EUROGRAPHICS 2005 / J. Dingliana and F. Ganovelli

Short Presentations

Photon Map Gathering on the GPU!

Szabolcs Czuczor, Laszlé Szirmay-Kalos, Laszl6 Szécsi and LaszI6 Neumann

Budapest University of Technology and Economics and University of Girona

Abstract

Photon mapping methods obtain the indirect illumination of a point by finding those photon hits that arrived at
the neighborhood of the point on the object surface. This paper proposes a method that stores the photon hits
in a texture of the graphics hardware and replaces the traditional kd-tree based neighborhood searches by the
filtering of this texture. This step finds the irradiance of all points (i.e. all texels) simultaneously in a single step,
thus the average irradiance of a point can be obtained by a single texture lookup. Using this approach we can
port the final gathering step of photon mapping to the graphics hardware (GPU). The CPU is only responsible
for generating new light paths and updating the unfiltered photon map. Thanks to the optimal subdivision of the
computation work between the the CPU and the GPU, the proposed algorithm can render globally illuminated

scenes interactively.

1. Introduction

Global illumination is a physical simulation, which includes
both direct and indirect lighting. While direct lighting can
be computed by the GPU, the indirect lighting is often com-
puted on the CPU, for example, by photon mapping. Photon
mapping generates photon hits on the surfaces of the vir-
tual scene. If we put the photon hits into a texture (which
later can be mapped onto the surfaces), the implementation
of the indirect illumination computation is possible by pro-
grammable pixel and vertex shaders.

2. Photon mapping

Photon mapping is a two-phase global illumination algo-
rithm [7, 6, 8]. In the first phase a lot of light paths are gen-
erated originating at the light sources and bouncing at the
surfaces randomly. The random generation of the paths is
usually governed by BRDF sampling and Russian roulette.
At each surface hit the Monte Carlo estimation of the incom-
ing power is computed and stored. The data structure repre-
senting these hits is called the photon-map. The photon-map
is usually organized in a kd-tree to support efficient photon

T This work has been supported by the GameTools FP6-004363
EU project, OTKA ref. No.: T042735., Spanish-Hungarian Join Ac-
tion, E-26/04

(© The Eurographics Association 2005.

retrieval. During this retrieval process we need those pho-
tons that are in the neighborhood of the point of interest. A
photon hit is stored with the power of the photon on differ-
ent wavelengths, position, direction of arrival, and with the
surface normal.

The photon map represents the indirect illumination,
which can be taken into account when the reflected radiance
of a point is obtained. This calculation is called final gath-
ering. Suppose we need to determine reflected radiance L of
point X in direction ®. The gathering phase is based on the
following approximation of the light transport operator:

L%, o) = /L‘“(x o) - fr (0, % 0) -cos6’ do ~

AP ¢ g), 1
Y R el ra), @)

where L' is the incoming radiance, f; is the BRDF, 6’ is
the angle between the surface normal and the incoming di-
rection, and A®(%;, o) is the power of a photon landing at %;
of surface AA from direction ®{. The A® and AA quantities
are approximated from the photons in the neighborhood of X
in the following way. A sphere centered around X is extended
until it contains n photons. If at this point the radius of the
sphere is r, then the intersected surface area is AA = nrl.

This original version of the photon-map algorithm has

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Czuczor & Szirmay-Kalos & Szécsi & Neumann / Photon Map Gathering on the GPU

several drawbacks, including the large storage space needed
for the photon hits, the time consuming final gathering and
the filtering artifacts caused by using the n photons nearby.
In order to reduce these artifacts, we should take into account
only those photon hits that arrived at the same surface, or
more precisely, when the surface normal associated with the
photon hit is similar to that of the shaded point. On the other
hand, the approximation of the area from where the photons
are gathered by an intersection circle can be very inaccu-
rate at surface boundaries. Here a more precise area calcula-
tion is needed as suggested by [5]. Christensen [2] proposed
another improvement to compute diffuse interreflections. In
the preprocessing phase, the irradiance is estimated at each
photon hit from the other photon hits that are nearby. Thus
during final gathering, we do not have to find the n nearest
photons, but only the closest one where the normal vector is
similar to the normal vector of the given point.

3. Photon tracing with improved density estimation

Algorithms like photon mapping can also be discussed as
tools to solve a density estimation problem [9]. Photon hits
represent a sampling of the irradiance, from which a smooth
reconstruction of the reflected radiance should be generated.
To achieve this, a convolution operation executing low pass
filtering is defined:

n

L% o)~ Y AD(%, o) - fr(0f,%,0) k& —X), ()

i=1

where ¥; is the location of the ith photon hit and k is the filter
kernel, which can be integrated to 1.

The density estimation can be implemented both with a
gathering [7] or a shooting approach [10]. In case of shoot-
ing, the photon hits are splat as small textured quads onto
the object surfaces and alpha blending is used to add up their
contribution.

4. Computation of thereflected radiance by texture
filtering

In our approach, the photon hits are stored in texture
space [1]. Since neighborhood searches are also executed in
the texture space, we look for a neighborhood of the respec-
tive texel. Usually if two points belong to the same surface
and are close, their texels will also be close. Thus when we
gather photon hits from the neighboring texels, we can as-
sume that these hits would be close to the shaded point in
object space as well. However, it can happen that two 3D
points are far while their respective texels are close. Obvi-
ously in this case we cannot use the photon hits of the other
point for the radiance calculation. To recognize these cases,
the surface identities (id) should also be stored in the texture.
When the neighborhood is built and if the ids of neighboring
texels are different, the neighborhood must not be extended
with those texels. On the other hand, we should also store

the surface normals to avoid considering those photon hits
that have significantly different orientation.

Having established an appropriate neighborhood in tex-
ture space, the surface area corresponding to this neighbor-
hood is computed as required by equation 1. This compu-
tation can again be supported by information stored in tex-
ture. During preprocessing the value of the surface area cor-
responding to a given texel is computed and stored. The texel
areas are calculated as the ratio of the area of the surface ele-
ments (triangles) in world space and in texture space. When
the neighborhood of a texel is built, these area values are
summed.

Summarizing, our method handles the steps of photon
mapping as follows: (1.) Photon tracing on CPU. (l1.) Pho-
ton hit conversion into textures. (111.) Final gathering step in
two passes: (111/1.) filtering the view dependent reflected ra-
diance at those points which correspond to texel centers (see
section 5 for details), and (111/2.) mapping this texture on the
object surface during a normal, local illumination rendering.

5. Computation of thereflected radiance

The reflected radiance computation (the photon map filter-
ing method) is implemented as a pixel shader program on the
GPU. Our proposed algorithm works with the following tex-
tures: diffusemap (the diffuse reflectivities), photon-
hit (the original photon hit powers), photondir (the in-
coming direction of the hits), surface (the surface id and
the area of the surface in channel r and g respectively), nor-
mmap (the x, y and z coordinates of surface normals in the
channels r, g and b respectively).

The pixel shader of the radiance computation checks tex-
els in the (2N + 1) x (2N + 1) square neighborhood of
sample point of texture coordinate pIN.uv, and decides
whether they could be added to the neighborhood. Using
variable filter kernels, we need a texture (£ilter) storing
the filter values in the (2N + 1) x (2N + 1) texel neighbor-
hood. We cannot assume that the kernel integrates to one,
because not necessarily all texels will be taken into account
due to different surfaces and normal vectors. To handle this
problem, a normalization constant is calculated similarly to
the area. For texels belonging to the neighborhood, their hit
power is multiplied with the BRDF of the point of interest
and the resulting reflected radiance is added to the reflected
radiance of the point. The BRDF function takes incoming
direction of the photon indir and eye direction pIN. eye,
which is computed by the vertex shader and is interpolated
by the graphics hardware before calling this pixel shader
code.

The presented program works with textures storing the
normal vector, the surface id, and surface area of those points
they are associated with. These textures can be generated us-
ing render-to-texture technology. Figure 1 shows the normal
and area maps of one of our test scenes.

(© The Eurographics Association 2005.

Czuczor & Szirmay-Kalos & Szécsi & Neumann / Photon Map Gathering on the GPU

The pixel shader program of our algorithm is the follow-
ing:
float3 surfo0 = tex2d(surface, pIN.uv);
float3 norm0 = tex2d(normmap, pIN.uv);
float area = 0;
for(int dy = -N; dy <= N; dy += 1)
for(int dx = -N; dx <= N; dx += 1) {
float2 uvl = pIN.uv + float2(dx, dy);
float k = tex2d(filter, uvl);
float2 surf = tex2d(surface, uvl);
float3 norm = tex2d(normmap, uvl) ;
if (surf.r == surfo.r &&
dot (norm, normO) > threshold) {
area += surf.g * k;
float3 pow = tex2d(photonhit, uvl) * k;
float3 indir = tex2d(photondir, uvl);
rad += pow * BRDF (indir,pIN.uv,pIN.eye) ;

}
}

return rad/area;

Figure 1: The normal (left), the area (middle) and the pho-
ton map of the armadillo scene

To speed up and optimize the algorithm we can take an-
other approach to implement the filtering mechanism. We do
not calculate filtered photon map texels in a pixel shader pro-
gram using a lot of texture look-ups in loops, but we draw
the unwrapped photon map many times on itself with pre-
defined offsets (corresponding to the kernel elements) using
alpha blending. See Figure 2.

©

Figure 2: Filtering by alpha blending. On the left the orig-
inal texture is blended many times onto itself offseted and
weighted corresponding to the position and value of the ker-
nel elements. On theright the resulting map can be seen.

(© The Eurographics Association 2005.

6. Generating the photon textures

Having generated all photon hits by simulating random
walks starting at the light sources on CPU and computed
the texture coordinates of these hits, they are written into
the maps of photon powers and incoming directions and
uploaded to the GPU. Photon directions are not needed if
the surfaces are diffuse, but play a significant role in case
of specular materials. Note that it can happen that two or
more photon hits fall on the same texel, when the photon
hits are very dense at this surface region. The probability of
this event grows as we decrease the resolution of the photon
map texture. This is not a problem for diffuse reflections,
since their BRDF is independent of the incoming direction,
thus powers can be added. However, the direction dependent
specular reflections cannot be handled in this way, but we
should purge photon hits and reduce their density where they
are highly concentrated. This operation should maintain the
total power arriving at this surface region, i.e. when photons
are ignored, the power of the kept photons must be scaled
up.

In order to investigate this problem mathematically, let
us revisit equation 2 expressing the reflected radiance, and
group the terms according to the texels:

n

L%, 0) = Y AD(X, o) - fr(of, X, 0) K& —X) =
i=1
N Nj

z ZA(I)(Y]',(Dﬁi)- fr(wlji’xa“)) k(Xj —X),
j=1im1

where texel j is expected to store photon hits Ad(X;, mﬁi) for
alli=1,...,n;.

In case of diffuse reflections, the sum belonging to a single
texel is:

nj
AD(R;,) - Fr(R) - k(X —) =
=1

fr (%) - k(%X — %) '_gA‘D(xiv“’/ji)’

thus the powers of the photon hits can be simply added.

For specular reflections, let us approximate the sum be-
longing to a single texel applying Monte Carlo methods. We
find a probability density pji so that Zin;l pji = 1, sample an
integer i* with this density, and approximate the sum as:

nj

S AD(K),) - fr (0], % 0) KX —) ~
i=1

AD(X;, wfix) - fr (@fj, X, @
K(Xj —X)- i L L“*r(I).

In order to make the variance of this random estimation

Czuczor & Szirmay-Kalos & Szécsi & Neumann / Photon Map Gathering on the GPU

small, selection probabilities are set proportional to the lu-
minance of the photon hits. Let us denote the luminance of
wavelength dependent power @ by £(®). The probability of
selecting photon hit i is:

o L(@%,0f)
= SN A o

S L(@(%),)
Thus, having sampled hit i*, the Monte Carlo estimate of the
reflected radiance is:

) Aq)(xjvmﬁi*)

KK =X Zow o)

Nj
/ /
- fr (@ji«, X, @) - |2 L(D(Xj,wj)).
=1
The Monte Carlo estimate introduces a small variance in
the estimation. However, filtering reduces this variance and
makes the variance of neighboring pixels correlated, thus we
can still avoid noise artifacts in the image.

7. Discussion and Conclusions

We used two test scenes (Figure 3). Initially two million pho-
tons were emitted. The armadillo scene™ contains 3335, the
Cornell box scene(® contains 144 facets. The computer con-
figuration was: WinXP, AMD AthlonXP 1492 MHz CPU,
NVIDIA GeForce 6800 GT graphics card. The photon maps
and the area map is generated off-line on CPU, the normal
map is created on GPU only once before the normal work-
flow. For details see Table 1.

The proposed approach can be used for interactive walk-
through animations and even in interactive global illumina-
tion. In the latter case even photon maps should be regener-
ated between frames. In order to cope with the speed require-
ments, we do not rebuild all photon paths in each frame, just
those that have been changed with high probability. These
photon paths are identified by selective photon tracing [3].

Photon map Filter kernel
resolution 512x512 11x11 7x7 3x3
FPSV/(2) 08/16 20/38 11/20
resolution 256 x256 11 x11 7x7 3x3
FPSW/(2) 18/36 44/89 22/45

Table 1: Speed and performance results.

References

[1] R. Bastos, M. Goslin, and H. Zhang. Efficient radios-
ity rendering using textures and bicubic reconstruc-
tion. In ACM-SIGGRAPH Symposium on Interactive
3D Graphics, 1997. 2

[2] P. Christensen. Faster photon map global illumination.
Journal of Graphics Toals, 4(3):1-10, 2000. 2

Figure 3: The armadillo and Cornell box scene (with un-
filtered and filtered photon map). Photon map resolution:
256 x 256, kernel size: 7 x 71 and 11 x 11?)

[3] K. Dmitriev, S. Brabec, K. Myszkowski, and H-P. Sei-
del. Interactive global illumination using selective pho-
ton tracing. In Rendering Techniques 2002, 2002. 4

[4] T. Hachisuka. Final gathering on GPU. In ACM Work-
shop on General Purpose Computing on Graphics Pro-
cessors, 2004.

[5] Heinrich Hey and Werner Purgathofer. Advanced
radiance estimation for photon map global illumina-
tion. Computer Graphics Forum (Proceedings of Eu-
rographics 2002), 21(3), September 2002. 2

[6] H.W.Jensen. Global illumination using photon maps.
In Rendering Techniques’ 96, pages 21-30, 1996. 1

[71 H. W. Jensen and N. J. Christensen. Photon maps in
bidirectional Monte Carlo ray tracing of complex ob-
jects. Computers and Graphics, 19(2):215-224, 1995.
1,2

[8] H. W. Jensen and P. H. Christensen. Efficient simula-
tion of light transport in scenes with participating me-
dia using photon maps. Computersand Graphics (S G-
GRAPH ' 98 Proceedings), pages 311-320, 1998. 1

[9] P.Shirley, B. Wade, P. Hubbard, and D Zareski. Global
illumination via density-estimation radiosity. In Euro-
graphics Rendering Workshop ' 95, 1995. 2

[10] Wolfgang Sturzlinger and Rui Bastos. Interactive ren-
dering of globally illuminated glossy scenes. In Ren-
dering Techniques ' 97 (8th EG Workshop on Render-
ing), pages 93-102, 1997. 2

(© The Eurographics Association 2005.

