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Abstract—Iterative Positron Emission Tomography (PET) re-
construction computes projections between the voxel space and
the LOR space, which are mathematically equivalent to the
evaluation of multi-dimensional integrals. The dimension of the
integration domain can be very high if scattering needs to be
compensated. Monte Carlo (MC) quadrature is a straightfor-
ward method to approximate high-dimensional integrals. As the
numbers of voxels and LORs can be in the order of hundred
millions and the projection also depends on the measured
object, the quadratures cannot be pre-computed, but Monte
Carlo simulation should take place on-the-fly during the iterative
reconstruction process. This paper presents modifications of
the Maximum Likelihood, Expectation Maximization (ML-EM)
iteration scheme to reduce the reconstruction error due to the
on-the-fly MC approximations of forward and back projections.
If the MC sample locations are the same in every iteration step of
the ML-EM scheme, then the approximation error will lead to a
modified reconstruction result. However, when random estimates
are statistically independent in different iteration steps, then the
iteration may either diverge or fluctuate around the solution. Our
goal is to increase the accuracy and the stability of the iterative
solution while keeping the number of random samples and
therefore the reconstruction time low. We first analyze the error
behavior of ML-EM iteration with on-the-fly MC projections,
then propose two solutions: averaging iteration and Metropolis
iteration. Averaging iteration averages forward projection esti-
mates during the iteration sequence. Metropolis iteration rejects
those forward projection estimates that would compromise the
reconstruction and also guarantees the unbiasedness of the tracer
density estimate. We demonstrate that these techniques allow a
significant reduction of the required number of samples and thus
the reconstruction time. The proposed methods are built into the
TeratomoTM system.

Index Terms—Monte Carlo methods, ML-EM reconstruction,
PET, GPU, scatter compensation.

I. INTRODUCTION

TOMOGRAPHY reconstruction is the inverse problem
of particle transport in scattering and absorbing media,

which requires the iteration of particle transport calculations
and corrective back projections [19]. The inputs of the recon-
struction are the measured values in Lines of Responses or
LORs: y = (y1, y2, . . . , yNLOR), and the material map of the
examined object, which is typically obtained by a CT scan.
The output of the reconstruction method is the tracer density
function x(v⃗), which is approximated in a finite function series

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

L. Szirmay-Kalos, M. Magdics, and B. Tóth are with the Department of
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form:

x(v⃗) =

Nvoxel∑
V=1

xV bV (v⃗), (1)

where x = (x1, x2, . . . , xNvoxel
) are unknown coefficients and

bV (v⃗) (V = 1, . . . , Nvoxel) are basis functions [2], which are
typically defined on a voxel grid. The correspondence between
the coefficients of the tracer density function (voxel values)
and the LOR hits is established by the system sensitivity
T (v⃗ → L) defining the probability that a radioactive decay
happened in v⃗ is detected by LOR L.

Forward projection computes the expectation value of the
number of hits in each LOR L:

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv =

Nvoxel∑
V=1

ALV xV (2)

where V is the domain of the reconstruction, i.e. the field of
view of the tomograph, and ALV is the System Matrix (SM):

ALV =

∫
V

bV (v⃗)T (v⃗ → L)dv (3)

The ML-EM scheme searches tracer density coefficients
x1, . . . , xNvoxel

that maximize the probability of measurement
results y1, . . . , yNLOR

by an iterative algorithm started from
a uniform tracer density or an initial estimate. Taking into
account that the measured hits follow a Poisson distribution,
after each forward projection, the ML-EM scheme executes
a back projection correcting the voxel estimates based on the
ratios of measured and computed LOR values [20]:

x′
V = xV ·

∑
L ALV

yL

ỹL∑
L ALV

. (4)

To compute forward and back projections, we should consider
all points where positrons can be generated and all possible
particle paths that can lead to an event in LOR L. A parti-
cle path can be described by a sequence of particle–matter
interaction points, thus potential contribution T (v⃗ → L) of
annihilation point v⃗ to LOR L is a high-dimensional integral,
so are the expected LOR hits in equation 2 and SM elements
in equation 3.

SM elements defining projections can be measured [15]
or pre-computed off-line [18], but these methods cannot in-
corporate patient specific material information. Moreover, in
fully-3D reconstruction both the number of LORs and the
number of voxels may be several hundred millions, thus the
SM is prohibitively large and is not sparse if scattering is
also taken into account. To handle the huge SM, it can be
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factored according to physical phenomena like positron range,
geometric projection, absorption, scattering in the measured
object, scattering in the detectors, etc. [17]. Simpler physical
phenomena corresponding to lower-dimensional integrals, like
geometric projection or absorption, may be obtained by on-the-
fly analytic approximations. However, complex phenomena,
like scattering, are associated with very high-dimensional
integrals, for which MC quadrature is a powerful and straight-
forward tool. MC quadrature evaluates the integrand at discrete
samples that should be concentrated where the integrand is
large. The statistical error bound of MC quadrature is inversely
proportional to the square root of the number of samples
and does not grow with the dimension of the integration
domain. Furthermore, MC quadrature offers a lot of freedom
for the definition of the actual sampling strategy, allowing to
take into account the features of the computing hardware.
This is particularly important if the algorithm runs on the
Graphics Processing Unit (GPU), which has massively parallel
architecture but favors algorithms having limited number of
conditional statements and are of gathering type, i.e. com-
putational threads write only their private memory locations.
The disadvantage of MC simulation is its high computation
cost when accurate results are needed. In this paper we focus
on computing projections with on-the-fly MC simulation of
the physical model during iterative reconstruction. We show
that its computational cost can be significantly reduced by
distributing the samples among the steps of the iteration.

During the development of reconstruction methods comput-
ing projections on-the-fly with MC quadrature, we face the
following design decisions:

1) Should we generate different, i.e. statistically indepen-
dent projections in different iteration steps, or should
we use the same approximation? Note that the sec-
ond alternative would be equivalent to the matrix pre-
computation from precision point of view, but instead
of storing the huge matrix, the seed of the random
number generator is re-initialized at each iteration step,
so pseudo-random methods will lead to the same ap-
proximation.

2) In a single iteration step, we need to execute two
projections, a forward projection and a back projection.
We can ask again whether the forward projector should
use the same SM estimate as the back projector of the
same iteration step, or it is better to use two statistically
independent estimates obtained possibly with different
number of samples.

3) During iterative reconstruction, the projectors are ap-
plied many times. Is it possible to use the information
of previous projections to improve the accuracy of the
current one? Of course, such accuracy improvement is
feasible only if it does not require the storage of the
huge SM.

This paper provides answers to these questions and is orga-
nized as follows. Section II presents a motivating example of
a 2D PET that randomly estimates an analytically computable
SM and examines the convergence properties of the ML-EM
iteration involving different sampling methods. Our goal is

the modification of the ML-EM iteration to make it stable and
accurate even for low sample numbers and high measurement
noise. Our proposed solutions are presented in Sections III-A
and III-B. Finally, we discuss and evaluate the new iteration
schemes in fully-3D PET reconstruction.

II. MOTIVATION AND PROBLEM STATEMENT

For motivation, we first examine a simple analytical problem
describing a 2D PET where a SM of dimensions NLOR =
2115 and Nvoxel = 1024 is defined as the weighted sum of
two Gaussian density functions of the distance between the
LOR and the voxel with FWHMs equal to the detector size
and to five times the detector size, respectively (Fig. 1). The
wider Gaussian may be interpreted as the scattered contri-
bution, while the narrower Gaussian may refer to the direct
contribution. The Gaussian of the direct contribution is given
60% weight and the scattered contribution 40%, which reflects
the typical ratios in human PETs. The analytical nature and the
small size of this example provide us with a ground truth SM
and reconstruction result to which different alternatives can be
compared. However, we have to emphasize that this example
is not realistic in the sense that in practice the system matrix
is never known and its huge size prohibits the storage of its
elements.

Fig. 1. A simple 2D tomograph model used in the experiments of this section
(left). The detector ring contains 90 detector crystals and each of them is of
size 2.2 in voxel units and participates in 47 LORs connecting this crystal
to crystals being in the opposite half circle, thus the total number of LORs
is 90 × 47/2 = 2115. The voxel array to be reconstructed is in the middle
of the ring and has 32 × 32 resolution, i.e. 1024 voxels. The ground truth
voxel array has two hot squares, one is of 6 × 6 voxels where each voxel’s
activity is 200, the other is of 2×2 voxels where each voxel’s activity is 3200.
Its measured projection involving Poisson noise is shown in sinogram form
in the image on the right, where the horizontal and vertical axes correspond
to the signed distance of the line from the center and the angle of the line,
respectively.

The reference activity is a simple function defined by two
hot rectangles of Fig. 1. The measured values are obtained
by sampling Poisson distributed random variables setting their
means to the product of the SM and the reference activity
(right of Fig. 1).

The random system matrices are calculated with 105–107

samples in total (Fig. 2). Note that estimating 2 · 106 SM
elements with 105 discrete samples in total means that most
of the SM elements get no sample and thus are replaced by
zero, making this a very high-variance estimation that can be
considered as a stress test for ML-EM reconstruction.
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Fig. 2. One column of the SM: sinograms corresponding to voxel (10, 10), which is the right–upper neighbor of the smaller hot region in Fig. 1, when
the SM is computed analytically or with 105 – 107 random samples in total. Note that when only 105 random samples are taken to approximate all of the
2 · 106 SM elements, 95% of the elements get no sample and are replaced by zero, while the remaining 5% are approximated by a constant sample weight
that is equal to the sum of all SM elements divided by the number of samples. Increasing the number of samples, more than one sample can contribute to a
single SM element, thus zeros and small integer multiples of the sample weight show up.

Fig. 3. Relative L2 error curves obtained with different sampling techniques. Fixed case: SM is the same in every iteration step. Deterministically matched
stochastic iteration: SM is re-sampled in each iteration step and the forward projector of an iteration step uses the same SM as its back projector. Statistically
matched stochastic iteration: SM is re-sampled for every projection, i.e. the forward projection is statistically independent of the back projection.

In the first set of experiments we determine the relative
L2 error of the reconstruction process of the fixed case, i.e.
when the same SM approximation is used in all iteration
steps (left of Fig. 3). These results indicate that working
with the same MC estimate during an ML-EM iteration is
generally a bad idea unless the estimate has high accuracy.
Reconstructing with a modified SM means that we alter
the physical model, so the ML-EM iteration converges to a
different solution. Unfortunately, accurate MC estimates have
very high computation cost.

Another possibility is the independent re-sampling of the
SM in each iteration step. Thus, we have the potential to get
all information from the SM, although not in a single step,
but as the iteration proceeds. The middle of Fig. 3 shows the
error curves obtained when we use statistically independent
SM estimates in different iteration steps, but in a single step the
same SM estimate is applied in forward projection and back
projection. This option is called the deterministically matched
stochastic iteration. The error curves are stable but are just
slightly better than those generated with fixed SM.

The right of Fig. 3 depicts the error when not only the
system matrices of different iteration steps are statistically
independent, but also the forward projector and the back

projector. We call it statistically matched stochastic iteration.
Compared to the deterministically matched method, the sta-
tistically matched approach has advantages and disadvantages
as well. If the sample number is small, then the statistically
matched method is unstable and quickly diverges. If the
number of samples is higher, then the statistically matched
method is better than the deterministically matched one and
gets similar to iterating with the analytic SM.

Fig. 4 shows the reconstruction results after 100 iteration
steps for the discussed sampling methods and demonstrate
that the fixed and the deterministically matched approaches
blur the peaks and edges but are stable, while the statistically
matched method behaves similarly to the analytic SM if the
sample number is sufficient but may be unstable otherwise,
introducing noisy voxels.

Let us explain these observations based on the statistical
analysis of the iteration sequence. The ML-EM scheme con-
verges to a single fixed point if the SM is fixed and all
columns have non-zero values. However, if a different random
projection is used in every step, then iteration schemes do not
converge to a single fixed point but either fluctuate or diverge.
We consider a scheme accurate if it fluctuates around the fixed
point of the iteration with the analytic SM, and a scheme is
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Fig. 4. Reconstructed activity obtained with analytic SM, 105 sample projections (upper row) and 106 sample projections (lower row) with the discussed
sampling techniques. Note that fixed and deterministically matched iteration are stable but fail to quickly converge to higher peaks. Statistically matched
iteration, on the other hand, performs similarly to the analytical SM when the sample number is higher but becomes unstable and generates strong voxel noise
when the sample number is smaller.

said to be stable if it does not diverge and the fluctuation
remains small.

Accuracy is provided if the expectation of the voxel values
after sufficient iterations is similar to the fixed point of
iterating with the exact SM, i.e. voxel values have an unbiased
estimate. An iterated voxel array estimate is the result of the
sequence of forward and back projection pairs. A sufficient
requirement for the unbiasedness of the voxel estimate would
be that all forward and back projectors are unbiased estimates
and all projectors are statistically independent, i.e. we can
replace the expectation of their products by the products
of their expectations. Unfortunately, none of the examined
iteration schemes meets the requirement of unbiased back
projectors, and fixed and deterministically matched iterations
also fail to satisfy the requirement of statistical independence.
The forward projector is a linear function of SM elements, thus
if SM elements have unbiased estimates, then the computed
LOR value ỹL has also an unbiased estimate. Unfortunately,
this is not true for the back projection, because it is not a
linear function of the computed LOR, but depends inversely
proportionally to it via ratios yL/ỹL and it also involves the
system matrix elements in the denominator as a sensitivity
image

∑
L ALV . The sensitivity image has typically small

variance since it involves all SM elements corresponding to
a single voxel independently of the actual voxel estimates.
However, the ratio of measured and computed LOR values can
introduce significant fluctuations unless the forward projection
is very accurate.

Stability is related to the error contraction properties of

the iteration. Let us assume that the voxel array being the
fixed point of the iteration is perturbed in a single voxel V .
Error contraction shows how quickly the iteration compensates
this perturbation. The perturbation of a single voxel will
affect those LORs L during the forward projection where
SM elements ALV are significant. In back projection, ratios
yL/ỹL are computed, which decrease when the voxel value has
increased and increase when the voxel value has decreased.
The ML-EM formula will propagate this negative feedback
to those voxel values xV ′ where matrix elements ALV ′ are
significant. The error contraction is high if the originally
perturbed voxel V is strongly compensated while other voxel
values are left almost unchanged. This condition means that
if a voxel has a strong influence on a LOR in the forward
projector, then the LOR must also have a strong influence on
this voxel in the back projection pair, which is automatically
satisfied by the fixed and deterministically matched schemes.
In statistically matched iteration, however, the negative feed-
back is only probable so it may be missing temporarily during
the iteration, which may result in larger fluctuations. When
the missing deterministic negative feedback is combined with
inaccuracy, the corrective steps will fail to fully compensate
the accumulated error, and the iteration will be divergent.

III. MODIFICATION OF THE ML-EM SCHEME

MC quadrature means that a high-dimensional integral is in-
terpreted as the expected value of a multi-dimensional random
variable, and then the expected value is approximated by an
average of random samples. As computer library functions can
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return uniformly distributed pseudo-random values, random
variables of other distributions are obtained by transforming
random variables that are uniformly distributed in the unit
domain. Thus, MC quadrature requires the transformation
of the integration domain to a unit cube where coordinates
correspond to the independently generated uniform random
variables. We call this transformed integration domain the
primary sample space and denote it by U . In a single iteration
step we estimate many high-dimensional integrals, one for
each LOR in forward projection and one for each voxel in
back projection. To prepare for MC estimation in forward
projection, the domain of particle paths is transformed to the
primary sample space:

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv =

∫
U

ŷL(u)du (5)

where ŷ(u) is the LOR hit estimate associated with the random
variable samples in u. The probability density of random
variables uniformly distributed in the unit cube is p(u) = 1,
thus this integral is the expected value of ŷL(u), which can be
approximated from a single point u if the fluctuation (variance)
of ŷL(u) is small.

According to the conclusions of the motivating example,
the numerical error due to on-the-fly MC estimates and the
non-linear dependence of modified voxel values on computed
LOR estimates together lead to biased voxel estimates. Let us
consider the expectation of the ratio of measured and com-
puted hits, yL/ŷL. According to the relation of harmonic and
arithmetic means, or equivalently to the Jensen’s inequality
taking into account that 1/ŷL is a convex function, we obtain:

E

[
yL

ŷL(u)

]
=

∫
U

yL
ŷL(u)

du ≥ yL∫
U
ŷL(u)du

=
yL
ỹL

. (6)

This inequality states that yL/ỹL has a random estimator of
positive bias. An intuitive graphical interpretation of this result
is shown by Fig. 5. Here we assume that the iteration is already
close to the fixed point, so different estimates are around
the expected detector hit corresponding to the maximum
likelihood. Note that the division in the back projection may
amplify forward projection error causing large fluctuations,
especially when ỹL is close to zero.

We propose two modified iteration schemes to solve this
problem, averaging iteration and Metropolis iteration, which
are presented in the next sections.

A. Averaging iteration

The bias and the fluctuation of the voxel intensity due
to the MC estimate of forward projection can be reduced
by making the forward projection more accurate. Exploiting
additional samples from previous iteration steps, averaging
iteration improves accuracy of the current step without requir-
ing more samples or more processing time. MC estimation in
forward projection results in computed LOR hit values ŷL that
fluctuate around their exact value ỹL. Thus, if MC estimates of
subsequent iteration steps use independent random numbers,
it is worth averaging the calculated LOR hits obtained in
different iteration steps to reduce the scale of the fluctuation.

Fig. 5. Expected LOR hit number ỹL is approximated by random samples
ŷL(u

(n)) in iteration step n, which have mean ỹL. These random samples are
shown on the horizontal axis. Back projection computes ratio yL/ŷL(u

(n))
to obtain voxel updates, which is a non-linear, convex function, resulting in
voxel values that may be much higher than the correct value yL/ỹL. These
overshooting samples are responsible for a positive bias and occasionally
cause a large random increase in the voxel value.

Formally, we obtain the expected LOR hits ỹ(n)L in iteration
step n as the weighted average of the actual MC estimate
ŷL(u

(n)) and its previous value ỹ
(n−1)
L :

ỹ
(n)
L = (1− τn) ỹ

(n−1)
L + τnŷL(u

(n)) (7)

where τn is the decreasing weight of the estimate obtained
in the current iteration step. The weighting scheme can be
defined, for example, as τn = min(λ/n, 1), where λ ≥ 1
is a user defined parameter describing how quickly averaging
iteration forgets earlier results.

The ML-EM algorithm incorporating averaging in forward
projection is as follows:

for n = 1 to m do // iterations
for L = 1 to NLOR do // Forward project + average

ŷL = Forward Project x(n−1) with a MC algorithm.
τn = min(λ/n, 1).
ỹ
(n)
L = (1− τn) ỹ

(n−1)
L + τnŷL.

endfor
for V = 1 to Nvoxel do // Back project

x
(n)
V = Back Project yL/ỹ

(n)
L with a MC algorithm.

endfor
endfor

If we are close to the fixed point and execute m additional
iterations with τm = 1/m, then averaging iteration is similar to
iterating with the average of the system matrices, i.e. with the
matrix that is computed using m times more samples. How-
ever, when we are farther from the fixed point, LOR estimates
ŷL are different not only due to the random fluctuation of the
MC sampling but also because of the early evolution of the re-
constructed activity x(n). Averaging iteration reduces random
fluctuations, but also slows down the convergence towards the
solution having the maximum likelihood especially when there
are still significant differences between subsequent iteration
steps. This problem can be solved by starting averaging only
later in the iteration sequence, or by increasing parameter λ.
Note that λ = ∞ corresponds to statistically matched iteration.
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Fig. 6. Relative L2 error curves of averaging and Metropolis iterations and their comparison to statistically matched iteration. The waves in the error curve
of averaging iteration started at the first step with λ = 1 is eliminated by either starting averaging just at step nstart = 5 or setting λ = 2.

Fig. 7. Reconstructed activity obtained with analytic SM, and with averaging and Metropolis iterations using 105 sample projections (upper row) and 106

sample projections (lower row).

Fig. 6 compares the relative L2 error curves of averaging
iteration using statistically independent forward and back
projections and statistically matched iteration for the example
of Section II, and Fig. 7 depicts the reconstructions. Note
that averaging iteration is stable unlike statistically matched
iteration even for small sample numbers. Its wavy L2 curve is
due to the problem that averaging is not fast enough to forget
estimates of the first iteration steps, which can be solved by
starting averaging at iteration step nstart = 5 or by increasing
parameter λ from 1 to 2.

B. Metropolis iteration

First, we present Metropolis iteration intuitively, based on
the analysis of Fig. 5. The problems of positive bias and the
large fluctuations are caused by random samples ŷL(u) that
are much lower than their expected value ỹL and result in large
overshooting values yL/ŷL(u) in the voxel contributions. To
attack this problem, these overshooting samples (outliers) are
rejected. We suppose that the MC algorithm provides us with
a sequence of random tentative samples during the iteration,
from which real samples are generated by rejecting the outliers



TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, JANUARY 2013 7

and replacing them with the last accepted sample. On the one
hand, such replacement would decrease the expectation of the
voxel contribution, thus the positive bias can be eliminated.
On the other hand, the probability of very large yL/ŷL(u)
ratios is decreased, so is the probability of fluctuations when
these effects are added in different LORs.

A classical MC forward projector obtains samples in the
primary sample space with uniform probability density, and
transforms these samples as required by the particular algo-
rithm. The added rejection or replacement scheme modifies the
uniform probability in the primary sample space. We wish to
have a rejection scheme and an associated probability density
pMet(u) that make the updated voxels have unbiased estimates.
Let us show that this requirement is met if density pMet(u) is
proportional to forward projection estimate ŷL(u). The ratio of
proportionality is obtained from the requirement that pMet(u)
is a probability density, thus its integral is equal to 1:

pMet(u) =
ŷL(u)∫

U
ŷL(u)du

=
ŷL(u)

ỹL
. (8)

The expectation of random estimate yL/ŷL(u) is then indeed
equal to the exact ratio:

EMet

[
yL

ŷL(u)

]
=

∫
U

yL
ŷL(u)

pMet(u)du =
yL
ỹL

. (9)

The only remaining task is the elaboration of a rejec-
tion scheme that keeps a sample with probability density
pMet(u) ∝ ŷL(u). Such tasks can be solved with the Metropo-
lis method [13]. The sequence of tentative samples u(n) are
uniformly distributed in the primary sample space and are
statistically independent. Metropolis sampling establishes a
Markov chain u

(n)
Met by randomly rejecting a new tentative

element u(n) based on its contribution ŷL(u
(n)) and on the

contribution of the previously accepted sample ŷL(u
(n−1)
Met ).

The decision uses the acceptance probability a(u(n)) that is
the ratio of the contributions of the tentative sample and the
previously accepted sample.

The state transition probability of the Markov chain is

P (u → u′) = min

(
ŷL(u

′)

ŷL(u)
, 1

)
. (10)

Thus, the ratio of state transition probabilities in two directions
between two states is

P (u → u′)

P (u′ → u)
=

ŷL(u
′)

ŷL(u)
. (11)

As tentative samples are generated for each primary sample
space point associated with a non-zero contribution, the estab-
lished Markov chain is ergodic, i.e. it has a unique stationary
distribution p∞(u) = lim pn(u) which is independent of
the initial state. The stationary distribution must satisfy the
balance requirement, i.e. the probability of outflow from a
state equals to the probability of inflow, thus∫

U

p∞(u)P (u → u′)du′ =

∫
U

p∞(u′)P (u′ → u)du′. (12)

Using equation 11, it is easy to see that the balance require-
ment is met when p∞(u) ∝ ŷL(u), and the condition of
uniqueness guarantees that the sample density will converge
to this distribution.

The ML-EM algorithm incorporating Metropolis sampling
in forward projection is as follows:

for n = 1 to m do // iterations
for L = 1 to L = NLOR do // Forward project

ŷL = Forward Project x(n−1) with a MC algorithm.
aL = min{ŷL/ỹ(n)

L , 1}. // acceptance probability
Generate random number r in [0, 1).
if r < aL then ỹ

(n)
L = ŷL // accept with probability aL

else ỹ
(n)
L = ỹ

(n−1)
L

endfor
for V = 1 to V = Nvoxel do // Back project

x
(n)
V = Back Project yL/ỹ

(n)
L with a MC algorithm.

endfor
endfor

In the stationary case, the Markov process generates samples
with a density proportional to ŷL(u), but early samples may
be drawn from a different distribution. This may result in a
start-up bias, which is typically handled by ignoring the first
few samples corresponding to the burn-in period while the
process is not stationary yet. However, we do not have to
ignore early samples because of the following two reasons.
As our method generates tentative samples independently
of the current sample, the perturbation is as large as the
whole primary sample space, thus the start-up bias disappears
quickly. On the other hand, instead of computing just a single
integral, we execute an iteration where each step requires its
own projection integrals. Even if some error is made early in
the iteration due to the start-up bias when the activity is only
roughly estimated anyway, the error will be corrected by later
iteration steps when the start-up bias already vanishes.

The relative L2 error curves of Metropolis iteration are also
included in Fig. 6 and its reconstruction result is compared to
averaging iteration in Fig. 7. We can observe that the Metropo-
lis method has higher fluctuation than averaging iteration but
does not introduce waves in the error curves. The superior
stability of averaging iteration is due to the fact that it exploits
the samples of all previous iteration steps when the forward
projection is estimated while Metropolis iteration effectively
combines just the last iteration steps. However, this is also an
advantage since the convergence of Metropolis is not slowed
down by the effect of earlier samples, and therefore it does
not require additional, volume dependent parameters like λ or
start of averaging nstart.

Method 30% L2 error 20% L2 error
Fixed 80 300
Deterministically matched 80 290
Statistically matched 17 37
Averaging (λ = 2) 2 11
Metropolis 6 19

TABLE I
TOTAL NUMBER OF SAMPLES IN MILLIONS NEEDED TO TAKE THE L2

ERROR BELOW 20% AND 30%, RESPECTIVELY.
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The relative performance of different sampling techniques
can be characterized by counting the total number of samples
— i.e. the product of the number of samples per iteration and
the number of iterations — needed to reduce and keep the
error below a given threshold (note that stochastic sampling
has fluctuating error curve, so we need to find the number of
samples that guarantees that the maximum of the fluctuation
is less than the threshold). Table I shows a parameter study
performed by reconstructing the data of Section II with sample
numbers per iteration in the range of 105–107 and finding the
minimum of the product of the sample number and the number
of iterations. As the reconstruction time is proportional to the
total number of samples, this table shows the relative speed
of different methods. For example, averaging iteration is 25–
40 times faster than fixed iteration, which may be considered
as a classical method, and 3–8 times faster than statistically
matched stochastic iteration. Metropolis iteration, on the other
hand, is 13 times faster than fixed iteration and 2–3 times
faster than statistically matched iteration.

IV. APPLICATION IN PET RECONSTRUCTION

The presented averaging and Metropolis iteration schemes
can be included into ML-EM or OSEM algorithms working
with on-the-fly MC projections. In practical fully-3D PETs, the
system matrix is huge and is not available, the true projection
model is defined by physical properties and phenomena that
should be simulated by the MC algorithm. In this section we
consider different factored phases of a PET reconstruction
algorithm, including geometric projection, scattering in the
detector, and scattering in the measured object. However, we
note that the proposed scheme can also be used with other
projection models, including, for example, not factored MC
particle transport algorithms [22] or processing time-of-flight
data as well.

A. Geometric projections

To demonstrate the application of averaging and Metropolis
iterations in geometric projection, we took a LOR-centric, i.e.
ray-based forward projection and a voxel-centric back projec-
tion, which are particularly suitable for GPU implementation
since a computational thread of forward projection computes
a LOR while a thread of back projection calculates a voxel,
making both of them output-driven, also called gathering type
algorithms [5], [6]. Although forward projection and back
projection are based on different sampling strategies and draw
samples from different distributions, both of them are unbiased
estimates, thus they can form a statistically matched pair.

Forward projection samples are multiple rays [14] or line
segments connecting two uniformly distributed points on the
two crystals’ faces of the LOR. Note that sampling the end
points uniformly on the crystal surfaces generates lines that
are non-uniformly distributed, thus the contribution of rays
should be weighted with a geometric factor [9], [14]. A point
on the crystal face is defined in a coordinate system where
the origin is a corner of the crystal face and the units on
the two axes are equal to the crystal width and height. Such
coordinates are in [0, 1) and of uniform distribution, so can

be interpreted as coordinates of a primary sample space point.
The line integrals of the activity and the attenuation along a ray
are evaluated between the two endpoints either analytically or
with ray marching. Ray marching takes constant length steps
along the ray and samples the activity and the material density
at finite number of sample points. The first sample location is
jittered randomly to guarantee unbiased estimate for the line
integral. We allocate the same Nray number of rays for each
LOR. Assigning unique normalized coordinates to each LOR,
the dimension of the primary sample space is 4NrayNLOR

if analytical line integration is executed and 5NrayNLOR if
jittered ray-marching is applied since a ray is defined by its
two endpoints, each requiring two coordinates, and jittering
requires one additional coordinate to define the location of the
first step. However, sharing the normalized coordinates among
LORs, the dimension is 4Nray for analytical line integration
and 5Nray for jittered ray-marching. We prefer shared samples
since they require significantly smaller memory, which is a
crucial factor in the GPU.

In back projection, voxel space sample points are obtained
for each voxel V with the probability density of bV (x⃗). For
each voxel sample, sample points on the detector surface are
considered. A voxel sample and a detector sample together
define a line, which intersects the surface of another detector
module, establishing a sample for the LOR. In high resolution
reconstruction when voxels are small with respect to the
crystals, the number of voxel samples can be as low as one.
When detector surface samples are found, we allocate the same
number of line samples for each voxel, but only that part of
the detector module is considered from where LORs can be
established via this voxel. In the middle of the field-of-view,
this means one line sample per LOR, but close to the boundary
of the field-of-view, where a voxel is intersected by fewer
LORs, LORs are evaluated more accurately. The system matrix
elements needed by the ML-EM formula can then be computed
from the MC estimates involving the solid angle subtended
by the sampled crystals from the voxel sample. If we sample
random points just in a reference voxel and translate them
with the relative corner locations of each voxel, and detector
samples are generated by shifting a 2D grid with a random
offset, then the dimension of the primary sample space of
the back projection is 5. Note that this method approximates
the 5D integral of the line spread functions [3] by random
sampling in the 3D space of voxel points and by randomized
systematic sampling on the 2D detector surface.

B. Scattering in the detectors
As practical PET detector crystals are not ideal absorbers,

gamma photons may go through them without interaction or
may get scattered to a different crystal. These phenomena
cause blurring and down-scaling of the detected values, which
can be calculated as a 4D LOR space filtering [17], [19],
[16]. The 4D filter kernel can be expressed as a product of
two incident direction dependent 2D filter kernels since the
two gamma photons behave independently in this respect.
The 2D filter kernel representing scatter in the detectors,
photon flying through without detection, absorption, gamma-
photon sharing, etc. can be computed off-line with GATE [4].
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During GATE simulation, crystals are assumed to be similar.
Individual crystal efficiencies are obtained by measurements
and are applied as a corrective factor.

In LYSO crystals the average free path length of 511 keV
gamma-photons is about 13 mm, while in small animal PETs
crystals are packed at about 1 mm distance, thus with non-
negligible probability, photons of larger incident angles can be
detected farther than the tenth neighbor of the crystal where
the photon entered the detector module [7]. Thus, the LOR
space filter should cover at least 10 × 10 crystals on both
ends of the LOR, which makes the number of terms to be
summed for each LOR greater than 104. The prohibitive cost
of such large LOR convolution cannot be reduced by filtering
in the frequency domain since the 4D filter kernel also depends
on the incident directions, and therefore spatially variant in
LOR space. To reduce the computation time, the convolution
is evaluated by MC estimation taking just Ndet random offset
pairs on the two detectors [10]. According to the concepts of
importance sampling, random offsets are generated at the two
ends of the ray with a probability density of the translation
between the gamma photon incidence and absorption. Modi-
fying the two endpoints of a ray needs two 2D translations,
i.e. 4 uniformly distributed variables that are transformed to
have the probability density of the gamma photon transfer.
Thus, if the same random offsets are used in all LORs, the
dimension of the primary sample space is 4Ndet. A set of
random offsets can be pre-generated off-line and hardwired
in the reconstruction program. During reconstruction, each
iteration takes a different subset of the pre-generated list
according to the concepts of stochastic iteration. Depending
on whether the same or different subsets are used in forward
projection and back projection of an iteration step, the method
is either deterministically or statistically matched.

C. Scattering in the measured object

If we consider photon scattering in the measured object,
the path of the photon pair will be a polyline containing the
emission point somewhere inside one of its line segments.
This polyline includes scattering points where one of the
photons changed its direction in addition to detector hit points.
Considering the single scattering problem, the number of
scattering points is limited to one. The scattered contribution
to a LOR will be the integral of path contributions, which is
computed applying Watson’s method [21] with the following
modifications:

1) Instead of computing the polyline contribution sepa-
rately for each LOR, the process is decomposed to three
phases to allow the reuse of line integrals in multiple
LORs. In the first phase, Nscatter scattering points are
sampled globally, which will be used in the quadratures
of all LORs. In the second phase, each detector crystal
is connected to each of the scattering points, and along
these line segments the line integrals of the total activity,
total attenuation due to the photoelectric effect and total
out-scattering due to the Compton effect are computed.
Absorbtion and scattering cross sections depend on
the energy of gamma photons, which is not available

yet, thus these line integrals are temporarily computed
assuming 511 keV photons. In the third phase, the line
segments sharing a scattering point are paired, resulting
in Nscatter polylines in each LOR. When a polyline
is formed, the scattering angle and thus the Compton
formula can be evaluated. The total out-scattering and
attenuation are corrected according to the ratios of the
real photon energy and 511 keV energy [9].

2) Instead of uniform sampling, global scattering points
are sampled from a probability density that mimics the
scattering cross section, and the contribution is simulta-
neously divided with this density since this reduces the
variance of the MC quadrature according to importance
sampling.

Note that this three-phase approach significantly reduces
the number of line integrals to be computed as it reuses
results obtained in the first two phases. As a side effect of
reusing samples, the approximation errors in different LORs
are correlated, thus the reconstruction will be free of dot noise
typical in other MC algorithms.

The estimate of the scattered contribution is added to the
direct contribution computed with attenuation at the end of the
forward projection. Back projection is simplified and involves
geometric effects, attenuation of the measured object and
detector phenomena, but not scattering in the measured object,
thus the back-projector of this example is not fully matched.
In a single iteration, we need Nscatter global scattering points,
which can be transformed from 3Nscatter uniformly distributed
random variables.

The scattered contribution may be computed on lower
resolution both in voxel space and LOR space, which improves
performance but has the overhead of down-sampling the
arrays before integration. We note that the proposed iteration
schemes are compatible with other MC scattering computation
methods as well. For example, in addition to the single scatter
compensation, we can also consider multiple scattering by
generating longer paths [9] or by applying re-scaling of the
single scatter result with the modification of the scattering
cross section [8].

V. RESULTS

The proposed algorithms have been implemented in CUDA,
integrated into the TeratomoTM system, and run on NVIDIA
GeForce 690 GTX GPUs.

A. Geometric projections and scattering in the detectors

Geometric projections without and with detector scattering
calculation are tested with Mediso’s small animal nanoScan-
PET/CT [12], which has 12 detector modules consisting of
81× 39 crystals of size 1.122 × 13 mm3. A module’s crystal
makes a pair with every crystal of five opposite modules. The
number of LORs is NLOR = 12× 5× (81× 39)2/2 ≈ 3 · 108.

Our MC projector model has been validated by comparing
its projections to those obtained with GATE [1] (Fig. 8). Note
that the sinograms are similar apart from the random noise
that is present both in GATE’s and our projections.
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Fig. 8. Validation of the projection model. The Derenzo and the Cylinder
are projected with GATE and also with our projector computing scattering
in the detector with Ndet = 32 samples per LOR. The Cylinder phantom
contains a hot and a cold smaller cylinders embedded in the large cylinder.

Fig. 9. Relative L2 error with respect to the number of iterations recon-
structing the off-axis point source.

Fig. 10. Profile curves of the point source reconstructions obtained with 100
statistically matched, averaging and Metropolis iterations, respectively. The
activity density is in Bqs/mm3, the unit on the horizontal axis is the edge
size of a voxel that is equal to 0.185 mm.

To test the efficiency of averaging and Metropolis iterations,
first we took an off-axis point source of 0.1 MBq activity,
placed 2 mm North and 1 mm East from the axis and simulated
a 10 sec long measurement with GATE to obtain the input
for the reconstruction. To make the simulation consistent with
the geometric reconstruction, we set the detectors to very
dense material with small free path length. We run four
reconstructions of the GATE simulation: averaging iteration
with two λ factors, Metropolis iteration, and also statistically
matched iteration for comparison. Fig. 9 shows the relative
L2 error curves of the reconstruction of the point source
using 0.185 mm3 voxels and Nray = 4 line samples per
LOR. Fig. 10 depicts the line profiles of the reconstructed tri-
linear activity density. Note that statistically matched iteration
exhibits drastic oscillations in the error value and results in a
blurred reconstruction, unlike averaging and Metropolis itera-
tion methods. We repeated the statistically matched iteration
with Nray = 8, 16 and 24 samples, and compared them to the 4
sample averaging or Metropolis iterations. We concluded that
statistically matched iteration gets better than the averaging
and Metropolis iterations if it uses more than 16 samples
instead of 4. It means that averaging and Metropolis iterations
allow 4–5 times faster projections.

Fig. 11. Relative L2 error curves obtained during reconstructing the 10
second (upper row) and the 1000 second (lower row) Derenzo phantoms with
Nray = 1 random ray per LOR. The cross section images are obtained with
Metropolis iteration.

We also examined the Micro Derenzo phantom with rod
diameters 1.0, 1.1, . . . , 1.5 mm in different segments. The
Derenzo was virtually filled with 1.6 MBq activity and we
simulated a 10 sec, i.e. low-dose, and a 1000 sec, i.e. high-
dose, measurement with GATE assuming ideal black detectors.
A measurement is said to be low-dose when the average count
per LOR is smaller than 1 since in this case the application
of Poisson statistics becomes essential. The average hits per
LOR are 0.05 and 5 in the 10 sec and 1000 sec measurements,
respectively. Fig. 11 depicts the error and the cross section
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Fig. 12. Line profiles of the Derenzo 1000 sec phantom reconstructed with
statistically matched, averaging and Metropolis iterations. The unit on the
horizontal axis is the edge size of a voxel i.e. 0.23 mm.

images of the Derenzo phantom reconstruction with Nray = 1
random ray per LOR, and Fig. 12 shows a line profile of
the reconstructed volume. With only Nray = 1 line sample,
the statistically matched iteration cannot correctly reconstruct
the phantom, but both averaging and Metropolis iterations
can since they utilize the MC estimates from more than one
iteration step. Statistically matched iteration would require at
least 3 line samples to have the same error curve as averaging
or Metropolis iteration has with 1 line sample, i.e. averaging
or Metropolis iteration offers 3 times faster projection in this
case. The evaluation of the low number of samples used in a
single iteration is very fast on the GPU, a full averaging or
Metropolis forward projection requires 0.9 sec.

Fig. 13. Detector scattering compensation with averaging and Metropolis
iterations using Nray = 1 ray for geometric projection and Ndet = 64
random LOR space offsets per LOR for MC simulation of scattering in the
detector.

To test the application of averaging and Metropolis itera-
tions in detector scattering compensation, we set LYSO crys-
tals in the GATE simulation projecting the 1000 sec Derenzo
phantom and turned on the detector model in our system as
well. Detector scattering not only blurs the sinogram, but also
reduces the average hits per LOR to 0.6 in the 1000 sec
simulation due to the possibility that photons fly through or get
lost in the detector. The results obtained with Ndet = 64 4D
LOR space offsets mimicking the probability density of photon
transfer in the detectors at the two ends of the LOR are shown
by Fig. 13. With this number of samples, the computation time
of detector blurring compensation in a single projection of the
full EM iteration needs 4 sec.

B. Scattering in the measured object

Scattering in the measured object is significant in human
PET, so for the purpose of examining the proposed iterations
in object scatter compensation, we model the AnyScan human
PET/CT [11]. AnyScan has 24 detector modules consisting of
27× 38 crystals detectors of 3.92 × 20 mm3. The number of
LORs is NLOR = 1.5 · 108.

Fig. 14. Relative L2 error curves obtained during reconstructing the NEMA
human IQ phantom with Nscatter = 5 global scattering points in each
iteration step, and the NEMA-NU2-2007 hot and cold contrast values after 50
iterations. The “measured data” is produced with GATE with 400-600 keV
energy window. Single scatter compensation is executed in every iteration step
after the 5th iteration.

We used GATE to produce “measurements” of the human
IQ phantom, first setting the energy discrimination window to
400–600 keV. Fig. 14 shows the reconstruction at 1662 × 75
voxel resolution and the NEMA-NU2-2007 contrast evalu-
ation results with single scatter compensation taking only
Nscatter = 5 random scattering point samples per iteration.
The reason of selecting so few scattering point samples is to
emphasize the differences of the examined iteration types. We
also repeated the reconstruction for data generated by GATE
with 100–700 keV energy window, approximately compen-
sating multiple scattering as proposed in [8]. Note that all
iteration types do a fairly good job in scatter compensation,
but the L2 error and contrast values are better in averaging and
Metropolis iterations than in statistically matched iteration,
which would require at least 10 samples to provide similar
quality. Averaging iteration with λ = 1 is particularly good at
improving the hot contrast. Single scatter compensation with
5 samples needs 1.1 sec in each full EM iteration step.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposed the application of averaging and
Metropolis iteration schemes to improve the speed and ac-
curacy of emission tomography reconstruction working with



TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, JANUARY 2013 12

Fig. 15. Relative L2 error curves obtained during reconstructing the NEMA
human IQ phantom with Nscatter = 5 global scattering points in each
iteration step. The “measured data” is produced with GATE with 100-700 keV
energy window. Multiple scatter compensation is executed in every iteration
step after the 5th iteration.

on-the-fly MC estimates. The goal is to distribute the cost of
more samples in different iteration steps, thus we get higher
accuracy without increasing the computation time or storing
any of the SM elements. We demonstrated the application of
the method in three factored phases of a binned fully-3D PET
reconstruction, including the geometric projections, scattering
in the detectors during both forward and back projections, and
scattering in the measured object only in forward projection.
This solution has been implemented on the GPU, executing
projections between hundred million voxels and LORs in a
few seconds, and thus providing fully-3D reconstructions in a
few minutes. The method works not only with full EM but also
with OSEM and is suitable for multi-GPU implementation,
which further increases the speed of the reconstruction.

We allocated the same number of samples, i.e. the same
computational effort in each iteration step and distributed it
evenly among voxels and LORs. However, when projections
are computed on-the-fly, it is easy to allocate more samples
to “difficult” voxels or LORs. It seems to be advantageous
to increase the precision towards the end of the iteration, so
the process will be fast at the beginning and accurate at the
end. Alternatively, the precision of forward projection could be
further increased by allocating more samples to those voxels
that turn out to have higher activity during the reconstruction.
In our future work, we examine these possibilities and try
to find an optimal distribution of the total budget of samples
among iterations, voxels, and LORs.
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