorSymbol

FixSymbol LinkSymbol

name

Connection

Shape

PolyLine Rectangle Polygon Ellipse

{2}

Text

State

Figure 8: Object model of symbols in the symbol editor

In practical cases the standard symbols of engineering drawings are usually used, which are
animated according to the actual represented value.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

18

Figure 9: Two snapshots of the symbol editor showing a switch symbol in open and closed state

Scheme editor

Having defined the symbols, they will serve as components to build up screens with the scheme
editor. Scheme editor requires not only the drawing of the screen layout, but the topological
structure of the symbols and the correspondence between symbols and model objects as well.
To derive the topological structure, the scheme editor takes advantage of the distinction
between fixed- and link-symbols. Fixed-symbols can be placed anywhere on the scheme, while
the placement of a link-symbol requires the identification of two connection points of two
fixed-symbols that will be connected by this link-symbol. In addition to the defined starting
and ending points, link-symbols can have unlimited number of internal points which determine
the path how the link-symbol connects the two fixed ones.

Scheme editor also allows the placement of text-symbols and widget-symbols onto the screen.

When a symbol is placed, regardless of its type, the name and type of the object that will be
represented by this symbol must also be specified. Optionally, a variable of that object can be
identified. Thus the correspondence between the view (symbols of the scheme) and the model
(name of model objects and optionally variables of model objects) is provided here. Since in
this method the scheme is the only place where objects can be defined (scheme editor is rather
a model definition tool than simply a view definition program), the scheme editor should allow
to hide those objects which take part in the model, but are not visible on any scheme. Such
hidden objects can be made visible in the scheme editor, but will be removed from the screen
during the run of the visualisation program.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

19

Summarising, the object model of the structure built-up by the scheme editor is:

Scheme Symbol ObjectDescription

ColorSymbol TextSymbol WidgetSymbol

FixSymbol LinkSymbol
connected by

displayshas

Figure 10: Object model of schemes in the scheme editor

Schemes are usually drawn from engineering drawings of the system. First fixed-symbols are
placed, then connected by link-symbols. Finally, invisible objects are identified. Invisible
objects are those objects that cannot be seen in any scheme. However, it is worth defining them
in this stage of the design, because they take part in the model and their role, place and
topological interconnections can be unambiguously defined by the scheme editor.

The topology oriented approach of the scheme editor has two advantages. The scheme can be
edited easily and safely, because dragging a fixed symbol will automatically drag the connected
link-symbols. On the other hand, the model can automatically be generated from the graphical
representation of the schemes, provided that the scheme meets the requirement that two fix-
symbols are connected by a link-symbol if and only if their represented objects are also
connected by the object represented by the link symbol. The requirement that a link-symbol can
connect exactly two fix-symbols may seem to be restrictive, but it is not because of the
following reasons. If we look around in practical systems, we will realise that connection
components, such as wires, pipes, tracks, routes, or to be more abstract, telephone
conversations do connect exactly two other components. This is also true when, at the first
glance, the connection seems to connect more than two components, as for example, if wires or
pipes are connected with each other, or we have a conference talk on telephone. In these
situations, a special component appears, such as ”connection of wires” , ”connection of pipes”
or ” telephone switching centre organising the conference talk” . Thus, connections still connect
just two other symbols. Clearly, such a special component is not abstract, but has an important
role in the physical operation. A ”connection of wires” , for example, forces all connected wires
to have the same voltage, and makes the sum of incoming current flow equal to the sum of
outgoing current flow. Summarising, link-symbols connecting two fix-symbols are usually
enough. Should we need more general linking, new fix-symbols must be introduced, which tie
link symbols together. Not only does not the introduction of such new components confuse the
model, but it usually makes it clearer and reduce the number of required component types.

Model generator

The model generator will derive a list of objects that were specified as base objects of the
symbols and will generate a list of object connections from the connections of fixed and link
symbols. This approach does not require parallel, and therefore dangerous editing of view and
model representations. Only the view must be restructured if the underlying system structure
changes, the model will be automatically updated.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

20

Object type editor

The other branch of application definition is based on the definition of model object types (Fig.
7). This branch of application definition is based on declarative programming and automatic
source code generation techniques. Using the object type editor, the application developer
defines the variables and connection names of individual object types (this is a fully declarative
step). For example, the electric switch type may be defined by the following statements:

TYPE Switch
VARIABLE state DIGITAL

VALUES switch_on, switch_off
VARIABLE voltage1, voltage2 DIGITAL

VALUES non_defined, energised, ground
CONNECTS end1, end2

Listing 1: Type description of an electric switch

The definition expresses that a Switch has three variables, all of them of DIGITAL type. The
possible values of variable state are ”switch_on” and ”switch_off” . The value set of voltage1
and voltage2 (the voltages of the two connection points), on the other hand, are ”non_defined” ,
”energised” and ”ground”. Finally, a Switch has two connections called ”end1” and ”end2”.

Source code generator and tuning the generated code

From the description of Listing 1 the source code generator creates a C++ class with default
behaviour. This C++ class must be altered by the application programmer to reflect the specific
behaviour and properties of the object class. Thus procedural programming is required in the
phase of ”tuning” the automatically generated code.

A strongly simplified version of the file generated from the above definition and completed by
the application programmer to reflect the behaviour of the switch, can be the following
(statements that are not automatically generated are shown with boldface):

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

21

//**
// SWITCH *
//**
enum Switch_connections { end1, end2 }; // connections

// VARIABLES
#define state variables[0]
enum state_values { switch_on, switch_off };
#define voltage1 variables[1]
#define voltage2 variables[2]
enum voltage_values { non_defined, energised, ground };

//==
class Switch : public Object {
//==
public:
 Switch() : Object("Switch") { // default object name

 state = DigitalValue(switch_on);
 voltage1 = DigitalValue(non_defined);
 voltage2 = DigitalValue(non_defined);

 }
 Response SetState(Connect src, Message ms, Variable* pv, Value* value);
};
//---
// Function responsible for object behaviour
//---
Response Switch :: SetState(Connect source, // message source

 Message mess, // message identifier
 Variable * pvar, // destination variable
 Value * value) { // new value

//---
 switch (source) {

case PROCESS: // Message from the process (measurements)
 switch (mess) {

case M_SWITCH_CLOSED:
 state = switch_on;
 switch (voltage1) {

case energised: Propagate(end2, M_ENERGISED); break;
case ground: Propagate(end2, M_GROUND); break;
case non_defined: Propagate(end2, M_NON_DEFINED); break;

 }
 switch (voltage2) {

case energised: Propagate(end1, M_ENERGISED); break;
case ground: Propagate(end1, M_GROUND); break;
case non_defined: Propagate(end1, M_NON_DEFINED); break;

 }
 return OK_RESPONSE;

case M_SWITCH_OPEN:
 state = switch_off;
 Propagate(end1, M_NON_DEFINED);
 Propagate(end2, M_NON_DEFINED);
 return OK_RESPONSE;

 }

case end1: // Message from ”end1” connection point
 switch (mess) {

case M_ENERGISED: voltage1 = energised; break;
case M_GROUND: voltage1 = ground; break;
case M_NON_DEFINED: voltage1 = non_defined; break;

 }
 if (state == switch_on) Propagate(end2, mess);
 return OK_RESPONSE;

case end2: // Message from ”end2” connection point
 switch (mess) {

case M_ENERGISED: voltage2 = energised; break;
case M_GROUND: voltage2 = ground; break;
case M_NON_DEFINED: voltage2 = non_defined; break;

 }
 if (state == switch_on) Propagate(end1, mess);
 return OK_RESPONSE;
default:
 return INVALID_RESPONSE;

 }
}

Listing 2: Class definition of the switch

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

22

As shown in the above example, a member function, called SetState, must be filled up to
describe how an object of this type reacts to messages coming from the user, process or from
the connection points. The reaction may involve the update of the internal variables and
sending new messages to other objects through the connection points.

In the above example, a Switch may receive messages from the underlying process
(M_SWITCH_CLOSED, M_SWITCH_OPEN), which determine whether or not the switch is
closed or from its two connection points (M_NON_DEFINED, M_ENERGISED,
M_GROUND) which inform the switch about the voltage of the object connected to its two
connection points.

The operation is simple:

If the switch is opened, then the voltages of objects connected to this object are not
affected by this switch, that is, the voltages are either determined by something else or
undefined. The connected objects are informed about this event by an
M_NON_DEFINED message. If the switch is closed, then the object connected to one
end of the switch is forced to have the same potential as the object on the other end. If
the switch is closed and the potential of the object connected to one end changes, then
the object connected to the other end is also instructed to follow the change.

If we want to develop a complete visualisation program of an electric energy distribution
system, we need just five other component types in the simplest case: wire, connection-of-
wires, transformer, grounding and consumer. Their operation and thus their C++ classes are
even simpler than that of the switch. A wire or a connection-of-wires simply passes all
messages that are received from one of its endpoints to the others. In the meantime it decides
whether it is energised for presentation purposes. A transformer and a grounding may send
M_ENERGISED or M_GROUND messages to connected components, respectively. A
consumer updates its state upon receiving messages from its connection points.

We have to mention that tuning automatically generated code fragments raises the problem of
what happens to additions and modifications if the code needs to be regenerated later. There
are different alternatives but none of them is perfect. A possible solution uses special
comments in the generated code, that are used to separate automatically generated and
manually input program lines. These comments control the regeneration process and only those
lines are replaced that are in between comments which designate automatically generated parts.

Compiling and packaging

The generated and tuned C++ classes are compiled and linked with the kernel of the
visualisation program resulting in an executable code. When running the visualisation program,
this code inputs data files describing symbols, schemes and the definition of the model, then
builds up the model, view and controller layers accordingly and interconnects them. The code
segment providing this input is the part of the kernel, thus, from application programmer’s
point of view, all objects are created automatically and without requiring programming. This
approach has obvious benefits but also raises a problem. The kernel cannot be aware of the
type of model classes since model classes, such as switch, wire, etc. are created during
application definition. Creation of objects, however, requires the definition of the class to be
instantiated. In order to overcome this problem, the kernel assumes a method called

 Object * AllocateObject(char * class_name)

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

23

and uses this method to instantiate a class whenever it is expected to do that during the input of
the configuration. AllocateObject, however, is not implemented in the kernel.

Before compiling the application, the user should certainly specify what the new object types
are and what application files must be compiled and linked with the kernel. Using this
information, the development system ”writes” a program source file that includes the
declarations of the new object types and implements the AllocateObject method. This file is also
compiled and linked with the kernel to make the generated code complete.

Files describing symbols, schemes and the model are in text format and apply a formal
language defined for this special purpose. Thus, it is possible (but is not recommended) to
define the complete visualisation without using the graphics editors. In order to speed up the
initialisation of the visualisation program, these text files are pre-compiled in a packaging
phase, providing a set of data files called the configuration.

A characteristic view of the running visualisation program displaying a part of an electric
energy distribution system is shown in figure 11.

Conclusions

This paper proposed a method for developing process visualisation programs, taking advantage
of the MVC paradigm and OO methodology, and discussed a development system supporting
this method. In order to develop an application, the graphics representation of the symbols
must be drawn, the screen layouts that also represents the structure of the underlying model
must be provided, and the behaviour of each object type must be programmed. The behaviour
is defined by rules reflecting how the object reacts to messages coming from the physical
process, the user or from its connection points. Since the definition of the behaviour is
independent of the environment of the object, it is valid in any system structure and will remain
valid if the structure is altered. According to our experience, even complex systems are
composed of just a few object types and the definition of their behaviour requires just a couple
of C++ statements. Thus the only problem which requires significant effort is the scheme
definition.

In fact, the definition of object operation as a response to messages coming from its connection
points follows the natural behaviour. The modelling power of this approach is very promising.
We have tried it in the application areas of train traffic control, electric power distribution,
lighting networks, logic circuits and linear electronic networks consisting of resistors and
switches. The last example was a challenging one, since unlike the previous examples, in
resistor networks there is a very strong coupling between the states (voltage and current) of
different objects. Thus, if the voltage of one connection point of a resistor changes, the
components should start a very intensive communication to decide the value of the voltage at
the other connection point. These problems of strong coupling can be resolved by iteration. The
voltage of the other endpoint is estimated from the variables of only those objects which are
directly connected to this point. Then a message is sent to the other endpoints to do the same.
This iteration will converge to the real solution.

We have to admit that this paper discusses only the relevant aspects of the implemented
visualisation development system, especially detailing the method of model definition and
interfacing between the model and its graphics presentation. A practical process visualisation
program and its development system, however, should have other features as well, which we

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

24

did not address here because of space limitations and because of the fact that these features can
be separated from the discussed key concepts. Among others, these features include:
• Automatic logical-event generation, alarming, user acknowledgement and logging.
• Distribution of the model in a networking environment.
• Distribution of control rights of the users in a multi-user environment.
• Interfacing with the process.
• User identification and security considerations.
• Remote installation and configuration.
• Robustness and fault tolerance.

The largest project in which this development methodology and the development system itself
have been used was the visualisation of the railway line between Budapest and Vienna. In this
project the train traffic, state of the safety equipment and the electric energy distribution system
had to be monitored and controlled. The following table summarises the most important data of
this project and the size of the development system itself.

Hardware 40 Sun 4 workstations
connected in a TCP/IP
network (500 km long fibre
optic cable)

Operating and windowing system Solaris 2.1/OSF-Motif
Number of component types 82
Number of model objects ~25.000
Number of symbol types 96
Number of view objects ~27.000
Number of schemes 53
Number of C++ lines in the application
dependent part, including both
automatically generated and manually
entered lines

~20.000

Number of C++ lines in the kernel ~40.000
Number of C++ lines in the complete
development system

~75.000

Table 1: Characteristics of the train traffic and electric power control application

Acknowledgement

This work has been supported by the Hungarian Scientific Research Fund (OTKA) under the
reference number F 015884.

Institute of Computer Graphics. TU Vienna TR-186-2-98-19

25

Figure 11: Snapshot of the visualisation program

References:

[1] FIX DMACS - System development, Display development - Intellution Inc. 1992-1994
[2] Vision -Process Visualisation system, DIVICON Ltd.
[3] Powerful Tools to Monitor and Control Live Processes, URL: http://www.dvcorp.com/mktg
[4] Visual Designer - Intelligent Instrumentation
[5] PVSS - Prozess-Visualisierungs- und Steuerungssystem, EDV-Technik Mühlgassner GesmbH
[6] Sammi, Graphical framework for real-time command and control, Kinesix/Scientific Software-Intercomp
[7] Points to consider in evaluating Dynamic Data Visualisation Tools, URL: http://www.telsa.hl.com.au
[8] P. Mégard: Criteria for Selecting a good GUI Development Tool, URL: http://www.ilog.fr/Products/Views
[9] R.A. Earnshaw, N. Wiseman: An Introductory Guide to Scientific Visualization, Springer-Verlag, 1992
[10] W. Lalonde, J. Pugh: Inside Smalltalk (Volume II) Prentice Hall, 1990
[11] G.E. Krasner, S.T.Pope: A cookbook for using the model-view-controller user interface paradigm in

Smalltalk-80 Journal of Object-oriented Programming, August/September, 1988
[12] Rumbaugh, Blaha, Premerlani, Eddy, Lorensen: Object-oriented Modeling and Design, Prentice-Hall, 1991
[13] A. Jaaksi: Implementing Interactive Applications in C++, Software -Practice and Experience, Vol. 25(3),

271-289 (March 1995)
[14] N. Knolle: Why Object-oriented User Interface Toolkits are better,

Journal of Object-oriented Programming, Vol. 2, 1989
[15] B. Shneiderman: Designing the User Interface, Reading Mass., Addison Wesley, 1986

