
Chapter 4

MODEL DECOMPOSITION

The termmodel decomposition refers to the operation when the database
describing an object scene is processed in order to produce simple geometric
entities which are suitable for image synthesis. The question of which sorts
of geometric entity are suitable for picture generation can be answered only
if one is aware of the nature of the image synthesis algorithm to be used.

Usually these algorithms cannot operate directly with the world representa-
tion. The only important exception is the ray tracing method (see chapter
9 and section 6.1 in chapter 6) which works with practically all types of
representation scheme. Other types of image synthesis algorithm, however,
require special types of geometric entity as their input. These geometric

entities are very simple and are called graphics primitives. Thus model
decomposition produces low level graphics primitives from a higher level
representation scheme. Usually these primitives are polygons or simply tri-
angles. Since many algorithms require triangles only as their input, and
polygons can be handled similarly, this chapter will examine that case of

model decomposition in which the graphics primitives are triangles. The
problem is the following: a solid object given by a representation scheme,
approximate its boundary by a set of triangles.

The most straightforward approach to this task is to generate a number of
surface points so that they can be taken as triangle vertices. Each triangle

then becomes a linear interpolation of the surface between the three vertices.

81

82 4. MODEL DECOMPOSITION

The resulting set of triangles is a valid mesh if for each triangle:

� each of its vertices is one of the generated surface points

� each of its edges is shared by exactly one other (neighboring) triangle

except for those that correspond to the boundary curve of the surface

� there is no other triangle which intersects it, except for neighboring

triangles sharing common edges or vertices

Some image synthesis algorithms also require their input to contain topo-

logical information (references from the triangles to their neighbors); some

do not, depending on the nature of the algorithm. It is generally true, how-

ever, that a consistent and redundancy-free mesh structure that stores each

geometric entity once only (triangle vertices, for example, are not stored as
many times as there are triangles that contain them) is usually much less
cumbersome than a stack of triangles stored individually. For the sake of
simplicity, however, we will concentrate here only on generating the trian-

gles and omit topological relationships between them.

4.1 Simple geometric objects

A geometric object is usually considered to be simple if it can be described

by one main formula characterizing its shape and (possibly) some additional
formulae characterizing its actual boundary. In other words, a simple ge-
ometric object has a uniform shape. A sphere with center c 2 E3 and of
radius r is a good example, because its points p satisfy the formula:

jp � cj � r (4:1)

where j � j denotes vector length.
Simple objects are also called geometric primitives. The task is to approx-

imate the surface of a primitive by a triangular mesh, that is, a number of

surface points must be generated and then proper triangles must be formed.
In order to produce surface points, the formula describing the surface must
have a special form called explicit form, as will soon become apparent.

4.1. SIMPLE GEOMETRIC OBJECTS 83

4.1.1 Explicit surface patches

The formula describing a surface is in (biparametric) explicit form if it

characterizes the coordinates (x; y; z) of the surface points in the following

way:
x = fx(u; v);

y = fy(u; v);

z = fz(u; v); (u; v) 2 D

(4:2)

where D is the 2D parameter domain (it is usually the rectangular box

de�ned by the inequalities 0 � u � umax and 0 � v � vmax for the most

commonly used 4-sided patches). The formula \generates" a surface point

at each parameter value (u; v), and the continuity of the functions fx; fy; fz
ensures that each surface point is generated at some parameter value (the

formulae used in solid modeling are analytic or more often algebraic which
implies continuity; see subsection 1.6.1). This is exactly what is required

in model decomposition: the surface points can be generated (sampled) to
any desired resolution.
In order to generate a valid triangular mesh, the 2D parameter domain,D,

must be sampled and then proper triangles must be formed from the sample
points. We distinguish between the following types of faces (patches) with

respect to the shape of D.

Quadrilateral surface patches

The most commonly used form of the parameter domain D is a rectangular

box in the parameter plane, de�ned by the following inequalities:

0 � u � umax; 0 � v � vmax: (4:3)

The resulting patch is 4-sided in this case, and the four boundary curves cor-
respond to the boundary edges of the parameter rectangle (� stands for any
value of the domain): (0; �), (umax; �), (�; 0), (�; vmax). The curves de�ned by

parameter ranges (u; �) or (�; v), that is, where one of the parameters is �xed,

are called isoparametric curves. Let us consider the two sets of isoparamet-

ric curves de�ned by the following parameter ranges (the subdivision is not
necessarily uniform):

(0; �); (u1; �); : : : ; (un�1; �); (umax; �);
(�; 0); (�; v1); : : : ; (�; vm�1); (�; vmax):

(4:4)

84 4. MODEL DECOMPOSITION

The two sets of curves form a quadrilateral mesh on the surface. The

vertices of each quadrilateral correspond to parameter values of the form

(ui; vj), (ui+1; vj), (ui+1; vj+1), (ui; vj+1). Each quadrilateral can easily be

cut into two triangles and thus the surface patch can be approximated by

2nm number of triangles using the following simple algorithm (note that it

realizes a uniform subdivision):

DecomposeQuad(~f, n, m) // ~f = (fx; fy; fz)

S = fg; ui = 0; // S: resulting set of triangles

for i = 1 to n do

ui+1 = umax � i=n; vj = 0;

for j = 1 to m do

vj+1 = vmax � j=m;

add the triangle ~f(ui; vj), ~f (ui+1; vj), ~f(ui+1; vj+1) to S;

add the triangle ~f(ui; vj), ~f (ui+1; vj+1), ~f(ui; vj+1) to S;
vj = vj+1;

endfor

ui = ui+1;
endfor

return S;
end

v

v

v

max

’

u maxu’u

Figure 4.1: Subdivision of a rectangular parameter domain

Note that the quadrilateral (triangular) subdivision of the patch corre-
sponds to a quadrilateral (triangular) subdivision of the parameter domain

4.1. SIMPLE GEOMETRIC OBJECTS 85

D, as illustrated in �gure 4.1. This is not surprising, since the mapping

f(u; v) is a continuous and one-to-one mapping, and as such, preserves

topological invariances, for example neighborhood relationships.

Triangular surface patches

Triangular | and more generally; non-quadrilateral | surface patches were

introduced into geometric modeling because the �xed topology of surfaces

based on 4-sided patches restricted the designer's freedom in many cases

(non-quadrilateral patches are typically necessary for modeling rounded cor-

ners where three or more other patches meet and must be blended). The

parameter domain D is usually triangle-shaped. The Steiner patch [SA87],

for example, is de�ned over the following parameter domain:

u � 0; v � 0; u+ v � 1 (4:5)

It often occurs, however, that the triangular patch is parameterized via
three parameters, that is having the form f(u; v; w), but then the three
parameters are not mutually independent. The Bezier triangle is an example
of this (see any textbook on surfaces in computer aided geometric design,
such as [Yam88]). Its parameter domain is de�ned as:

u � 0; v � 0; w � 0; u+ v + w = 1 (4:6)

It is also a triangle, but de�ned in a 3D coordinate system. In order to

discuss the above two types of parameter domain in a uni�ed way, the
parameter will be handled as a vector ~u which is either a 2D or a 3D
vector, that is a point of a 2D or 3D parameter space U . The parameter
domain D � U is then de�ned as a triangle spanned by the three vertices
~u1; ~u2; ~u3 2 U .

The task is to subdivide the triangular domain D into smaller triangles.
Of all the imaginable variations on this theme, the neatest is perhaps the

following, which is based on recursive subdivision of the triangle into similar

smaller ones using the middle points of the triangle sides. As illustrated in
�gure 4.2, the three middle points, ~m1; ~m2; ~m3, are generated �rst:

~m1 =
1

2
(~u2 + ~u3); ~m2 =

1

2
(~u3 + ~u1); ~m3 =

1

2
(~u1 + ~u2): (4:7)

86 4. MODEL DECOMPOSITION

u1
u

2

u3

m2 m1

m
3

Figure 4.2: Subdivision of a triangular parameter domain

The resulting four smaller triangles are then further subdivided in a similar

way. The subdivision continues until a prede�ned \depth of recurrence",
say d, is reached. The corresponding recursive algorithm is the following:

DecomposeTriang(~f, ~u1, ~u2, ~u3, d) // ~f = (fx; fy; fz)

if d � 0 then return the triangle of vertices ~f (~u1), ~f(~u2), ~f(~u3);
S = fg;

~m1 =
1
2(~u2 + ~u3); ~m2 =

1
2(~u3 + ~u1); ~m3 =

1
2(~u1 + ~u2);

add DecomposeTriang(~f, ~u1, ~m3, ~m2, d� 1) to S;

add DecomposeTriang(~f, ~u2, ~m1, ~m3, d� 1) to S;

add DecomposeTriang(~f, ~u3, ~m2, ~m1, d� 1) to S;

add DecomposeTriang(~f, ~m1, ~m2, ~m3, d� 1) to S;
return S;

end

General n-sided surface patches

Surface patches suitable for interpolating curve networks with general (ir-

regular) topology are one of the most recent achievements in geometric
modeling (see [V�ar87] or [HRV92] for a survey). The parameter domain

corresponding to an n-sided patch is usually an n-sided convex polygon (or
even a regular n-sided polygon with sides of unit length as in the case of

4.1. SIMPLE GEOMETRIC OBJECTS 87

the so-called overlap patches [V�ar91]). A convex polygon can easily be bro-

ken down into triangles, as will be shown in subsection 4.2.1, and then the

triangles can be further divided into smaller ones.

4.1.2 Implicit surface patches

The formula describing a surface is said to be in implicit form if it charac-

terizes the coordinates (x; y; z) of the surface points in the following way:

f(x; y; z) = 0: (4:8)

This form is especially suitable for tests that decide whether a given point is

on the surface: the coordinates of the point are simply substituted and the

value of f gives the result. Model decomposition, however, yields something
of a contrary problem: points which are on the surface must be generated.
The implicit equation does not give any help in this, it allows us only to
check whether a given point does in fact lie on the surface. As we have seen
in the previous subsection, explicit forms are much more suitable for model

decomposition than implicit forms. We can conclude without doubt that
the implicit form in itself is not suitable for model decomposition.
Two ways of avoiding the problems arising from the implicit form seem

to exist. These are the following:

1. Avoiding model decomposition. It has been mentioned that ray trac-
ing is an image synthesis method that can operate directly on the
world representation. The only operation that ray tracing performs
on the geometric database is the calculation of the intersection point

between a light ray (directed semi-line) and the surface of an object.
In addition, this calculation is easier to perform if the surface formula
is given in implicit form (see subsection 6.1.2 about intersection with
implicit surfaces).

2. Explicitization. One can try to �nd an explicit form which is equiva-
lent to the given implicit form, that is, which characterizes the same

surface. No general method is known, however, for solving the explic-

itization problem. The desired formulae can be obtained heuristically.

Explicit formulae for simple surfaces, such as sphere or cylinder sur-

faces, can easily be constructed (examples can be found in subsection

88 4. MODEL DECOMPOSITION

12.1.2, where the problem is examined within the context of texture

mapping).

The conclusion is that implicit surfaces are generally not suited to being

broken down into triangular meshes, except for simple types, but this prob-

lem can be avoided by selecting an image synthesis algorithm (ray tracing)

which does not require preliminary model decomposition.

4.2 Compound objects

Compound objects are created via special operations performed on simpler

objects. The simpler objects themselves can also be compound objects, but

the bottom level of this hierarchy always contains geometric primitives only.

The operations by which compound objects can be created usually belong
to one of the following two types:

1. Regularized Boolean set operations. We met these in subsection 1.6.1
on the general aspects of geometric modeling. Set operations are typ-
ically used in CSG representation schemes.

2. Euler operators. These are special operations that modify the bound-
ary of a solid so that its combinatorial (topological) validity is left
unchanged. The name relates to Euler's famous formula which states
that the alternating sum of the number of vertices, edges and faces

of a simply connected polyhedron is always two. This formula was
then extended to more general polyhedra by geometric modelers. The
Euler operators | which can create or remove vertices, edges and
faces | are de�ned in such a way that performing them does not vi-
olate the formula [M�an88], [FvDFH90]. Euler operators are typically

used in B-rep schemes.

Although often not just one of the two most important representation
schemes, CSG and B-rep, is used exclusively, that is, practical modeling

systems use instead a hybrid representation, it is worth discussing the two

schemes separately here.

4.2. COMPOUND OBJECTS 89

4.2.1 Decomposing B-rep schemes

Breaking down a B-rep scheme into a triangular mesh is relatively simple.

The faces of the objects are well described in B-rep, that is, not only their

shapes but also their boundary edges and vertices are usually explicitly

represented.

(a) (b) (c)

Figure 4.3: Polygon decompositions

If the object is a planar polyhedron, that is if it contains planar faces only,

then each face can be individually retrieved and triangulated. Once the
polygon has been broken down into triangles, generating a �ner subdivision
poses no real problem, since each triangle can be divided separately by
the algorithm for triangular patches given in subsection 4.1.1. However the
crucial question is: how to decompose a polygon | which is generally either
convex or concave and may contain holes (that is multiply connected) |

into triangles that perfectly cover its area and only its area. This polygon
triangulation problem, like many others arising in computer graphics, has
been studied in computational geometry. Without going into detail, let
us distinguish between the following three cases (n denotes the number of
vertices of the polygon):

1. Convex polygons. A convex polygon can easily be triangulated, as
illustrated in part (a) of �gure 4.3. First an inner point is calculated

| for example the center of mass | and then each side of the polygon

makes a triangle with this inner point. The time complexity of this

operation is O(n).

2. Concave polygons without holes. Such polygons cannot be triangulated

in the previous way. A problem solving approach called divide-and-

conquer can be utilized here in the following way. First two vertices of

90 4. MODEL DECOMPOSITION

the polygon must be found so that the straight line segment connecting

them cuts the polygon into two parts (see part (b) of �gure 4.3). This

diagonal is called a separator. Each of the two resulting polygons is

either a triangle, in which case it need not be divided further, or else

has more than three vertices, so it can be divided further in a similar

way. If it can be ensured that the two resulting polygons are of the

same size (up to a ratio of two) with respect to the number of their

vertices at each subdivision step, then this balanced recurrence results

in a very good, O(n log n), time complexity. (Consult [Cha82] to see

that the above property of the separator can always be ensured in not

more than O(n) time.)

3. General polygons. Polygons of this type may contain holes. A general

method of triangulating a polygon with holes is to generate a con-

strained triangulation of its vertices, as illustrated in part (c) of �gure
4.3. A triangulation of a set of points is an aggregate of triangles,
where the vertices of the triangles are from the point set, no trian-
gles overlap and they completely cover the convex hull of the point

set. A triangulation is constrained if there are some prede�ned edges
(point pairs) that must be triangle edges in the triangulation. Now
the point set is the set of vertices and the constrained edges are the
polygon edges. Having computed the triangulation, only those trian-
gles which are inside the face need be retained. (Seidel [Sei88] shows,

for example, how such a triangulation can be computed in O(n log n)
time.)

Finally, if the object has curved faces, then their shape is usually described

by (or their representation can be transformed to) explicit formulae. Since
the faces of a compound object are the result of operations on primitive face
elements (patches), and since usually their boundaries are curves resulting
from intersections between surfaces, it cannot be assumed that the param-

eter domain corresponding to the face is anything as simple as a square or

a triangle. It is generally a territory with a curved boundary, which can,
however, be approximated by a polygon to within some desired tolerance.

Having triangulated the original face the triangular faces can then be de-
composed further until the approximation is su�ciently close to the original

face.

4.2. COMPOUND OBJECTS 91

4.2.2 Boundary evaluation for CSG schemes

As described in section 1.6.2 CSG schemes do not explicitly contain the faces

of the objects, shapes are produced by combining half-spaces or primitives

de�ning point sets in space. The boundary of the solid is unevaluated in

such a representation. The operation that produces the faces of a solid

represented by a CSG-tree is called boundary evaluation.

Set membership classi�cation: the uni�ed approach

Tilove has pointed out [Til80] that a paradigm called set membership

classi�cation can be a uni�ed approach to geometric intersection problems

arising in constructive solid geometry and related �elds such as computer

graphics. The classi�cation of a candidate set X with respect to a reference

set S maps X into the following three disjoint sets:

Cin(X;S) = X \ iS;

Cout(X;S) = X \ cS;

Con(X;S) = X \ bS;

(4:9)

where iS; cS; bS are the interior, complement and boundary of S, respec-
tively. Note that if X is the union of boundaries of the primitive objects
in the CSG-tree, and S is the solid represented by the tree, then boundary
evaluation is no else but the computation of Con(X;S). The exact computa-
tion of this set, however, will not be demonstrated here. An approximation

method will be shown instead, which blindly generates all the patches that
may fall onto the boundary of S and then tests each one whether to keep
it or not. For this reason, the following binary relations can be de�ned
between a candidate set X and a reference set S:

X in S if X � iS;

X out S if X � cS;

X on S if X � bS

(4:10)

(note that either one or none of these can be true at a time for a pair X;S).

In constructive solid geometry, S is either a primitive object or is of the
form S = A �� B, where �� is one of the operations [�;\�; n�. A divide-

and-conquer approach can now help us to simplify the problem.

92 4. MODEL DECOMPOSITION

The following relations are straightforward results:

X in (A [B) if X in A _ X in B

X out (A [B) if X out A ^ X out B

X on (A [B) if (X on A ^ : X in B) _ (X on B ^ : X in A)

X in (A \B) if X in A ^ X in B

X out (A \B) if X out A _ X out B

X on (A \B) if (X on A ^ : X in cB) _ (X on B ^ : X in cA)

X in (A nB) if X in A ^ X in cB

X out (A nB) if X out A _ X out cB

X on (A nB) if (X on A ^ : X in B):
(4:11)

That is, the classi�cation with respect to a compound object of the form
S = A�B can be traced back to simple logical combinations of classi�cation

results with respect to the argument objects A;B.

X

B

A

S=A BU

X

B
A

S=A B

U

X on ?S X on ?S

Figure 4.4: Some problematic situations in set membership classi�cation

There are two problems, however:

1. The events on the right hand side are not equivalent with the events

on the left hand side. The event X in (A [B) can happen if X in A

or X in B or (this is not contained by the expression) X1 in A and
X2 in B where X1 [X2 = X. This latter event, however, is much

more di�cult to detect than the previous two.

4.2. COMPOUND OBJECTS 93

S=A * B

p

B

A

S=A * BU

p
B

A

U

U

U

*

*

p

N(p,A,)ε

N(p,A,)ε N(p,B,)ε

N(p,B,)ε

p in*S

p out *S

Figure 4.5: Regularizing set membership classi�cations

2. There are problematic cases when the above expressions are extended
to regular sets and regularized set operations. Figure 4.4 illustrates
two such problematic situations (the candidate set X is a single point
in both cases).

Problem 1 can be overridden by a nice combination of a generate-and-test
and a divide-and-conquer strategy, as will soon be shown in the subsequent
sections.
The perfect theoretical solution to problem 2 is that each point p 2 X of

the candidate set is examined by considering a (su�ciently small) neighbor-
hood of p. Let us �rst consider the idea without worrying about implemen-
tation di�culties. Let B(p; ") denote a ball around p with a (small) radius
", and let N(p; S; ") be de�ned as the "-neighborhood of p in S (see �gure
4.5):

N(p; S; ") = B(p; ") \� S: (4:12)

Then the regularized set membership relations are the following:

p in� (A �� B) if 9" > 0: N(p;A; ") �� N(p;B; ") = B(p; ");

pout� (A �� B) if 9" > 0: N(p;A; ") �� N(p;B; ") = ;;

pon� (A �� B) if 8" > 0: ; 6= N(p;A; ") �� N(p;B; ") 6= B(p; "):
(4:13)

Figure 4.5 shows some typical situations. One might suspect disappointing

computational di�culties in actually performing the above tests:

94 4. MODEL DECOMPOSITION

1. It is impossible to examine each point of a point set since their num-

ber is generally in�nite. Intersection between point sets can be well

computed by �rst checking whether one contains the other and if not,

then intersecting their boundaries. If the point sets are polyhedra (as

in the method to be introduced in the next part), then intersecting

their boundaries requires simple computations (face/face, edge/face).

Ensuring regularity implies careful handling of degenerate cases.

2. If a single point is to be classi�ed then the ball of radius " can, however,

be substituted by a simple line segment of length 2" and then the same

operations performed on that as were performed on the ball in the

above formulae. Onemust ensure then that " is small enough, and that

the line segment has a \general" orientation, that is, if it intersects the

boundary of an object then the angle between the segment and tangent
plane at the intersection point must be large enough to avoid problems
arising from numerical inaccuracy of oating point calculations.

The conclusion is that the practical implementation of regularization does
not mean the perfect imitation of the theoretical solution, but rather that
simpli�ed solutions are used and degeneracies are handled by keeping the
theory in mind.

Generate-and-test

Beacon et al. [BDH+89] proposed the following algorithm which approx-

imates the boundary of a CSG solid, that is, generates surface patches
the aggregate of which makes the boundary of the solid \almost perfectly"
within a prede�ned tolerance. The basic idea is that the union of the bound-
aries of the primitive objects is a superset of the boundary of the compound

solid, since each boundary point lies on some primitive. The approach based
on this idea is a generate-and-test strategy:

1. The boundary of each primitive is roughly subdivided into patches in

a preliminary phase and put onto a list L called the candidate list.

2. The patches on L are taken one by one and each patch P is classi�ed

with respect to the solid S, that is, the relations P in�S, P out�S and

P on�S are evaluated.

4.2. COMPOUND OBJECTS 95

3. If P on�S then P is put onto a list B called the de�nitive boundary

list. This list will contain the result. If P in�S or P out�S then P is

discarded since it cannot contribute to the boundary of S.

4. Finally, if none of the three relations holds, then P intersects the

boundary of S somewhere, although it is not contained totally by it.

In this case P should not be discarded but rather it is subdivided into

smaller patches, say P1; : : : ; Pn, which are put back onto the candidate

list L. If, however, the size of P is below the prede�ned tolerance, then

it is not subdivided further but placed onto a third list T called the

tentative boundary list.

5. The process is continued until the candidate list L becomes empty.

The (approximate) boundary of S can be found in list B. The other output

list, T , contains some \garbage" patches which may be the subject of further
geometric calculations or may simply be discarded.
The crucial point is how to classify the patches with respect to the solid.

The cited authors propose a computationally not too expensive approximate
solution to this problem, which they call the method of inner sets and outer

sets; the ISOS method.

P

P

P

i

i

i

-

β

B

Figure 4.6: Inner and outer segments

Each primitive object P is approximated by two polyhedra: an inner

polyhedron P� and an outer polyhedron P+:

P� � P � P+: (4:14)

96 4. MODEL DECOMPOSITION

Both polyhedra are constructed from polyhedral segments. The segments

of P� and P+, however, are not independent of each other, as illustrated

in �gure 4.6. The outer polyhedron P+ consists of the outer segments,

say P+

1 ; : : : ; P
+

n . An outer segment P+

i is the union of two subsegments:

the inner segment P�

i , which is totally contained by the primitive, and the

boundary segment PB
i , which contains a boundary patch, say �i (a part of

the boundary of the primitive). The thinner the boundary segments the

better the approximation of the primitive boundary by the union of the

boundary segments. A coarse decomposition of each primitive is created in

a preliminary phase according to point 1 of the above outlined strategy.

Set membership classi�cation of a boundary patch � with respect to the

compound solid S (point 2) is approximated by means of the inner, outer

and boundary segments corresponding to the primitives. According to the

divide-and-conquer approach, two di�erent cases can be distinguished:

one in which S is primitive and the second is in which S is compound.

Case 1: Classi�cation of � with respect to a primitive P

β

P

β

β

β out*

β part*

β in* P

P

P

Figure 4.7: Relations between a boundary segment and a primitive

The following examinations must be made on the boundary segment PB

containing the boundary patch � with respect to P in this order (it is
assumed that � is not a boundary patch of P because this case can be

detected straightforwardly):

1. Test whether PB intersects any of the outer segments P+

1 ; : : : ; P
+

n

corresponding to P . If the answer is negative, then PB out�P holds,

4.2. COMPOUND OBJECTS 97

that is � out�P (see �gure 4.7). Otherwise go to examination 2 (� is

either totally or partially contained by P).

2. Test whether PB intersects any of the boundary segments PB
1
; : : : ; PB

n

corresponding to P . If the answer is negative, then PB in�P holds,

that is � in�P (see �gure 4.7). Otherwise go to examination 3.

3. In this case, due to the polyhedral approximation, nothing more can

be stated about �, that is, either one or none of the relations � in�P ,

� out�P and (accidentally) � on�P could hold (�gure 4.7 shows a sit-

uation where none of them holds). � is classi�ed as partial in this

case. This is expressed by the notation �part�P (according to point

4 of the generate-and-test strategy outlined previously, � will then be

subdivided).

Classi�cation results with respect to two primitives connected by a set op-
eration can then be combined.

Case 2: Classi�cation of � with respect to S = A �� B

B

S=A *B

on*
part*

U
β
β

β tnon*

A

β

SA
B

Figure 4.8: A boundary segment classi�ed as a tentative boundary

98 4. MODEL DECOMPOSITION

After computing the classi�cation of � with respect to A and B, the two

results can be combined according to the following tables (new notations

are de�ned after):

S = A [� B � in�B � out�B � on�B � part�B � tnon�B

� in�A � in�S � in�S � in�S � in�S � in�S

� out�A � in�S � out�S � on�S � part�S � tnon�S

� on�A � in�S � on�S � � tnon�S �

�part�A � in�S � part�S � tnon�S � part�S � tnon�S

� tnon�A � in�S � tnon�S � � tnon�S �

S = A \� B � in�B � out�B � on�B � part�B � tnon�B

� in�A � in�S � out�S � on�S � part�S � tnon�S
� out�A � out�S � out�S � out�S � out�S � out�S
� on�A � on�S � out�S � � tnon�S �

�part�A � part�S � out�S � tnon�S � part�S � tnon�S
� tnon�A � tnon�S � out�S � � tnon�S �

S = A n� B � in�B � out�B � on�B � part�B � tnon�B

� in�A � out�S � in�S � on�S � part�S � tnon�S
� out�A � out�S � out�S � out�S � out�S � out�S
� on�A � out�S � on�S � � tnon�S �

�part�A � out�S � part�S � tnon�S � part�S � tnon�S
� tnon�A � out�S � tnon�S � � tnon�S �

Two new notations are used here in addition to those already introduced.
The notation � tnon�S is used to express that � is a tentative boundary patch
(see �gure 4.8). The use of this result in the classi�cation scheme always
happens at a stage where one of the classi�cation results to be combined

is \on� " and the other is \part� ", in which case the relation of � with

respect to S cannot be ascertained. The patch can then be the subject of
subdivision and some of the subpatches may come out as boundary patches.

The other notation, the asterisk (�), denotes that the situation can occur in

case of degeneracies, and that special care should then be taken in order to
resolve degeneracies so that regularity of the set operations is not violated

(this requires further geometric calculations).

