
Light Animation with Precomputed Light Paths on the GPU

László Szécsi
TU Budapest

szecsi@iit.bme.hu

László Szirmay-Kalos
TU Budapest

szirmay@iit.bme.hu

Mateu Sbert
University of Girona

mateu@ima.udg.es

Figure 1: Comparison of local illumination and the proposed global illumination rendering methods. One half of these images has been rendered
with local illumination, while the other half with the proposed global illumination method at 40 FPS.

ABSTRACT

This paper presents a real-time global illumination method for static
scenes illuminated by arbitrary, dynamic light sources. The al-
gorithm obtains the indirect illumination caused by the multiple
scattering of the light from precomputed light paths. The indirect
illumination due to the precomputed light paths is stored in tex-
ture maps. Texture based representations allow the GPU to render
the scene with global illumination effects at high frame rates even
when the camera or the lights move. The proposed method requires
moderate preprocessing time and can also work well for small light
sources that are close to the surface. The implemented version con-
siders only diffuse reflections. The method scales up very well for
complex scenes and storage space can be traded for high frequency
details in the indirect illumination.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]

Keywords: Real-time global illumination, GPU, light animation.

1 INTRODUCTION

Rendering requires the identification of those light paths that con-
nect light sources to the eye via reflections and refractions, and then
the computation of the sum of their contributions. This summation
becomes a high-dimensional integral, which is generally impossible
to evaluate in real-time. However, in static scenes we can exploit
the fact that the light paths visiting the points on objects do not
change when lights or the camera move. This recognition allows us
to precompute those integrals that are responsible for the indirect
illumination of the scene, and combine the prepared data with the
actual lighting conditions during rendering. This means that dur-
ing rendering just a low dimensional integral needs to be evaluated,
which is possible at high frame rates.

2 PREVIOUS WORK

Several approaches have emerged that limit the freedom of object
changes in order to make global illumination computations fast. If
the scene is static, then radiance transfer coefficients between sur-
face elements do not change, which is exploited in finite-element
based radiosity algorithms computing form factors only once. The
price is that the required storage is a quadratic function of the num-
ber of patches. The idea has been further generalized to include
arbitrary number of specular reflections with the introduction of ex-
tended form factors [14]. Radiance transfer precomputation has
also been applied to translucent objects [10]. The storage require-
ments is a quadratic function of the number of vertices, which pro-
hibits complex scenes and requires well-shaped patches.

Precomputed radiance transfer (PRT) [16, 15] can realistically
render rigid bodies assuming that a single object is illuminated by
low-frequency hemispherical image based lighting. The original
idea has been improved in many different ways, including arbitrary
BRDFs [6], speeding up preprocessing [9] and introducing princi-
pal component analysis to compress data [15]. Ng [12] replaced
spherical harmonics by wavelets to allow high frequency environ-
ment maps. The fundamental limitation of PRT methods of assum-
ing infinitely distant lighting has been addressed in [1]. A recent
paper on local radiance transfer [8] proposed the computation of
the response to a set of point lights placed in the scene using PRT,
and the weighting of these responses when real lights are introduced
during on-line rendering. The preprocessing is complex and large
data is dealt with clustered principal component analysis.

Spherical radiance transfer maps [11] are data structures to rep-
resent both mutual and self-shadows. These maps have to be pre-
computed for every mesh vertex, and their resolution should be
large enough to cover hundreds of sampled directions. This requires
a large number of shadow maps, and could result in inaccurate per-
pixel results, depending on the tessellation.

Light path reuse [13] is a Monte Carlo technique to speed up
animated light sequences assuming that the objects and the camera
are still. The combination of all paths computed in all frames is
governed by multiple importance sampling guaranteeing that the
variance of the solution in a frame is close to what could be obtained
if we dedicated all paths solely to this particular frame.

entry point

reference points

entry point entry point

S

S

Si

k

j

unit
irradiance

1. Reference points are defined and 2. Path generation from the 3. S is the illumination of reference points
entry points are sampled entry points PRM = {(•,×,S)}

Figure 2: Overview of the preprocessing phase. Entry points are depicted by •, and reference points by ×. The PRM is a collection of (entry
point •, reference point ×, illumination Sk) triplets, called items.

The method presented in this paper is related to the mentioned
previous approaches in the sense that it also uses a preprocessing
step that computes the radiance of certain reference points on the
surface assuming a standard illumination. From a different point
of view, the preprocessing computes radiance transfer factors be-
tween so called entry and reference points. Then, in the rendering
phase the precomputed data is combined with the information of
the actual lighting conditions. However, the new approach is not
limited to environment lighting, does not require finite-elements,
such as spherical harmonics or wavelets, but represents the light
transport by a set of pre-generated random light paths stored in a
compact way. Representing the lighting information in path space
rather than in the space of directional finite elements allows high
frequency light sources such as point lights that can be close to the
surfaces of the scene, and makes preprocessing times affordable.
In this sense our method is strong where PRT is weak. Compar-
ing to local PRT, we also initiate the preprocessing from discrete
points but unlike in local PRT that samples the 3D space, our sam-
ple points are regularly placed on the 2D surfaces. Reducing the
dimension of sampling by one, similar accuracy can be obtained
using significantly smaller sample numbers and preprocessing time.
Similarly to the PRT method, in our case it is also possible to apply
compression that trades accuracy for storage space. However, due
to the path space representation, this compression scheme is signifi-
cantly simpler to implement and results in visually pleasing images
even in highly compressed cases.

In our method the light transfer representation is made indepen-
dent of the vertices of the mesh, which has the advantage that the
proposed method does not require carefully prepared meshes con-
sisting of well-shaped triangles of similar size, but performs well
on irregular meshes as well. Based on the recognition made by pre-
vious Monte Carlo global illumination research [3], the number of
light paths needed to render a scene is roughly independent of the
complexity of the scene. It means that the number of entry points
serving as the origins of the light paths can be set independently
of the vertices. Similarly, the reference points that gather the illu-
mination can also be separated from the vertices allowing a more
uniform representation. Thus our initial storage complexity, that is
the product of the entry and reference points, can be made indepen-
dent of the vertices, which makes the method scale well for more
complex scenes.

3 METHOD OVERVIEW

The proposed method consists of a preprocessing step and a fast
rendering step.

3.1 Preprocessing

The preprocessing step determines the indirect illumination capa-
bilities of the static scene. This information is computed for finite
number of reference points on the surface, and we use interpolation
for other points. The reference points are depicted by symbol × in
figure 2. The reference points can be defined as points correspond-
ing to the texel centers of the texture map of the surface.

The first step of preprocessing is the generation of certain num-
ber of entry points on the surface. These entry points are samples
of first hits of the light emitted by moving light sources. During
preprocessing we usually have no specific information about the
position and the intensity of the animated light sources, thus entry
points should cover the surfaces densely, and unit incoming radi-
ance is assumed at these sample points. Entry points are depicted
by symbol • in figure 2. Entry points are used as the start of a given
number of light paths. A light path is a random or a quasi-random
walk [7] along the surface. In order to limit the length of paths, we
can use Russian-roulette.

The visited points of the generated paths are connected to all
those reference points that are visible from them. In this way we
obtain a lot of paths originating at an entry point and arriving at one
of the reference points. The contribution of a path divided by the
probability of the path generation is a Monte Carlo estimate of the
indirect illumination caused by the given reference lighting envi-
ronment. The sum of the Monte Carlo estimates of paths associated
with the same entry and reference point pair is stored. We call this
data structure the precomputed radiance map, or PRM for short.
Thus a PRM contains items corresponding to groups of paths shar-
ing the same entry and reference points. Items that belong to the
same entry point constitute a PRM pane.

3.2 Rendering

During real-time rendering, PRM is taken advantage of to speed
up the global illumination calculation. The lights and the camera
are placed in the virtual world (figure 3). The direct illumination
effects are computed by standard techniques, which usually include
some shadow algorithm to identify those points that are visible from
the light source. PRM can be used to add the indirect illumination.
This step requires visibility calculations, which is for free, since
this visibility information was already obtained during direct illu-
mination computation when shadows were generated [2].

A PRM pane stores the indirect illumination computed for a light
ray coming from the sampled direction and causing unit irradiance.
During the rendering phase, however, we have to adapt to a different
lighting environment, that is, to consider other light rays of different

entry point

S

S

Si

k

j

entry point

S

S

Si

k

j

irradiance I

I.

I.

I.

1. Direct illumination + entry point visibility 2. Weighting irradiance I with items S

Figure 3: Overview of the rendering phase. The illumination of the entry points are computed, from which the illumination of the reference
points is obtained by weighting according to the PRM.

radiance and direction arriving at the same entry point. Taking into
account the differences of carried radiance and incoming direction,
the PRM pane associated with this entry point should be weighted
in order to make it reflect the actual lighting situation. Doing this
for every entry point hit by a light ray and adding up the results, we
can obtain the visible color for each reference point. Then the object
is rendered in a standard way with linear interpolation between the
reference points.

In order to compute the weights, we have to take into account the
contribution and the probability density of the light paths obtained
during preprocessing. The mathematics needed for this computa-
tion is discussed in the following section.

4 FORMAL DISCUSSION OF THE METHOD

A global illumination approach should evaluate the infinite Neu-
mann series containing high-dimensional integrals. In the proposed
approach these high-dimensional integrals are partly precomputed,
i.e. the integral along all but one variable is calculated in the prepro-
cessing phase. Then the remaining one-variate quadrature is evalu-
ated during rendering.

entry point y

y
y

y
0

1

n-1

2

θ

θ

out

in

y = xn

y = e
n+1

Figure 4: Notations used in the formal discussion

Global illumination computes the radiance (power density) of
point �x in the direction of eye �e by summing the contribution of
all light paths that originate at the light sources and arrive at the
eye from point �x. Let us denote the visited points of a path by �y0
(light source),�y1 (entry point on the surface),�y2, . . . ,�yn−1 (internal
path points), �yn =�x (visible point of the surface), �yn+1 =�e (eye)
(figure 4). The contribution of this path is

Le(�y0 ��y1) ·G0 · f1 ·G1 · . . . · fn−1 ·Gn−1 · fn,

where Le(�y0 ��y1) is the emitted radiance from�y0 toward�y1,

Gk = G(�yk,�yk+1) =
cosθ out

�yk
· cosθ in

�yk+1

|�yk −�yk+1|2
· v(�yk,�yk+1)

is the geometry factor where θ out
�yk

is the angle between the surface

normal at �yk and outgoing direction �yk ��yk+1, θ in
�yk+1

is the angle
between the surface normal at�yk+1 and incoming direction�yk+1 �

�yk, visibility function v(�yk,�yk+1) indicates if the two points are not
occluded from each other, and fk = f (�yk−1 � �yk � �yk+1) is the
BRDF of point �yk for directions �yk−1 ��yk and �yk ��yk+1. In case
of diffuse materials, the BRDF depends only on reflection point�yk.

In order to calculate the radiance of�x at the direction of the eye,
all light paths ending at �x should be considered and their contri-
bution added, which leads to an infinite sum of high-dimensional
integrals:

L(�x ��e) =
∞

∑
n=2

∫

�y0

. . .
∫

�yn−1

Le ·G0 · f1 ·. . .·Gn−1 · fn dyn−1 . . .dy0. (1)

Note that the length of the light paths starts at 2, because now we
are interested in the indirect illumination.

In order to speed up the evaluation of these high-dimensional in-
tegrals during rendering, the inner integrals along �y1, . . . ,�yn−1 are
estimated in a preprocessing step. Suppose that we have a sampling
scheme that generates partial light path �y1, . . . ,�yn−1 with probabil-
ity density p(�y1, . . . ,�yn−1), where path length n is also a subject of
sampling.

Having obtained N samples (�yi
1, . . . ,�y

i
ni−1), (i = 1, . . . ,N) with

the sampling scheme, we can replace the inner integrals of equa-
tion 1 by their Monte Carlo estimate:

∫

�y0

. . .
∫

�yn−1

Le(�y0 ��y1) ·G0 · f1 · . . . ·Gn−1 · fn dyn−1 . . .dy0 ≈

N

∑
i=1

∫

�y0

Le(�y0 ��yi
1) ·Gi

0 ·
f i
1 ·Gi

1 · f i
2 · . . . ·Gi

ni−1 · f i
ni

N · p(�yi
1, . . . ,�y

i
ni−1)

dy0.

Note that factor

Ri =
f i
1 ·Gi

1 · f i
2 · . . . ·Gi

ni−1 · f i
ni

N · p(�yi
1, . . . ,�y

i
ni−1)

(2)

depends only on (�y1, . . . ,�yn) and is independent of the illumination
and viewing directions. This term can be precomputed for each
reference point �x =�yn, and stored together with pair (�x,�yi

1). From
stored values Ri, the reflected radiance can be computed as a low
dimensional integral:

L(�x ��e) ≈
N

∑
i=1

∫

�y0

Le(�y0 ��yi
1) ·Gi

0 ·Ri dy0,

where the integrand is precomputed value Ri multiplied by weight
Gi

0 and emission Le(�y0 � �yi
1), both representing the actual light-

ing and depend only on entry point�yi
1. For those samples that share

this point, the order of weighting and summation can be exchanged,
thus different precomputed factors Ri can be summed in the prepro-
cessing phase. Let us denote the sum of those factors Ri which share
entry point k by Sk. Using these summed factors we can express the
radiance in the following form:

L(�x ��e) ≈
K

∑
k=1

∫

�y0

Le(�y0 ��yk
1) ·Gk

0 ·Sk dy0, (3)

where K is the number of different entry points. Summed factors
Sk are the items of the precomputed radiance map (PRM) associ-
ated with reference point�x. An item of the PRM is selected by en-
try point �y1 and reference point �x, and represents the Monte Carlo
estimate of the indirect illumination of point �x when the light ray
causing unit irradiance arrives at the surface at �y1. The objective
of preprocessing is the computation of these items for the reference
points and entry points.

Having obtained the items of the PRM, the computation of the
indirect illumination caused by a small light source is straightfor-
ward. Let us denote the origin and the area of the source by�y0 and
∆y0, respectively. Substituting these into equation 3, the indirect
reflected illumination of reference point�x is:

L(�x ��e) ≈
K

∑
k=1

Le(�y0 ��yk
1) ·Sk ·

∫

�y0

Gk
0 dy0 ≈

K

∑
k=1

Le(�y0 ��yk
1) · v(�y0,�y

k
1) ·

cosθ out
�y0

· cosθ in
�yk

1

|�y0 −�yk
1|2 +∆y0/π

·Sk. (4)

Note that we applied the point to disc form factor approximation
[4]. In the special case when the source is a point light with total
emission power Φe, the formula is written as

L(�x ��e) =
K

∑
k=1

Φe

4|�y0 −�yk
1|2π

· v(�y0,�y
k
1) · cosθ in

�yk
1
·Sk.

In order to use these formulae, we have to check whether or not
the entry points are visible from the light source and carry out the
summation only for the visible entry points.

4.1 Definition of the sampling scheme

The core of the presented method is the sampling scheme
which obtains light paths (�y1, . . . ,�yn−1) with probability density
p(�y1, . . . ,�yn−1). All those schemes where p is not zero for paths
carrying nonzero radiance are unbiased in Monte Carlo sense, i.e.
the expected value of the estimator gives back the correct result. We
should prefer those sampling schemes that meet this criterion and
have small variance, and consequently result in small error.

The first step of sampling is the generation of Ne entry points on
the surfaces with probability density pe(�y1). The simplest approach

obtains these points uniformly, first selecting patches proportion-
ally to their area, then a random point on the patch with uniform
distribution.

Taking the entry point as the origin Ns ·a(�y1) number of paths are
tried to be generated where a(�y1) is the albedo of the surface, and
splitting factor Ns is a global constant of the method. The reason
behind splitting is that in this way the number of random paths can
be increased without increasing the number of entry points, i.e. the
size of the PRM. The direction of the ray originating in a particular
entry point is obtained with cosine distribution.

If the ray hits the surface again, then at the hit point a new di-
rection is sampled with BRDF sampling and this step is continued
until the path is terminated by Russian roulette. If the path is ter-
minated, then the hit points are assumed to be virtual light sources
[7, 18] that illuminate the reference points visible from them. In
order to compute this, all reference points are tried to be connected
with the points of the paths by shadow rays.

The proposed instructions establish a sampling scheme that ob-
tain point sequences (�y1, . . . ,�yn−1) of random length n on the sur-
face. Let us now consider the probability density of these se-
quences.

At entry point�y1 we decide whether or not a random path is ini-
tiated using probability a(�y1). If the path is needed, we sample the
first direction from cosine distribution, thus the probability density
of selecting�y2 as the second point of the path, given entry point�y1,
is:

a(�y1)
π

·G(�y1,�y2).

In the following steps, we apply Russian roulette and BRDF
sampling again to obtain a new direction. Note that in case of dif-
fuse materials BRDF sampling results in the application of cosine
distribution similarly to the entry point. The probability density of
a complete path (�y1, . . . ,�yn−1) given that it originates at�y1 is then

p�y1
(�y1, . . . ,�yn−1) =

a(�y1)
π

·G(�y1,�y2) · . . . · a(�yn−2)
π

·G(�yn−2,�yn−1).

The unconditional density of sequences (�y1, . . . ,�yn−1) is the prod-
uct of this conditional probability and the probability of selecting
entry point�y1 (pe(�y1)).

5 IMPLEMENTATION

The new algorithm consists of a preprocessing step, which builds
the PRM, and a rendering step, which takes advantage of the PRM
to evaluate indirect illumination. For the preprocessing step we im-
plemented a combined CPU ray-tracing and GPU method. On the
other hand, the rendering step was realized completely on the GPU.

The first step of preprocessing is the generation of entry points
and of paths, which is executed by the CPU. Having completed a
path, we compute the visibility between each path point and each
reference point. Assuming that the entry point has unit irradiance,
the contributions at the reference points are evaluated. For each ref-
erence point, the sum of the contributions is stored together with
the index of the entry point, which constitutes the PRM. In fact,
we should execute a virtual light source algorithm [7, 18]. Since
the reference points are the texels of a texture map, the virtual light
source algorithm should be implemented in a way that it renders
into a texture map. Items are computed by rendering into the tex-
ture with the random walk nodes as light sources. Visibility can be
determined using the shadow map technique.

A single texel stores a PRM item that represents the contribution
of all paths connecting the same entry point and reference point. A
PRM can thus be imagined as an array indexed by entry points and

reference point (u,v)

entry point r,g,b PRM pane

PRM item

Figure 5: Representation of a PRM as an array indexed by entry
points and reference points. A single element of this map is the
PRM item, a single row is the PRM pane.

reference points, and storing the radiance on the wavelengths of red,
green, and blue (figure 5). Since a reference point itself is identified
by two texture coordinates (u,v), a PRM can be stored either in a 3D
texture or in a set of 2D textures (figure 6), where each represents a
single PRM pane (i.e. a row of the table in figure 5, which includes
the PRM items belonging to a single entry point).

reference point

entry point 1

r,g,b
u

v reference point

entry point 2

r,g,b
u

v

Figure 6: PRM stored as 2D textures

The number of 2D textures is equal to the number of entry points.
However, the graphics hardware has just a few texture units. Fortu-
nately, this can be sidestepped by tiling the PRM panes into one or
more larger textures.

5.1 Entry point clusters

Using the method as described above allows us to render indirect il-
lumination interactively with a typical number of 256 entry points.
While this figure is generally considered sufficient for a medium
complexity scene, difficult geometries and animation may empha-
size virtual light source artifacts as spikes or flickering, thus re-
quiring even more samples. Simply increasing the number of entry
points and adding corresponding PRM panes would quickly chal-
lenge the hardware in terms of texture memory. To cope with this
problem, we can apply an approximation (a kind of lossy compres-
sion scheme), which keeps the number of panes under control when
the number of entry points increase.

The key recognition is that if two entry points are close and lay
on similarly aligned surfaces, then their direct illumination will be
probably very similar during the light animation. Of course this
is not true when a hard shadow boundary separates the two entry
points, but due to the fact that a single entry point is responsible just
for a small fraction of the indirect illumination, these approximation
errors can be tolerated and do not cause noticeable artifacts. Based
on this recognition, near entry points are clustered and only single
weight per reference point is stored for the cluster.

Errors caused by clustering are in the low frequency domain,
which are not disturbing for the human eye. Clustering also helps
to eliminate animation artifacts. When a small light source moves,
the illumination of an entry point may change abruptly, possibly
causing flickering. If multiple entry points are clustered together,
their average illumination will change smoothly. This way clus-
tering also trades high-frequency error in the temporal domain for
low-frequency error in the spatial domain. Our clustering approach

aims at compressing indirect illumination information similarly to
precomputed radiance transfer and to Lightcuts [19]. However, in
our case not the incoming radiance field is compressed, but the in-
direct illumination capabilities, which have low-frequency charac-
teristics.

To reduce the number of panes, contributions of a cluster of
nearby entry points are added and stored in a single PRM pane. As
these clustered entry points cannot be separated during rendering,
they will all share the same weight when the entry point contribu-
tions are combined. This common weight is obtained as the aver-
age of the individual weights of the entry points. Clusters of entry
points can be identified by the K-means algorithm [5] or, most ef-
fectively, by a simple object median splitting kd-tree. It is notable
that increasing the number of samples via increasing cluster size Nc
has only a negligible overhead during rendering, namely the com-
putation of more weighting factors. The expensive access and com-
bination of PRM items is not affected. This way the method can be
scaled up to problems of arbitrary complexity at the cost of longer
preprocessing and smoothing the indirect illumination. Clustering
entry points corresponds to a low-pass filtering of the indirect illu-
mination, which is usually already low-frequency by itself, thus the
filtering does not cause significant error.

5.2 Rendering

While rendering the final image, the values stored in the PRM
should be summed according to equation 4. Computing weighting
factor

v(�y0,�y
k
1) ·

cosθ out
�y0

· cosθ in
�yk

1

|�y0 −�yk
1|2 +∆y0/π

involves a visibility check that could be done using ray casting, but,
as rendering direct illumination shadows would require a shadow
map anyway, it can effectively be done in a shader, rendering to
a one-dimensional texture of weights. Note that for spot sources
one shadow map is enough, but for omnidirectional lights we need
to maintain several shadow maps per light source. Although tex-
tures generated during shadow mapping would later be accessible
via texture reads, they can be read back and uploaded into con-
stant registers for efficiency. Furthermore, zero weight textures can
be excluded, sparing superfluous texture accesses. Furthermore,
excluding not only zero but negligible weight clusters, the perfor-
mance can be increased at the cost of a minor decrease of the accu-
racy.

In order to find the indirect illumination at a reference point,
the corresponding PRM items should be read from the textures and
their values summed having multiplied them by the weighting fac-
tors and the light intensity. For the sake of efficiency, we can limit
the number of entry points to those having the highest weights. Se-
lection of the currently most significant texture panes can be done
on the CPU before uploading the weighting factors as constants.

6 RESULTS

The proposed method has been implemented on a P4/2GHz com-
puter with NV6800GT graphics card. Figures 1 and 8 show a mar-
ble chamber test scene rendered on 1024 × 768 resolution using
splitting factor 2. The parameters of the tests are summarized by
table 1. We set the PRM pane resolution to 256×256, and used the
256 highest weighted entry clusters. In this case the peak texture
memory requirement was 128 Mbytes. The constant parameters of
the implementation were chosen to fit easily with hardware capa-
bilities, most notably the maximum texture size and the number of
temporary registers for optimized texture queries. Assuming an av-
erage albedo of 0.66 and a splitting factor of 2, the 4096 entry points

PRM
texture

(precomputed)

depth map
generation

depth
map

texture

weight
computation

entry
points
data

texture
(precomputed)

weights
texture

CPU
render
frame

light source data
(constant)

weights data
(constant)

frame
buffer

select
highest
weights

render direct
illumination

render self-
illumination

compute
cluster
weights

Figure 7: Dataflow in the rendering step

displayed in figure 8 translate to approximately 24000 virtual light
sources.

Figure 8: Entry points

For this scene, the preprocessing took 310 sec, which can fur-
ther be decomposed as building the kd-tree for ray casting, light
tracing with ray casting, and PRM generation. Having obtained the
PRM, we could run the global illumination rendering at 40 frames
per second interactively changing the camera and light positions.
Figure 1 shows screen shots where half of the image was rendered
with the new algorithm, and the other half with local illumination
to allow comparisons. The effects are most obvious in shadows, but
also notice color bleeding and finer details in indirect illumination
that could not be achieved by fake methods like using an ambient
lighting term.

Figure 9 shows a cave rendered with similar parameters, but in-

Scene PRM tris entry pts/ memory FPS
res. clusters

Chamber 256×256 3335 4096/256 128Mb 40
Cave 256×256 6148 65536/256 128Mb 35
Chamber 128×128 3335 4096/32 4Mb 40
Chairs 128×128 7938 4096/32 28Mb 35

Table 1: Test scenes and results.

creasing the number of entry points to 65536.

entry points

direct + indirect illumination

Figure 9: The Cave defined by 6148 faces rendered at 35 FPS

Then we rendered the marble chamber scene using 4096 entry
points organized in 32 clusters and reducing the PRM pane res-
olution to 128× 128 (figure 10). This reduced the preprocessing
time and the texture space to 10 seconds and 4Mb, respectively, but
caused just minimal image quality degradation.

Finally we took a scene of chairs in a room, and used again just
128×128 resolution panes and 32 entry point clusters. The results
of figure 11 show that these settings provide good results for this
scene as well, but need only 28Mb texture space.

entry points

direct + indirect illumination

Figure 10: The chamber scene rendered using 32 entry point clusters.
The rectangular spot light source illuminates the wall on the right,
at other parts of the scene only indirect illumination is visible.

7 CONCLUSIONS

This paper proposed a global illumination algorithm for static
scenes, but allowing fast moving light sources and camera. Since
the geometry is static, we could pre-compute most of the integrals
of the infinite Neumann series of a full global illumination solution.
This means that in the rendering phase, when light sources are in-
troduced, only a one-variate integral needs to be evaluated, which
is possible in real-time. The method can be used in walk-through
animations when the avatar takes his own light sources with him,
and in lighting design when the light sources are placed interac-
tively and also in games and real-time animations. Of course, the
geometry is not constant in games, but in a typical gaming environ-
ment, the static environment is usually much larger than the moving
dynamic objects. In this case we can suppose that the dynamic ob-
jects alter only the direct illumination and the caustic patterns on
the large static environment, but its indirect illumination is not af-
fected. Thus we can still use the proposed method for rendering
the environment under dynamic lighting, and apply some fast final
gathering technique [17] to shade dynamic objects.

ACKNOWLEDGEMENTS

This work has been supported by the National Scientific Research
Fund (OTKA ref. No.: T042735), GameTools, and by TIN2004-
07451-C03-01 from the Spanish Government. The scenes have
been modeled by Maya that was generously donated by AliasWave-
front.

REFERENCES

[1] T. Annen, J. Kautz, F. Durand, and H-P. Seidel. Spherical harmonic
gradients for mid-range illumination. In Eurographics Symposium on
Rendering, 2004.

[2] C. Dachsbacher and M. Stamminger. Reflective shadow maps. In
SI3D ’05: Proc. of the 2005 Symp. on Interactive 3D Graphics and
Games, pages 203–231, 2005.

[3] P. Dutre, P. Bekaert, and K. Bala. Advanced Global Illumination. A
K Peters, 2003.

[4] A. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann
Publishers, Inc., San Francisco, 1995.

[5] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman,
and A. Wu. An efficient k-means clustering algorithm: Analysis
and implementation. IEEE Trans. Pattern Analysis and Mach. Int.,
24(7):881–892, 2002.

[6] J. Kautz, P. Sloan, and J. Snyder. Fast, arbitrary BRDF shading for
low-frequency lighting using spherical harmonics. In 12th EG Work-
shop on Rendering, pages 301–308, 2002.

[7] A. Keller. Instant radiosity. In SIGGRAPH ’97 Proceedings, pages
49–55, 1997.

[8] A.W. Kristensen, T. Akenine-Moller, and H.W. Jensen. Precomputed
local radiance transfer for real-time lighting design. In SIGGRAPH
2005, 2005.

[9] J. Lehtinen and J. Kautz. Matrix radiance transfer. In SI3D ’03: Pro-
ceedings of the 2003 symposium on Interactive 3D graphics, pages
59–64, 2003.

[10] H. Lensch, M. Goesele, Ph. Bekaert, J. Kautz, M. Magnor, J. Lang,
and H.-P. Seidel. Interactive rendering of translucent objects. Com-
puter Graphics Forum, 22(2):195–195, 2003.

[11] Ch. Mei, J. Shi, and F. Wu. Rendering with spherical radiance trans-
port maps. Computer Graphics Forum (Eurographics 04), 23(3):281–
290, 2004.

[12] R. Ng, R. Ramamoorthi, and P. Hanrahan. All-frequency shadows
using non-linear wavelet lighting approximation. ACM Trans. Graph.,
22(3):376–381, 2003.

[13] M. Sbert, L. Szécsi, and L. Szirmay-Kalos. Real-time light animation.
Computer Graphics Forum (Eurographics 04), 23(3):291–300, 2004.

[14] F. Sillion and C. Puech. Radiosity and Global Illumination. Morgan
Kaufmann Publishers, Inc., San Francisco, 1994.

[15] P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered principal compo-
nents for precomputed radiance transfer. In SIGGRAPH 2003, 2003.

[16] P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments.
In SIGGRAPH 2002 Proceedings, pages 527–536, 2002.

[17] L. Szirmay-Kalos, B. Aszódi, I. Lazányi, and M. Premecz. Approx-
imate ray-tracing on the GPU with distance impostors. Computer
Graphics Forum, 24(3):695–704, 2005.

[18] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slussalek. Interac-
tive global illumination using fast ray tracing. In 13th Eurographics
Workshop on Rendering, 2002.

[19] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P.
Greenberg. Lightcuts: A scalable approach to illumination. In SIG-
GRAPH 2005, 2005.

Figure 11: The chairs scene lit by a rectangular spot light, whose illumination can be easily identified. The rest is pure indirect illumination
obtained with the proposed method at 35 FPS.

