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Chapter 1

Introduction

During Positron Emission Tomography measurement, particles are emitted, all bouncing along
different paths until they are finally detected by one of the numerous detectors of the scan-
ner. Consequently, the reconstruction process of finding the spatial distribution of particle
emissions is formalized by hundreds of millions of equations having high-dimensional integrals
as coefficients. In order to work in clinical practice, traditional methods reduce the resulting
computational burden by restricting themselves to an idealized case, simplifying or completely
neglecting important physical phenomena. With the rapid evolution of PET scanners, this
simplified model has become the main limitation of spatial resolution.

Fortunately, computational throughput of processors is evolving even faster making physi-
cally plausible models more and more feasible. In the past few years, the graphics hardware
(GPU) has proven to be the most effective option for such computation intensive problems.
The graphics hardware has, however, a massively parallel architecture very different from the
traditional Neumann type processors, which has to be taken into account not only for algorithm
design, but even on the level of mathematical modeling.

With a GPU implementation in mind, this dissertation proposes techniques to model and
to simulate the main physical phenomena of PET from the emission of positrons until the
absorption of γ-photons inside detectors as well as error reduction techniques to decrease integral
estimation errors with negligible additional cost. We have to emphasize that the contributions
of this dissertation fall into the category of new models and numerical methods to address the
PET problem and not just their implementation in the massively parallel GPU architecture.
However, as noted, the final implementation environment affects our development of numerical
approaches even from the early design of models and solutions.

The proposed methods along with experimental studies justify that PET reconstruction using
a physically accurate model can be evaluated in reasonable time on a single graphics hardware,
and thus suitable for everyday clinical use.

1.1 Problem statement

The goal of Positron Emission Tomography (PET) reconstruction is to find out the spatial
density of the radioactive tracer that was injected into the subject before the examination. The
tracer typically consists materials essential for metabolism (e.g. oxygen or glucose) and thus, it
is transported by the blood flow to regions with high cell activity enabling in vivo examination
of organic functions. The numerous fields of application of PET including neurology, oncology,
cardiology and pharmacology are out of scope of this dissertation, the interested reader is referred
to [Che01, Kip02, KCC+09, MRPG12, DJS12].

As radioisotopes of PET undergo positron emission decay (a.k.a. β+ decay), the tracer
density is given by the number of emitted positrons. Formally, we are interested in the 3-

1



CHAPTER 1. INTRODUCTION 2

dimensional density of positron emissions x(v⃗), in a finite function series form:

x(v⃗) =

Nvoxel∑
V=1

xV bV (v⃗), (1.1)

where x = (x1, x2, . . . , xNvoxel
) are unknown coefficients and bV (v⃗) (V = 1, . . . , Nvoxel) are basis

functions [CR12], which are typically defined on a voxel grid. As only non-negative tracer density
makes sense, we impose positivity requirement x(v⃗) ≥ 0 on the solution. If basis functions
bV (v⃗) are non-negative, the positivity requirement can be formulated for the coefficients as well:
xV ≥ 0.

As in every type of tomography, the unknown function is reconstructed from its observed
projections, which is the inverse problem of particle transport in scattering and absorbing media.

In the remainder of this section we discuss the complete sequence of the physical phenomena
from the radioactive decay up to the detection of the corresponding particles inside the detectors
(Figure 1.1), i.e. the particle transport problem for PET. We provide an introduction to PET
scanners and the process through which the final input of the reconstruction algorithm is formed.
Finally, we define the reconstruction problem.

1.1.1 PET physics: from decay to photon-hits

e -
e -

e -
e -

nuclei

photoelectric
absorption

detector 
sensitivity

annihilation

annihilation

scattering

positron
range

γ

γ

γ
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Figure 1.1: Physical process during a PET measurement starts with positron emission decay.
Positrons travel through the tissue following a chaotic path, terminated by positron–electron
annihilation. As a result of annihilation two anti-parallel γ-photons are born. These photons
may interact with electrons of the surrounding medium, which results in either the photoelectric
absorption or scattering of the photons. Inside the crystals, photons are detected by tracking
their energy loss due to photoelectric absorption and Compton-scattering events, discarding
those events that are outside a given energy range. However, photons may transfer their energy
after arbitrary number of bounces, possibly occurring in several crystals away from their incident
location known as inter-crystal scattering, or simply leave the system unnoticed, described by
detector sensitivity. When two photons are detected in the given time window and energy range,
the system registers a coincidence hit.

Positron range and annihilation

The physical process starts with positron emission decay. As a positron travels through the
tissue it gives up its kinetic energy by Coulomb interactions with electrons, which results in a
chaotic path terminated by positron–electron annihilation. The statistical properties of these
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paths heavily depend on the initial kinetic energy, i.e. the type of the isotope and on the electron
density of the particular tissue, i.e. the type of the material (e.g. bone, flesh, air, etc.). The
positron range, i.e. the translation between the isotope decay and the positron annihilation
results in positional inaccuracies in tomography reconstruction. As the mean free-path length
of positrons is typically in a range of up to a few millimeters in tissues, positron range is one of
the most important limiting factors of the resolution in small animal PETs [LH99, RZ07].

The spatial density on Cartesian axis X of the annihilation of a positron born in the origin
can be approximated by [Der86, PB92, LH99]

pX(X) = ae−αX + be−βX . (1.2)

Parameters a, α, b, β depend on the actual radiotracer and the material of the object, and can
be determined by fitting this function onto data measured or simulated e.g. with GATE [Jea04].

As a result of positron–electron annihilation two anti-parallel γ-photons are born, each at
an energy level of 511 keV since the energy must be preserved. Because of the conservation of
momentum, the initial directions of the photons have an angular uncertainty of approximately
0.25 degrees FWHM [Bur09], known as acollinearity . We note that acollinearity is the only
phenomenon completely neglected in our particle transport model which introduces a 2-3 mm
and a 0.3-0.4 mm positional inaccuracy to human and small animal PET imaging, respectively.
Ignoring acollinearity also has the important consequence that the photon-pair together initially
travels a linear path.

Photon–matter interaction

A significant portion of the photons passes through host tissues directly without any interac-
tions — hence the name direct component often used in the literature — and either leave the
system or hit one of the surrounding detectors to finally get absorbed and thus detected (see
the next section for more details). Simultaneous detection of photon pairs occurring within a
few nanoseconds is registered as a valid coincidence event (a.k.a. coincident hit or coincidence)
by the scanner. As the photon pair in this case follows a linear path, the number of coinci-
dence events detected by a specific pair of detectors becomes proportional to the total number
of positron-electron annihilations occurring in the pipe-like volume between the two detectors,
called volume of response or VOR (see Figure 1.2). For infinitesimally small surfaces of detec-
tors, this concept is reduced to a line of response (LOR), however, as a line uniquely joins two
detectors the term LOR is also used to denote pairs of detector crystals, i.e. the conceptual
detectors of PET.

Photons on the other hand, may interact with electrons of the surrounding medium, which
results in either the absorption or scattering of the photons. The former case causes an atten-
uation of the detected beam of photons or reversely, when this attenuation is not considered it
introduces a spatially varying underestimation of the reconstructed tracer density. During scat-
tering, the photon looses a portion of its energy and more importantly, changes its direction,
turning the path of the photon pair into a polyline consisting of arbitrary number of segments
with arbitrary directions. This means that detected scattered photons, known as scattered coin-
cidence (Figure 1.2), may originate from annihilations that occurred potentially anywhere in the
measured object, even outside of the VOR subtended by the two detectors. Both the probabil-
ity of the photon-electron interaction and the distribution of scattering direction depend on the
material distribution, which varies from measurement to measurement, and the photon energy
that is changing with scattering. Since the mean free-path length of γ-photons inside tissues is
comparable to the diameter of the human chest (it is 10 cm in water for a 511 keV photon),
accurate attenuation and scattering models become crucial especially for human PET: a roughly
30–50% of the photons get scattered before reaching the detectors [ZM07], depending on the
scanner geometry and the size of the subject. For small animal PET systems the probability of
photon-electron interactions is significantly smaller.
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Figure 1.2: Coincidence types (left) and coincidence modes (right), depicted on an axial slice.
Direct coincidences, i.e. when none of the photons scatters can only result from annihilations
in the volume of response of the detector pair. When at least one of the photons changes
its direction due to scattering, it may cause a scattered coincidence in potentially any of the
detectors. The system may also register a coincident photon-hit originated from two different
annihilation events, called random coincidence. Coincidence mode determines the field of view
of the scanner: higher coincidence modes can measure larger objects at the expense of increased
size of the produced data.

To describe photon–volume interaction, we consider how the photons go through participat-
ing media (Figure 1.3).

Figure 1.3: Modification of the intensity of a ray in participating media.

Let us consider the radiant intensity I on a linear path of equation l⃗(t) = l⃗0 + ω⃗t. The
change of radiant intensity I on differential length dt and of direction ω⃗ depends on different
phenomena:

Absorption: the intensity is decreased when photons collide with the electrons or atomic cores
and are absorbed due to the photoelectric effect . This effect is proportional to the number
of photons entering the path, i.e. the intensity and the probability of this type of collision.
If the probability of such collision in a unit distance is σa, called absorption cross section,
then the probability of collision along distance dt is σa(⃗l)dt. Thus, the total intensity
change due to absorption is −I (⃗l)σa(⃗l)dt.
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Out-scattering: the radiation is scattered out from its path when photons collide with the
material and are reflected after collision. This effect is proportional to the number of
photons entering the path, and the probability of such type of collisions in a unit distance,
which is described by the scattering cross section σs. The total out-scattering term is
−I (⃗l)σs(⃗l)dt.

Emission: the intensity may be increased by the photons emitted by the medium. This increase
in a unit distance is expressed by the emission density Ie(⃗l). We assume that the emission
is isotropic, i.e. it is independent of the direction.

In-scattering: photons originally flying in a different direction may be scattered into the con-
sidered direction. The expected number of scattered photons from differential solid angle
dωin equals to the product of the number of incoming photons and the probability that a
photon is scattered in distance dt, and the conditional probability density that the photon
changes its direction from solid angle dωin to ω⃗ provided that scattering happens. The
conditional probability density is called the phase function P (ω⃗in, ω⃗), which depends on
the angle θ between the incident and scattered directions:

dσs
dω

= σs(x⃗) · P (ω⃗in, ω⃗), P (ω⃗in, ω⃗) = P (ω⃗in · ω⃗) = P (cos θ).

Taking into account all incoming directions Ω of a sphere, the radiance increase due to
in-scattering is:

σs(⃗l)dt

∫
Ω

Iin(⃗l, ω⃗in)P (ω⃗in · ω⃗)dωin

 .

Cross sections of a material depend on frequency ν of the photons, or equivalently on their
energy E = hν where h is the Planck constant. In PET reconstruction, we are interested in
the 100–600 keV range, where it is convenient to describe the frequency by the photon energy
relative to the energy of the resting electron, i.e. by ϵ0 = E/(mec

2) where me is the rest mass
of the electron, c is the speed of light, and mec

2 = 511 keV is the energy of the resting electron.
The probability of the absorption due to the photoelectric effect depends on the material

(grows rapidly with the atomic number) and is inversely proportional to the cube of the photon
energy:

σa(ϵ0) ≈
σa(1)

ϵ30
.

If the photon energy does not change during collision, which happens when the photon
collides with an atomic core or a base state, not excited electron, then the scattering is said to
be coherent or Rayleigh scattering (RS). Coherent scattering can be described by the Rayleigh
phase function

PRS(cos θ) =
3

16π
(1 + cos2 θ)

if the particle size is much smaller (at least 10 times smaller) than the wavelength of the radiation
wave, which is the case of electrons and photons less than 1 MeV energy.

If energy is exchanged between the photon and the electron during scattering, the scattering
is said to be incoherent or Compton scattering (CS). The energy change is defined by the
Compton law:

ϵ =
1

1 + ϵ0(1− cos θ)
,

where ϵ = E1/E0 expresses the ratio of the scattered energy E1 and the incident energy E0,
and ϵ0 = E0/(mec

2) is the incident photon energy relative to the energy of the electron. The
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Figure 1.4: Geometry of photon scattering.

differential of the scattering cross section, i.e. the probability density that the photon is scattered
from direction ω⃗ to ω⃗in, is given by the Klein-Nishina formula [Yan08]:

dσCS
s

dω
∝ ϵ+ ϵ3 − ϵ2 sin2 θ

where the proportionality ratio includes the classical electron radius and the electron density of
the material. Instead of using these physical parameters explicitly, we may use the measured
cross section of Compton scattering on energy level 511 keV, i.e. ϵ0 = 1 for the representation
of the material. From this, the phase function that is supposed to be normalized can be found
as:

PKN(cos θ) =
ϵ+ ϵ3 − ϵ2 sin2 θ∫

Ω ϵ+ ϵ3 − ϵ2 sin2 θdω
.
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Figure 1.5: Cross sections σCS
s , σRS

s , σa [m−1] for water in the 100 keV (ϵ0 = 0.2) and 511
keV (ϵ0 = 1) range. For Compton scattering and photoelectric absorption, we depicted both
the calculated and the measured [BHS+98] energy dependence. Note that we used logarithmic
scale as the absorption cross section and the Rayleigh cross section are almost two orders of
magnitude smaller than the Compton cross section in this energy range.
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The energy dependence of the Compton scattering cross section can be computed from the
scaling factor in the Klein-Nishina formula:

σCS
s (ϵ0) = σCS

s (1) ·
∫
Ω ϵ(ϵ0) + ϵ3(ϵ0)− ϵ2(ϵ0) sin

2 θdω∫
Ω ϵ(1) + ϵ3(1)− ϵ2(1) sin2 θdω

.

The ratio between σCS
s (ϵ0) and σCS

s (1) is depicted as a function of relative energy ϵ0 in Figure 1.5.
These graphs apply to water, which is the most important constituent of living bodies, which
are typically examined in PET.

Taking into account all contributions, intensity I (⃗l, ω⃗, ϵ) of a particle flow at energy level ϵ
satisfies an integro-differential equation:

ω⃗ · ∇⃗I (⃗l, ω⃗, ϵ) =
dI

dt
= −σt(⃗l, ϵ)I (⃗l, ω⃗, ϵ) + Ie(⃗l, ϵ) +

∫
Ω

I (⃗l, ω⃗in, ϵin)
dσs(⃗l, ω⃗in · ω⃗, ϵin)

dωin
dωin, (1.3)

where σt(⃗l, ϵ) = σa(⃗l, ϵ) + σs(⃗l, ϵ) is the extinction parameter that is the sum of the absorption
cross section and the scattering cross section, Ie(⃗l, ϵ) is the source intensity, Ω is the directional
sphere, ϵin and ϵ are the incident and scattered photon energies, respectively. Scattered photon
energy ϵ is equal to incident photon energy ϵin for coherent scattering. For incoherent scattering,
the scattered and incident photon energies are related via scattering angle cos θ = ω⃗·ω⃗in as stated
by the Compton law.

In PET [RZ07], source intensity is non zero only at ϵ = 511 keV. Photon energy may drop
due to incoherent scattering. As typical detectors are sensitive in the 100–600 keV range, we can
ignore photons outside this range. In this energy range and typical materials like water, bone
and air, incoherent scattering is far more likely than coherent scattering, thus we can ignore
Rayleigh scattering. However, we note that the inclusion of Rayleigh scattering into the model
would be straightforward.

According to Equation 1.3, the intensity along a ray is decreased due to absorption and
out-scattering. However, photons scattered out show up as a positive contribution in the in-
scattering term in other directions, where they represent a positive contribution. While absorp-
tion decreases the intensity along the ray and also the radiation energy globally, out-scattering
is a local loss for this ray, but also a positive contribution for other directions, so globally, the
number of relevant photons is preserved while their energies may decrease due to the Compton
effect.

If the in-scattering integral is ignored, Equation 1.3 becomes a pure linear differential equa-
tion

dI

dt
= −σt(⃗l, ϵ)I (⃗l, ω⃗, ϵ) + Ie(⃗l, ϵ), (1.4)

which can be solved analytically resulting in

I (⃗l(t), ω⃗, ϵ) = Aϵ(t0, t)I (⃗l(t0), ω⃗, ϵ) +

t∫
t0

Aϵ(τ, t)I
e(⃗l(τ), ϵ)dτ, (1.5)

where
Aϵ(τ, t) = e−

∫ t
τ σt (⃗l(u),ϵ)du (1.6)

is the attenuation for photons of energy ϵ between points l⃗(τ) and l⃗(t). When the line is explicitly
given by its endpoints v⃗1, v⃗2, we use the notation Aϵ(v⃗1, v⃗2). Having extinction parameter
σt(⃗l, ϵ) = σa(⃗l, ϵ)+σs(⃗l, ϵ), Aϵ(τ, t) is the product of the attenuation due to out-scattering Tϵ(τ, t),
and the attenuation due to photoelectric absorption Bϵ(τ, t):

Tϵ(τ, t) = e−
∫ t
τ σs (⃗l(u),ϵ)du, Bϵ(τ, t) = e−

∫ t
τ σa (⃗l(u),ϵ)du.

When only unscattered contribution, i.e. 511 keV photons are considered, we shall omit photon
energy from the notation.
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Photon detection

The majority of PET scanners use scintillation detector systems (Figure 1.6). Scintillator crys-
tals convert the energy of photoelectric absorption and Compton-scattering events of γ-photons
to light photons, from which a photomultiplier tube (PMT) generates electric signals. The anal-
ysis of these signals tells us information about the time and location of the interaction events
between the incident γ-photon and the electrons of the crystal. However, the mean free-path
length of γ-photons inside the crystals may be much larger than the crystal size (especially
for small animal PET, where this factor might be 5 or even higher), which means that pho-
tons may transfer their energy after arbitrary number of bounces, possibly occurring in several
crystals away from their incident location known as inter-crystal scattering (Figure 1.6), or sim-
ply leave the system unnoticed. Additionally, due to manufacturing errors, the sensitivity of
detection varies from crystal to crystal (often referred to as crystal efficiency). These effects
altogether form the so-called detector model of PET that can be described by transport function
Et(z⃗, ω⃗, ϵ0 → d) that gives the expected number of hits reported in crystal d provided that a
photon entered the detector module at point z⃗ from direction ω⃗ and with energy ϵ0. We should
use conditional expected value instead of conditional probability since the measuring system con-
sisting of photon multipliers and electronics can result in values larger than 1 as a response to a
single photon incident. The transport function Et may be obtained through empirical measure-
ments [SPC+00, TQ09, AST+10], Monte Carlo simulations [MLCH96, MDB+08, LCLC10, C8]
or approximated analytically [YHO+05, MDB+08, RLT+08, C8].

ω
z

photon

crystals

intercrystal
scattering

absorption

Electronics
number 
of hits

id

Figure 1.6: Inter-crystal scattering

1.1.2 The scanner system

Scanner geometry and acquisition mode

The measured object is surrounded by detectors (see Figure 1.2), which absorb the γ-photons
emitted during the examination. There is a large number of PET scanners available in the
market with different geometric properties; in the devices on which the results of this dissertation
were tested detector crystals are packed together into panels forming 2D grids, called detector
modules. For a given pair of modules, therefore, the set of LORs is 4D data. Modules are placed
in a cylindrical shape around the object, the axial direction of the cylinder is consequently
named as the axial direction of the system, denoted by the z axis. The perpendicular direction
is called transaxial and referred to as the x-y plane.

Early PET scanners used septa between the axial slices of the detectors to limit incoming
photon directions to nearly perpendicular to the z axis resulting in a so-called 2D imaging ,
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considering only LORs approximately lying within the axial planes. This could greatly decrease
the generated data allowing faster reconstruction [AK06]. Furthermore, as staying in or getting
within axial slices after scattering happens with a very low probability, scattered events are
almost completely eliminated making scatter correction unnecessary [AK06]. PET imaging,
however, has always been struggling with low signal-to-noise ratio which is even further reduced
by considering only a small portion of the data in the 2D case. As a consequence, fully 3D
imaging is used nowadays without restricting the axial direction of the LORs. A typical fully
3D acquisition system consists of hundreds of millions of LORs, each of which may capture a
significant portion of scattered events [Tho88]. For fully 3D imaging, thus, algorithms must be
implemented on high performance hardware and include an accurate scatter model.

Coincidence types and modes

When two incident photons are detected in a given time window and energy range, the device
registers it as a coincidence for the corresponding LOR. However, it is possible that two crystals
detect a photon hit each within the detection time window, but the two photons were not born
from the same annihilation, which is called a random event or random coincidence (Figure 1.2).
Such events are generated by photons whose pair was lost due to attenuation of the object,
limited field of view (FOV), miss in the detector, etc. Random events can also be caused by the
self emission of crystals. Finally, random events can be the consequence of the bad pairing of
photon pairs. For example, if a coincidence pair and a random photon or another coincidence
pair cause events within the detection time window, the electronics may identify more than
one coincidence pair. Random events are omitted throughout the dissertation; nevertheless, it is
worth mentioning that there exist methods either to apply random correction on the input of the
reconstruction algorithm [HHPK81], or to include it into the factorized model [BKL+05, DJS12]
as shown in Section 1.2.5.

As a large portion of the detected coincidences are unscattered events and even scattering is
more likely to happen forward [ZM07, C9], it is worth restricting the accepted coincident events
to those that have their endpoints at the opposite sides of the scanner, to reduce the number of
random events and the size of the captured data. This restriction is defined in terms of detector
modules, 1 : N coincidence mode means that a module can form LORs with the N opposite
modules, coincident photon hits arriving outside of this range are rejected by the system.

Detector dead-time

During data acquisition, a number of coincident hits may be missed when the system is “busy”
either with processing a previous event or due to transferring buffered data, which is known as
dead-time. Dead-time is not considered in this thesis work. However, we note that the percentage
of loss by dead-time can be characterized with a single constant for each pair of detector modules
which may be included in the reconstruction with relative ease [CGN96, BM99].

List-mode and binning

If a list-mode reconstruction algorithm is used, each detected LOR-hit, optionally extended with
the estimated Time of Flight (ToF ) of the two photons, is immediately sent to the reconstruc-
tion process. This enables reconstruction during the data acquisition using only a small but
continuously growing amount of information. List-mode reconstructions had their significance
when the time required for performing the reconstruction was large, compared to that of the data
acquisition. With the evolution of hardware and algorithm, reconstruction has become faster
causing list-mode to be used less frequently. Binned reconstructions first create the histogram
of coincidences y = (y1, y2, . . . , yNLOR

) in a pre-processing step, with yL denoting the number
of coincidences detected in LOR L during the acquisition, and thus utilize all the available in-
formation from the beginning of their execution. Furthermore, the histogram can be spatially
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ordered which allows more efficient access than list-mode data. Recent results show that ToF
information may be incorporated to binned reconstruction in an efficient way [SSKEP13].

Multi-modal imaging

Modern PET scanners are coupled with other modalities such as Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI) and thus are capable of producing different types of
data simultaneously. This is especially important for PET since positron range, scattering and
absorption depend on the material properties of the measured object. Thus, we assume that a
registered and segmented material map is available for the reconstruction algorithm providing a
unique material index m(v⃗) in every point v⃗ of the volume of interest, along with the required
data such as the absorption cross section σa or the scattering cross section σs for each material
type. Although segmentation may introduce error to the transmission data, in fact, it was shown
by Ollinger [Oll97] that adaptive segmentation greatly increases the accuracy of analytic scatter
correction methods (e.g. the single scatter model presented in Chapter 5) for short CT scans.

Real scanners

In this dissertation we assumed two real scanners, a preclinical one and a human one.

Preclinical PET scanner: Mediso’s nanoScan-PET/CT

Small animal PET tests were carried out with Mediso’s nanoScan-PET/CT [Med10b], which
has 12 detector modules consisting of 81×39 crystals of size 1.122×13 mm3. It supports 1:3 and
1:5 coincidence modes, the number of LORs is NLOR ≈ 1.8 ·108 and NLOR ≈ 3 ·108, respectively.

Human PET scanner: Mediso’s AnyScan human PET/CT

For human PET tests, we used Mediso’s AnyScan human PET/CT [Med10a]. AnyScan has 24
detector modules consisting of 27× 38 crystals of 3.92 × 20 mm3. In 1:13 coincidence mode, the
number of LORs is NLOR = 1.6 · 108.

1.1.3 The PET reconstruction problem

The objective of PET reconstruction is to determine the voxel intensities x = (x1, x2, . . . , xNvoxel
)

from the set of observations y = (y1, y2, . . . , yNLOR
), the measured hits in detector pairs. The

correspondence between the positron density x(v⃗) and the expected number of hits ỹL in LOR
L is described by scanner sensitivity T (v⃗ → L) that expresses the probability of generating an
event in the two detectors of LOR L given that a positron is emitted in point v⃗:

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv (1.7)

where V is the volume where the positron density is to be reconstructed. This scanner sensitivity
is usually a high-dimensional integral of variables unambiguously defining the path of particles
from positron emission point v⃗ to the detector electronics. Considering the finite series form
approximation of x(v⃗) (Equation 1.1) we obtain:

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv =

Nvoxel∑
V=1

ALV xV (1.8)

where

ALV =

∫
V

bV (v⃗)T (v⃗ → L)dv (1.9)
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is the System Matrix (SM ) [JSC+97]. This equation can also be written in a matrix form:

ỹ = A · x.

Data values of the PET measurement are intrinsically stochastic due to the underlying physics
and detection process such as the positron decay or scattering, thus the model of PET recon-
struction includes a statistical noise component n:

y = A · x+ n (1.10)

1.2 Reconstruction framework

PET reconstruction methods consist of three basic components [AK06], surveyed in this section.
Subsection 1.2.1 discusses different approaches for modeling the positron density function x(v⃗).
A brief overview of the algorithms solving Equation 1.10, i.e. finding the positron density for
a given measurement is presented in Subsection 1.2.2, whereas Subsection 1.2.3 describes the
specific algorithm used in the dissertation. Subsection 1.2.4 collects techniques for estimating
the SM. Subsection 1.2.5 discusses the basic idea of factoring the SM into phases and finally,
Subsection 1.2.6 presents the decomposition according to physical phenomena, that is widely
used in the literature and also adopted by our work.

1.2.1 Models of the unknown function

Due to its efficiency and simplicity, the most popular choice of basis functions in Equation 1.1 —
also favored by the dissertation — are piece-wise constant and tri-linear approximations defined
on a regular 3D grid. Tri-linear interpolation is especially preferred in GPU-based applications
since the hardware provides it with no additional cost. Regular 3D grids are widely used in many
fields that have to deal with 3D data, such as virtual colonoscopy [KJY03, CK04, KSKTJ06,
Kol08], flow simulation [Klá08], volume visualization [J4] or volumetric effects for computer
games [TU09]. Other popular grid structures are the BCC [Csé05, Csé10] and FCC grids, which
would be worth considering in tomography. Smooth basis functions, such as blobs [Lew92, ML96,
CGR12] or clusters of voxels [RSC+06] have been proposed to include prior information on image
smoothness to the model, but the complexity of these approaches is prohibitive for clinical
use [AK06]. Treating the coefficients of the discretized positron density function as random
variables leads to Bayesian reconstruction algorithms [Gre90b, GLRZ93, RLCC98], however,
these are less often used due to their sensitivity to parameter settings and increased complexity
in implementation [AK06].

1.2.2 Reconstruction algorithms

The standard reconstruction algorithm of PET is the Filtered Back Projection (FBP) [BR67,
Lak75], which is based on direct inversion of the Radon Transform [Rad17, Rad86] and belongs
to the family of analytic algorithms. In FBP it is assumed that observed LOR values yL are (1)
noise-free and (2) can be expressed as line integrals through the measured object i.e. contain
only the direct component; with these assumptions the reconstruction can be solved analyti-
cally. Iterative algebraic methods [VDdW+01], such as the Algebraic Reconstruction Technique
(ART) [GBH70, Gor74], the Simultaneous Iterative Reconstruction Technique (SIRT) [Gil72]
or the Iterative Least-Squares Technique (ILST) [Goi72], try to solve Equation 1.10 directly
with assuming no noise i.e. n = 0, by minimizing the L2 norm of the left and right sides, i.e.
||y−A ·x||2. These approaches have no restriction on the SM which means that the entire phys-
ical model can be incorporated, often resulting in a much higher image quality. The iterative
Maximum Likelihood Expectation Maximization (ML-EM ) method by Shepp and Vardi [SV82]
goes one step further, and incorporates the Poisson nature of the acquired data into the model.
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1.2.3 Maximum likelihood expectation maximization

The goal of the ML-EM algorithm is to find the discretized tracer density x which has the highest
probability to have generated the measured projection data y [VDdW+01]. Assuming that
photon incidents in different LORs are independent random variables with Poisson distribution,
the algorithm should maximize the following likelihood function under the positivity constraint
of the solution:

logL =

NLOR∑
L=1

(yL log ỹL − ỹL) . (1.11)

The iterative optimization [QL06] alternates forward projection

ỹL =

Nvoxel∑
V=1

ALV x
(n)
V , (1.12)

then back projection:

x
(n+1)
V =

x
(n)
V

NLOR∑
L=1

ALV

·
NLOR∑
L=1

ALV
yL
ỹL

(1.13)

in each of the n = 1, 2, . . . iteration step. This can be written in matrix form, where vector
division is defined in an element-wise basis:

Forward: ỹ = A · x(n), Back:
x(n+1)

x(n)
=

AT · y
ỹ

AT · 1
(1.14)

There are two main drawbacks of the ML-EM algorithm [VDdW+01]. First, the algorithm is
known to be ill-conditioned, which means that enforcing the maximization of the likelihood
function may result in a solution with drastic oscillations and noisy behavior. This problem
can be attacked in several different ways, such as the inclusion of additional information, e.g.
as a penalty term, leading to regularization methods [Gre90a]. An appropriate penalty term is
the total variation of the solution [PBE01, B3, D6] which forces the reconstructed function to
contain less oscillations while preserving sharp features. Other approaches can be, for example,
the inclusion of stopping rules into the algorithm to terminate the iteration process before noise
deterioration could degrade image quality [VL87, BMM08, Gai10] or simply to post-filter the
output of the ML-EM algorithm [DJS12].

The second disadvantage of the ML-EM algorithm is its computational complexity, especially
for the fully 3D case, as the iteration should work with very large matrices. Additionally, as
this section will show later, it is beneficial to re-compute matrix elements as high-dimensional
integrals in every iteration step. This needs enormous computation power if we wish to obtain
the reconstruction results in reasonable time (i.e. at most in a few minutes).

Ordered subset expectation maximization

A slight modification to the ML-EM algorithm was introduced by Hudson and Larkin to reduce
its computation time. Ordered Subsets Expectation Maximization (OSEM ) [HL94] updates the
current estimate of the tracer density x(n) using only a subset Sb (b = 1 . . . B) of the entire
data [AK06]:

x
(n+1)
V =

x
(n)
V∑

L∈Sb

ALV

·
∑
L∈Sb

ALV
yL
ỹL

.

Subsets cover the complete set of LORs and are alternated in each iteration periodically, therefore
compared to ML-EM, the tracer density is updated with the entire measurement data over B
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subiterations. For B = 1, OSEM is equivalent to the conventional ML-EM. Several strategies
exist for grouping the data into subsets, however, theoretical comparison is yet to be given. In
practical terms, it has been demonstrated that increasing the number of subsets can increase
convergence speed at the expense of greater image noise [LT00]. As a common experience, N
OSEM iterations using B subsets deliver the same level of convergence (in terms of ML) as N×B
ML-EM iterations, practically meaning a B-times faster execution [HTC+05, Ser06, AK06].

1.2.4 System matrix estimations

The foundations of ML-EM have been well established for three decades, the basic equations of
this iterative scheme are fairly simple and their sequential implementation is straightforward.
The crucial element of PET reconstruction in these days is the accurate estimation of the SM,
which has huge effect on image quality. Several approaches try to obtain and store the SM
either by measuring [LKF+03, PKMC06] or pre-computing it [RMD+04, HEV+06, YYO+08,
MDB+08, SSG12]. There are three major problems with these types of methods. First, the
use of pre-computed or measured data prohibits the consideration of patient or object specific
positron range, absorption or scattering. Second, in high-performance computing, especially for
GPUs, most of the input data has to fit into the main memory of the target hardware in order
to avoid a huge decrease in performance (see Section 1.3). However, the SM is huge, its size
is typically in the order of magnitude of 108 × 107 (e.g. assuming Nvoxel = 2563 ≈ 1.6 · 107
voxels and the data dimensions NLOR of the real scanners of Section 1.1.2). For high resolution
scanners, thus, storing the SM is mostly hopeless even if it is factored [QLC+98] (Section 1.2.5)
and its symmetry is exploited [MR06, HCK+07, HEG+09]. And finally, the stored SM never
equals to the true value. Using a fixed estimation in every iteration introduces the same error
and thus modifies the fixed point. As demonstrated in Chapter 2, re-computing the matrix
on-the-fly is usually a better choice.

Emitted particles may end up in detectors after traveling in space including possible scat-
tering and type changes. As the source and the detectors have 3D domain, and scattering can
happen anywhere in the 3D space, the contribution of sources to detectors is a high-dimensional
integral in the domain of source points, detector points and arbitrary number of scattering
points. Such high-dimensional integrals are calculated by numerical integration where sampling
corresponds to tracing paths. The more paths are computed, the higher precision reconstruction
is obtained. Classical quadratures, such as the rectangle rule, suffer from the so-called “curse
of dimensionality”: the number of samples required to achieve a certain level of approximation
grows exponentially with the dimension. The traditional method to handle high-dimensional
integrals is the Monte Carlo integration, described in Section 2.1.

1.2.5 Factorized model

Factoring [QLC+98] the SM according to physical phenomena can help not only to reduce data
storage but also to speed up calculations if matrix elements are computed on-the-fly. The idea of
factoring is that the transport process is decomposed to phases with the introduction of virtual
detectors (Figure 1.7 shows the decomposition into two phases, but more than two phases are
also possible). First the expected values in the first layer of virtual detectors are computed from
the source. Then, the first layer of these detectors become sources and a similar algorithm is
executed until we arrive in the real detectors. The advantages of this approach are the following:

• The calculation of a single phase can be much simpler than the complete transport process,
thus we can eliminate all conditional statements that would reduce GPU efficiency.

• As a computed sample path ended in a virtual detector is continued by all paths started
here in the next phase, we shall have much higher number of sample paths to compute high
dimensional integrals, thus the result is more accurate (see Figure 1.7 for an example).
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• Each phase is computed in parallel on the GPU where threads do not communicate.
However, the next phase can reuse the results of all threads of the previous phase, so
redundant computations can be eliminated.

• The reconstruction algorithm becomes modular. Models of the physical phenomena can
be integrated or improved seamlessly, with minimal modification of the rest of the code.

Sources emit
particles

Detectors report
events

4 particle paths
3 paths

0 path

1 path

(a) Traditional model

Sources emit
particles

Detectors report
events

Virtual detector/ 
source

Phase 1 Phase 2

12 paths

0 path

4 paths

4×4 particle paths

(b) Factored model

Figure 1.7: Subfigure (a) shows the traditional model of emission tomography where the high-
dimensional integrals describing the particle transport are calculated by tracing sample paths.
The more paths are computed, the higher precision reconstruction is obtained. Subfigure (b)
depicts the conceptual model of factoring: the particle transport process is decomposed to
phases by introducing virtual detectors. The simulation of all particles is first executed to the
virtual detectors, then virtual detectors become virtual sources and the second phase simulates
transport from here to the real detectors. We also indicated the number of computed sample
paths associated with each detector. Note that the number of sample paths increased from 4 to
16.

The disadvantage of factoring is that virtual detectors discretize the continuous space into
finite number of bins, so if their number is small, discretization error occurs.

1.2.6 Decomposing the system matrix

The expectations of LOR values ỹL can be expressed as a sum of three terms [RZ07], the direct
contribution, the scattered contribution, and the random contribution:

ỹ = ỹdirect + ỹscatter + ỹrandom.

Hereafter, we ignore the random contribution from the model. We note that it is an additive term
in the SM and thus can be included independently of the methods presented in the dissertation.
The direct and scattered contributions are calculated by approximating the corresponding SM
elements:

ỹdirect = Adirect · x, ỹscatter = Ascatter · x.

The SMs describing the direct and scattered contributions are factored, i.e. they are approxi-
mately expressed as products of smaller matrices according to the main physical effects:

A ≈ Adirect +Ascatter, Adirect = L ·D ·P, Ascatter = L · S ·P, D = T̂ ·G, (1.15)

where P is the voxel space blurring matrix of positron range, G is the non-square matrix of
geometric projection, S is the non-square matrix of scattered projection considering also atten-
uation, T̂ is the diagonal matrix of phantom attenuation factors, D is the direct contribution
including attenuation and L is the LOR space blurring matrix representing the detector model .
Based on this factorization, we use the following notations in later chapters:

xa = P · x, ỹgeom = D · xa, ỹdetmod = L · ỹgeom.
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where xa is the annihilation density, ỹgeom is the expected number of direct hits on the surfaces
of the detectors, and ỹdetmod is the expected number of detected direct hits.

In theory, the exact back projector would be the transpose of the SM. However, as the back
projector is computationally more expensive, in most cases a simplified model is used in this
phase. Section 2.2 shows that it is beneficial to exclude voxel-space blurring effects from the
back projection assuming a high dose measurement.

1.3 Key aspects of efficient GPU programming

The Graphics Processing Unit (GPU ) or graphics card was originally designed to accelerate
the highly parallel and arithmetic-intensive computations of computer graphics, such as vertex
transformation or pixel shading. Due to their massively parallel architecture, GPUs have become
much more efficient than traditional CPUs in terms of arithmetic throughput and bandwidth.
Thus, in the past decade, a high effort was spent to utilize the computational power of graphics
processors for general purpose tasks [DJ09] other than the conventional graphics pipeline, such as
procedural geometry [C2, B2], ray-tracing [D3], global illumination [SKSS08], non-photorealistic
visualization [J3, C15], CT reconstruction [JDB08, JRM+09, JSK13] or augmented reality [J7].
Among the high-performance computing possibilities, like FPGAs [LCM+02, ZSD+08], multi-
CPU systems [SRA+02], the CELL processor [KKB07], and GPUs [XM07], the massively
parallel GPU has proven to be the most cost-effective platform for tomography reconstruc-
tion [GMDH08]. The critical issue of GPU programming, and parallel programming in general,
is thread mapping , i.e. the decomposition of the algorithm to parallel threads that can run
efficiently. For example, while simulating particle transport, it is intuitive to mimic how nature
works in parallel, and assign parallel computational threads, for example, to randomly generated
photon paths [WCK+09]. However, while significant speedups can be obtained with respect to a
CPU implementation, this “natural” thread mapping cannot exploit the full potential of GPUs.
Efficient GPU code requires the consideration of the GPU features even from the very first steps
of problem definition and algorithm development. More specifically, the following issues must
be considered:

• Thread divergence: A GPU is a collection of multiprocessors, where each multiproces-
sor has several Single Instruction Multiple Data (SIMD) scalar processors that share the
instruction unit and thus always execute the same machine instruction. Thus, during
algorithm development we should minimize the dependence of flow control on input data.

• Coherent memory access and non-colliding writes: Generally, memory access is slow on
the GPU compared to the register and local memory access and to the computational
performance of processors (e.g. on NVIDIA GPUs the difference is two orders of magni-
tude [NVI13]), especially when atomic writes are needed to resolve thread collisions. In
addition to avoiding atomic writes, a significant speed up can be achieved by so-called
coalesced memory accesses. If threads of the same scalar processor access neighboring
data elements, then the transfer is executed in a single step amortizing the access time.
This means we should design neighboring threads to access neighboring data elements. In
iterative EM reconstruction, forward projection computing the expected detector hits from
the actual positron density estimate and back projection correcting the positron density
based on the measured and expected detector responses alternate. Equations of forward
projection and back projection are similar in the way that they take many input values
(voxel intensities and LORs, respectively) and compute many output values (again, LORs
and voxel intensities, respectively). This kind of “many to many” computation can be
organized in two different ways. We can take input values one-by-one, obtain the con-
tribution of a single input value to all of the outputs, and accumulate the contributions
as different input values are visited. We call this scheme input driven or scattering . The
orthogonal approach would take output values (i.e. equations) one-by-one, and obtain the
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contribution of all input values to this particular output value. This approach is called
output driven or gathering . Generally, if possible, gathering type algorithms must be pre-
ferred since they can completely remove write collisions and may increase the coherence of
memory access [PX11]. The forward projection of the ML-EM computes LOR values from
voxels, whereas the back projection maps these LORs back to voxels. An efficient, gather-
style GPU implementation of the forward and back projectors must be LOR centric and
voxel centric, respectively [PX11], i.e. the forward projector should read the contributing
voxel values and likewise, the back projector should accumulate the correction of each
LOR.

• Reuse: Running independent threads on different processors, we cannot reuse temporary
results obtained by different processors, which is obviously possible and worthwhile in a
single thread implementation. To reuse partial results of other threads, the algorithm
should be broken to phases, e.g. to voxel-processing, voxel-to-LOR transformation, and
LOR-processing. When threads implementing a phase are terminated, they write out the
results to the global memory. The threads of the next phase can input these data in
parallel without explicit communication.

• On-the-fly computation: Current GPUs offer over one teraflops computational performance
but their storage capacity is small and the CPU to GPU communication is relatively slow.
Thus, GPU implementations have a different trade off between pre-computation with
storage and on-the-fly re-computation whenever a data element is needed. For example,
in GPU based PET reconstruction the SM cannot be stored but elements should be re-
computed each time when they are needed.

1.4 Verification and validation methodology

Clinical acceptance of reconstruction methods assumes that a sufficient image quality is provided,
i.e. in the case of this dissertation the physical effects are accurately modeled, in reasonable time
(typically a few minutes). The National Electrical Manufacturers Association (NEMA) defines
performance evaluation protocols in terms of image quality for both pre-clinical [Ass08] and
human [Ass07] PET scanners, which have become a standard in the past few years. However,
as it was pointed out recently by Goertzen et al. [GBB+12], the NEMA protocol prescribes a
FBP algorithm to reconstruct the image and thus it is not designed to evaluate reconstruction
methods. To the best knowledge of the author, no such standard protocol exists. Thus, we have
developed our own methodology to evaluate the proposed reconstruction methods.

1.4.1 Scenarios

We use both real and hypothetical scanners. As the reconstruction scheme we used the ML-
EM iteration algorithm, test cases differed in the dimensions of the scanner and the scanner
sensitivity. We defined the following scenarios:

1. In the analytical case both the ground truth SM and the source are assumed to be explicitly
known (which is never the case in practice), allowing us to compare the convergence of
different sampling strategies in the ML-EM scheme with the theoretically best case, i.e.
when iterating with the real SM.

2. Next, we leave the assumption of the explicitly known SM. The “measured” data y is com-
puted with off-line Monte Carlo simulation using GATE [Jea04], taking into account the
physical effects selectively (as few as possible at a time), which is ideal for evaluating the
model of these phenomena independently. Tracer density — being the input of the off-line



CHAPTER 1. INTRODUCTION 17

simulation — is still known providing us information about convergence in terms of dis-
tance metrics between volumetric data. Scanner geometry and detector crystal properties
accurately modeled the real scanners presented in Section 1.1.2.

3. The methods were also applied to real scanner data, including prepared physical phan-
toms like the Derenzo phantom or point phantoms, for which the activity distribution is
approximately known. For preclinical PET, positron range and inter-crystal scattering
are the dominant image degrading effects making it an ideal platform for testing these
phenomena. Contrarily, photon absorption and scattering in the measured object play a
major role in human PET and the effect of positron range and the detector model are
almost negligible.

In the following we describe the system parameters of the different scenarios.

Analytic SM

1D case

SM of dimensions NLOR = 1000 and Nvoxel = 500 is defined as the sum of two Gaussian density
functions of d = v/Nvoxel − L/NLOR with standard deviations 0.0005 and 0.01, respectively.
One Gaussian is significantly wider than the other, which may be interpreted as the scattered
contribution, while the other Gaussian may refer to the direct contribution. The reference
activity is another simple function of Figure 1.8. The measured values are obtained by sampling
Poisson distributed random variables setting their means to the product of the SM and the
reference activity (left of Figure 1.8). We use two reference activities, where the second is equal
to the first one multiplied by 10. The first represents a low-dose case where Poisson sampling
introduces significant amount of noise, while the second a high-dose case, where the Poisson-noise
is moderate (Figure 1.8).

2D case

In the 2D case, the SM of dimensions NLOR = 2115 and Nvoxel = 1024 is defined similarly
to the 1D case: a weighted sum of two Gaussian density functions of the distance between
the LOR and the voxel with FWHMs equal to the detector size and to five times the detector
size, respectively (Figure 1.9). Again, the wider Gaussian may be interpreted as the scattered
contribution, while the narrower Gaussian may refer to the direct contribution. The Gaussian
of the direct contribution is given 60% weight and the scattered contribution 40%, which reflects
the typical ratios in human PETs.

The reference activity is a simple function defined by two hot rectangles of Figure 1.9.
Similarly to the 1D case, the measured values are generated by sampling the product of the
reference activity and the SM.

Simulated measurements

Positron range, geometric projection, direct component, scattering in the measured object and
detector model were evaluated using the SM approximations D · P, G, D, (D + S) · P, L ·G
respectively (see Equation 1.15 in Section 1.2.6 for the notations). GATE has built-in detector
model, we set LYSO crystal according to the real scanners of Section 1.1.2. Ideally black
detectors were modeled by a hypothetical crystal material with practically zero mean free path
length. Other image degrading effects, such as random coincidences and detector dead-time
were turned off.

We used the following numerical phantoms:

• an Off-axis point source of 0.1 MBq activity, placed 2 mm North and 1 mm East from
the axis,
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Figure 1.8: The measured phantom (left) and the distribution of the hits in different LORs
(right). The upper and lower rows show a high-dose and a low-dose case, respectively.

Figure 1.9: A simple 2D tomograph model used in our experiments (left). The detector ring
contains 90 detector crystals and each of them is of size 2.2 in voxel units and participates in 47
LORs connecting this crystal to crystals being in the opposite half circle, thus the total number
of LORs is 90 × 47/2 = 2115. The voxel array to be reconstructed is in the middle of the ring
and has 32× 32 resolution, i.e. 1024 voxels. The ground truth voxel array has two hot squares,
one is of 6× 6 voxels where each voxel’s activity is 200, the other is of 2× 2 voxels where each
voxel’s activity is 3200. Its measured projection involving Poisson noise is shown in sinogram
form in the image on the right, where the horizontal and vertical axes correspond to the signed
distance of the line from the center and the angle of the line, respectively.
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• a Ring phantom of homogeneous activity,

• the Homogeneity phantom, built of 8 constant activity cubes with 1.6 MBq activity in
total,

• a Derenzo-like phantom with rod diameters 1.0, 1.1, . . . , 1.5 mm in different segments,
virtually filled with 1.6 MBq activity,

• a Cylinder phantom that contains a hot and a cold smaller cylinder embedded in the
large cylinder and

• the NEMA NU-2 2007 Human Image Quality (IQ) phantom [Ass07].

The phantoms are depicted in Figure 1.10. Note that we omitted the off-axis point from the
figure for obvious reasons. The duration of the simulated measurement was a varying parameter
and given in the Results sections.

Ring Homogeneity Derenzo Cylinder IQ

Figure 1.10: Numerical phantoms used in GATE in 3D (upper row) and their relevant slices
(lower row).

1.4.2 Distance and error metrics

In order to quantitatively asses the precision of the reconstruction, we used several distance
metrics for the actual voxel array and the ground truth solution. The following distance metrics
between the n-dimensional simulation vector s and the n-dimensional phantom, s,p ∈ Rn

≥0 were
used:

1. L2 error:

ErrorL2(s,p) = 100 · ||s− p||2
||p||2

= 100 ·

√∑n
i=1 (si − pi)2∑n

i=1 p
2
i

.

2. Cross Correlation (CC ) error:

ErrorCC(s,p) = 100 ·
(
1−

∣∣∣∣ C12√
C11 · C22

∣∣∣∣) ,

C11 =
n∑

i=1

(si − s̄)2, C22 =
n∑

i=1

(pi − p̄)2, C12 =
n∑

i=1

(si − s̄)(pi − p̄),
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where v̄ (v ∈ Rn) denotes the average of the vector elements:

v̄ =
1

n

n∑
i=1

vi.

1.5 Implementation environment

All the methods presented in the dissertation were implemented in CUDA [NVI07] and integrated
into the TeraTomoTM [C5] system which served as the prototype for the PET reconstruction
framework of Mediso’s nanoScan-PET/CT [Med10b]. Tests were run on an NVIDIA GeForce 690
GTX GPU — similar hardware is integrated into the nanoScan-PET/CT. We note that several
components of the reconstruction algorithm, e.g. the geometric projection may be implemented
in the traditional graphics pipeline of the GPU [C1] instead of CUDA but this would degrade
overall performance due to context switches between the two platforms.

1.6 Thesis outline

This thesis work presents efficient techniques to model physical effects of PET, particularly
suited for parallel implementation on modern GPUs, as well as sampling techniques that make
iterative reconstruction more accurate with practically no additional cost.

The second chapter provides an analysis of the behavior of Monte Carlo sampling in iterative
ML-EM reconstruction and justifies the benefits of on-the-fly approximation of the SM both on
a mathematical and on an experimental basis. Chapters 3–7 stand for thesis groups.

The first thesis group addresses positron range modeling and presents a solution as spatially
varying blur in the frequency domain. The second thesis group proposes two different approaches
for geometric projection: a LOR centric method that serves as a fully GPU-conform forward
projector and a voxel centric method that is particularly efficient in back projection and also
provides excellent performance for small objects as a forward projector. The third thesis group
proposes an efficient algorithm to estimate the scattered component in the measured object up to
an arbitrary number of scattering events and also introduces a novel way to include the missing
higher order scattering with no additional cost. The fourth thesis group addresses scattering
and attenuation in the detectors and shows how the combination of pre-computation and Monte
Carlo sampling can provide low run-time computational costs even for very small detector sizes.
The final thesis group proposes sampling techniques for iterative PET reconstruction that can
significantly decrease the error of integral estimators with negligible computational cost. These
methods include the application of filtered sampling that suppresses noise and high frequency
details that are mainly responsible for sampling errors; the use of multiple importance sampling
that combines the benefits of different sampling approaches; and efficient ways of exploiting
samples of previous iteration steps as well as eliminating the bias of the tracer density estimation.
Theses are also summarized in the last chapter of the dissertation.



Chapter 2

Monte Carlo sampling in the
ML-EM scheme

Using numerical quadrature in an iterative process such as the ML-EM, even a small approxi-
mation error can accumulate unacceptably. There is an important difference between applying
Monte Carlo for estimating a quadrature and using Monte Carlo as a part of an iteration pro-
cess [J5, J6]. While the goal is an integral quadrature, the convergence rate is known and the
error can be minimized by variance reduction techniques and increasing the number of samples.
After a review of Monte Carlo integration in Section 2.1, in Section 2.2 we demonstrate that
when Monte Carlo is applied in an iteration, the accuracy of a single estimate is not so relevant
since later iteration steps may correct the error of an earlier estimate. However, decreasing the
samples in a single step means that we can make more iterations under the given budget of
samples or computation time. Furthermore, we also investigate the potential of using simplified
back projection matrices to speed up the projection.

2.1 Review of Monte Carlo integration

The fundamental idea of the Monte Carlo (MC ) quadrature is to express the integral as an
expected value, which is then estimated by the average of random samples:∫

f(z)dz =

∫
f(z)

p(z)
p(z)dz = E

[
f(z)

p(z)

]
≈ 1

N

N∑
i=1

f(zi)

p(zi)
= IN , (2.1)

where p(zi) is a probability density and sample points z1, . . . , zN are selected randomly according
to this probability density. The convergence to the true value of the integral as the number of
samples approaches infinity is ensured by the law of large numbers.

To examine the error of the estimate for a finite set of samples z1, . . . , zN in Equation 2.1,
suppose that the variance of f(z)/p(z) is σ2. Assuming that samples zi are independent random
variables, the variance of estimator IN becomes

D2[IN ] =
1

N2

N∑
i=1

σ2 =
σ2

N
. (2.2)

The central limit theorem tells us that IN always has normal distribution regardless the dis-
tribution of samples zi. The estimation error of IN thus can be bounded by σ/

√
N with high

confidence. This shows that MC integration avoids the dimensional explosion of classical quadra-
ture rules, since the error is independent of the dimension of the integral. On the other hand,
the convergence is relatively slow, as it scales like 1/

√
N . Proposed error reduction techniques

try to reduce variance σ2 of the estimator, either by obtaining a better sample distribution as
in importance sampling or low discrepancy sampling [J1], or filtering the integrand f(z) leading
to filtered sampling (Section 7.1).

21
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2.1.1 Importance sampling

Examining Equation 2.1 we can observe that samples corresponding to larger absolute values of
integrand f(z) contribute more to the sum and thus have higher impact on the error. Therefore,
it is worth spending more samples for the “important”, i.e. higher absolute value regions of
the integrand. In other words, the variance of estimator IN is reduced by making probability
density p(z) more proportional to the integrand and as large as possible. This approach is called
importance sampling [Sob91, SSSK04]. Why p cannot be exactly proportional to f in practice
can be understood if we consider that the generation of samples according a probability density
requires the inverse of the cumulative probability distribution. This would assume p and thus f
to be analytically integrable — making MC integration completely superfluous in this case.

Importance sampling strategies of PET are based on the fact that the integrand is a product
of different factors (see Section 1.2.5) and for some of these we can compute the inverse of
their integral analytically. Examples include sampling the path free path length of photons in
direct particle simulations [J4] or sampling according to the discretized form of the measured
inter-crystal scattering probabilities [C6] (Section 6.2). Additionally, as the expected number of
hits ỹL are expressed as an integral of the product of the positron density x(v⃗) and the scanner
sensitivity T (v⃗ → L) (see Equation 1.7), a widely used approach in the forward projection step

of the ML-EM is to sample according to the current estimation of the positron density x
(n)
V

(Section 4.2.2).

2.1.2 Direct Monte Carlo particle tracing

The traditional solver for the particle transport problem is the Direct Monte Carlo (DMC )
method. DMC generates particles in the volume of interest and simulates their path according
to the laws of physics. For the sake of simplicity, in the following we discuss DMC for the case
of Photon Tracing (PT ), generalization to include positron tracing is straightforward.

In DMC Photon Tracing, first annihilation point v⃗ is sampled with a density that is propor-
tional to the activity, then the paths of the two annihilation photons are obtained with scanner
sensitivity T (v⃗ → L). To do this, an initial direction is drawn from uniform distribution. Two
photons are started from the annihilation point and their free paths are sampled to find the
photon–material interaction points. At interaction we randomly decide whether absorption or
scattering happens with the probability a = σs

σt
. In case of absorption, the photon path is ter-

minated and no LOR is scored. In case of scattering a new direction is generated mimicking the
Klein-Nishina formula, and the photon energy is adjusted according to the Compton law. When
one of the photons leaves the detector or its energy drops below the discrimination threshold,
the photon pair is lost and no LOR is contributed. If photons hit the detector surface, the
simulation of this path is terminated and the affected LOR is given contribution X/NPT where
X is the total activity and NPT is the number of simulated paths.

There are two main advantages of DMC: it provides a physically plausible model, and since it
samples particles with a density that is proportional to the activity, it is very efficient in recon-
structing small, point like sources. Although its computational burden has been traditionally
considered too high for online execution, the computing capacity of GPUs has recently enabled
on-the-fly DMC implementations in an iterative reconstruction [WCK+09, LCLC10, KY11b].
DMC methods, on the other hand, have several drawbacks as well:

• As particles travel random paths, DMC particle tracing is a typical instance of scattering
type algorithms and thus cannot fully utilize the capabilities of the GPU. Recent GPU-
based DMC implementations have reported a performance of approximately 10 million
paths traced in a second [KY11b]. Considering that state of the art scanners consist of
hundreds of millions of LORs and that we wish to spend only a few seconds to compute
an iteration step, this practically means that each LOR is approximated by roughly one
path sample in average. For comparison, LOR driven projectors are capable of computing
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hundreds of path samples per LOR in the same time budget, with each path collecting
many annihilation events.

• DMC photon tracing is not factored, in the sense that it computes direct and scattered
contribution together — however, it may be used in any of the factored phases. This has
the important consequence that we cannot distribute samples individually between the
different phenomena. For example, motivated by the fact that scattering is a low frequency
phenomenon, we may wish to decrease the sampling density of scattered paths. However,
with DMC methods this also results in a coarser sampling of the direct contribution.
Another important consequence of not being factored is that full DMC methods cannot
benefit from the reuse of paths (Section 1.2.5), a very powerful tool of factored methods
to greatly increase performance.

• As a high portion of photons leave the system unnoticed without hitting any of the de-
tectors, DMC methods may waste significant amount of computational time for samples
that give no contribution to the detectors. However, this is also true for many of the fully
factorized approaches.

2.2 Error and convergence analysis of the ML-EM iteration

System Matrix (SM) estimations may be different in forward projection and back projection,
and due to the numerical errors both differ from the exact matrix A. Let us denote the forward
projection SM by F = A+∆F and the back projection estimation by B = A+∆B.

We use the following notations for the normalized back projectors

ĀLV =
ALV∑
L′ AL′V

, B̄LV =
BLV∑
L′ BL′V

=⇒ B̄ = Ā+∆B̄.

Note that in this case
∆B̄ · 1 = 0

since ∑
L

ĀLV =

∑
LALV∑
L′ AL′V

=
∑
L

B̄LV =

∑
LBLV∑
L′ BL′V

= 1.

The question is how these approximations modify the convergence and the fixed point of the
iteration scheme. Let x∗ denote the true solution of the ML-EM scheme, which satisfies:

AT · y

A · x∗ = AT · 1. (2.3)

Let us express the activity estimate in step n as x(n) = x∗ +∆x(n). Substituting this into the
iteration formula

x(n+1)

x(n)
=

BT · y
F·x(n)

BT · 1
and replacing the terms by first order Taylor’s approximations we obtain:

∆x(n+1) ≈
(
1− ⟨x∗V ⟩ · B̄T · ⟨yL

ỹ2L
⟩ · F

)
·∆x(n) + ⟨x∗V ⟩ · B̄T · ⟨yL

ỹL
⟩ · ∆ỹ

ỹ
−∆B̄

T · y
ỹ
.

where ⟨x∗V ⟩ is an N2
voxel element diagonal matrix of true voxel values, ⟨yLỹαL ⟩ is an N2

LOR element

diagonal matrix of ratios yL
ỹαL

, and ∆ỹ = ∆F · x is the error of the expected LOR hits made in

the forward projection. Note that Taylor’s approximation is acceptable only if function 1/y can
be well approximated by a line in ỹL ±∆ỹL. The iteration is convergent if

T = 1− ⟨x∗V ⟩ · B̄T · ⟨yL
ỹ2L

⟩ · F (2.4)
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is a contraction after certain number of iterations (note that T is not constant but depends on
x(n) via ỹL). Even for convergent iteration, the limiting value will be different from x∗ due to
the errors of the forward and back projections:

∆x(∞) = S ·
(
∆B̄

T · y
ỹ
−AT · ⟨yL

ỹL
⟩ · ∆ỹ

ỹ

)
where S =

(
AT · ⟨yL

ỹ2L
⟩ ·A

)−1

. (2.5)

We can make several observations examining these formulae:

1. As measured hits yL are Poisson distributed with expectations ỹL, ratios yL/ỹL have

expected value 1 and variance 1/ỹL, thus E[∆B̄
T ·y/ỹ] = 0 and even the variance caused

by the back projector error diminishes when the measurement is high dose (i.e. ỹL ≫ 1)
and thus the result is statistically well defined. Thus, for high dose measurement, the error
made in forward projection is mainly responsible for the accuracy of the reconstruction,
which adds the following error in each iteration step:

⟨x∗V ⟩ · B̄T · ⟨yL
ỹL

⟩ · ∆ỹ

ỹ
= ⟨x∗V ⟩ · B̄T · ⟨yL

ỹL
⟩ · ∆F · x

ỹ
. (2.6)

2. If the back projection accuracy is not so important, it is worth using a modified normalized
SM B̄ to increase the contraction of T and thus speeding up the iteration.

2.2.1 ML-EM iteration using Monte Carlo quadrature

Due to the stochastic nature of PET, both forward projector F and back projector B̄ are random
variables. We use unbiased MC estimates, i.e.

E[F] = A, E[B̄] = Ā.

When these estimates are re-made in every iteration, we can choose whether the same random
estimate is used in all iterations, the estimate is modified in each iteration, or even between
the forward projection and back projection. Note that as we have to re-compute the matrix
elements anyway, the computation costs of different options are the same, the algorithms differ
only in whether or not the seed of the random number generator is reset. When iterating with a
pre-computed or measured matrix, the random estimates are always the same for every iteration
and practically even between the two projectors.

The contribution to the error of a single iteration is defined by Equation 2.6. Errors of
different iteration steps accumulate. However, the accuracy can be improved if we use an SM
estimation where the expectation value of this contribution is zero since it means that the
error contributions of different iteration steps compensate each other and we may get a precise
reconstruction even with inaccurate SM estimates. So, our goal is to guarantee that

E

[
⟨x∗V ⟩ · B̄T · ⟨yL

ỹL
⟩ · ∆F · x

ỹ

]
= E

[
⟨x∗V ⟩ · (ĀT +∆B̄

T
) · ⟨yL

ỹL
⟩ · ∆F · x

ỹ

]
= 0

which, taking into account that both the forward projector and the back projector are unbiased
estimators, is held if

E

[
∆B̄T · ⟨yL

ỹL
⟩ ·∆F

]
= 0.

Note that this is true if the forward projector is statistically independent from the back projector,
but is false when they are correlated. This means that it is worth using independent random
samples in each iteration and re-sampling even between forward projection and back projections.

To demonstrate this, we analyze a simple analytical problem, presented in Section 1.4.1. In
the 1D case, the error of the reconstruction is tested with random SM approximations, which are
obtained by replacing the 5 · 105 analytical SM elements by unbiased MC estimates calculated
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Figure 2.1: One column of the SM: sinograms corresponding to voxel (10, 10), which is the right–
upper neighbor of the smaller hot region in Figure 1.8, when the SM is computed analytically
or with 105 – 107 random samples in total. The horizontal and vertical axes of the sinograms
correspond to the signed distance of the line from the center and the angle of the line, respectively.
Note that when only 105 random samples are taken to approximate all of the 2·106 SM elements,
95% of the elements get no sample and are replaced by zero, while the remaining 5% are
approximated by a constant sample weight that is equal to the sum of all SM elements divided by
the number of samples. Increasing the number of samples, more than one sample can contribute
to a single SM element, thus zeros and small integer multiples of the sample weight show up.

with 104, 105, and 106 discrete samples in total, respectively. For the 2 · 106 analytical SM
elements of the 2D case, the MC estimates consisted of 105 – 107 samples (Figure 2.1). Note
that estimating 5 · 105 (2 · 106) SM elements of the 1D (2D) case with 104 (105) discrete samples
in total means that most of the SM elements get no sample and thus are replaced by zero,
making this a very high-variance estimation that can be considered as a stress test for ML-EM
reconstruction.

In the first set of experiments we examine the L2 error of the reconstruction process of the
fixed case, i.e. when the same SM approximation is used in all iteration steps (see Figures 2.2
and 2.3 for the 1D and 2D case, respectively). These results indicate that working with the same
MC estimate during an EM iteration is generally a bad idea. Reconstructing with a modified
SM means that we altered the physical model, so the EM iteration converges to a different
solution. Deterministically matched sampling takes the same samples in the forward and back
projections of a single iteration but regenerates samples for each iteration. Deterministically
matched sampling does not help, the error curves are quite similar to those of generated with
fixed SM.

Statistically matched sampling , where samples of forward projection are independent of the
samples in back projection, has advantages and disadvantages as well. If the sample number is
small, then the error curves are strongly fluctuating. The explanation is that matrix T is just
probably a contraction, so the iteration have convergent and divergent stages. If the number of
samples is higher, then the iteration becomes stable and its accuracy gets similar to iterating
with the analytic SM. Thus, we can conclude that statistically matched sampling is the best
option, provided that we are able to guarantee a sufficiently high sampling density.

Figure 2.2 (bottom right) and Figure 2.4 show the reconstruction results after 100 iteration
steps for the discussed sampling methods for the 1D and 2D case, respectively, and demonstrate
that the fixed and the deterministically matched approaches blur the peaks and edges but are
stable, while the statistically matched method behaves similarly to the analytic SM if the sample
number is sufficient but may be unstable otherwise, introducing noisy voxels.

2.2.2 Speeding up the convergence with simplified back projectors

We concluded that the reconstruction accuracy of high dose measurements is just slightly affected
by the accuracy of the back projector. In a special case when B = A ·Z where Z is an invertible
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Figure 2.2: Relative L2 error curves of different sampling strategies and the reconstructed results
for the 1D scanner. Fixed case: SM is the same in every iteration step. Deterministically
matched stochastic iteration: SM is re-sampled in each iteration step and the forward projector
of an iteration step uses the same SM as its back projector. Statistically matched stochastic
iteration: SM is re-sampled for every projection, i.e. the forward projection is statistically
independent of the back projection.

Figure 2.3: Relative L2 error curves obtained with different sampling techniques in the 2D scan-
ner. Fixed case: SM is the same in every iteration step. Deterministically matched stochastic
iteration: SM is re-sampled in each iteration step and the forward projector of an iteration
step uses the same SM as its back projector. Statistically matched stochastic iteration: SM is
re-sampled for every projection, i.e. the forward projection is statistically independent of the
back projection.
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Figure 2.4: Reconstructed activity obtained with 2D analytic SM, 105 sample projections (upper
row) and 106 sample projections (lower row) with the discussed sampling techniques. Note that
fixed and deterministically matched iteration are stable but fail to quickly converge to higher
peaks. Statistically matched iteration, on the other hand, performs similarly to the analytical
SM when the sample number is higher but becomes unstable and generates strong voxel noise
when the sample number is smaller.

square matrix of N2
voxel elements, the fixed point is preserved, which can be seen if both sides of

Equation 2.3 are multiplied with matrix Z. The convergence speed depends on the contraction
of matrix T (Equation 2.4), which is strong if

⟨x∗V ⟩ · B̄T · ⟨yL
ỹ2L

⟩ ·A

is close to the identity matrix. We need to find matrix Z so that for every voxel V just the most
significant ALV elements are kept while others are replaced by zero during the multiplication
with Z. As the SM represents a sequence of physical phenomena, this means ignoring voxel
space blurring effects, such as positron range.

Using the example of the previous subsection, we examined the convergence of the recon-
struction for different activity levels (recall that back projection accuracy becomes important
only for low dose measurements).

The results are shown by Figure 2.5. Note that simplified and original back projectors
converge to the same result, the approximation is more accurate when the measurement is of
high dose. The initial convergence of the simplified back projector is much faster and it becomes
poorer only when the iteration overfits the result and therefore the iteration is worth stopping
anyway (such overfitting may be avoided with regularization).

2.3 Conclusions

This chapter has investigated the behavior of MC sampling in the iterative ML-EM algorithm.
Based on both mathematical derivations and experimental studies, we propose the application
of independent sampling and simplified back projector. We can conclude that it is worth to
re-compute the SM in every iteration since it has the potential to provide a significantly better
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Figure 2.5: Convergence in L2 for matched and simplified back projectors for different activities.

performance than iterating with a fixed matrix. In addition to parallel computing issues and
the inclusion of patient-specific data that were discussed in Section 1.2.4, this gives us the final
motivation to develop efficient physical models for PET that can be computed on-the-fly.

The superiority of independent re-sampling is due to the fact that it can gather more in-
formation about the system, probably not in a single step but as the iteration proceeds. This
additional information helps increase the accuracy. However, independent sampling in forward
and back projectors has a drawback that the solution oscillates if the sample density is low, so
sample numbers should be carefully selected.

We have also shown that if back projector is properly simplified, then not only its computa-
tion can be speeded up, but also the iteration can be made faster.



Chapter 3

Positron Range

Positron range is a phenomenon that the positron is not annihilated at its emission location
but moves away from it. Positron range causes a blurring in the reconstruction depending on
the kinetic energy of the emitted positron and the material. This blurring is significant in
small animal PETs where the voxel size can be an order of magnitude smaller than the average
translation of positrons.

Positron range is modeled by conditional probability density P (v⃗p → v⃗a) of positron annihi-
lation in v⃗a provided that a positron was born in point v⃗p. The annihilation density xa(v⃗a) is
obtained from the tracer density x(v⃗p) applying the blurring caused by the positron range:

xa(v⃗a) =

∫
V

x(v⃗p)P (v⃗p → v⃗a)dvp. (3.1)

In the special case when the tissue is homogeneous (which may hold only for small regions
but is never met for the entire measured object in practice), we could exploit the translational
symmetry of the positron range, i.e. its probability matrix depends just on the distance of
positron generation and annihilation:

P (v⃗p → v⃗a) = P (v⃗a − v⃗p)

which makes positron range calculation equivalent to a convolution

xa(v⃗a) =

∫
V

x(v⃗p)P (v⃗a − v⃗p)dvp.

In high-resolution small animal PET systems, the average free path length of positrons may
be many times longer than the linear size of voxels. This means that positron range significantly
compromises the reconstruction quality if it is not compensated, and also that the material
dependent blurring should have a very large support so its voxel space calculation would take
prohibitively long. This chapter presents a fast GPU-based solution to compensate positron
range effects in heterogeneous media for iterative PET reconstruction.

The performance of frequency domain filtering does not depend on the size of the blurring
kernel, but its direct form is ruled out by the fact that we need a spatially variant filtering in
heterogeneous media. To handle heterogeneous media, we execute Fast Fourier Transforms for
each material type and for appropriately modulated tracer densities and merge these partial
results into a density that describes the composed, heterogeneous medium. Fast Fourier Trans-
form requires the filter kernels on the same resolution as the tracer density is defined, so we also
present efficient methods for re-sampling the probability densities of positron range for different
resolutions and basis functions.

29
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3.1 Previous work on positron range

Analytic methods modeling positron range as a voxel-space blurring operator differ in two as-
pects: the way the blur is included into the reconstruction and the generalization to hetero-
geneous material. As Haber et al. showed earlier [HDU90], assuming homogeneous tissue, the
blurring due to positron range can be removed by spatial deconvolution. However, deconvolution,
when decoupled from the reconstruction method, amplifies image noise [BRL+03]. It is beneficial
to integrate the deconvolution into the ML-EM resulting in a two-phase algorithm [ACLO10],
where the first phase iterates the standard ML-EM using the annihilation density, from which
the positron density is determined in a second ML-EM phase.

Methods that include positron range in an iterative reconstruction apply the blurring in the
spatial domain either computing the convolution directly [BRL+03, CGHE+09] or equivalently,
multiplying with the pre-computed positron range matrix P [AM08]. For isotope and material
types where the positron range is small, like 18F in bones, the matrix is sparse because the prob-
ability that a positron gets far is approximately zero. However, less dense materials like water
and air, or isotopes emitting high kinetic energy positrons, like 82Rb, correspond to matrices of
much fewer zero elements (Table 3.1). Consequently, applying the blur in the spatial domain
may have up to O(N2

voxel) complexity which is, assuming high resolution scanners with millions
of voxels, unacceptably high for clinical practice. In this chapter, we propose the convolution
to be performed in the frequency domain, reducing the complexity to O(Nvoxel logNvoxel), inde-
pendently of the positron range. This is similar to the method of Haber et al. [HDU90] in the
sense of using the Fourier transform, however, we extend it to heterogeneous materials.

Isotope Mean range Max. range Kernel size Kernel size
(mm) (mm) (13mm3 voxel) (0.33mm3 voxel)

18F 0.61 2.3 73 173
15O 2.00 7.9 173 553
82Rb 4.24 16.7 353 1133

Table 3.1: Simulated positron range in water according to Cal-González et al. [CGHE+09] and
the corresponding size of the blurring kernel in voxels, assuming 13mm3 and 0.33mm3 voxel size.

For the inhomogeneous case with arbitrary geometry, unfortunately there is no unbiased ana-
lytic model available [BRL+03]. A blurring operator with shift-variant kernel is locally accurate
in a homogeneous neighbourhood, the major challenge is how to mitigate artifacts near material
boundaries. Bai et al. [BRL+03] proposes two approaches: an anisotropic truncation of the ker-
nels depending on material type; or to perform successive, material dependent blur with kernels
isotropically truncated at a certain radius. Although being more accurate, the latter method
requires a prohibitively large number of convolution operations for large values of positron range
and high spatial resolution. Alessio et al. [AM08] proposed a rather crude approximation, the
coefficients of the sum-of-exponentials probability density model [Der86] (Equation 1.2 in Sec-
tion 1.1.1) are averaged for the originating and the target voxels, smoothing the artifact near
material boundaries. Another approximate approach is to sample the blurring kernel using the
water-equivalent distance based on local density, which is equivalent to the distortion of the
kernel corresponding to homogeneous water according to the true material [ACLO10]. We note
that the method presented in this chapter corresponds to the case of shift-variant kernel with-
out any modifications and thus may produce stronger artifacts at material boundaries than the
methods discussed in this paragraph.
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3.2 Proposed positron range simulation approach

3.2.1 Probability density re-sampling

In the chapter introduction (Equation 3.1) we discussed that the annihilation density can be
modeled as a blurring operator on the tracer density:

xa(v⃗a) =

∫
V

x(v⃗p)P (v⃗p → v⃗a)dvp.

Substituting the finite element approximation of the tracer density, this convolution is expressed
by a discrete filtering operation:

xa(v⃗a) =

Nvoxel∑
V=1

xV

∫
V

bV (v⃗p)P (v⃗p → v⃗a)dvp.

The finite element coefficient of the annihilation density is computed by multiplying both sides
with the adjoint basis function b̃′V , that are orthonormal to the original basis functions, i.e.∫

V

bV b̃V ′dv = 1 if V = V ′ and zero otherwise.

We use two options, piece-wise constant basis functions when the adjoints are also piece-wise
constant basis functions, and tri-linear basis functions when the adjoints are Dirac-delta func-
tions selecting the voxel corners. The result of the scalar product is

xaV ′ =

∫
V

b̃V ′(v⃗a)x
a(v⃗a)dva =

Nvoxel∑
V=1

xV

∫
V

∫
V

b̃V ′(v⃗a)bV (v⃗p)P (v⃗p → v⃗a)dvpdva =

Nvoxel∑
V=1

PV ′,V xV ,

where the discrete filter kernel is

PV ′,V =

∫
V

∫
V

b̃V ′(v⃗a)bV (v⃗p)P (v⃗p → v⃗a)dvpdva.

If piece-wise constant basis functions are used, then matrix element PV ′,V is the probability
that a positron is annihilated in voxel V ′ provided that it was born in voxel V .

When the surrounding material is considered homogeneous, the blurring operator degrades
to a convolution. The computation of the discrete version of the convolution kernel can also
benefit from the spatial invariance. Matrix element

PV ′,V =

∫
V

∫
V

b̃V ′(v⃗a)bV (v⃗p)P (v⃗a − v⃗p)dvpdva = PO,Vr (3.2)

depends just on the relative location Vr of voxel V
′ with respect to voxel V , and thus it is enough

to compute it for a reference voxel O and all voxels Vr.
In order to simulate positron range, we need effective techniques to implement the filtering

operator. We consider two cases, a special one when the material is homogeneous and the
filtering becomes spatially invariant, and a general case when the material is inhomogeneous,
and the filtering is spatially varying.
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3.2.2 Blurring in frequency domain assuming homogeneous material

A convolution can be evaluated both in spatial domain, i.e. voxel space, and in frequency space
having applied Fourier transformation. As the computational complexity of filtering in spatial
domain is proportional to the product of the voxel numbers in the positron density volume and
the filter kernel, spatial filtering gets prohibitively expensive for large kernels. Note that the
linear voxel size of small animal PETs may be about 0.1–0.2 mm, while the FWHM of the
positron range effect in water is about 1–4 mm depending on the isotope [CGHE+09], thus
the required size of the 3D filter kernel is greater than 103–104 voxels. Approximating the
filter kernel by a separable approximation like the Gaussian filter can speed up the process,
but the Gaussian would be a rather poor approximation of the positron range phenomenon
[LH99]. Fortunately, the convolution can also be evaluated in frequency domain having applied
3D Fast Fourier Transforms F , and the computational complexity of frequency domain filtering
is independent of the kernel size:

xa(v⃗) = F−1 [F [x(v⃗)] · F [P (v⃗)]] .

The actual form of kernel P (v⃗a − v⃗p) = P (v⃗) depend on the material–isotope pair. We
calculate P (v⃗) on high resolution off-line with GATE [Jea04] simulations. The noise of MC
simulation is filtered out by fitting the simulation data on functions of form

P (v⃗) =
aαe−α|v⃗| + bβe−β|v⃗|

2π|v⃗|
,

which is based on [Der86, PB92, LH99] stating that the probability density of positron range
projected onto Cartesian axis X can be well approximated by pX(X) = ae−αX + be−βX where
parameters a, α, b, β depends on the material–isotope pair. During fitting, we also impose the
requirement that pX is a probability density, thus it integrates to 1.

Matrix elements PV ′,V also depend on the discretization, i.e. the basis functions and on the
size of voxels. So, having the probability density of the positron range in a continuous analytical
form or defined as histograms of measured data, the positron range effect compensation would
require the re-sampling of these functions according to the resolution and the basis functions of
the voxel grid (Equation 3.2), and then a convolution operation with the currently estimated
tracer density. As in pre-clinical research PETs the voxel size is also a user controllable param-
eter, the re-sampling is executed on-the-fly applying numerical quadrature when the input data
are loaded.

3.2.3 Inhomogeneous material

Figure 3.1: Positron range is a spatially variant blurring operator. The path of a positron
depends on the material where it is born, on the material where it is annihilated, and also on
the material that is visited between the generation and the annihilation.

In inhomogeneous objects, blurring kernel P (v⃗p → v⃗a) also depends on the material (e.g.
bone, air, soft tissue) distribution of the measured object, i.e. the material of every voxel
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(Figure 3.1). The precise treatment of this phenomenon would require the consideration of all
possible positron paths, which would lead to a high-dimensional integral for every point pair,
and would pose prohibitive computational requirements in PET systems. However, assuming
that the material is homogeneous, i.e. the blurring kernel is independent of the material type
in points v⃗a, v⃗p and elsewhere in the object, would be the other extreme approach that would
ignore the significantly different probability densities associated with different materials.

Figure 3.2: Intuitive explanation of the simplified method when the material of the positron
generation is used. Blurring each voxel with the filter kernel associated with the material in this
voxel means the replacement of a single spatial-variant filtering by one spatial-invariant filtering
for each material and a summation.

We propose a practical compromise that is sufficiently accurate for PET reconstruction and
can be computed in reasonable time with the support of highly parallel GPU hardware. The
basic idea is that instead of considering the material in all points, we take into account the
material type only at one end of the positron path. This means that we blur each voxel with the
filter kernel associated with the material in this voxel and ignore the fact that there might be
a material boundary nearby. This simplification replaces a spatially variant filtering by several
spatially invariant convolutions and a summation.

Selecting the material of the positron generation location (Figure 3.2) and denoting the index
of the material at point v⃗p by m(v⃗p), we obtain:

xa(v⃗a) ≈
∑
m

∫
V

x(v⃗p)ξm(v⃗p)Pm(v⃗a − v⃗p)dvp (3.3)

where ξm(v⃗p) is an indicator function that is 1 if there is material of index m in point v⃗p and
zero otherwise, and Pm(v⃗) is the probability density of the positron translation between its
generation and annihilation in homogeneous material of index m.

Computing Fourier transform F for each term and then a single inverse Fourier transform,
we get:

xa(v⃗) ≈ F−1

[∑
m

F [x(v⃗)ξm(v⃗)] · F [Pm(v⃗)]

]
.

Note that this computation requires the Fourier transforms of the blurring functions computed
during pre-processing for each material, the Fourier transformation of the positron density once
for each material type (usually two or three), and a single inverse Fourier transformation.
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Figure 3.3: Intuitive explanation of the simplified method when the material of the positron
annihilation is used. Blurring each voxel with the filter kernel associated with the material in
this voxel means the execution of a spatial-invariant filtering for each material and a summation
after masking according to the material.

Instead of using the kernel associated with the material of the positron generation location,
we can also apply the kernel of the material at the position of the annihilation (Figure 3.3),
which leads to the following formula:

xa(v⃗a) ≈
∫
V

x(v⃗p)Pm(v⃗p)(v⃗a − v⃗p)dvp =
∑
m

ξm(v⃗a)

∫
V

x(v⃗p)Pm(v⃗a − v⃗p)dvp.

The convolutions in the sum can also be computed via Fourier transformations:

xa(v⃗) ≈
∑
m

ξm(v⃗)F−1 [F [x(v⃗)] · F [Pm(v⃗)]] .

This second option is more expensive computationally since here both the number of Fourier
transforms and the number of inverse Fourier transforms are equal to the number of materials.
The accuracy of the two techniques depends on whether or not the material including most of
the radioisotopes occupies a larger part of the object. For typical materials and isotopes, the
difference of the reconstructed volumes is negligible.

3.2.4 Positron range in back projection

The ML-EM back projector considers the ratios of measured and estimated LOR values and
executes the steps of forward projection backwards in reverse order to update the voxel estimates.
The positron range operator can be reversed, the only difference is that if we define kernels
according to the material at the location of positron generation in the forward projection, then
kernels should correspond to the material at the position of annihilation in the back projection,
or vice versa.

As it was shown in Section 2.2.2, however, blurring effects such as the positron range may
be skipped in this phase, making forward and back projections unmatched [ZG00].
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3.3 Results

3D Fourier transformations are computed with the NVIDIA cuFFT library. In this system the
positron range calculation for 3 materials at 1283 and 2563 resolutions take 0.6 seconds and 2
seconds, respectively.

To demonstrate the potential of the proposed algorithms on pre-clinical scanners, we used
Mediso’s nanoScan PET/CT [Med10b] (see Section 1.1.2). In the first set of experiments, we
considered simulation data obtained by GATE.

We reconstructed the ring phantom of homogeneous activity put into water and bone mate-
rials with and without positron range compensation (Figure 3.4). Note that the homogeneous
activity inside the ring could be well reconstructed for 18F and 15O isotopes. The ring geom-
etry also shows up nicely for 82Rb, but the homogeneous activity is compromised at material
boundaries. The reason of this artifact is our approximate model which uses the material at the
position of the annihilation and assumes that the positron was also born in the same material.
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Figure 3.4: Reconstruction of the ring. The upper row contains the L2 error curves and the
material map. The images of the middle and lower rows show the reconstructions without and
with positron range compensation, respectively. The first three columns correspond to different
isotopes, while the last column shows line profiles.

We also examined real measurements of a Micro Derenzo phantom with rod diameters
1.0, 1.1, . . . , 1.5 mm in different segments, which was reconstructed at 1742 × 146 resolution
(0.153 mm3 voxels) with and without positron range compensation. The transversal slice and
the line profiles are shown by Figure 3.5.
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Figure 3.5: Micro Derenzo phantom reconstruction and the line profiles showing the difference
produced by positron range compensation.

3.4 Conclusions

This chapter presented an efficient positron range compensation algorithm. The positron range
calculation in heterogeneous material is decomposed to a series of positron range calculations
in homogeneous materials, once for each material type of the examined object, and a final
compositing step. Positron range in homogeneous material, in turn, is evaluated in the frequency
domain applying Fast Fourier Transforms. The model runs on the GPU, providing positron range
simulations at a negligible cost even for higher volume resolutions.



Chapter 4

Geometric projection

The majority of the measured coincident hits belong to direct photons that reach the detectors
without scattering. For this direct component, the System Matrix (SM) is sparse and can be
modeled by geometric projection, thus it is worth being treated independently of scattering. Effi-
cient parallel implementation requires the geometric projection to be LOR driven in the forward
projector and voxel driven in the back projector. Existing LOR driven forward projector meth-
ods use varying sample number to evaluate line integrals and thus assign different computational
load to parallel threads causing their divergence. Furthermore, they give analytic solutions to
compute the direct contribution, which leads to a biased estimator and thus modifies the fixed
point of the iteration. The LOR driven sampling scheme proposed in this chapter offers efficient
parallel implementation using the same set of offsets in each thread. Furthermore, we re-sample
the surfaces of the detectors in every iteration step of the ML-EM, and use a random offset for
the line samples along the line to guarantee that every point that may correspond to a LOR is
sampled with a positive probability.

The LOR driven approach may be wasting in the sense that it does not consider the emission
density during sample generation. We propose a voxel driven geometric projection scheme that
computes the contribution of a voxel to LORs, evenly sampling the detector surfaces. This allows
the activity distribution to be taken into account in the forward projection, using importance
sampling of the voxels. Furthermore, being a voxel centric approach, it provides an efficient
parallel implementation of the back projector.

4.1 Previous work on geometric projection

4.1.1 Direct contribution between detectors

As we shall see later on in this chapter (see Equation 4.4), the direct contribution between
two detectors can be expressed as a surface integral on the two detectors, where the integrand
contains line integrals between the surface points:

ỹgeomL(d1,d2)
=

∫
D1

∫
D2

z⃗2∫
z⃗1

f (⃗l)dldz1dz2.

In general, these line integrals are computed as a sum of weighted samples taken by marching
along the line, often referred to as ray marching . Siddon’s algorithm [Sid85] is a usual choice for
this task. Assuming a piece-wise constant finite-element approximation of the integrand f , the
integral can be solved analytically as a sum

∑
lV fV , where lV is the length of the intersection of

the ray with voxel V = (x, y, z) and fV is the voxel value in V . There are two major criticisms
for this approach. The piece-wise constant approximation introduces an unrealistic discontinuity
to the model [Jos82]. Furthermore, to evaluate the sum the intersections with the voxels are

37
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computed along the ray which may need different number of loop cycles and divergent condi-
tional instructions for different rays, thus, multiprocessor performance is degraded in a parallel
implementation. Even so, there are existing GPU-based iterative PET reconstruction methods
that apply Siddon’s approach [BVVC12]. Joseph’s method [Jos82] applies the trapezoidal rule
to numerically estimate the integral and takes one sample per voxel along the ray, which are
linearly interpolated from neighbouring values providing a smoother approximation of f . Ad-
ditionally, the use of equidistant samples is more efficient on GPUs and the linear interpolation
is provided with no additional cost, making Joseph’s approach more popular in GPU-based it-
erative PET reconstruction [CM03, BS06]. However, different rays may intersect with different
number of voxels causing varying number of loop cycles in threads. Thus, the sampling strategy
we propose in Section 4.2.1 takes the same number of samples for every ray.

Surface integrals of the value obtained with the discussed line integral can be estimated by
discrete line samples in a line driven method. For performance reasons, usually only a single line
sample is used and thus the problem degrades to the computation of a line integral. The distance-
driven approach [MB04] samples only one endpoint and simultaneously approximates the surface
integral of the other endpoint and the line integral. Solid angle based methods [QLC+98] approxi-
mate surface integrals. In general, the three integrals can be estimated analytically [MDB+08] or
with Monte Carlo (MC) quadrature, or we can even mix the two approaches and some integrals
are estimated with simple analytical formula while others are computed from random samples.
Integrating some variables analytically, we can increase the accuracy when low number of MC
samples are used. However, analytical approximations have a deterministic error which makes
the method biased, i.e. the error will not converge to zero when the number of MC samples
goes to infinity. In order to get an unbiased estimator, Section 4.2.1 proposes random sampling
of the detector surfaces and random shifting of the voxel samples along the lines, re-sampled in
each iteration step of the ML-EM.

4.1.2 GPU-based projectors

An efficient, gather-style GPU implementation of the forward and back projectors must be LOR
driven and voxel driven, respectively. In existing GPU implementations of a geometric forward
projector [CM03, BS06, HEV+06], this principle is met. Despite the fact that it fits well to the
massively parallel architecture, the LOR driven forward projection may be very inefficient since it
completely neglects voxel values, i.e. in terms of importance sampling the sampling density does
not mimic the emission density factor of the integrand. In the worst case, when the measured
object is a point source, the algorithm wastes most of the samples traversing regions with zero
activity while the sampling density around the point source is most likely to be insufficiently
low. In Section 4.2.2, we propose a voxel driven projection that may consider the distribution
of the activity. Being a voxel driven method, it would require an enormous amount of samples
to accurately reconstruct large objects. Section 7.2 describes how to combine the benefits of the
two sampling strategies, i.e. providing an accurate reconstruction for both point source-like and
large objects with a reasonable amount of samples, according to multiple importance sampling.

Voxel driven back projection approaches [BS06, HEV+06, KY11a] search contributing LORs
(for which the volume enclosed by the two endpoints of the LOR intersects with the voxel) by
expressing LOR endpoints in polar coordinates, and sample them by looping through angles.
Since the axial cross sections of most scanners are not circles but polygons, this sampling of the
detectors becomes uneven. The voxel driven projector presented in Section 4.2.2 samples the
surface of the detector modules evenly and finds the other endpoint of the LOR via projection
through the voxel, leading to more uniform sampling in LOR-space.
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4.2 Proposed geometric projectors

If positron range and acollinearity are ignored, the photons generated at the annihilation in v⃗
have two opposite directions ω⃗ and −ω⃗ of uniform distribution and this pair contributes to a
LOR if the line of place vector v⃗ and direction ω⃗ crosses the surfaces of the LOR’s two detectors
and none of the photons gets scattered or absorbed (Figure 4.1). Let us denote the intersections
of this line with the detector surfaces by z⃗1, z⃗1, which are unambiguously determined by line
point v⃗ and direction ω⃗. As the photon direction is uniform on the half sphere ΩH of solid
angle 2π, the scanner sensitivity assuming zero number of scattering is an integral over the set
of directions:

T0(v⃗ → L) =

∫
ω⃗∈ΩH

1

2π
A(z⃗1, z⃗2)ξL(z⃗1, z⃗2)dω (4.1)

where ξL is the indicator function that is 1 if intersection points z⃗1 and z⃗2 belong to the crystals
of LOR L, and

A(z⃗1, z⃗2) = exp

−
z⃗2∫

l⃗=z⃗1

σt(⃗l)dl


is the attenuation factor , which expresses the probability that none of the annihilation photons
are extincted before they arrive at the detectors with the integral of extinction parameter σt(⃗l).
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Figure 4.1: Computation of the Jacobian of the change of variables. The differential solid angle
at which dz1 detector surface and dz2 detector surface are simultaneously seen from emission
point v⃗ is dω = dz1 cos θz⃗1/|z⃗1 − v⃗|2 = dz2 cos θz⃗2/|z⃗2 − v⃗|2. The differential solid angle at which
dz2 is seen from point z⃗1 is dω2 = dz2 cos θz⃗2/|z⃗2 − z⃗1|2 = dA/|z⃗1 − v⃗|2. Finally, the differential
volume intersected by lines of z⃗1 and z⃗2 is dv = dldA, where dl is the length of the line segment
intersecting dv, and dA is the surface area that is perpendicular to the line.

Including the scanner sensitivity into Equation 4.1, the formula of expected hits becomes

ỹgeomL =

∫
v⃗∈V

x(v⃗)T0(v⃗ → L)dv =

∫
V

∫
ΩH

x(v⃗)

2π
A(z⃗1, z⃗2)ξL(z⃗1, z⃗2)dωdv. (4.2)

Evaluating Equation 4.2 directly in a forward projection step leads to scatter-like algorithms,
which are not suitable for efficient parallel implementation. Let us change our viewpoint to solve
the adjoint problem, i.e. originate photon paths in the detectors and gather the contribution
of voxels inside the VOR, expressed as an integral over the detector surfaces. If photon paths
are linear, annihilation point v⃗ and direction ω⃗ unambiguously identify detector hit points z⃗1
and z⃗2, or alternatively, from detector hit points z⃗1 and z⃗2, we can determine those annihilation
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points v⃗ and directions ω⃗, which can contribute: contributing annihilation points are on the line
segment between z⃗1 and z⃗2 and direction ω⃗ = ω⃗z⃗1→z⃗2 .

The Jacobian of the change of integration variables, i.e. the geometry factor is

JA(z⃗1, z⃗2) = G(z⃗1, z⃗2) =
dωdv

dldz1dz2
=

cos θz⃗1 cos θz⃗2
|z⃗1 − z⃗2|2

(4.3)

where θz⃗1 and θz⃗2 are angles between the surface normals and the line connecting points z⃗1
and z⃗2 on the two detectors, respectively (Figure 4.1). Including the Jacobian of the change of
integration variables, the expected number of hits can be expressed as a triple integral over the
two detector surfaces D1 and D2 of the given LOR and over the line connecting two points z⃗1
and z⃗2 belonging to the two detectors d1 and d2 (Figure 4.1):

ỹgeomL(d1,d2)
=

∫
D1

∫
D2

G(z⃗1, z⃗2)X(z⃗1, z⃗2)A(z⃗1, z⃗2)dldz1dz2 (4.4)

where

X(z⃗1, z⃗2) =
1

2π

z⃗2∫
z⃗1

x(⃗l)dl

is a line integral of emission density x(⃗l) between endpoints z⃗1 and z⃗2.

4.2.1 LOR driven sampling

The integral over the pair of detector surfaces can be estimated by Nray discrete line samples,
i.e. point pairs (u⃗i, w⃗1), i = 1, . . . , Nray, on the two detectors. We take Nmarch equidistant

points l⃗ij along each line segment (u⃗i, w⃗1) and evaluate the line integral with the trapezoidal
quadrature. Step size ∆li can be determined from the length of the line segment where it
is inside the volume of interest. Note that this scheme is applicable for any finite function
series representation of annihilation density x(v⃗). Its implementation does not need conditional
instructions and is very fast if x(⃗lij) is fetched from a 3D texture of the GPU since the probability
that neighboring threads need neighboring voxels is high, thus the texture cache works efficiently.
Tri-linear interpolation is directly supported by the texturing hardware and higher order spline
interpolation can also be effectively traced back to tri-linear interpolation [SH05].

To sample all points with positive probability, we start the ray marching with a random
offset that is uniformly distributed in [0,∆li]. With these, the integral estimator is:

ỹA1
L ≈ D1D2

Nray

Nray∑
i=1

Nmarch∑
j=1

G(u⃗i, w⃗i)
x(⃗lij)

2π
∆liAL(u⃗i, w⃗i).

Comparing this estimator to the integrand of Equation 4.2, we can conclude that the weighting
scheme of this LOR driven approach is:

ỹA1
L =

Nray∑
i=1

Nmarch∑
j=1

x(⃗lij)A(u⃗i, w⃗i)/(2π)

dA1(⃗lij , ω⃗i)
=⇒ dA1(⃗l, ω⃗) =

Nray

D1D2G(u⃗, w⃗)∆l
,

where u⃗, w⃗ and ∆l can be unambiguously determined from the line of l⃗ and ω⃗, and from the
geometry of the detector and the volume to be reconstructed. Note that this sampling method
does not generate points and directions that do not correspond to a given LOR L, thus indicator
function ξL(u⃗, w⃗) (Equation 4.1) has value 1 for all samples.

The LOR centric method has several advantages in forward projection. As it is a gather-
ing algorithm, it requires no atomic operations on the GPU. On the other hand, it samples
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Figure 4.2: A single computational thread of the LOR driven projection takes a detector pair
and marches on rays between sample points u⃗, w⃗ of the detector surfaces.

annihilation points occupying the 3D space, which can be well supported by the 3D texture
hardware.

The forward projection algorithm executed by a single thread that is responsible for the LOR
connecting detector (p, q) and detector (r, s) is listed in the following. For the sake of simplicity,
the pseudocode ignores attenuation.

Forward(p, q, o⃗1, w⃗1, h⃗1, n⃗1, // indices and the geometry of the first detector

r, s, o⃗2, w⃗2, h⃗2, n⃗2) // indices and the geometry of the second detector
ỹ[p, q, r, s] = 0;
for i = 1 to Nray do

z⃗1 = o⃗1 + w⃗1(p+ u
(i)
1 )/Na + h⃗1(q + u

(i)
2 )/Nt;

z⃗2 = o⃗2 + w⃗2(r + u
(i)
3 )/Na + h⃗2(s+ u

(i)
4 )/Nt;

d⃗z = z⃗2 − z⃗1;

G = −D1D2(n⃗1 · d⃗z)(n⃗2 · d⃗z)/|d⃗z|4;
(⃗lstart, l⃗end) = Intersection(line z⃗1 → z⃗2, volume cube) + random offset;

l⃗step = (⃗lend − l⃗start)/Nmarch;

∆l = |⃗lstep|;
X = 0; // Line integral: X =

∫
xdl

for (⃗l = l⃗start; l⃗ != l⃗end; l⃗ += l⃗step) do

X += x[⃗l] ·∆l;
endfor
ỹ[p, q, r, s] += G ·X/(Nray · 2π)

endfor
end

The “Intersection” function computes the intersection of the line and the axis-aligned cube
representing the volume to be reconstructed. Na and Nt denote the resolution of the detector
module in the axial and transaxial directions, respectively. Vectors o⃗i, w⃗i, h⃗i and n⃗i (i = 1, 2)
stand for the corner position, axial, transaxial and normal vector of a detector module.
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4.2.2 Voxel driven sampling

In voxel driven sampling, first annihilation point v⃗ is sampled, then direction ω⃗ is obtained based
on v⃗, thus we express the probability density of a complete sample in a product form:

p(v⃗, ω⃗) = pω⃗(ω⃗|v⃗)pv⃗(v⃗).

First Nv volume points v⃗i are obtained from a Volume of Interest (VoI) with a density that
is proportional to the activity according to the principles of importance sampling:

pv⃗(v⃗) =
x(v⃗)

X
where X =

∫
VV oI

x(v⃗)dv

where X is the total activity in the VoI.
Note that if the VoI is smaller than the total volume, then this approach does not lead to an

unbiased estimator. Thus, if it is used alone, then the VoI should not be focused on a smaller
region. However, when this method is combined with other techniques (Section 7.2), then the
combined method can be valid even if the individual methods are biased.

The scanner sensitivity is approximated from the solid angle subtended by the two detector
surfaces of the LOR from point v⃗, taking line samples via point v⃗ (Figure 4.3). If we sample
directions by placing uniformly distributed hit points u⃗ on the detector surface D1, then the
probability density of the line direction is

pω⃗(ω⃗|v⃗) =
|v⃗ − u⃗|2

D1 cos θu⃗

where θu⃗ is the angle between v⃗ − u⃗ and the surface normal of the detector. Note that this
sampling method may generate line samples that do not intersect crystal surface D2 of LOR L.
However, as the integrand in Equation 4.2 is zero due to the indicator function for these lines,
the expectation gives back the integral.

Putting just a single sample on each detector surface D1, the expected number of hits in
LOR L and the corresponding density are

ỹA2
L ≈ 1

Nv

Nv∑
i=1

x(v⃗i)A(u⃗i, w⃗i)ξL(u⃗i, w⃗i)/(2π)

pv⃗(v⃗i)pω⃗(ω⃗i|v⃗i)
=⇒ dA2(v⃗, ω⃗) =

Nvx(v⃗)|v⃗ − u⃗|2

XD1 cos θu⃗
.

The voxel driven method in forward projection has the advantage that it can focus on high
activity regions. Point source like objects can be reconstructed with very few samples. However,
it requires atomic operations in forward projection and a single thread accesses many LORs
stored in a 4D data structure, which are slow on the GPU. On the other hand, when this scheme
is applied to all the voxels in back projection, it fits well to the massively parallel architecture.
The pseudocode of the resulting back projection is listed in the following, Na and Nt denote the
resolution of the detector module in the axial and transaxial directions, respectively.

Backward(V , // voxel ID

o⃗1, w⃗1, h⃗1, n⃗1, // primary detector

o⃗2, w⃗2, h⃗2, n⃗2) // secondary detector
Sample v⃗ from bV (v⃗);
Enum = Denom = 0;
for p = 0 to Na − 1 do

for q = 0 to Nt − 1 do

z⃗1 = o⃗1 + w⃗1(p+ 0.5)/Na + h⃗1(q + 0.5)/Nt;
z⃗2 = project z⃗1 through v⃗
r, s = index of z⃗2
∆ω = D1(n⃗1 · (v⃗ − z⃗1))/|v⃗ − z⃗1|3;
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Figure 4.3: A single computational thread of the voxel driven projection samples v⃗ in proportion
to the positron density x(v⃗) and processes a line crossing this point for each LOR.

if (0 ≤ r < Nt AND 0 ≤ s < Na) then
Denom += ∆ω;
Enum += ∆ω · y[p, q, r, s]/ỹ[p, q, r, s];

endif
endfor

endfor
if (Denom > 0) then x[V ] *= Enum/Denom;

end

4.3 Results

The accuracy of geometric projection is crucial in high resolution small animal PET where the
voxel edge length can be significantly smaller than the edge length of the detector crystals. Thus,
we modeled Mediso’s nanoScan PET/CT [Med10b] (Section 1.1.2).

To validate the proposed geometric projection methods, we took three different mathematical
phantoms, an off-axis Point source, the Derenzo, and the Homogeneity (Section 1.4.1). We used
GATE [Jea04] to generate a “ground truth” reference projection ỹrefL with 1012 samples and
compared the LOR space L2 error of the proposed projectors calculated with the multiples of
Nray = 1, Nmarch = 36 and Nv = 104. Voxel samples Nv of the voxel centric projector were
generated with importance sampling, mimicking the current estimation of the emission density.
To allow the comparison of techniques working with different sample types, the LOR space L2

error is depicted in Figure 4.4 with respect to the computation time of a single projection.
In Figure 4.4 we can observe that increasing the computation time and thus the number of

MC samples, the error converges to zero in both cases, thus both the proposed voxel driven and
LOR driven methods are unbiased estimators. By comparing the computation times needed to
reach a given error level, we can note that voxel driven sampling is particularly efficient for the
Point, while LOR driven sampling is good for the Homogeneity.

In the second phase of the evaluation, the projectors were included in ML-EM reconstruction.
To obtain measured value yL, we assigned 0.1 MBq activity to the Point source, 5 MBq activity
to the Derenzo, 1.2 MBq activity in total to the Homogeneity, and simulated a 1000 sec long
measurement for each with GATE, which mimics physical phenomena and thus obtains the
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Figure 4.4: LOR space L2 error of different projectors with respect to the computation time of
the projection for the Point (left), Derenzo (middle), and the Homogeneity (right) phantoms.
Note that the left-hand figure does not include the curve of the LOR driven sampling because
its error is an order of magnitude higher than those of the voxel driven method.
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Figure 4.5: Voxel space CC error curves with respect to the iteration number (first row) and
to the reconstruction time (second row) of the reconstructed Point (left), Derenzo (middle)
and Homogeneity phantoms (right). The error were made with different Nray, Nmarch and Nv

samples. The method is LOR driven when the number of voxel samples Nv is zero. The method
is voxel driven when the number of LOR samples Nray is zero. We executed full EM iterations
in all cases.
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measured data with realistic Poisson noise. The Signal-to-Noise Ratios (SNR)

SNR =

∑NLOR
L=1 ỹrefL∑NLOR

L=1 |yL − ỹrefL |

of the Point, Derenzo and Homogeneity measurements are 22.99, 10.22 and 4.04, respectively.
From the measured data, the three phantoms are reconstructed on a grid of 1442 × 128

voxels of edge length 0.23 mm. Figure 4.5 shows the voxel space Cross Correlation error of the
reconstruction for the three phantoms using different Nray, Nmarch and Nv parameters as the
function of the iteration number. When Nray is zero, the method is voxel driven. When Nv is
zero, we run a LOR driven algorithm. Note that when too few samples are used, the error curve
fluctuates and the algorithm may stop converging after certain steps. The sufficient number of
samples depends not only on the resolution of the voxel grid but also on the phantom.

Different methods are associated with significantly different computation times. To show this,
in the second row of Figure 4.5 we also include the errors as functions of the time in seconds
devoted to execute forward projections. As expected, the Point phantom can be efficiently
reconstructed with the voxel driven method, while the LOR centric approach is good for the
Homogeneity phantom.

4.4 Conclusions

In this chapter we proposed two different approaches for geometric projection of PET. The
LOR driven projection performs uniform sampling in LOR-space, making it suitable for objects
with large, homogeneous regions. Additionally, when used in the forward projection, uniform
sampling avoids branching and diverging loop cycles in the GPU code thus it can fully utilize the
enormous computational power of the massively parallel hardware. Being an unbiased estimator,
the method can be included in an iterative reconstruction without modifying the fixed point.
In contrast, the proposed voxel driven method may utilize importance sampling to capture fine
details of point source like objects even with a few samples. However, it leads to a scattering
type algorithm in the forward projector, thus it can take significantly less samples under a given
time budget than the LOR driven method. On the other hand, it provides a very efficient,
gathering type back projector with nearly uniform sampling of the LORs intersecting a given
voxel.

The LOR driven projector performs well for large, low frequency regions, while the voxel
driven approach is superior when the tracer is concentrated into small regions. As one method
fails where the other is very efficient and vice versa, it is highly desirable to combine their
benefits. Fortunately, as it will be demonstrated in Section 7.2, this is possible via the use of
multiple importance sampling.



Chapter 5

Scattering in the measured object

Scattering means that the photon directions are modified by the material of the examined
object. As the average free path length of 511 keV photons in water is about 10 cm, this effect
is negligible in small animal PETs where the object size is small, but is significant in human
PETs where about 40 % of the detected photons go through at least one scattering.

The solution of the particle transport problem, which is the core part of tomography re-
construction, is mathematically equivalent to the evaluation of a Neumann series of increasing
dimensional integrals, where the first term represents the direct contribution, the second the
single scatter contribution, the third the double scattering etc. High dimensional integrals are
computationally very expensive and unfortunately, they are object-dependent, i.e. no parts of
the computations can be ported to an off-line phase without sacrificing accuracy. Thus, this
infinite series is truncated after a few (typically after the first or second) terms.

Ignoring in-scattering, the integro-differential equation describing the radiant intensity on a
linear path can be solved analytically (Equation 1.5):

I (⃗l(t), ω⃗, ϵ) = Aϵ(t0, t)I (⃗l(t0), ω⃗, ϵ) +

t∫
t0

Aϵ(τ, t)I
e(⃗l(τ), ϵ)dτ.

The solution obtained without the in-scattering integral can be used to calculate the full solution
if we explicitly sample scattering points, apply this formula for the line segments between the
scattering points (Figure 5.1), and integrate in the domain of scattering points. Sampling one
scattering point between the two detector crystals, we obtain the single scatter contribution,
sampling two scattering points, we get the double scatter, etc. The path of the photon pair will
be a polyline containing the emission point somewhere inside one of its line segments (Figure 5.2).
This polyline includes scattering points s⃗1, . . . , s⃗S where one of the photons changed its direction
in addition to detector hit points z⃗1 = s⃗0 and z⃗2 = s⃗S+1. The values measured by detector pairs
will then be the total contribution, i.e. the integral of such polyline paths of arbitrary length.
When segments are considered, we can use the analytic expression of the solution in Equation 1.5
since the in-scattering integral can be ignored because this contribution is taken into account by
other higher order terms. This way, the solution of the transport problem is expressed as a sum
of contributions of different path lengths. The terms are increasing dimensional integrals since
scattering points may be anywhere. The sum of these integrals is called the Neumann series.
First, while keeping the discussion as general as possible, we address only the single scattering
problem (S = 1), i.e. when exactly one of the photons scatters, and exactly once.

To express the contribution of a polyline path, we take its line segments one-by-one and
consider a line segment as a virtual LOR with two virtual detectors of locations, s⃗i−1 and s⃗i, and
of differential areas projected perpendicularly to the line segment, dA⊥

i−1 and dA⊥
i (Figure 5.2).

The contribution of a virtual LOR at its endpoints, i.e. the expected number of photon pairs
going through dA⊥

i−1 and dA⊥
i is C(s⃗i−1, s⃗i)dA

⊥
i−1dA

⊥
i , where contribution C is the product of

46
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Figure 5.1: Expressing the solution of the multiple scattering problem as a Neumann series
corresponds to the decomposition of the path space according to the length of the paths.
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Figure 5.2: The scattered photon path is a polyline (left) made of virtual LORs (right). The
left figure depicts the case of single scattering S = 1.

several factors:

C(s⃗i−1, s⃗i) = G(s⃗i−1, s⃗i)X(s⃗i−1, s⃗i)T1(s⃗i−1, s⃗i)B1(s⃗i−1, s⃗i),

where G(s⃗i−1, s⃗i) is the geometry factor defined in Equation 4.3 having cos θz⃗1 = cos θz⃗2 = 1,
X(s⃗i−1, s⃗i) is the total emission along the line segment, Tϵ0(s⃗i−1, s⃗i) is the total attenuation
due to out-scattering , and Bϵ0(s⃗i−1, s⃗i) is the total attenuation due to photoelectric absorption,
assuming photon energy ϵ0 (Equation 1.6):

G(s⃗i−1, s⃗i) =
1

|s⃗i−1 − s⃗i|2
, X(s⃗i−1, s⃗i) =

1

2π

s⃗i∫
s⃗i−1

x(⃗l)dl,

Tϵ0(s⃗i−1, s⃗i) = e
−

s⃗i∫
s⃗i−1

σs (⃗l,ϵ0)dl

, Bϵ0(s⃗i−1, s⃗i) = e
−

s⃗i∫
s⃗i−1

σa (⃗l,ϵ0)dl

In the line segment of the emission, the original photon energy has not changed yet, thus ϵ0 = 1.
The integral of the contributions of paths of S scattering points is the product of these factors.

For example, the integral of the contribution of paths of one scattering point is [WNC96]

ỹscatterL ≈ ỹ
(1)
L =

∫
D1

∫
D2

∫
V

σs(s⃗)P (cos θ, 1)P(z⃗1, s⃗, z⃗2)dsdz2dz1 (5.1)

where
P(z⃗1, s⃗, z⃗2) = P(z⃗1, s⃗) + P(s⃗, z⃗2) =



CHAPTER 5. SCATTERING IN THE MEASURED OBJECT 48

cos θz⃗1 cos θz⃗2 (C(z⃗1, s⃗)G(s⃗, z⃗2)Tϵ0(s⃗, z⃗2)Bϵ0(s⃗, z⃗2) + C(s⃗, z⃗2)G(z⃗1, s⃗)Tϵ0(z⃗1, s⃗)Bϵ0(z⃗1, s⃗))

is the total contribution of polyline z⃗1, s⃗, z⃗2, consisting of the contributions P(z⃗1, s⃗), P(s⃗, z⃗2)
of line segments z⃗1, s⃗ and s⃗, z⃗2, respectively. Here θz⃗1 is the angle between the first detector’s
normal and the direction of z⃗1 to s⃗, θz⃗2 is the angle between the second detector’s normal and
the direction of z⃗2 to s⃗. The photon’s energy level ϵ0 is obtained from the Compton formula for
scattering angle θ formed by directions s⃗− z⃗1 and z⃗2− s⃗. Probability P (cos θ, 1) that scattering
in s⃗ happens at angle θ is obtained from the Klein-Nishina formula (Section 1.1.1).

5.1 Previous work on scatter estimations

Early approaches tried to measure the scattered contribution directly, either using multiple
energy windows [GSJ+91, SFK94] or an auxiliary, septa-extended scan [CMH93, CWJ+05].
However, since the scattered photons cannot be perfectly separated from the direct hits by nei-
ther of these methods, this practically turns the scatter component of the statistical noise model
of the ML-EM into deterministic noise. Nowadays, model-based scatter correction methods are
more popular which estimate the number of scattered photons ỹscatterL from a given annihilation
density. As opposed to the first analytical models [BEB+83, SK91, BM94] that estimate the
scatter as an integral transform empirically derived for water or a general anatomical model of
the human body, model-based scatter correction methods are object-dependent as they take into
account the transmission scans. Although there is a growing research interest to include Time of
Flight (ToF) data to scatter models [WSK06, Wat07, IMS07], in the following we consider only
methods that are applicable for a wider family of PET scanners, possibly without ToF support
(such as the scanners of Section 1.1.2).

5.1.1 Out-of-FOV scattering

Scattered paths may reach regions that are outside of the field of view (FOV). Photons may born
outside of the FOV and scattered inside or born inside the FOV, leaving it and then scatter back
from the measured object or the gantry, neither of which can be modeled in a physically plausible
manner due to the lack of accurate out-of-FOV emission and transmission data. Although
transmission scans may have wider field of view than PET scans providing a bigger material
volume than the PET FOV, transmission data of the entire gantry is rarely available. The
traditional way to compensate for these effects is to scale the computed scattered contribution,
the corresponding factor is calculated by comparing either the estimated direct component with
the estimated scattered contributions in so-called “tails” of the sinogram [WNC96, WCMB04]
corresponding to regions outside of the object, or the estimated direct component with the
measurements [KY11b]. Note that this is independent of the actual scattering simulation. In the
following, we assume that out-of-FOV effects are either negligible due to the scanner geometry
or already modelled by one of the aforementioned methods.

5.1.2 Single scatter simulations

Ollinger et al. [OJ93] and Watson [WNC96] independently described an analytical model for
the single scattering simulations (SSS ), assuming that photoelectric absorption is negligible (i.e.
Bϵ0(v⃗1, v⃗2) = 1) and considering only Compton scattering. The two approaches basically differ in
the evaluation strategy of the model. Watson’s method has become more popular, since it offers
a greater ease of implementation and by evaluating the contribution of the two line segments
of the scatter path together, it may also be more efficient. The algorithm approximates the
volumetric integral over the scattering points of Equation 5.1 by taking Nscatter scattering point
samples:

ỹ
(1)
L ≈

∑
s⃗

σs(s⃗)P (cos θ, 1)(P(z⃗1, s⃗) + P(s⃗, z⃗2)).
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In practice, most of the computational capacity is spent on the line integrals of P(z⃗1, s⃗) and
P(s⃗, z⃗2). The naive approach [WNC96] evaluates these simultaneously for each LOR, computing
O(NLOR) line integrals. Utilizing that the energy dependence of the integrals Tϵ0 (⃗a, b⃗) of the
scattering cross section θs can be expressed as a simple scaling of the 511 keV integrals [Oll96],
an improved version of this method [Wat00] requires only O(NscatterNDet) ray marchings, where
NDet is the number of detector crystals. Figure 5.3 illustrates the steps of the algorithm. First,
scattering points are selected in the volume of interest. Generally, this is done either randomly,
discarding samples with a low scattering coefficient [Wat00], or on a uniform grid [KY11a]. Based
on the observation that more scattering events happen in dense regions, Section 5.2 proposes
the application of importance sampling in this phase. In the second phase, each detector crystal
is connected to each of the scattering points, and along these line segments the line integrals
of the activity and attenuation due to Compton scattering are computed, assuming 511keV
photons (i.e. ϵ0 = 1). Existing implementations ignore photoelectric absorption, since it has a
very low probability in soft tissues. However, in dense materials like bones or especially metal
implants this assumption no longer holds. Thus, in our model, presented in Section 5.2, we
consider photoelectric absorption as well. For performance reasons, existing (GPU-based) fully
3D implementations [BTD09, KY11a] down-sample [WBD+02] the set of detectors and include
an additional LOR up-sampling pass. Scattering is assumed to be a low frequency phenomenon,
so coarse sampling of the detectors is adequate. Similarly to the case of photoelectric absorption
discussed above, this assumption is violated for dense materials. In Section 5.2 we show that
an efficient GPU implementation allows to compute the line integrals between all detectors and
scattering points in reasonable time. In the final phase, previously computed paths are reused .
The line segments sharing a scattering point are paired, resulting in Nscatter polylines in each
LOR. When a polyline is formed, the scattering angle and the Compton formula are evaluated,
and the line integrals are corrected according to the ratios of the real photon energy and 511
keV. As a side effect of reusing scattering samples for every LOR, the approximation errors in
different LORs are correlated, thus the reconstruction will be free of dot noise typical in other
Monte Carlo (MC) algorithms.
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Figure 5.3: Steps of the single scatter simulation sampling process.

5.1.3 Multiple scatter models

Watson’s method can be extended to include double scatter [TAR+05] or scattering of arbitrary
order [J2] (Section 5.2.3), if we compute line integrals between scattering points. However, both
the computational and code complexity grows rapidly with the number of allowed scattering
events S. On the other hand, as the number of at most S-times scattered photons increases
approximately as geometric series, simulating additional bounces has smaller and smaller impact
on image quality and thus, it is worth using only a coarse but very fast approximation for
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higher order scattering. For brain PET, single scatter comprise at least 75% of the scattering
events [Oll96, TAR+05], while for a chest scan of obese people this ratio may reduce to 30%,
therefore, the optimal point where we can safely truncate the number of allowed scattering events
in the accurate model and use a fast approximation for additional bounces without compromising
image quality mainly depends on the size of the subject and the scanner geometry.

Russian roulette [SK08], which stops particle paths randomly at interaction points [WCK+09],
gives an unbiased estimator for the missing higher order scattering. However, Russian roulette
always increases the variance of the estimator, thus it trades bias for noise. The other drawback
of Russian roulette is that different paths have different length, which poses efficiency problems
to SIMD like parallel hardware architectures like the GPU [B1, LSK10]. In his single scattering
model, Watson [WNC96] compensated for multiple scatters together with out-of-FOV effects
by scaling the single scatter component, which practically assumes that singly and multiply
scattered events have the same spatial distribution up to a constant scaling factor. Goggin
and Ollinger [GO94] approximated multiple scattering as the convolution of the single scatter
distribution with a one-dimensional Gaussian kernel in LOR-space. The width of the Gaussian
kernels was constant and determined by MC simulations, while its spatially varying amplitude
was set according to the mean path length along the LOR. Later, this approach was extended
to 3D PET and the benefits of smoothing the path length were shown [QMT10]. However,
spatially varying filtering in LOR-space is still rather costly to model a phenomenon that has
only a minor impact on the measurements.

Section 5.3 presents a simple approximate method to improve the accuracy of scatter com-
putation in PET without increasing the computation time. We exploit the facts that higher
order scattering is a low frequency phenomenon and the Compton effect is strongly forward
scattering in 100–511 keV range. Analyzing the integrals of the particle transfer, we come to
the conclusion that the directly not evaluated terms of the Neumann series can approximately
be incorporated by the modification of the scattering cross section while the highest considered
term is calculated, which has practically no overhead during the reconstruction. We note that
recently, a similar approach was developed independently by Abhinav et al. [JKB+12] for optical
imaging.

5.2 New improvements of the single scatter model

Watson’s method [WNC96] is a popular choice of single scatter simulation and its implemen-
tation becomes very efficient with the reuse of line segments [Wat00]. Here we propose several
improvements for this algorithm. First, in order to make the method suitable for dense materi-
als, we show how to include photoelectric absorption into the model, without loosing the ability
to pre-compute paths. Additionally, we propose the use of importance sampling for the selection
of scattering samples. By giving an efficient GPU implementation that includes path reuse, we
also show that the method can work in 3D without needing to downsample the detector space.
Finally, we describe its generalization to arbitrary number of line segments.

5.2.1 Path reuse with photoelectric absorption

We consider the contribution of photon paths as an integral over the Cartesian product set of
the volume. This integration domain is sampled globally, i.e. a single sample is used for the
computation of all detector pairs. Sampling parts of photon paths globally and reusing a partial
path for all detector pairs allow us to significantly reduce the number of samples.

When the attenuation is computed, we should take into account that the photon energy
changes along the polyline and the scattering cross section also depends on this energy, thus
different cross section values should be integrated when the annihilations on a different line
segment are considered. As we wish to reuse the line segments and not to repeat ray-marching
redundantly, each line segment is marched only once assuming photon energy ϵ0 = 1, and
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attenuations T1 and B1 for this line segment are computed. Then, when the place of annihilation
is taken into account and the real value of the photon energy ϵ0 is obtained, initial attenuations
T1 [Oll96] and B1 are transformed:

σs(⃗l, ϵ0) = σs(⃗l, 1) ·
σ0
s(ϵ0)

σ0
s(1)

, σa(⃗l, ϵ0) =
σa(⃗l, 1)

ϵ30
.

Using this relation, we can write

Tϵ0 = e
−

s⃗i∫
s⃗i−1

σs (⃗l,ϵ0)dl

= e
−σ0

s (ϵ0)

σ0
s (1)

s⃗i∫
s⃗i−1

σs (⃗l,1)dl

= T

σ0
s (ϵ0)

σ0
s (1)

1 .

Bϵ0 = e
−

s⃗i∫
s⃗i−1

σa (⃗l,ϵ0)dl

= e
− 1

ϵ30

s⃗i∫
s⃗i−1

σa (⃗l,1)dl

= B

1

ϵ30
1 .

The energy dependence of the cross section σ0
s(ϵ0) is a scalar function, which can be pre-computed

and stored in a table (Figure 5.4).
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5.2.2 Monte Carlo integration with importance sampling

Considering importance sampling, we should find a density p for scattering points that mimics
the integrand of Equation 5.1. When inspecting the integrand, we should take into account
that we evaluate a set of integrals (i.e. an integral for every LOR) using the same set of global
samples, so the density should mimic the common factors of all these integrals.

The common factor is the electron density of the scattering points, so we mimic this function
when sampling points. We store the scattering cross section at the energy level of the electron,
σs(v⃗, 1), which is proportional to the electron density. As the electron density function is pro-
vided by the CT reconstruction as a voxel grid, we, in fact, sample voxels. The probability
density of sampling point v⃗ is:

p(v⃗) =
σs(v⃗, 1)∫

V σs(v⃗, 1)dv
=

σV
K

Nvoxel

V
,
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where σV is the scattering cross section at the energy level of the electron in voxel V , K =∑Nvoxel
i=1 σV is the sum of all voxels, and V is the volume of interest.
Note that this scheme ignores the annihilation intensity during the sampling of scattering

points. However, especially when the sources are concentrated, it is worth increasing the density
around the concentration since line segments ending in the sample points would probably cross
the high activity region. To consider this, we can also take into account the current activity
estimation in the sample density. So we look for the sample density in the following form

p(v⃗) ∝ σs(v⃗, 1)(αx(v⃗) + (1− α)xave),

where xave =
∑Nvoxel

i=1 xV /Nvoxel is the average activity in the volume and α is a factor describing
how strongly the activity affects the sampling density. If α = 0, then we get back the previous
case that mimics only the electron density, i.e. the scattering cross section. If α = 1, then the
density will be proportional to both the activity and the electron density, which may ignore zero
activity parts where scattering may happen, so this extreme case is a biased estimator. Realistic
α values must be in [0, 1).

The proportionality ratio can be obtained by satisfying the constraint that the integral of a
probability density must be 1:

p(v⃗) =
σs(v⃗, 1)(αx(v⃗) + (1− α)xave)∫

V
σs(v⃗, 1)(αx(v⃗) + (1− α)xave)dv

=
σs(v⃗, 1)(αx(v⃗) + (1− α)xave)

α
∫
V
σs(v⃗, 1)x(v⃗)dv + (1− α)xave)

∫
V
σs(v⃗, 1)dv

=

σV (αxV + (1− α)xave)

αS + (1− α)xaveK
· Nvoxel

V
(5.2)

where S =
∑Nvoxel

i=1 σV xV .
The single scattered contribution estimation with density p(v⃗) is the following:

ỹ
(1)
L ≈ D1D2

Nscatter

αS + (1− α)xaveK
σV (αxV + (1− α)xave)

· V
Nvoxel

·
Nscatter∑
j=1

PKN (cos θj , 1)Pj

where θj is the scattering angle at s⃗j , ϵ0 is the energy level of the photon after this Compton
scattering if originally it had the energy of the electron, and

Pj = P(z⃗1, s⃗j , z⃗2)

is the total emission weighted by the attenuation of path z⃗1, s⃗j , z⃗2.

5.2.3 Generalization to arbitrary number of bounces

s
r

s
r

z
r

s
r

s
r

1
z
r

1
s
r

2
s

1
s
r

2
s
r

1
z
r

2
z

1
s
r

1. Scattering points 3. Ray marching from detectors to 

scattering points

4. Ray marching on LOR and combination 

of scattering paths

1
s
r

2
s
r

2. Ray marching between 

scattering points

2
s
r

Figure 5.5: Steps of the multiple scatter simulation sampling process.

Scattered contribution is a sequence of increasing dimensional integrals, where the integrand
is the contribution of a multi-bounce photon path. As the computation of a single segment of
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such a path requires ray-marching and therefore is rather costly, we reuse the segments of a path
in many other path samples. The basic steps of the path sampling process, considering at most
S scattering points, are shown by Figure 5.5:

1. First, Nscatter scattering points s⃗1, . . . , s⃗Nscatter are sampled according to p(v⃗).

2. In the second step global paths are generated. If we decide to simulate paths of at most
S scattering points, Npath ordered subsets of the scattering points are selected and paths
of S points are established. If statistically independent random variables were used to
sample the scattering points, then the first path may be formed by points s⃗1, . . . , s⃗S , the
second by s⃗S+1, . . . , s⃗2S , etc. Each path contains S − 1 line segments, which are marched
assuming that the photon energy has not changed from the original electron energy. Note
that building a path of length S, we also obtain many shorter paths as well. A path of
length S can be considered as two different paths of length S − 1 where one of the end
points is removed. Taking another example, we get S − 1 number of paths of length 1.
Concerning the cost, rays should be marched only once, so the second step altogether
marches on Npath(S − 1) rays.

3. In the third step, each detector is connected to each of the scattering points in a deter-
ministic manner. Each detector is assigned to a computation thread, which marches along
the connection rays. The total rays processed by the second step is NDetNscatter.

4. Finally, detector pairs are given to GPU threads that compute the direct contribution and
combine the scattering paths ending up in them.

5.3 A new simplified multiple scattering model

Figure 5.6: While computing the highest order term, replacing the extinction coefficient by the
absorption cross section and by the sum of the absorption and scattering cross sections results
in an overestimation and an underestimation, respectively.

The last really evaluated term of the Neumann series, which represents the highest bounce
or longest paths, can be computed in two different ways (Figure 5.6):

• We use the same absorption and scattering cross section in the last term as in others, and
ignore the higher terms of the Neumann series, which is an underestimation because we
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loose out-scattered photons that may contribute to in-scattering of higher and therefore
not computed terms.

• We ignore out-scattering while the last considered term is calculated since this would
be the in-scattering of even higher order bounces, which are ignored, thus the energy
balance is better maintained if out-scattering on this level is also ignored. This approach
leads to a global overestimation because allowing neither out-scattering nor in-scattering
corresponds to the assumption that scattered photons are never lost by the system, which
is not true in reality. This approach replaces scattered paths by a shorter line segment,
so absorption or dropping the energy below the energy window is less likely. If Compton
scattering is considered, changing the photon direction results in an energy drop, which
makes absorption even more likely, which even further increases the gap between the
contribution of scattered and linear paths. By “global overestimation” we mean that
ignoring scattering may decrease the contribution to detectors that can be reached mainly
by scattered paths, but increases the linearly reachable path by a larger extent.

In this section we propose a simple trick to approximate the true value between the under-
estimation and overestimation. The approximation is based on the recognition that both the
underestimating and the overestimating cases correspond to the modification of volume prop-
erties in Equation 1.3, and are members of a much wider family, which also includes cases in
between the extreme ones. The two extreme approximations correspond to replacing the Klein-
Nishina differential cross section by Dirac-delta δ(ω⃗ − ω⃗in) scaled by zero or by the scattering
cross section, respectively. In-betweening approximations can be obtained by additionally scal-
ing of the Dirac-delta by parameter λ that is between 0 and 1, which leads to our simplified
scattering model:

dσs(⃗l, ω⃗in · ω⃗, ϵin)
dωin

≈ λσs(⃗l, ϵ)δ(ω⃗ − ω⃗in)

where ϵin = ϵ since the Compton effect does not change the photon energy when the direction
is not altered. We emphasize that this simplified model is used only when the line integrals of
the highest considered term are evaluated, in all other cases, the original Klein-Nishina formula
is applied.

Substituting the simplified model into Equation 1.3, we obtain

ω⃗ · ∇⃗I (⃗l, ω⃗, ϵ) = −(σa(⃗l, ϵ) + σs(⃗l, ϵ))I (⃗l, ω⃗, ϵ) + Ie(⃗l, ϵ) + λσs(⃗l, ϵ)I (⃗l, ω⃗, ϵ).

The term coming from the in-scattering integral can be interpreted as the modification of the
scattering cross section, so we get a pure differential equation that is similar to Equation 1.4
obtained by ignoring the in-scattering term:

ω⃗ · ∇⃗I (⃗l, ω⃗, ϵ) = −(σa(⃗l, ϵ) + σ′
s(⃗l, ϵ))I (⃗l, ω⃗, ϵ) + Ie(⃗l, ϵ),

where σ′
s = (1 − λ)σs. The solution of the differential equation can be expressed in the same

form as Equation 1.5 having replaced scattering cross section σs by (1− λ)σs. The accuracy of
this approximation depends on the proper choice of λ and on how strongly the phase function
is forward scattering and is similar to a Dirac-delta function. Intuitively, parameter λ expresses
the probability that a photon scattered more than the limit caused by the truncation of the
Neumann series gets lost for the system.

We have two options to find an appropriate λ parameter. Based on its probabilistic interpre-
tation, the probability that a photon gets lost due to scattering more times than the considered
limit can be determined by an off-line simulation with e.g. GATE [Jea04]. This probability
depends on the tomograph geometry, the size of the the object and also on the maximum num-
ber of bounces, so several simulation studies are needed for different measurement protocols.
The other option is simpler and is based on the geometric evaluation of the tomograph. The
details of this approximation is discussed in the next subsection. As we shall demonstrate in
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Figure 5.7: The forward scattering probability with respect to the allowed maximum scattering
angle in radian (left) and the Klein-Nishina phase function assuming different incident photon
energies (right). For comparison, we also show the phase function of isotropic diffuse materials.

the Results section, the reconstruction quality is not strongly sensitive to the exact choice of
parameter λ, so the exact value is not important, and good results can be obtained with rough
approximations of λ as well.

5.3.1 Determination of parameter λ

The modification of the scattering cross section during the evaluation of the line integrals of the
highest simulated bounce requires parameter λ, which determines the probability of scattering
when the direction is not significantly changed. The main reasons of the energy loss in a
scattering only media is that the photon leaves the system without interacting with the detector
ring and that the energy of the photon drops below the minimum value of the energy window
(typically 100 keV) due to the Compton effect.

Back-scattering means lost photons since when the direction is reversed once, the photons
of the annihilation pair arrive at detector modules that are not in coincidence, so this photon
pair is ignored by the electronics. Multiple direction reverses are unlikely and reduce the photon
energy significantly (one full back-scattering reduces the energy of an 511 keV photon to the
third of its original energy and two full back-scattering events to the fifth), thus these photons
will be ignored since their energy is outside of the energy window.

Considering forward scattering only, a conservative approach to λ would be the computation
of the probability that the photon hits the same detector crystal after scattering as it would
hit traveling a linear path. Clearly, such scattering events are not even recognized by the
measurement system. This probability is equal to the integral of the phase function over the
solid angle subtended by the detector crystal surface.

However, this conservative estimation ignores the fact that the scatter component already
has low frequency characteristics, so the beam that is analyzed can be assumed to be wider.
So, even if a photon changes its direction so significantly that it arrives at a different detector
crystal, which results in a contribution drop for this LOR, we can assume that other paths
parallel to the current one can be handled similarly, so their loss is a positive contribution in
the considered LOR. In a wider homogeneous beam, changing photon directions compensates
each other. So, the solid angle in which the phase function needs to be integrated can be wider,
and can be increased up to the solid angle in which the detector modules being in coincidence
relation can be seen. In Mediso’s AnyScan PET/CT geometry (Section 1.1.2), the maximum
perturbation angle of a line that ensures that the intersected modules will be the same is about
30–45 degrees (0.5–0.6 radians).
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Figure 5.7 shows the integral of the phase function of Compton scattering in solid angles
defined by the maximum scattering angle. Note that in the 0.5–0.6 radian range, the integral is
between 0.2–0.3 and is roughly independent of the photon energy, thus the lambda parameter
should be selected around this value.

5.3.2 Application in the scatter compensation for PET

The proposed method can be used together with zero (i.e. attenuation compensation), first,
second, etc. order scattering compensation at no additional cost. When the accurate model is
evaluated, e.g. with the method presented in Section 5.2, we limit the length of paths. The
simplified forward scattering model should be used when the longest paths are computed, simply
modifying the scattering cross section. We consider two reconstruction scenarios based on the
definition of the maximum length:

• Attenuation only reconstruction completely ignores scattering and computes only the
direct contribution, i.e. photon paths that connect crystals by line segments. In this
extreme case, our proposed modification should work on the level of direct contribution
computation, and the contribution of ignored scattered paths is approximately reintro-
duced by the modification of the scattering cross section while attenuation of the direct
contribution is computed.

• Single scatter compensation can be further improved by including the energy of mul-
tiple scattering in the contribution of single scattered paths.

5.4 Results

The methods are demonstrated with simulating Mediso’s AnyScan PET/CT system [Med10a]
(Section 1.1.2) with GATE [Jea04] for the NEMA NU2-2007 human IQ phantom. For the
AnyScan PET/CT, the optimal λ is 0.2–0.3 according to the geometric considerations of Sec-
tion 5.3.1. The proposed methods are fully implemented on the GPU.

We consider the two discussed scenarios. In the first one, we extend an attenuation only
approach that calculates no scattering to approximately consider scattering effects. In the second
scenario, we start with a single scattering compensation algorithm (Section 5.2 with S = 1 and
Nscatter = 300 scattering samples) and improve it to include multiple scattering effects.

Adding scattering compensation to attenuation compensation in PET

If we wish to approximately include single and multiple scattering without computing these
factors, then the scattering cross section should be modified during the attenuation calculation
as

σ′
s = σs(1− λ)

where λ is a system parameter depending on the solid angle in which the detectors are seen.
Figure 5.8 (left) shows the L2 error curves of the reconstruction with attenuation simulation

while the classical approach is used and when the scattering cross section is modified. For com-
parison, we also included the error curves when single scattering is simulated, and when multiple
scattering is also approximated by modifying the scattering cross section during single scatter
simulation. The transverse slices of the reconstructed data are shown by right of Figure 5.8.

Observe that the simple modification of the scattering cross section during attenuation cal-
culation significantly improved the L2 error curves and also the reconstruction images. Both
the error curves and images produced by the improved attenuation only method are similar to
those of obtained with a single scatter compensation, however, we cannot reach that quality.
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calculated.

Adding multiple scattering compensation to single scattering methods

Here we present our results for the simplified forward scattering model, when included in the
single scatter compensation of Section 5.2.
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Figure 5.9: L2 error curves (left) and line profiles (right) of the Single scatter compensation
reconstruction of the IQ phantom while the λ parameter is selected in the 0.2–0.6 range. The
wavy error curves are due to the fact that scattering is re-calculated just in every third iteration
step to reduce computation time.

Figure 5.10 shows the transaxial slices of the reconstruction of the human IQ phantom,
Figure 5.9 depicts L2 error curves (left) and line profiles (right), and Figure 5.11 and Figure 5.12
the NEMA evaluation. When λ is small, the results are similar to that of classical single scatter
compensation where the ignored energy causes an overestimation of the activity in the center of
the phantom. Increasing λ this artifact disappears and the homogeneous region is reconstructed
with constant activity. However, increasing λ beyond the reasonable range, the missing energy
will be overcompensated, which shows up as a decreased reconstructed activity around the spine
when λ ≥ 0.4. The method is quite robust to the particular selection of λ, an arbitrary value in
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Classic Single Scatter Forward Scatter Forward Scatter Forward Scatter Forward Scatter

λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

Figure 5.10: Transverse slices and line profiles of single scatter compensation reconstruction of
the human IQ phantom with different λ parameters.

Figure 5.11: Contrast factors of the IQ phantom according to the NEMA standard. Note that
increasing parameter λ, contrasts also increase.
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Figure 5.12: Background variability of the IQ phantom according to the NEMA standard. Note
that increasing parameter λ, the background variability first improves then starts degrading.

[0.2, 0.3] would improve the results without this artifact.
Examining the NEMA evaluation, we can observe that contrasts grow with higher λ, and

background variability first decrease that start to rapidly increase if λ > 0.4. The reason is
overcompensation, which means that the center of the phantom gets darker than expected.

5.5 Conclusions

This chapter proposed a GPU based scatter compensation algorithm for the reconstruction of
PET measurements that accurately computes lower order scattering up to an arbitrary number of
scattering points and gives a free approximation for the missing bounces. The resulting approach
can reduce the computation time of the fully 3D PET reconstruction to a few minutes.

The scattering simulation approach is restructured to exploit the massively parallel nature
of GPUs. Based on the recognition that the requirements of the GPU prefer a detector oriented
viewpoint, we solve the adjoint problem, i.e. originate photon paths in the detectors. The de-
tector oriented viewpoint also allows us to reuse samples, that is, we compute many annihilation
events with tracing a few line segments.

The proposed method to take into account higher scattering in PET reconstruction corrects
the scattering cross section when the highest computed bounce is evaluated, approximately
including the contribution of the bounces above this level. As having modified the scattering
cross section, the algorithm remains the same, the proposed correction has no computational
overhead. We demonstrated the proposed correction with two scenarios. In the first one, no
scattering is directly computed, only the attenuation calculation is modified according to the
new proposal. In the second scenario, we improved the accuracy of a single scatter compensation
method by approximately include multiple scattering contribution. The correction is based on
a single parameter that describes the probability that a photon gets lost for the total system
because of scattering. We discussed a simple approximation to obtain this parameter and showed
that reconstruction quality can be increased even with roughly approximated parameter values.



Chapter 6

Detector model

Photons may scatter not only in the measured object but also in detector crystals. The average
free path length of a 511 keV gamma photon in LYSO, which is a typical detector material
is about 13 mm, which is an order of magnitude larger than the size of the crystal in small
animal PETs and about three times bigger than the edge length of the detector crystals in a
human PET. Thus, detector modeling is a must in small animal PET and also improves the
reconstruction in human PET.

This chapter presents a fast algorithm to simulate inter-crystal scattering to increase the
accuracy of PET. Taking advantage of the fact that the structure of the detector is fixed, we
show how most of the corresponding scattering calculation can be ported to a pre-processing
phase. Pre-computing the scattering probabilities inside the crystals, the final system response is
the convolution of the geometric response obtained with the assumption that crystals are ideal
absorbers and the crystal transport probability matrix. This convolution is four-dimensional
which poses complexity problems as the complexity of the naive convolution evaluation grows
exponentially with the dimension of the domain. We use Monte Carlo (MC) method to attack
the curse of dimension. We demonstrate that these techniques have just negligible overhead.

Crystal transport probabilities are given by the (precomputed or measured) transport func-
tion Et(z⃗, ω⃗, ϵ0 → d) (Section 1.1.1). Ignoring scattering in the measured object and incorpo-
rating Et into the expected value formula of a LOR ỹL, we get the following model:

ỹdetL(d1,d2)
=

∫
D

∫
D

G(z⃗1, z⃗2)X(z⃗1, z⃗2)A(z⃗1, z⃗2)Et(z⃗1, ω⃗ → d1)Et(z⃗2, ω⃗ → d2)dz2dz1 (6.1)

where ω⃗ is the direction vector pointing to z⃗2 from z⃗1.
Note that in theory we should integrate over the total surface D of all detector modules. Of

course, in practice, only the closer neighborhood of the detector is important. When this integral
is evaluated, the incident direction of the photon is defined by the line of z⃗1 and z⃗2. If scattering
in the measured object is ignored, then all incident photons have the same energy (ϵ0 = 511
keV). Thus, we shall omit the photon energy in all subsequent equations. The transport function
is defined for points and directions, and needs to be represented by finite data. Sophisticated
finite-element techniques would require too much memory, so we use a simpler discrete, piece-
wise constant approximate scheme.

In order to reduce the data needed to model detectors, we factorize the model and store only
averages for different surface points per detector crystal. The factorization separates the crystal
sensitivity and the probability of inter-crystal photon transport. We assign detector sensitivity
µd to each crystal d, which is the expected number of events reported in this detector by the
output of the measuring system, provided that a photon has been absorbed here:

µd = E[number of events | photon has been absorbed in this detector].

This value represents the specific properties of this crystal, like gamma sensitivity and response
of the associated electronics, and is typically different from crystal to crystal.

60



CHAPTER 6. DETECTOR MODEL 61

The photon transport between the crystals is represented by a crystal transport probability :

pi→d(ω⃗) = P [absorbed in crystal d | photon arrived at crystal i from direction ω⃗].

We assume first that the detector modules are infinitely large (later this assumption will be
lifted to make the model realistic) and crystals are similar, thus this probability depends just
on the translation between crystal i and crystal d:

pi→d(ω⃗) = p(d− i, ω⃗).

It is enough to specify the probabilities supposing that the photon has arrived in a given crystal
i∗, which is supposed to be in the origin of a coordinate system. The measurements for a specific
ω⃗ are given in the form of crystal transport probability function pi∗→d(ω⃗) for different crystals
d assuming the input crystal to be in origin i∗. If we are interested in the response of crystal i
other than i∗, then the whole system is translated by vector i− i∗.

Additionally, we suppose that the crystals are small with respect to the distance of the
detector modules, so direction ω⃗ of the LOR is constant for those detectors which are in the
neighborhood of d and where pi→d is not negligible.

The sum of the crystal transport probabilities is the detection probability , i.e. the probability
that the photon does not get lost, or from a different point of view, does not leave the module
without absorption:

ν(ω⃗) =
∑
d

pi∗→d(ω⃗).

As transport probability pi∗→d depends only on the translation between i∗ and d, the same sum
can also be obtained running the input crystal index i:

ν(ω⃗) =
∑
i

pi→d(ω⃗).

Sum ν depends also on the orientation of the module of interest since it is determined by the
rotations of the module and incident direction ω.

We consider a LOR connecting crystals d1 and d2. The relation between the discretized
model and the original one is a simple averaging:

1

Di

∫
Di

Et(z⃗, ω⃗ → d)dz = pi→d(ω⃗) · µd

where Di is the surface of the detector. The expected LOR value ydetL(d1,d2)
of Equation 6.1 is

approximated as a convolution:

ỹdetL(d1,d2)
=

∑
i

∑
j

∫
Di

∫
Dj

G(z⃗1, z⃗2)X(z⃗1, z⃗2)A(z⃗1, z⃗2)Et(z⃗1, ω⃗ → d1)Et(z⃗2, ω⃗ → d2)dz2dz1 ≈

∑
i

∑
j

∫
Di

∫
Dj

G(z⃗1, z⃗2)X(z⃗1, z⃗2)A(z⃗1, z⃗2)dz2dz1 · pi→d1(ω⃗i,j) · µd1 · pj→d2(ω⃗i,j) · µd2 =

∑
i

∑
j

ỹgeomL(i,j) · pi→d1(ω⃗i,j) · µd1 · pj→d2(ω⃗i,j) · µd2 . (6.2)

Note that direction vector ω⃗i,j depends on the two crystals i and j whose surfaces the pho-
tons enter. However, if the photons cannot scatter far in the crystal, we can assume that the
directions are similar and are equal to direction ω⃗ between absorber crystals d1 and d2. With
this simplification, we obtain the following convolution-like expression:

ỹdetL(d1,d2)
≈ µd1µd2C(ỹgeom,d1,d2) (6.3)
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where the convolution operation for arbitrary f(i, j) is:

C(f,d1,d2) =
∑
i

∑
j

f(i, j) · pi→d1(ω⃗) · pj→d2(ω⃗)

where ω⃗ is the direction between detector crystals d1 and d2.
So far, we have assumed that the detector modules are infinitely large, i.e. there are no

edges. To handle the finite module geometry, let us add “virtual” detectors beyond the edges,
but assume that these virtual detectors never get photons, that is, ỹgeomL(i,j) is constant zero if
either i or j is a virtual detector. Due to this assumption, the “virtual detectors” do not alter
the estimator, but allow us to use the same formula as for the infinite case. Practically, it means
that we generate offsets with exactly the same algorithm close to the edge as inside the module,
but the line integral between the points is set to zero if any of the offseted points is outside the
module.

6.1 Previous work on detector modeling

In theory, the transport function Et(z⃗, ω⃗, ϵ0 → d) depends on both the energy and incident an-
gle of the incoming photon. However, as discussed later in Section 6.3.4, a physically plausible
model would make factorization impossible, greatly increasing the complexity of the methods.
If the scattering in the measured medium is ignored, which is a good estimation for pre-clinical
systems [JSC+97], all incident photons have the same energy (511 keV). Thus, most methods,
including the one that we shall present in this chapter, are derived for 511 keV photon energy.
Another approach is followed by Stute et al. [SBM+11], they pre-compute Et using MC simu-
lation as the average over the energy distribution obtained with a simulated patient, however,
they ignore the fact that even the average distribution depends on the position of the crystal
w.r.t. the patient.

Simpler detector models neglect inter-crystal scattering and consider only the penetration
of photons into the detectors which leads to minor modifications of the geometric projection of
Equation 4.4. Absorption of the photons happen inside the detector crystals and if scattering
is ignored then the attenuation of a gamma ray within a particular crystal is expressed by the
the absorption coefficient σatt and the length l of the linear path. This can be expressed as
volumetric integrals within the detectors, weighted by the attenuation:

ỹattL(d1,d2)
=

∫
V1

∫
V2

G(z⃗1, z⃗2)X(z⃗1, z⃗2)A(z⃗1, z⃗2)patt(z⃗1, ω⃗z⃗2→z⃗1) · patt(z⃗2, ω⃗z⃗1→z⃗2)dz2dz1 (6.4)

where V1 and V2 are the volumes of the two detectors,

G(z⃗1, z⃗2) =
1

|z⃗1 − z⃗2|2

is the volumetric geometry factor and

patt(z⃗, ω⃗) = σatte
−σattl

is the absorption probability density function specifying the probability density that the photon
coming from direction ω⃗ is absorbed in point z⃗. A rather crude approximation of Equation 6.4
is to neglect attenuation and shift the line endpoints z⃗1, z⃗2 of Equation 4.4 from the detector
surface into the crystals uniformly by the average depth of γ-photon interactions [MDB+08], i.e.
to increase the radius of the scanner, called the effective radius model [C8]. Equation 6.4 may be
solved numerically with Gaussian [MDB+08] or MC quadrature [C8], while analytic approaches
also exist [SPC+00, SSD+03, PL11].
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It has been demonstrated that the inclusion of inter-crystal scattering into the model results
in an increase of image quality [DFF+07, C8]. We note, however, that some existing scan-
ners [PL09, CLBT+12] allow to record individual photon–detector interactions independently
which makes the effect of inter-crystal scattering less significant [PL11]. In most devices, in-
cluding the ones we tested (Section 1.1.2), this feature is not available so the effect has to be
modeled. A common technique is to model the transport function Et(z⃗, ω⃗, ϵ0 → d) as a 4D
blurring operator in LOR-space [MDB+08, RLT+08, SBM+11, C8], which was described in the
chapter introduction. The shape of the kernels strongly depend on the incident angle and thus
methods that pre-compute Et by averaging over the set of possible angles [RLT+08, SBM+11]
introduce significant error [RLT+08]. If scattering in the subject is ignored, the incident direc-
tion is determined by the two endpoints of the LOR — which was followed by the introduction.
Hence, angle dependent kernels, generated off-line for a set of incident angles, can be integrated
into the model [MDB+08, C8] (also used by Section 6.3). We note that even if scattering
in the subject is considered, this approximation is still fairly accurate. Since scattering is a
low-frequency phenomenon and in the energy range of PET photons are more likely to scatter
forward [ZM07, C9], the representative direction corresponding to direct hits is close to the
mean incident direction. Additionally, since the probability of photoelectric interaction in the
detectors increases with decreasing energy of the photons, scattered photons are less likely to
leave the incident crystal [OJ93].

The support of the blurring kernels may be more than ten crystals wide in each direction of
the two detectors that make up the LOR. Thus, the evaluation of Equation 6.2, i.e. computing
a 4D discrete convolution in the form of

ỹdetL(d1,d2)
≈

∑
i

∑
j

ỹgeomL(i,j) · wi,j(ω⃗i,j),

with wi,j(ω⃗i,j) representing the kernel weights, is challenging, even for off-line models [MDB+08].
For larger detector sizes, the majority of the photons stay inside a small neighborhood and
thus kernels may be cut in order to reduce their dimensions to a manageable size [SBM+11].
Unfortunately, for detector sizes close to a millimeter — such as the case for Mediso’s nanoScan-
PET/CT [Med10b] — this would not help much, the shrunk kernels are still huge to evaluate
the convolution using traditional quadrature rules. As proposed in the following, MC sampling
can significantly reduce the computation cost making it feasible for on-the-fly evaluation even
for large kernel supports. Another way to gain a significant speed up is to factorize the geometric
projection from the detector model. Earlier methods [SBM+11, C8] overlooked the fact that
the direct contribution of a LOR ỹgeomL is present in many convolutions evaluating the detector
model ỹdetL′ for neighbouring LORs and compute it on-the-fly several times, which is redundant.
The method presented in Section 6.3 first computes and stores the geometric projection, while
in the second phase of evaluating the convolution in LOR-space, the geometric contribution is
read from the memory of the GPU.

6.2 LOR-space filtering

The set of LORs is a 4D data, which means that the blurring caused by inter-crystal scattering
may be expressed as a 4D filtering on the LORs. The general form of a spatial-invariant filter
is:

L̃(r) =

∫
L(r− s)w(s)ds,

where L̃(r) is the filtered value at location r, L(r) is the original signal, and w(s) is the filter
kernel for this point. The domain of integration is 2D in image processing, but can be arbitrary
in other applications. MC quadrature can significantly decrease computation time of filtering,
especially for higher dimensions.
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For the sake of notational simplicity, we introduce the method in one-dimension, but the
generalization to arbitrary dimensions is also straightforward. Let us consider the

L̃(X) =

∞∫
−∞

L(X − x)w(x)dx

one-dimensional convolution, and find integral τ(x) of the kernel and also its inverse x(τ) so
that the following conditions hold

dτ

dx
= w(x) i.e. τ(x) =

x∫
−∞

w(t)dt.

If kernel w(t) is a probability density, i.e. it is non-negative and integrates to 1, then τ(x) is non-
decreasing, τ(−∞) = 0, and τ(∞) = 1. In fact, τ(x) is the cumulative probability distribution
function of the probability density. If filter kernel w is known, then x(τ) can be computed and
inverted off-line for sufficient number of uniformly distributed sample points. Substituting the
x(τ) function into the filtering integral we obtain

L̃(X) =

∞∫
−∞

L(X − x)w(x)dx =

∞∫
−∞

L(X − x)
dτ

dx
dx =

1∫
0

L(X − x(τ))dτ.

Approximating the transformed integral taking uniformly distributed samples in τ corre-
sponds to a quadrature of the original integral taking M non-uniform samples in x. This way
we take samples densely where the filter kernel is large and fetch samples less often farther away,
but do not apply weighting.

6.3 Proposed detector modeling using LOR-space MC filtering

According to Equation 6.2, the final expected number of hits is given by a long weighted sum of
the expected number of events between the neighboring crystals, i.e. the LOR value obtained
with the geometric model. Note that this is similar to image filtering, but now the space is not
2D but 4D (see Section 6.2). The long sum is evaluated by MC estimation taking Ndet random
samples of detector pairs (i(1), j(1)), (i(2), j(2)), . . . , (i(Ndet), j(Ndet)):

ỹdetL(d1,d2)
≈ µd1µd2C(ỹgeom,d1,d2) =

∑
i

∑
j

ỹgeomL(i,j) · pi→d1 · µd1 · pj→d2 · µd2 ≈

1

Ndet
·
Ndet∑
s=1

ỹgeomL(i(s),j(s)) · pi(s)→d1
· µd1 · pj(s)→d2

· µd2

ps

where ps is the probability of sample s. A sample is associated with a pair of offset vectors d1− i
from d2 − j. According to importance sampling [Chr03], ps is made proportional to the crystal
transport probability:

ps =
pi(s)→d1

· pj(s)→d2∑
i

∑
j pi→d1 · pj→d2

=
pi(s)→d1

· pj(s)→d2

ν1(ω⃗) · ν2(ω⃗)
.

Thus, the final estimator is:

ỹdetL(d1,d2)
≈ ν1(ω⃗) · ν2(ω⃗) · µd1 · µd2

Ndet
·
Ndet∑
s=1

ỹgeomL(i(s),j(s)). (6.5)

This method runs a geometric first pass, which is the same algorithm as developed to execute
the forward projection of the geometric reconstruction. This pass results in LOR values ỹgeomL .
Then, the 4D LOR map is filtered. We visit again each LOR, find neighbors of its two crystals
according to a prepared random map, and add up the values stored in the LOR selected by the
two sampled neighbors.
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6.3.1 Detector modeling in back projection

In back projection the system matrix is simplified and we ignore blurring effects like positron
range and scattering. Using piece-wise constant approximation of the transport function we get:

AL(d1,d2),V ≈
∑
i

∑
j

DL(i,j),V · pi→d1(ω⃗d1→d2) · µd1 · pj→d2(ω⃗d1→d2) · µd2

where DLV is the system matrix simulating geometric effects and attenuation.
In the back projection of ML-EM reconstruction, we have to evaluate the numerator and the

denominator of the scaling factor for each voxel. The numerator is∑
L

ALV · yL
ỹL

=
∑
d1

∑
d2

AL(d1,d2),V ·
yL(d1,d2)

ỹL(d1,d2)
.

Let us substitute the factorization of the system matrix into this expression:∑
L

ALV · yL
ỹL

≈
∑
d1

∑
d2

∑
i

∑
j

DL(i,j),V · pi→d1(ω⃗d1→d2) · µd1 · pj→d2(ω⃗d1→d2) · µd2 ·
yL(d1,d2)

ỹL(d1,d2)
=

∑
i

∑
j

DL(i,j),V ·
∑
d1

∑
d2

pi→d1(ω⃗d1→d2) · µd1 · pj→d2(ω⃗d1→d2) · µd2 ·
yL(d1,d2)

ỹL(d1,d2)
.

As the crystal transport probability depends just on the distance, we can reverse the direc-
tion:

pi→d1(ω⃗) = pd1→i(−ω⃗).

Note that the nominator can also be expressed as a geometric back projection from a term
obtained with convolution:∑

L

ALV · yL
ỹL

≈
∑
i

∑
j

DL(i,j),V · C
(
yL(d1,d2)

ỹL(d1,d2)
· µd1 · µd2 , i, j

)
where the filtered term is:

C
(
yL(d1,d2)

ỹL(d1,d2)
· µd1 · µd2 , i, j

)
=

∑
d1

∑
d2

pd1→i(−ω⃗) · pd2→j(−ω⃗) ·
yL(d1,d2)

ỹL(d1,d2)
· µd1µd2 .

Now, let us consider the denominator of the back projection formula:∑
L

ALV =
∑
d1

∑
d2

AL(d1,d2),V ≈
∑
i

∑
j

DL(i,j),V · C (µd1 · µd2 , i, j) .

Summarizing, we can build the detector model into the back projection formula by computing
a convolution for

yL(d1,d2)

ỹL(d1,d2)
· µd1 · µd2 and µd1 · µd2 before executing a geometric back projection.

The LOR filtering scheme is exactly the same as we perform in forward projection, just the
direction vector needs to be reversed, this is why it is called Inverse LOR filtering .

6.3.2 Pre-computation

The input of our process is the crystal transport probability defined on the crystal structure,
which has been computed by GATE in the following way [LCLC10]. Incident photons arriving
from a direction of given inclination and azimuth angles at uniformly distributed points on the
detector surface are simulated and the probabilities that this photon is absorbed in another
crystal are computed. These probabilities can be visualized as a two dimensional image, where
arrival probabilities are depicted by gray levels (see Figure 6.1 for an example). Also, this
data can be interpreted as the (discretized) sub-critical probability density function of the offset
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Figure 6.1: Flashing probabilities at right angle and in the case when both the inclination and
azimuth angles are 40 degrees (logarithmic scale) [LCLC10].

vector between the photon impact point and the absorption point. There is a separate map for
each discrete direction defined by a pair of inclination and azimuth angles.

The distinction according to azimuth angles is justified by the fact that crystals on the
detector surface are squares and there are gaps filled by air between them.

The problem is that these images are too large to be sampled efficiently. So, during the
pre-computation, we pre-generate relaxed MC sample sets that contain just a few samples, but
their cumulative distribution is as close to the simulated distribution as possible. The relaxation
step is included since we shall use these samples for high dimensional integration where the error
is proportional to how well the density mimics the integrand and to the “distance” between the
empirical cumulative distribution of the generated samples and the distribution used for the
sample generation [SKS09].

As a result, we get the desired number of offset sample vectors for a given incoming inclination
angle. The process is performed for all inclinations for which input measurement data exist,
completing a sample offset set. For the actual reconstruction, several independent sample sets
are generated for each inclination angle and sample number. By independent, we mean that the
two sets are generated with independent random numbers.

6.3.3 Detector sampling during reconstruction

Offset sets were obtained by considering just one detector, so two independent sample sets should
be used to sample the detector pair. According to the observations made in Section 2.2, we re-
sample the system matrix in every iteration. We use two new independent offset sets for every
iteration step, one for each of the two endpoints of LORs. Different LORs use the same offsets
in an iteration step, which allows high performance on GPUs. If the iteration is longer than the
half of the number of available sets, the sets are started to be used again.

6.3.4 Scatter compensation with detector response

So far we ignored scattering from the model when deriving the formulae for LOR filtering. If
both scatter compensation and detector response are important (the measured object is big as
in human PET and crystals are small as in small-animal PET), then both scattering and LOR
filtering should be executed. However, we should be aware that it is only approximately feasible
since these operators cannot be factorized. The explanation is that LOR space blurring L is
also incident angle and energy dependent. For the direct component, we can use the direction of
the LOR and the energy level of the electron ϵ0 = 1. However, for the scattered component, the
incident direction is the direction of the scattering points and not the other detector, and the
energy level depends on where the annihilation happened and what the scattering angle was.

For example, for the case of single scatter simulation of Section 5.2 (S = 1), an approximate
factoring would be the blurring of the LOR space once for each scattering point (their number
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is typically a few hundred). When the line segments are combined (Step 4), then the number
of hits on energy level 1 and the number of hits on lower level as well as the average energy are
obtained (note that if annihilation happens on the line segment ending in this detector, then the
energy level is 1; on the other hand, if annihilation happened in the other connected segment,
then the energy level depends on the scattering angle as defined by the Klein-Nishina formula).
Having obtained these LOR images, a LOR filtering is executed for the two energy levels. Unlike
filtering the direct contribution, the incident direction is computed from the direction between
the detector and the scattering point. However, this is too costly computationally.

Thus, to allow the combination of expected hits due to direct contribution and scattering,
we assume that the incident direction of scattering paths is similar to the LOR direction, and
the incident energy is 1 relative to the energy of the electron if the energy is in the set energy
window.

6.4 Results

Since detector modeling is more important in pre-clinical PET, we used Mediso’s nanoScan
PET/CT (Section 1.1.2). On the massively parallel hardware of the GPU, LOR filtering with
64 random samples requires 7.2 seconds in 1 : 3 coincidence mode, which is negligible with
respect to the time of geometric LOR computation.
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Ideal geometric LOR image Realistic LOR measurement Realistic LOR measurement

Geometric reconstruction Geometric reconstruction Reconstruction with detector model

Figure 6.2: Intensity profile of an off-axis point source reconstructed using voxels of size 0.05
mm3 after 25 EM iterations.

The spatial resolution offered by the proposed method is analyzed using an off-axis point
source given 0.1 MBq activity for 10 second. To analyze geometric calculations, we got GATE
to compute LOR images with only geometric projection and also with realistic detector model.
The ideal geometric LOR image is reconstructed with the geometric model, while the realistic
LOR image with both the geometric approach and with the method including detector response.
Figure 6.2 shows the intensity profiles of the point source reconstructed using voxels of 0.05 mm3.
The FWHM and FWTM of geometric reconstruction are 0.35 mm and 0.55 mm, respectively, if
the simulation involves only geometric effects. The FWHM and FWTM grow to 0.8 mm and 1.4
mm, respectively, if a realistic simulation, including detector blurring is reconstructed with the
geometric model. However, when the reconstruction algorithm also models these phenomena,
the FWHM and FWTM can be reduced to 0.35 mm and 0.55 mm, respectively, i.e. the blur
due to attenuation and scattering in the detectors is fully compensated.

We compared our method with different approximations of the detector model: the effective
radius model [C8] (Section 6.1) and a model when only absorption in the detectors is considered
and inter-crystal scattering is ignored. Measurements of a Derenzo-like phantom were simu-
lated using GATE. We considered two cases: a high-dose and a low-dose case, simulating 1000s
(Figure 6.3) and 10s (Figure 6.4) measurements, respectively. Based on the observations made
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in Section 2.2, for high-dose measurements the accuracy of the back projector may be reduced
without compromising image quality, thus, we used the effective radius model in the back pro-
jection. Figure 6.3 clearly shows that for the 1000s case, LOR filtering greatly outperforms
the other methods, as these produce a disturbing background noise between the rods which is
completely eliminated by LOR filtering. However, in the low-dose case of Figure 6.4 the ac-
curacy of the back projector also becomes important, thus using an unmatched reconstruction
with LOR filtering in the forward and effective radius model in the back projectors, respectively,
the structure of the rods are not preserved. Performing inverse LOR filtering before the back
projection step helps in recovering structural information at the expense of decreased contrast.

We also demonstrate the benefits of LOR filtering on the Cylinder phantom. As Figure 6.5
shows, using black detector model during the reconstruction results in a noisy image (left), while
realistic detector model greatly reduces noise level and increases homogeneity (right).

Effective radius Absorption only LOR filter, unmatched

Figure 6.3: Reconstructions of the Derenzo 1000s phantom.

Effective radius Absorption only LOR filter, unmatched LOR filter, matched

Figure 6.4: Reconstructions of the Derenzo 10s phantom.

Figure 6.6 demonstrates the reconstruction result of a physical measurement taken by Mediso’s
nanoPET/CT system. Here the target resolution was 324×315×315 voxels. Using LOR filtering,
the reconstructed image has much higher contrast and lower noise level.

6.5 Conclusions

This chapter proposed the application of 4D convolution as a means to simulate inter-crystal
scattering in PET reconstruction. While the incorporation of a realistic detector model sig-
nificantly improves the quality of reconstructions, its time is negligible due to the efficient MC
evaluation scheme. Generally, we can state that image processing methods can be and are worth
being generalized to higher dimensions as well, but we have to address the curse of dimension,
for which MC and quasi-MC techniques offer solutions.
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Figure 6.5: Reconstruction of the Cylinder phantom with the effective radius model (left) and
with LOR filtering (right).

effective radius model LOR filtering

Figure 6.6: Mouse 18F bone PET study taken by NanoPET/CT reconstructed with the effective
radius model (left) and the proposed LOR filtering scheme (right). Data courtesy of P. Blower,
G. Mullen, and P. Mardsden, Rayne Institute, King’s College, London.



Chapter 7

Sampling techniques

The error of numerical quadrature that estimates the high-dimensional integrals of PET depends
on the number of samples, which is limited by the time budget available for the reconstruction
process. Consequently, we should spend the samples as effectively as possible by means of
gathering information about the integrand and contributing to multiple integral estimators. On
the other hand, since we aim at reducing the integration error that is achieved under the given
time budget, the computational burden of sampling strategies should be low compared to that
of the evaluation of integrals.

There exist several techniques for utilizing a sample more efficiently in a single estimator that
have not been applied to PET so far. Filtered sampling smoothes the integrand, or from the
sample’s point of view, extends the range in which it can capture fine details. Section 7.1 shows
its application to iterative PET for improving the accuracy of the forward projection. Multiple
importance sampling allows the combination of sampling strategies that capture different parts of
the integrand accurately, i.e. the sample weight is mainly influenced by the strategy that better
mimics that region of the integrand. In PET, LOR driven projections are good at distributing
samples such that each LOR has a sufficiently high minimum sampling density, while voxel driven
approaches can focus on higher value regions of the emission density. In other words, LOR driven
methods deal with “difficult” LORs, likewise, voxel driven methods deal with “difficult” voxels.
Combining these strategies in the forward projection we can handle both at the same time, as
it is demonstrated in Section 7.2.

Factorization of the system matrix (SM) enables the reuse of samples during a single ap-
plication of a projection operator. With minor modifications of the ML-EM, it is also possible
to reuse a sample in subsequent iteration steps. Section 7.3 proposes two different approaches:
a method based on linear combination of the expected LOR-values of different iteration steps,
and the application of the Metropolis–Hastings algorithm for PET [MRR+53, KSKAC02].

7.1 Filtered sampling

For a given number of samples, the error of Monte Carlo (MC) quadrature depends on the
distribution of sample points, and the variation of the integrand divided by the sample density.
Filtered sampling [CK07] replaces the integrand by another function that has a similar integral
but smaller variation, then its integral can be estimated more precisely from discrete samples
(Figure 7.1). Reducing the variation means the filtering of high frequency fluctuations by a
low-pass filter . This filter should eliminate frequencies beyond the limit corresponding to the
density of the sample points. On the other hand, it should only minimally modify the integral.

In this dissertation, we propose the application of filtered sampling to increase the accuracy
of forward projection during PET reconstruction. We emphasize that the objective of filtered
sampling is not to reconstruct the signal but to compute its integrand more accurately and
thus eliminating high frequency details can still preserve sharp features of the tracer density
estimation of the ML-EM scheme.

70
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Figure 7.1: Filtered sampling reduces the approximation error of the integral quadrature by
reducing the variance of the integrand.

7.1.1 Proposed filtered sampling scheme for PET

Filtered sampling introduces a pre-filtering phase in order to reduce the variance of the integrand.
To see how this pre-filtering affects the reconstruction, let us consider the ML-EM reconstruction
process. It can also be interpreted as a control loop (Figure 7.2), including forward projection

ỹL = F(x) =

Nvoxel∑
V=1

ALV xV

and back projection

sV = B(ỹL) =
∑

LALV
yL
ỹL∑

LALV
, x′V = xV · sV .

This loop is stabilized when x(n+1) = x(n), that is when scaling factors sV are 1, which means
that this loop solves the following equation for x:

B(F(x)) = 1. (7.1)

Figure 7.2: The reconstruction as a control loop. Forward projection F takes the actual voxel

values x
(n)
V and computes the expectation of LOR events ỹL. Back projection B calculates a

correction ratio sV for every voxel from the expected LOR events ỹL and the measured LOR
hits yL.

Including filtering operator G into this loop (Figure 7.3) maps the iteration result xV to
filtered voxel value x̆V . The modified system stabilizes when the scaling factors sV are 1, thus
we get

sV = B(F(x̆)) = B(F(G(x))) = 1.

Note that this is the same equation for x̆ as the original one (Equation 7.1) for x, thus considering
x̆ to be the output of the control system, the modified system behaves similarly to the original
one. In the modified system we always have two tracer density estimates xV and x̆V , that
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Figure 7.3: The reconstruction loop of filtered sampling. Forward projection F computes the
expected LOR hits ỹL from the filtered voxel values x̆V that are computed by applying filter
G to the result of previous iteration x(n). Back projector B calculates the scaling factor sV for
each voxel, i.e. it obtains the product of the ratios yL/ỹL of the measured and computed LOR
hits with the transpose of the SM and divides the results by the column sums of the SM. Note
that filtering only affects the input of the forward projection step, the correction made by the
back projection is applied to the unfiltered estimate of the radiotracer density x(n).

Noisy edge Gaussian filtered edge Bilateral filtered edge

Figure 7.4: Effect of different filters on a noisy edge. In addition to damping high frequency
noise, Gaussian filter also introduces blurring. Bilateral filters, on the other hand, filter noise
while keeping sharp transitions of the data.

are related as x̆ = G(x). In addition to solution x̆, we also get a sharpened reconstruction
x = G−1(x̆).

As a low-pass filter G, we experimented with the Gaussian and the Bilateral filters [TM98].
The advantage of the Gaussian filter is that it can be defined by its mean and standard deviation,
and the mean is conveniently set to zero while the standard deviation is set according to the noise
that needs to be suppressed. However, as shown in Figure 7.6 and Figure 7.7, Gaussian filtering
cannot preserve sharp object boundaries. A possible explanation is that sharp boundaries or
edges are not bandlimited signals and have high frequency components beyond the Nyquist
limit and the reasonable range of the numerical precision. These high frequency components are
eliminated by the Gaussian but cannot be reproduced by its inverse.

Bilateral filters, on the other hand, preserve edges and object boundaries when their param-
eters are appropriately set (Figure 7.4). In the most commonly used case, the weights of these
filters are products of two Gaussians: one is defined in the spatial domain, the other is in the
intensity domain. More specifically, Bilateral filter B is defined as

B(v̂, σd, σr) =

∫
Gσd

(||v⃗ − v̂||)Gσr(x(v⃗)− x(v̂))x(v⃗)dv⃗∫
Gσd

(||v⃗ − v̂||)Gσr(x(v⃗)− x(v̂))dv⃗

with v̂ denoting the filtered voxel, σd and σr are the spatial variance and the intensity space
variance parameters, respectively, and Gσ denotes the one dimensional Gaussian function of
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Figure 7.5: Spatially varying filtering based on the sampling PDF. Low sampling density cannot
capture high variance details, thus, a strong blur is used to decrease the variance of the integrand.
When the sampling density is high enough, there is no need to eliminate high frequency details.

standard deviation σ:

Gσ(t) =
1√
2πσ

exp

(
− t2

2σ2

)
.

The intensity-dependent Gaussian weight ensures that neighboring voxels located on the same
side of a step-like signal as the filtered voxel v̂ get higher weights while voxels located on the
other side of the edge give less contribution to the filter output, better preserving the edge. The
amount of blur is controlled by spatial variance parameter σd, while the amount of detail kept
is determined by intensity variance parameter σr. However, the appropriate value of σr is less
straightforward to find, since it is given in intensity space which is object dependent.

The optimal spatial parameter for both filters can be obtained from the probability density
function (PDF) of the samples used by forward projection (Figure 7.5), thus, the filter size may
vary through the reconstructed volume. Voxel driven methods in most cases sample the volume
proportionally to the intensity, which directly generates the PDF in each iteration. LOR driven
approaches, on the other hand, usually aim for uniform sample density in LOR-space, which
means that the sample density in voxel-space is approximately the same in every iteration, and
the corresponding PDF can be approximated in a preprocessing step.

MIP-mapping can substantially improve the performance of filters that have voxel-dependent
kernel size on a parallel architecture such as the GPU [CK07]. The first step of MIP-mapping
is to build a Gaussian pyramid [Ros84], which is a gradual down-sampling of the original three
dimensional voxel array by a factor of 2, by iteratively applying the Gaussian filter. The upper
levels of the pyramid thus correspond to the lower resolution variant of the original volume where
the higher frequency details are properly eliminated, whereas the lowest level stores the original
array. After this pre-processing, MIP-mapping executes spatially varying filtering by sampling
the volume of the resolution level corresponding to the required level of blurring. The MIP-map
level can be a non-integer scalar pointing between two neighbouring levels of the pyramid. In
this case, the final output is the interpolated value of the samples taken from these two levels.

The optimal filter size may be smaller than the voxel size meaning that the local sampling
density is already able to capture the highest frequency details in the data that are allowed by the
finite element representation. As a consequence, if the time budget given for the reconstruction
allows a sufficient sample density (e.g. the maximal distance between samples is smaller than
the voxel size throughout the volume of interest), filtered sampling provides no benefits.
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7.1.2 Results

Due to the high arithmetic performance and bandwidth of the GPU, the execution time of the
filtering step is negligible compared to that of the projection operators even for higher resolution
volumes. Thus, our proposed method has practically no overhead.

To demonstrate the positive effects of using filtered sampling, we simulated a noisy measure-
ment of a Derenzo-like phantom where the simulation corresponds to a 10 second measurement
with GATE modeling Mediso’s nanoScan-PET/CT (Section 1.1.2). We reconstructed the mea-
sured values with and without filtered sampling, setting standard deviation σ of the Gaussian
to 2. We used only Nray = 1 and Nmarch = 36 samples. Results are shown in Figure 7.6. Note
that by using the presented filtering method, approximately the same image quality could be
achieved as obtained with 8 times more samples by the original method. Figure 7.7 compares
the line profiles for the Gaussian and the Bilateral filters. Using the Gaussian filter we are
unable to preserve sharp boundaries, whereas with Bilateral filters the thickness of the rods are
preserved.

reference no filter no filter, 8x sampling Gauss pre-filter Bilateral pre-filter

Figure 7.6: Effects of filtered sampling on the Derenzo phantom. Using filtered sampling results
in a similar image quality to a reconstruction using 8 times more samples. Note that filtered
sampling using the Gaussian filter makes the rods narrower while the Bilateral filter better
preserves their thickness.

To demonstrate that filtering allows to increase the resolution without the need of signifi-
cantly more samples, we reconstructed a higher activity Derenzo at 288× 288× 256 resolution
as well without increasing the number of samples (Figure 7.8). At such high resolution, the
Gaussian clearly demonstrates its potential since without using it, the iteration process does not
converge.

Figure 7.9 shows the results for the GATE-simulated Homogeneity phantom (corresponding
to a 2 second measurement), consisting of eight homogeneous cubes having different activity
levels. Gaussian filtering greatly reduces the noise coming from the low-dose simulation and the
low sampling rate while also stabilizing convergence.

7.1.3 Conclusions

This section proposed a filtering method to decrease the variance of the integrand of the high
dimensional integrals in the forward projection step of an iterative ML-EM algorithm. We pro-
posed the application of low-pass filtering before the forward projections, while back projection
still corrects the original unfiltered voxel array. We have proven that this approach does not
compromise the reconstruction and preserves the stability even if high resolution voxel arrays
are reconstructed with a low number of MC sampling. All steps are implemented on the GPU
where the added computational cost of filtering is negligible with respect to forward and back
projection calculations.
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Figure 7.7: Line profile for the Derenzo phantom of Figure 7.6. Note that filtered sampling
using the Gaussian filter makes the rods narrower while the Bilateral filter better preserves their
thickness.
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Figure 7.8: CC errors for different filtering kernel widths (left), and axial slices (right) when
the Derenzo is reconstructed at double, i.e. 288 × 288 × 256 resolution. We computed 100
iterations. As the reconstruction without filtering diverge, the corresponding image is shown
after 60 iterations.
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Figure 7.9: Reconstruction and error curves of the Homogeneity phantom simulated by GATE.
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7.2 Multiple importance sampling

So far, we presented different LOR driven and voxel driven algorithms having different advan-
tages and drawbacks from the point of views of importance sampling, efficiency and exploitation
of the GPU hardware. In this section, we propose a strategy that can combine these techniques
preserving their advantages. The combination is based on Multiple Importance Sampling. For
the sake of simplicity, in Subsection 7.2.2 we first assume that detectors are ideally black, ignore
positron range and scattering, and consider only phantom attenuation in this section. However,
even this simplified approach can be applied in systems of physically plausible simulation if the
system sensitivity is factored. On the other hand, the basic idea is extended to incorporate
scattering in Subsection 7.2.3.

7.2.1 Previous work on multiple importance sampling

A MC quadrature generates N sample points zi randomly with probability density p(zi) in the
integration domain and divides integrand f(zi) evaluated at the sample points by sample density
d(zi) = Np(zi): ∫

f(z)dz ≈ 1

N

N∑
i=1

f(zi)

p(zi)
=

N∑
i=1

f(zi)

d(zi)
. (7.2)

Suppose that we have M different quadrature schemes defined by densities d1, . . . , dM and using
N1, . . . , NM number of samples for the same integral. The mixture of samples from all methods
is characterized by the following density

d̂(z) =

M∑
k=1

dk(z). (7.3)

Thus Multiple Importance Sampling (MIS ), i.e. the integral quadrature using the mixture of
individual samples is∫

f(z)dz ≈
M∑

m=1

Nm∑
i=1

f(zm,i)

d̂(zm,i)
=

M∑
m=1

Nm∑
i=1

f(zm,i)∑M
k=1 dk(zm,i)

(7.4)

where zm,i is the ith sample of the mth sampling method. Note that the application of the
sample mixture means the addition of the estimators of different quadrature schemes and also
the modification of their densities to a single common density that is the sum of individual
sampling densities.

MIS can also be interpreted as an additional weighting of samples of the techniques to be
combined: ∫

f(z)dz ≈
M∑

m=1

Nm∑
i=1

λm(zm,i)
f(zm,i)

dm(zm,i)
(7.5)

where the weighting scheme corresponding to Equation 7.4 is

λm(z) =
dm(z)∑M
k=1 dk(z)

. (7.6)

This weighting is called balance heuristics. Combining unbiased estimators, the combined esti-
mator will also be unbiased if the sum of weights

∑M
m=1 λm(z) is 1 for any sample, which is true

for balance heuristics.
Why this combination is worth doing can be understood if we consider the modification of a

density where it was small or large in a particular method. If the density around sample zm,i in
a particular method m was great with respect to other combined methods, then this particular
method puts samples in this neighborhood densely, and a sample represents a small domain
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fairly accurately. Thus, this particular method provides a more reliable estimate here than
other methods, which should be preserved despite the estimates of other techniques. Indeed, the
combination formula of Equation 7.3 and the weight of Equation 7.6 result in d̂(zm,i) ≈ dm(zm,i)
and λm(zm,i) ≈ 1 if dm(zm,i) is significantly larger than the densities of other methods, thus
contribution f(zm,i)/dm(zm,i) of the samples of method m does not decrease in this region
despite the addition of other estimators. On the other hand, if the density of method m is
much smaller than other densities for particular sample zm,i, then the samples of this method
in this neighborhood is sparse and the estimate is unreliable. Thus, this contribution should be
suppressed, which is achieved by Equation 7.3 or Equation 7.6 resulting in dm(zm,i) ≪ d̂(zm,i),
and thus making λm(zm,i) ≈ 0.

The limits of the method can be understood by considering the objective of importance
sampling. The variance of the estimator is small if density d̂(z) mimics integrand f(z) and
is as large as possible. If we include more estimators, density d̂(z) will increase, which is a
positive effect. However, if an included estimator is so bad that it makes the combined density
less proportional to the integrand than other estimators would do, then the variance of the
combined estimator may be higher than the original one. When it happens, we can solve the
problem of preferring good sampling methods even more than suggested by their relative density.
For example, in Equation 7.6 the weights can be defined as

λm(z) =
dαm(z)∑M
k=1 d

α
k (z)

(7.7)

which still guarantees that the sum of weights is equal to 1, but suppresses methods more in
regions where they have small density if power α is greater than 1. This weighting is called
power heuristics [VG95]. When α = 1 we get balance heuristics back. The other extreme case,
called maximum heuristics corresponds to α = ∞ when λm(z) = 1 if dm(z) is greater than all
other densities dk(z) and zero otherwise.

7.2.2 Proposed MIS-based unscattered contribution computation

Chapter 4 presented two different approaches for geometric projection: a LOR driven and a
voxel driven method. While deriving the formulae, the corresponding sampling densities were
given, i.e. the sample weights dA1(⃗l, ω⃗) and dA2(v⃗, ω⃗) of the LOR and voxel driven approaches,
respectively:

dA1(⃗l, ω⃗) =
Nray

D1D2G(u⃗, w⃗)∆l
, dA2(v⃗, ω⃗) =

Nvx(v⃗)|v⃗ − u⃗|2

XD1 cos θu⃗
.

According to the theory of MIS, when two methods are combined, the sampling algorithms are
left unchanged, only the sample weights are modified to include the density of all combined
methods. Then, the estimators of different techniques are simply added.

The combined weight is

d̂(v⃗, ω⃗) =
Nray

D1D2G(u⃗, w⃗)∆l
+

Nvx(v⃗)|v⃗ − u⃗|2

XD1 cos θu⃗
.

With the combined weights, the modified LOR driven projection and voxel driven projection
compute the following estimates:

ŷA1
L =

Nray∑
i=1

Nmarch∑
j=1

x(⃗lij)A(u⃗i, w⃗i)/(2π)

d̂(⃗lij , ω⃗i)
, ŷA2

L =

Nv∑
i=1

x(v⃗i)A(u⃗i, w⃗i)ξL(u⃗i, w⃗i)/(2π)

d̂(v⃗i, ω⃗i)
,

respectively. The final estimator is the sum of the combined estimators:

ỹL ≈ ŷA1
L + ŷA2

L .
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The implementation of the combined sampling scheme is fairly simple. First, based on the
current activity distribution a LOR centric projection is executed, which initializes every LOR
value ŷA1

L . In this phase a computation thread is responsible for a LOR. Then, a voxel centric
projection is run in parallel, where each thread adds its contribution ŷA2

L to the affected LOR
values. Sampling points v⃗i of the voxel centric method are generated on the CPU, and a separate
thread is started for every sampling point to compute the contribution of this point to all LORs
meeting here. The two phases together constitute the forward projection. Having computed
the ratios of measured and expected hits, back projection is executed. While the LOR driven
method is of gathering type in forward projection, it is of scattering type in back projection.
Similarly, voxel driven methods are of scattering type in forward projection and of gathering
type in back projection. Thus, in the combined sampling it is worth preferring LOR sampling
and voxel sampling depending whether we execute forward or back projection.

7.2.3 Application to scattering materials

MIS can be used also for physically more plausible projection models. Here we consider scattering
in the measured object. In case of scattering, the system sensitivity and the expected hits
are high dimensional integrals, which can be expressed as summing the contributions of paths
representing increasing number of scattering events

T (v⃗ → L) =

∞∑
S=0

TS(v⃗ → L), (7.8)

ỹL =
∞∑
S=0

ỹ
(S)
L =

∞∑
S=0

∫
v⃗∈V

x(v⃗)TS(v⃗ → L)dv (7.9)

where TS(v⃗ → L) is the probability that a photon pair born in v⃗ undergoes exactly S scattering
events in total and contributes to LOR L.

We consider two samplers, the first is the already defined LOR driven projector with attenu-

ation, which can compute only the unscattered contribution ỹ
(0)
L . The second sampler is a Direct

Monte Carlo Photon Tracer (PT) that simulates photon paths from the annihilation point to

the detectors, and can handle direct contribution ỹ
(0)
L as well as single and multiple scattering∑∞

S=1 ỹ
(S)
L .

Voxel driven Direct Monte Carlo photon tracer

In scattering media, the contribution to a LOR, i.e. Equation 1.7 is an infinite dimensional
integral over the photon path space. Direct Monte Carlo Photon Tracing (Section 2.1.2) samples
annihilation points v⃗ and simulates the path of particles according to the laws of physics until
their path are terminated by absorption, leave the system, or they are detected in one of the
LORs. Upon detection, the affected LOR is given contribution X/NPT where X is the total
activity and NPT is the number of simulated paths. The estimator is

ỹPTL ≈ X
NPT

#(hits) =⇒ dPT = NPT
x(v⃗)T (v⃗ → L)

X
.

This general formula has simpler form for the case when the number of scattering events is zero:

dPT0 (u⃗, v⃗, w⃗) = NPT
x(v⃗)A(u⃗i, w⃗i)/(2π)

X
.
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Combined method

We run the two projections with the combined weighting scheme one after the other and add up
their contributions. The first method is a LOR driven estimator of the unscattered component
with density dA1(⃗l, ω⃗), which can be controlled by the number of rays per LOR, Nray, and the
number of ray marching steps per ray, Nmarch. The second method is the Photon Tracer that
estimates paths of arbitrary lengths and has density dPT.

The unscattered contribution is estimated by both methods, so their densities should be
added when an unscattered path is obtained. In the combined approach, the LOR driven
unscattered estimator becomes

ŷA1
L =

Nray∑
i=1

Nmarch∑
j=1

x(⃗lij)A(u⃗i, w⃗i)/(2π)

dA1(⃗lij , ω⃗i) + dPT0 (u⃗i, l⃗ij , w⃗i)
,

where u⃗i and w⃗i are the intersection points of the ray and the detector surfaces. The PT sampler
should separate unscattered paths and add the following contribution to the affected LOR:

ŷ
PT,(0)
L =

NPT∑
i=1

x(v⃗i)A(u⃗i, w⃗i)ξL(u⃗i, w⃗i)/(2π)

dA1(v⃗i, ω⃗i) + dPT0 (u⃗i, v⃗i, w⃗i)

where ω⃗i is the direction between hit points u⃗i and w⃗i.
The scattered contribution is computed only by PT, so its estimator is unchanged:

ŷ
PT,(1+)
L =

X
NPT

#(hits from scattered paths).

The combined estimator is the sum of the estimators of the elementary methods:

ỹL ≈ ŷA1
L + ŷ

PT,(0)
L + ŷ

PT,(1+)
L . (7.10)

7.2.4 Results

We use the discussed MIS scheme in the forward projector of the reconstruction algorithm. The
back projector is the voxel based method of Subsection 4.2.2 for maximum efficiency, which
computes geometric effects but does not involve scatter simulation. The reason of using a
simplified back projector is that it increases the initial convergence speed and reduces the time
needed for a single iteration cycle (Section 2.2).

Performance in geometric projection

In order to evaluate the performance of the derived method in geometric projection, we follow
the methodology of Section 4.3 and compare the combined method to the LOR and voxel driven
approaches. LOR space L2 error of a single projection with respect to the computation time
is depicted in Figure 7.10. We consider the formerly discussed LOR driven and voxel driven
methods and three MIS versions, including balance heuristics (MIS-Balance), power heuristics
with α = 2 (MIS-Power), and maximum heuristics (MIS-Max).

In Figure 7.10 we can observe that increasing the computation time and thus the number
of MC samples, the error converges to zero in all cases, thus, in addition to the proposed voxel
driven and LOR driven projectors, MIS combined methods are all unbiased estimators as well.
The combined method is significantly better than both of the other methods for the Derenzo and
is similar to the best of the LOR driven and voxel driven approaches when the Homogeneity and
the Point are reconstructed. When the performances of LOR driven and voxel driven sampling
are similar, then balance heuristics is optimal, but when data strongly favors either voxel driven
or LOR driven sampling, maximum or power heuristics has minor advantages.
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Figure 7.10: LOR space L2 error of different projectors with respect to the computation time
of the projection for the Point (left), Derenzo (middle), and the Homogeneity (right) phantoms.
Note that the left figure does not include the curve of the LOR driven sampling because its error
is an order of magnitude higher than those of the voxel driven and the combined methods.

In the next phase of evaluation, we include the projectors into a reconstruction algorithm, and
use GATE–projected “measurements” of the Derenzo, Point Source and Homogeneity phantoms
as input data (Section 4.3). Figure 7.11 shows the voxel space CC error of the reconstruction
for the three phantoms using different Nray, Nmarch and Nv parameters as the function of the
iteration number. When Nray is zero, the method is voxel driven. When Nv is zero, we run a
LOR driven algorithm. The combined approach is characterized by nonzero Nray, Nmarch and
Nv parameters.

When too few samples are used, the error curve fluctuates and the algorithm may stop
converging after certain steps. As we observed before in Section 4.3, the sufficient number of
samples depends not only on the resolution of the voxel grid but also on the phantom for LOR
driven and voxel driven methods. However, the combined scheme is equally good for all activity
distributions. If the number of samples is sufficiently high, then the error curves of different
projectors run together when they are drawn with respect to the iteration number (first row of
Figure 7.11). The MIS error curves using different heuristics are very similar, so we included
only the power heuristics in the figure.

Finally, in the second row of Figure 7.11 we compare the errors as functions of the time
in seconds devoted to execute forward projections. Both the voxel driven and the LOR driven
methods are outperformed by the combined method for all three phantoms, which allows the
reduction of the number of line samples Nray and ray marching steps Nmarch, and adds relatively
few Nv volume points to compensate the missing samples at important regions. Note that for
about 106 voxels, only 104 added volume samples are sufficient. The random selection and
projection of 104 volume samples onto 180 million LORs need just 0.3 seconds on the GPU,
which is negligible with respect to the times of other processing steps.

Performance in scatter compensation

Scattering in the measured object is significant in human PET, so for the purpose of examining
the proposed approach in scatter compensation, we examined the projection and reconstruction
of the NEMA NU2-2007 Human IQ phantom in Mediso AnyScan human PET/CT [Med10a]
(Section 1.1.2). The voxel grid has 1662 × 75 resolution and the voxel edge length is 2 mm. We
set the energy discrimination window to [100, 750] keV. With such a wide window 35% of the
measured events are direct hits, 27% are single scatters and 38% are multiple scatters.

As AnyScan detector modules cover just a small solid angle of the directional sphere, only
about 2% of the photons have chance to hit the detectors. To attack this problem, in the Photon
Tracer we sample annihilation photon directions non-uniformly, while the density is weighted
accordingly. For comparison, we also included the Watson type Single Scatter Simulation algo-
rithm of Section 5.2.
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Figure 7.11: Voxel space CC error curves with respect to the iteration number (first row) and
to the reconstruction time (second row) of the reconstructed Point (left), Derenzo (middle) and
Homogeneity phantoms (right). The error and profile curves were made with different Nray,
Nmarch and Nv samples. The method is LOR driven when the number of voxel samples Nv

is zero. The method is voxel driven when the number of LOR samples Nray is zero. Finally,
in MIS-combined reconstructions both the number of voxel samples and the number of LOR
samples are non zero. We executed full EM iterations in all cases.
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Figure 7.12: LOR space L2 error of different projectors with respect to the computation time
of the projection for the Human IQ phantom.
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First, the projectors are validated computing the LOR space L2 error with respect to a
reference projection generated by GATE with 1012 annihilation photons (Figure 7.12). We
considered different samples that are multiples of Nray = 1, Nmarch = 21, Nscatter = 50, and
NPT = 106, and the error curves are depicted with respect to the computation time. The LOR
driven and the Watson type methods compute only the unscattered term and at most single
scattering, respectively, thus they are fast converging at the beginning but for higher number of
samples the projection error stops decreasing, i.e. these methods are biased. We used balance
heuristics for MIS, which combines the unbiasedness of the Photon Tracer and the speed of LOR
driven methods.
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Figure 7.13: CC error curves reconstructing the Human IQ phantom with different Nray, Nmarch,
Nscatter and NPT sample numbers, depicted as functions of the iteration number (left) and the
time devoted to forward projections (right).
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Figure 7.14: Profile curves of the Human IQ phantom along the centerline crossing a hot sphere,
the lung, and a cold sphere (left) and transaxial slice obtained with the combined method (right).

The performance of the projectors is also evaluated in ML-EM reconstruction. We get
GATE to simulate a 500 sec long measurement of the NEMA NU2-2007 Human IQ phantom of
40 MBq activity, which resulted in noisy measurements of 3 SNR. Figure 7.13 shows the error
curves with respect to the number of iterations and the total forward projection time. The
profile curves on the centerline and also a transaxial slice obtained with the combined method
are depicted by Figure 7.14. Note that using a LOR driven method (Nray = 4, Nmarch = 84,
NPT = 0) alone, we cannot expect fully accurate reconstruction since this method computes only
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the direct contribution and ignores the scattered photon hits. As a consequence, false activity
is added that can be observed in the profile curve. The Photon Tracer (Nray = 0, Nmarch = 0,
NPT = 40 · 106) and the MIS-combined (Nray = 2, Nmarch = 42, NPT = 4 · 106) methods
involve unbiased multiple scattering estimators, thus they can theoretically lead to accurate
reconstructions. The Photon Tracer requires at least 40 million photon pairs per iteration to
make the process converge, but even with such number of samples the reconstruction result
involves some noise. The combined method is not only more accurate but also much faster since
it needs just 4 million photon pairs per iteration to add scattering and to help the LOR centric
approach in the computation of the direct contribution.

7.2.5 Conclusions

This section proposed the MIS-based combination of different MC methods, including LOR
centric and voxel centric approaches. The individual methods have different advantages and
drawbacks from the point of views of numerical accuracy and GPU execution performance. The
proposed combination automatically finds an optimal weighting, which keeps the advantages of
all techniques. The combined sampling can result in accurate projections using less discrete
samples and thus can reduce the time of reconstruction.

We have applied the concept for the computation of geometric projection with attenuation
and also for multiple scattering compensation. MIS can also be applied in other MC estimators
developed for the same or other physical phenomena. For example, we can consider the combi-
nation of more efficient geometric projectors, like the distance driven method, or scattering in
the detector crystals can also be simulated with input crystal driven or output crystal driven
approaches, whose advantages can be combined with MIS.

7.3 Exploiting samples of previous ML-EM iterations

This section presents modifications of the ML-EM iteration scheme to reduce the reconstruction
error due to the on-the-fly MC approximations of forward and back projections. Our goal is
to increase the accuracy and the stability of the iterative solution while keeping the number
of random samples and therefore the reconstruction time low. As we shall demonstrate in this
section, the voxel intensity has a positive bias due to the MC estimate of forward projection.
This bias and also the fluctuation of the voxel intensity can be reduced by making the forward
projection more accurate.

We propose two solutions that exploit additional samples from previous iteration steps,
improving accuracy of the current step without requiring more samples or more processing
time: Averaging iteration and Metropolis iteration. Averaging iteration [SK99, SK00] averages
forward projection estimates during the iteration sequence. Metropolis iteration rejects those
forward projection estimates that would compromise the reconstruction and also guarantees the
unbiasedness of the tracer density estimate, which we shall show formally. We demonstrate that
these techniques allow a significant reduction of the required number of samples and thus the
reconstruction time.

MC quadrature means that a high-dimensional integral is interpreted as the expected value of
a multi-dimensional random variable, and then the expected value is approximated by an average
of random samples. As computer library functions can return uniformly distributed pseudo-
random values, random variables of other distributions are obtained by transforming random
variables that are uniformly distributed in the unit domain. Thus, MC quadrature requires
the transformation of the integration domain to a unit cube where coordinates correspond to
the independently generated uniform random variables. We call this transformed integration
domain the primary sample space and denote it by U . In a single iteration step we estimate
many high-dimensional integrals, one for each LOR in forward projection and one for each voxel
in back projection. To prepare for MC estimation in forward projection, the domain of particle
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paths of Equation 1.7 is transformed to the primary sample space:

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv =

∫
U

ŷL(u)du (7.11)

where ŷ(u) is the LOR hit estimate associated with the random variable samples in u. The
probability density of random variables uniformly distributed in the unit cube is p(u) = 1, thus
this integral is the expected value of ŷL(u), which can be approximated from a single point u if
the fluctuation (variance) of ŷL(u) is small.

Unfortunately, the unbiasedness of the LOR estimates does not guarantee unbiased voxel
estimates in the back projection. Back projection is not a linear function of the computed
LOR, but depends inversely proportionally to it via ratios yL/ỹL and it also involves the SM
elements in the denominator as a sensitivity image

∑
LALV . The sensitivity image has typically

small variance since it involves all SM elements corresponding to a single voxel independently
of the actual voxel estimates. However, the ratio of measured and computed LOR values can
introduce significant fluctuations unless the forward projection is very accurate. Let us consider
the expectation of the ratio of measured and computed hits, yL/ŷL. According to the relation of
harmonic and arithmetic means, or equivalently to the Jensen’s inequality taking into account
that 1/ŷL is a convex function, we obtain:

E

[
yL

ŷL(u)

]
=

∫
U

yL
ŷL(u)

du ≥ yL∫
U
ŷL(u)du

=
yL
ỹL

. (7.12)

This inequality states that yL/ỹL has a random estimator of positive bias. An intuitive graphical
interpretation of this result is shown by Figure 7.15. Here we assume that the iteration is already
close to the fixed point, so different estimates are around the expected detector hit corresponding
to the maximum likelihood. Note that the division in the back projection may amplify forward
projection error causing large fluctuations, especially when ỹL is close to zero.

We propose two modified iteration schemes to solve this problem, averaging iteration and
Metropolis iteration, which are presented in the next sections.

Figure 7.15: Expected LOR hit number ỹL is approximated by random samples ŷL(u
(n)) in

iteration step n, which have mean ỹL. These random samples are shown on the horizontal
axis. Back projection computes ratio yL/ŷL(u

(n)) to obtain voxel updates, which is a non-
linear, convex function, resulting in voxel values that may be much higher than the correct
value yL/ỹL. These overshooting samples are responsible for a positive bias and occasionally
cause a large random increase in the voxel value.
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7.3.1 Averaging iteration

Recall that the MC estimation in forward projection results in computed LOR hit values ŷL
that fluctuate around their exact value ỹL (Equation 7.11):

ỹL =

∫
V

x(v⃗)T (v⃗ → L)dv =

∫
U

ŷL(u)du

Thus, if MC estimates of subsequent iteration steps use independent random numbers, it is
worth averaging the calculated LOR hits obtained in different iteration steps to reduce the scale
of the fluctuation.

Formally, we obtain the expected LOR hits ỹ
(n)
L in iteration step n as the weighted average

of the actual MC estimate ŷL(u
(n)) and its previous value ỹ

(n−1)
L :

ỹ
(n)
L = (1− τn) ỹ

(n−1)
L + τnŷL(u

(n)) (7.13)

where τn is the decreasing weight of the estimate obtained in the current iteration step. The
weighting scheme can be defined, for example, as τn = min(λ/n, 1), where λ ≥ 1 is a user defined
parameter describing how quickly averaging iteration forgets earlier results.

The ML-EM algorithm incorporating averaging in forward projection is as follows:

for n = 1 to m do // iterations
for L = 1 to NLOR do // Forward project + average

ŷL = Forward Project x(n−1) with a MC algorithm.
τn = min(λ/n, 1).

ỹ
(n)
L = (1− τn) ỹ

(n−1)
L + τnŷL.

endfor
for V = 1 to Nvoxel do // Back project

x
(n)
V = Back Project yL/ỹ

(n)
L with a MC algorithm.

endfor
endfor

Figure 7.16: Relative L2 error curves of averaging and Metropolis iterations and their comparison
to statistically matched iteration. The waves in the error curve of averaging iteration started
at the first step with λ = 1 is eliminated by either starting averaging just at step nstart = 5 or
setting λ = 2.

If we are close to the fixed point x∗V and execute m additional iterations with τm = 1/m,
then averaging iteration is similar to iterating with the average of the SMs, i.e. with the matrix
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that is computed using m times more samples:

Eavg

[
ỹ
(m)
L

]
≈ 1

m

m∑
n=1

ỹ
(n)
L =

1

m

m∑
n=1

Nvoxel∑
V=1

F
(n)
LV x

∗
V =

Nvoxel∑
V=1

∑m
n=1F

(n)
LV

m
x∗V ,

where F(n) denotes the forward projection matrix of iteration n. However, when we are farther
from the fixed point, LOR estimates ŷL are different not only due to the random fluctuation
of the MC sampling but also because of the early evolution of the reconstructed activity x(n).
Averaging iteration reduces random fluctuations, but also slows down the convergence towards
the solution having the maximum likelihood especially when there are still significant differences
between subsequent iteration steps. This problem can be solved by starting averaging only later
in the iteration sequence, or by increasing parameter λ. Note that λ = ∞ corresponds to
statistically matched iteration (Section 2.2.1).

Figure 7.16 compares the relative L2 error curves of averaging iteration using statistically
independent forward and back projections and statistically matched iteration for the 2D example
of Section 2.2.1, and Figure 7.17 depicts the reconstructions. Note that averaging iteration is
stable unlike statistically matched iteration even for small sample numbers. Its wavy L2 curve
is due to the problem that averaging is not fast enough to forget estimates of the first iteration
steps, which can be solved by starting averaging at iteration step nstart = 5 or by increasing
parameter λ from 1 to 2.

Figure 7.17: Reconstructed activity obtained with analytic SM, and with averaging and Metropo-
lis iterations using 105 sample projections (upper row) and 106 sample projections (lower row).

7.3.2 Metropolis iteration

First, we present Metropolis iteration intuitively, based on the analysis of Figure 7.15. The
problems of positive bias and the large fluctuations are caused by random samples ŷL(u) that
are much lower than their expected value ỹL and result in large overshooting values yL/ŷL(u)
in the voxel contributions. To attack this problem, these overshooting samples (outliers) are
rejected. We suppose that the MC algorithm provides us with a sequence of random tentative
samples during the iteration, from which real samples are generated by rejecting the outliers
and replacing them with the last accepted sample. On the one hand, such replacement would
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decrease the expectation of the voxel contribution, thus the positive bias can be eliminated. On
the other hand, the probability of very large yL/ŷL(u) ratios is decreased, so is the probability
of fluctuations when these effects are added in different LORs.

A classical MC forward projector obtains samples in the primary sample space with uniform
probability density, and transforms these samples as required by the particular algorithm. The
added rejection or replacement scheme modifies the uniform probability in the primary sample
space. We wish to have a rejection scheme and an associated probability density pMet(u) that
make the updated voxels have unbiased estimates. Let us show that this requirement is met if
density pMet(u) is proportional to forward projection estimate ŷL(u). The ratio of proportion-
ality is obtained from the requirement that pMet(u) is a probability density, thus its integral is
equal to 1:

pMet(u) =
ŷL(u)∫

U
ŷL(u)du

=
ŷL(u)

ỹL
. (7.14)

The expectation of random estimate yL/ŷL(u) is then indeed equal to the exact ratio:

EMet

[
yL

ŷL(u)

]
=

∫
U

yL
ŷL(u)

pMet(u)du =
yL
ỹL

. (7.15)

The only remaining task is the elaboration of a rejection scheme that keeps a sample with
probability density pMet(u) ∝ ŷL(u). Such tasks can be solved with the Metropolis method
[MRR+53, KSKAC02]. The sequence of tentative samples u(n) are uniformly distributed in
the primary sample space and are statistically independent. Metropolis sampling establishes a

Markov chain u
(n)
Met by randomly rejecting a new tentative element u(n) based on its contribution

ŷL(u
(n)) and on the contribution of the previously accepted sample ŷL(u

(n−1)
Met ). The decision

uses the acceptance probability a(u(n)) that is the ratio of the contributions of the tentative
sample and the previously accepted sample.

The state transition probability of the Markov chain is

P (u → u′) = min

(
ŷL(u

′)

ŷL(u)
, 1

)
. (7.16)

Thus, the ratio of state transition probabilities in two directions between two states is

P (u → u′)

P (u′ → u)
=

ŷL(u
′)

ŷL(u)
. (7.17)

As tentative samples are generated for each primary sample space point associated with a
non-zero contribution, the established Markov chain is ergodic, i.e. it has a unique stationary
distribution p∞(u) = lim pn(u) which is independent of the initial state. The stationary distri-
bution must satisfy the balance requirement, i.e. the probability of outflow from a state equals
to the probability of inflow, thus∫

U

p∞(u)P (u → u′)du′ =

∫
U

p∞(u′)P (u′ → u)du′. (7.18)

Using Equation 7.17, it is easy to see that the balance requirement is met when p∞(u) ∝
ŷL(u), and the condition of uniqueness guarantees that the sample density will converge to this
distribution.

The ML-EM algorithm incorporating Metropolis sampling in forward projection is as follows:

for n = 1 to m do // iterations
for L = 1 to L = NLOR do // Forward project

ŷL = Forward Project x(n−1) with a MC algorithm.
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aL = min{ŷL/ỹ(n)L , 1}. // acceptance probability
Generate random number r in [0, 1).

if r < aL then ỹ
(n)
L = ŷL // accept with probability aL

else ỹ
(n)
L = ỹ

(n−1)
L

endfor
for V = 1 to V = Nvoxel do // Back project

x
(n)
V = Back Project yL/ỹ

(n)
L with a MC algorithm.

endfor
endfor

In the stationary case, the Markov process generates samples with a density proportional
to ŷL(u), but early samples may be drawn from a different distribution. This may result in
a start-up bias, which is typically handled by ignoring the first few samples corresponding to
the burn-in period while the process is not stationary yet. However, we do not have to ignore
early samples because of the following two reasons. As our method generates tentative samples
independently of the current sample, the perturbation is as large as the whole primary sample
space, thus the start-up bias disappears quickly. On the other hand, instead of computing just
a single integral, we execute an iteration where each step requires its own projection integrals.
Even if some error is made early in the iteration due to the start-up bias when the activity is
only roughly estimated anyway, the error will be corrected by later iteration steps when the
start-up bias already vanishes.

The relative L2 error curves of Metropolis iteration are also included in Figure 7.16 and its
reconstruction result is compared to averaging iteration in Figure 7.17. We can observe that
the Metropolis method has higher fluctuation than averaging iteration but does not introduce
waves in the error curves. The superior stability of averaging iteration is due to the fact that
it exploits the samples of all previous iteration steps when the forward projection is estimated
while Metropolis iteration effectively combines just the last iteration steps. However, this is also
an advantage since the convergence of Metropolis is not slowed down by the effect of earlier
samples, and therefore it does not require additional, volume dependent parameters like λ or
start of averaging nstart.

Method 30% L2 error 20% L2 error

Fixed 80 300

Deterministically matched 80 290

Statistically matched 17 37

Averaging (λ = 2) 2 11

Metropolis 6 19

Table 7.1: Total number of samples in millions needed to take the L2 error below 20% and 30%,
respectively for the 2D analytic test case of Section 1.4.1.

The relative performance of different sampling techniques can be characterized by counting
the total number of samples — i.e. the product of the number of samples per iteration and
the number of iterations — needed to reduce and keep the error below a given threshold (note
that stochastic sampling has fluctuating error curve, so we need to find the number of samples
that guarantees that the maximum of the fluctuation is less than the threshold). Table 7.1
shows a parameter study performed by reconstructing the 2D data of Section 1.4.1 with sample
numbers per iteration in the range of 105–107 and finding the minimum of the product of the
sample number and the number of iterations. As the reconstruction time is proportional to the
total number of samples, this table shows the relative speed of different methods. For example,
averaging iteration is 25–40 times faster than fixed iteration (Section 2.2.1), which may be
considered as a classical method, and 3–8 times faster than statistically matched stochastic
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iteration (Section 2.2.1). Metropolis iteration, on the other hand, is 13 times faster than fixed
iteration and 2–3 times faster than statistically matched iteration.

7.3.3 Results

In this section we consider different factored phases of a PET reconstruction algorithm, including
geometric projection, scattering in the detector, and scattering in the measured object. However,
we note that the proposed scheme can also be used with other projection models, including, for
example, not factored MC particle transport algorithms [WCK+09] or processing Time of Flight
(ToF) data as well.

Geometric projections and scattering in the detectors

Geometric projections without and with detector scattering calculation are tested with Mediso’s
small animal nanoScan-PET/CT [Med10b] (Section 1.1.2).

Figure 7.18: Relative L2 error with respect to the number of iterations (left) and profile curves
obtained after 100 iteration steps (right) of the point source reconstructions. The activity density
for the profile curve is in Bqs/mm3, the unit on the horizontal axis is the edge size of a voxel
that is equal to 0.185 mm.

To test the efficiency of averaging and Metropolis iterations, first we took an off-axis point
source of 0.1 MBq activity, placed 2 mm North and 1 mm East from the axis and simulated a
10 sec long measurement with GATE, assuming ideal black detectors, to obtain the input for
the reconstruction. We run four reconstructions of the GATE simulation: averaging iteration
with two λ factors, Metropolis iteration, and also statistically matched iteration (Section 2.2.1)
for comparison. Figure 7.18 (left) shows the relative L2 error curves of the reconstruction
of the point source using 0.185 mm3 voxels and Nray = 4 line samples per LOR. Right of
Figure 7.18 depicts the line profiles of the reconstructed tri-linear activity density. Note that
statistically matched iteration exhibits drastic oscillations in the error value and results in a
blurred reconstruction, unlike averaging and Metropolis iteration methods. We repeated the
statistically matched iteration with Nray = 8, 16 and 24 samples, and compared them to the
4 sample averaging or Metropolis iterations. We concluded that statistically matched iteration
gets better than the averaging and Metropolis iterations if it uses more than 16 samples instead
of 4. It means that averaging and Metropolis iterations allow 4–5 times faster projections.

We also examined the Micro Derenzo phantom with rod diameters 1.0, 1.1, . . . , 1.5 mm in
different segments. The Derenzo was virtually filled with 1.6 MBq activity and we simulated a 10
sec, i.e. low-dose, and a 1000 sec, i.e. high-dose, measurement with GATE assuming ideal black
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Figure 7.19: Relative L2 error curves obtained during reconstructing the 10 second (upper row)
and the 1000 second (lower row) Derenzo phantoms with Nray = 1 random ray per LOR. The
cross section images are obtained with Metropolis iteration.

Figure 7.20: Line profiles of the Derenzo 1000 sec phantom reconstructed with statistically
matched, averaging and Metropolis iterations. The unit on the horizontal axis is the edge size
of a voxel i.e. 0.23 mm.
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detectors. The average hits per LOR are 0.05 and 5 in the 10 sec and 1000 sec measurements,
respectively. Figure 7.19 depicts the error and the cross section images of the Derenzo phantom
reconstruction with Nray = 1 random ray per LOR, and Figure 7.20 shows a line profile of
the reconstructed volume. With only Nray = 1 line sample, the statistically matched iteration
cannot correctly reconstruct the phantom, but both averaging and Metropolis iterations can
since they utilize the MC estimates from more than one iteration step. Statistically matched
iteration would require at least 3 line samples to have the same error curve as averaging or
Metropolis iteration has with 1 line sample, i.e. averaging or Metropolis iteration offers 3 times
faster projection in this case. The evaluation of the low number of samples used in a single
iteration is very fast on the GPU, a full averaging or Metropolis forward projection requires 0.9
seconds.

Figure 7.21: Detector scattering compensation with averaging and Metropolis iterations using
Nray = 1 ray for geometric projection and Ndet = 64 random LOR space offsets per LOR for
MC simulation of scattering in the detector.

To test the application of averaging and Metropolis iterations in detector scattering compen-
sation, we set LYSO crystals in the GATE simulation projecting the 1000 sec Derenzo phantom
and turned on the detector model (Section 6.3) in our system as well. Detector scattering not
only blurs the sinogram, but also reduces the average hits per LOR to 0.6 in the 1000 sec sim-
ulation due to the possibility that photons fly through or get lost in the detector. The results
obtained with Ndet = 64 4D LOR space offsets mimicking the probability density of photon
transfer in the detectors at the two ends of the LOR are shown by Figure 7.21. With this num-
ber of samples, the computation time of detector blurring compensation in a single projection
of the full EM iteration needs 7.2 sec.

Scattering in the measured object

Scattering in the measured object is significant in human PET, so for the purpose of examining
the proposed iterations in object scatter compensation, we model the AnyScan human PET/CT
[Med10a] (Section 1.1.2).

We used GATE to produce “measurements” of the human IQ phantom, first setting the en-
ergy discrimination window to 400–600 keV. Figure 7.22 shows the reconstruction at 1662 × 75
voxel resolution and the NEMA-NU2-2007 contrast evaluation results with single scatter com-
pensation (Section 5.2) taking only Nscatter = 5 random scattering point samples per iteration.
The reason of selecting so few scattering point samples is to emphasize the differences of the
examined iteration types. We also repeated the reconstruction for data generated by GATE
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Figure 7.22: Relative L2 error curves obtained during reconstructing the NEMA human IQ
phantom with Nscatter = 5 global scattering points in each iteration step, and the NEMA-NU2-
2007 hot and cold contrast values after 50 iterations. The “measured data” is produced with
GATE with 400-600 keV energy window. Single scatter compensation is executed in every
iteration step after the 5th iteration.
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Figure 7.23: Relative L2 error curves obtained during reconstructing the NEMA human IQ
phantom with Nscatter = 5 global scattering points in each iteration step. The “measured data”
is produced with GATE with 100-700 keV energy window. Multiple scatter compensation is
executed in every iteration step after the 5th iteration.
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with 100–700 keV energy window, approximately compensating multiple scattering as proposed
in Section 5.3.2. Note that all iteration types do a fairly good job in scatter compensation, but
the L2 error and contrast values are better in averaging and Metropolis iterations than in sta-
tistically matched iteration, which would require at least 10 samples to provide similar quality.
Averaging iteration with λ = 1 is particularly good at improving the hot contrast. Single scatter
compensation with 5 samples needs 1.1 sec in each full EM iteration step.

7.3.4 Conclusions

This section proposed the application of averaging and Metropolis iteration schemes to improve
the speed and accuracy of emission tomography reconstruction working with on-the-fly MC
estimates. The goal is to distribute the cost of more samples in different iteration steps, thus we
get higher accuracy without increasing the computation time or storing any of the SM elements.
We demonstrated the application of the method in three factored phases of a binned fully-
3D PET reconstruction, including the geometric projections, scattering in the detectors during
both forward and back projections, and scattering in the measured object only in forward
projection. The method works not only with full EM but also with OSEM and is suitable for
GPU implementation.



Chapter 8

Thesis summary

This thesis work concentrates on particle simulation methods for positron emission tomography.
We aim at efficient, Monte Carlo techniques that can exploit the features of the GPU.

Thesis Group 1. Positron range simulation

Positron range simulation for heterogeneous materials in the frequency domain

Positron range can be approximated as a material dependent blurring on the estimated positron
emission density. In high-resolution small animal PET systems, the average free path length of
positrons may be many times longer than the linear size of voxels, which means that the blurring
kernel should have a very large support so its voxel space calculation would take prohibitively
long.

I proposed a fast GPU-based solution to compensate positron range effects which executes
filtering in the frequency domain, thus provides a performance that is independent of the size
of the blurring kernel. To handle heterogeneous media, we execute Fast Fourier Transforms
for each material type and for appropriately modulated tracer densities and merge these partial
results into a density that describes the composed, heterogeneous medium. As Fast Fourier
Transform requires the filter kernels on the same resolution as the tracer density is defined, I
also presented efficient methods for re-sampling the probability densities of positron range for
different resolutions and basis functions [C11].

Thesis Group 2. Geometric projections

LOR driven estimator for the GPU

Existing LOR driven forward projector methods assume piece-wise constant basis functions and
use analytic approximations for the five-dimensional integral of the geometric projection. The
deterministic error made by the analytic approximations results in a biased estimator and thus
modifies the fixed point of the iteration. Additionally, existing methods use varying sample
number to evaluate line integrals and thus would assign different computational load to parallel
threads causing their divergence if these methods are ported to the GPU.

I proposed an unbiased sampling scheme that offers efficient parallel implementation using
the same set of samples for each thread and derived the sample density formulae based on integral
transformations. The surfaces of the detectors are re-sampled uniformly in every iteration step,
and a random offset is added for the line samples along the line to guarantee that every point
that may correspond to a LOR is sampled with a positive probability [J8, C3, C5].
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Voxel driven estimator with importance sampling

Efficient parallel implementation requires the geometric projection to be LOR driven in the
forward projector and voxel driven in the back projector. However, these approaches may be
wasting in the sense that they do not consider the annihilation density during sampling, thus
are poor for importance sampling.

I proposed a voxel driven geometric projection scheme that computes the contribution of
a voxel to LORs and derived the sample density formulae based on integral transformations.
First sample points in the volume of interest are generated mimicking the annihilation density,
then for each sample point detector surface points are sampled fairly uniformly. This allows
the activity distribution to be taken into account in the forward projection, using importance
sampling of the voxels. Furthermore, being a voxel centric approach, it provides an efficient
parallel implementation of the back projector [J8, C5].

Thesis Group 3. Scattering in the measured object

Scatter simulation with photoelectric absorption

Watson’s method is a popular choice of single scatter simulation and its implementation becomes
very efficient with the reuse of line segments. However, it simulates only single photon–material
interaction and is not feasible for dense materials since it ignores photoelectric absorption and
downsamples the set of detectors.

I proposed several GPU-based improvements for Watson’s algorithm. First, in order to make
the method suitable for dense materials, I showed how to include photoelectric absorption into
the model, without loosing the ability to precompute paths. Second, I proposed the application
of importance sampling for the selection of scattering samples. Third, by giving an efficient
GPU implementation that includes path reuse, I showed that the method can work in 3D without
needing to downsample the detector space [J1, J2, J4, B1, C4, C5, C7, D2].

Multiple forward scattering for free

Due to truncation of the Neumann series where terms represent higher order bounces, particle
transport results are underestimated, thus the radiotracer density in the reconstruction becomes
overestimated. This negative bias can be eliminated by Russian roulette which is inefficient on
the GPU and it trades bias for noise. The contribution of the terms above truncation can also be
approximately re-introduced by blurring and scaling the calculated contribution. However, these
methods cannot accurately consider patient specific data and have the added computational cost
of filtering.

I presented a simple approximate method to improve the accuracy of scatter computation
in PET without increasing the computation time. The proposed method exploits the facts that
higher order scattering is a low frequency phenomenon and the Compton effect is strongly for-
ward scattering in the energy window of PET. I showed that the directly not evaluated terms
of the Neumann series can approximately be incorporated by an appropriate modification of the
scattering cross section while the highest considered term is calculated. The correction factor
depends just on the geometry of the detector and is robust to the variation of patient specific
data [C9, D9].

Thesis Group 4. Detector model

Detector model with Monte Carlo LOR filtering

When modeling inter-crystal scattering to increase the accuracy of PET, we can take advantage
of the fact that the structure of the detector is fixed, and most of the corresponding scattering
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calculation can be ported to a pre-processing phase. Pre-computing the scattering probabilities
inside the crystals, the final system response is the convolution of the geometric response ob-
tained with the assumption that crystals are ideal absorbers and the crystal transport probability
matrix. This convolution depends on the incident direction and is four-dimensional which poses
complexity problems as the complexity of the naive convolution evaluation grows exponentially
with the dimension of the domain.

I proposed a Monte Carlo method to attack the curse of dimension in higher dimensional
spatial varying convolution. The method replaces the summation of the signal values weighted
with the filter kernel by a random sum of signal values at points sampled with the density of the
filter kernel. Decoupling the geometric phase from the detector model, i.e. pre-computing the
direct contribution before the convolution is evaluated, I demonstrated that these techniques have
just negligible overhead on the GPU [C5, C6, C8, D5].

Thesis Group 5. Sampling techniques

Filtered sampling for PET

On-the-fly system matrix generation, i.e. approximation of high dimensional integrals is usually
attacked by Monte Carlo quadrature and importance sampling. Determining the number of
samples used by the estimators belongs to the classical tradeoff problem between accuracy and
computational time. However, the approximation error mainly comes from the measurement
noise and high frequency components of the measured object that cannot be captured by the
given sample density. Filtered sampling applies low-pass filter on the integrand before sampling
in order to suppress both noise and high frequency details.

I proposed the application of filtered sampling for the forward projection step of iterative
ML-EM based PET reconstruction to decrease the variance of the integrand and thus to reduce
the error of integral estimation for a given set of samples. The input of the forward projection is
filtered using a low-pass filter, which reduces noise and increases the probability that samples do
not miss high frequency peaks — e.g. a point source — and requires only negligible overhead on
the GPU. I showed that the iteration converges to a modified fixed point, from which the original
function can be extracted by applying the same filter [C5, C10].

Multiple importance sampling for PET

Voxel driven methods can focus on point like features while LOR driven approaches are good
in reconstructing large, homogeneous regions. Existing methods use voxel and LOR driven
approaches exclusively which means that they cannot achieve good performance for every types
of input.

I proposed the application of Multiple Importance Sampling (MIS) in fully 3D PET to speed
up the iterative reconstruction process. The proposed method combines the results of LOR driven
and voxel driven projections keeping their advantages, like importance sampling, performance
and parallel execution on GPUs. To make the combined estimator unbiased and of low variance,
the densities of all individual methods are determined and the integrand values are compensated
by their sum [J8].

Averaging and Metropolis iteration for PET

High dimensional integrals of PET are estimated by Monte Carlo quadrature. If the sample
locations are the same in every iteration step of the ML-EM scheme, then the approximation
error will lead to a modified reconstruction result. However, when random estimates are statis-
tically independent in different iteration steps, then the iteration may either diverge or fluctuate
around the solution. Our goal is thus to increase the accuracy and the stability of the iterative



CHAPTER 8. THESIS SUMMARY 98

solution while keeping the number of random samples and therefore the reconstruction time low.
One way to achieve this is to exploit additional samples from previous iteration steps.

I proposed two modifications of the Maximum Likelihood, Expectation Maximization (ML-
EM) iteration scheme to reduce the reconstruction error due to the on-the-fly Monte Carlo
approximations of forward and back projections with negligible additional cost: Averaging itera-
tion and Metropolis iteration. Averaging iteration averages forward projection estimates during
the iteration sequence. Metropolis iteration rejects those forward projection estimates that would
compromise the reconstruction and also guarantees the unbiasedness of the tracer density es-
timate. I demonstrated that these techniques make the estimation unbiased and significantly
increase the stability of the iteration sequence. As a result, we can obtain accurate reconstruc-
tions with less samples, decreasing the reconstruction time [J5, J6, D10].

Summary of the proposed reconstruction loop

Figure 8.2 shows the ML-EM reconstruction loop including the proposed methods.

Performance summary

Table 8.1 summarizes computational complexities of the proposed methods. In Table 8.2, we
show the average running times of the proposed algorithms on a single NVIDIA GeForce 690
GTX GPU for a few representative cases, reconstructing a ring phantom simulation in Mediso’s
nanoScan-PET/CT geometry. Figure 8.1 shows the running times as the percentages of a com-
plete ML-EM iteration step for a typical parameter setting. FP, BP and SSS stand for geometric
forward projection, geometric back projection and single scatter simulation, respectively.

Figure 8.1: Running times as the percentage of a complete iteration for a Ring reconstruction
at Nvoxel = 2563 voxel resolution and with 1 : 3 coincidence mode, when executed on a single
NVIDIA GeForce 690 GTX GPU. Parameters of the methods were m = 3, Nray = 4, Nmarch =
128, Nv = 100.000, Nscatter = 300 and Ndet = 64.

Method Complexity

Positron range O(mNvoxel logNvoxel)

LOR driven FP O(NLORNrayNmarch)

Voxel driven FP O(NDetNv)

Voxel driven BP O(NDetNvoxel)

SSS O(NLORNscatter)

LOR-filter O(NLORNdet)

Table 8.1: Computational complexity of the methods. Note that the voxel driven geometric
projection requires atomic writes. The SSS algorithm has an additional computational cost
O(NDetNscatterNmarch) due to the line integral computation between the scattering points and
the detectors, however, this is negligible to the overall complexity of the method.
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Method Settings Time (s)

Positron range
m = 3, Nvoxel = 1283 0.6
m = 3, Nvoxel = 2563 2

LOR driven FP
Nray = 1, Nmarch = 64 3.1
Nray = 4, Nmarch = 128 20.2

Voxel driven FP
Nv = 100.000 3.2
Nv = 1.000.000 22

Voxel driven BP
Nvoxel = 1283 6.2
Nvoxel = 2563 41.5

SSS
Nscatter = 100 3.4
Nscatter = 1000 31.3

LOR-filter
Ndet = 32 5.7
Ndet = 128 10.5

Table 8.2: Running times in seconds for the ring phantom in Mediso’s nanoScan-PET/CT
geometry, executed on a single NVIDIA GeForce 690 GTX GPU. The voxel resolution was
Nvoxel = 1283, except when stated otherwise. Coincidence mode was set to 1 : 3 in all cases.
Note that the voxel centric geometric projection can be executed for about 8–20 times more
voxels in a given time budget when it is implemented in an output driven manner (i.e. in back
projection), compared to its input driven implementation (i.e. when used as forward projector).

Figure 8.2: Flowchart of the ML-EM reconstruction loop that includes the proposed methods.
Unless indicated otherwise, every step is performed on the GPU. Data structures are stored on
the GPU.
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Juan José; Vaquero, Esther Vicente, Darin A Williams, and Richard Laforest. NEMA NU
4-2008 Comparison of Preclinical PET Imaging Systems. J Nucl Med, 53(8):1300–1309,
2012.

[GBH70] Richard Gordon, Robert Bender, and Gabor T. Herman. Algebraic reconstruction tech-
niques (art) for three-dimensional electron microscopy and x-ray photography. Journal of
Theoretical Biology, 29(3):471 – 481, 1970.

[Gil72] Peter Gilbert. Iterative methods for the three-dimensional reconstruction of an object from
projections. Journal of Theoretical Biology, 36(1):105 – 117, 1972.

[GLRZ93] G. Gindi, M. Lee, A. Rangarajan, and I. G. Zubal. Bayesian reconstruction of functional
images using anatomical information as priors. Medical Imaging, IEEE Transactions on,
12(4):670–680, December 1993.

[GMDH08] Nicolas Gac, Stphane Mancini, Michel Desvignes, and Dominique Houzet. High speed 3D
tomography on CPU, GPU, and FPGA. EURASIP Journal on Embedded Systems, 2008.
Article ID 930250.

[GO94] A.S. Goggin and J.M. Ollinger. A model for multiple scatters in fully 3d pet. In Nuclear
Science Symposium and Medical Imaging Conference, 1994., 1994 IEEE Conference Record,
volume 4, pages 1609–1613 vol.4, 1994.

[Goi72] M. Goitein. Three-dimensional density reconstruction from a series of two-dimensional
projections. Nuclear Instruments and Methods, 101(3):509 – 518, 1972.

[Gor74] Richard Gordon. A tutorial on art (algebraic reconstruction techniques). IEEE Trans. Nucl.
Sci. NS-21, (3):78–93, 1974.

[Gre90a] P. J. Green. Bayesian reconstructions from emission tomography data using a modified EM
algorithm. IEEE Trans. Med. Im., 9(1):84–93, 1990.

[Gre90b] Peter J. Green. Bayesian reconstructions from emission tomography data using a modified
em algorithm. IEEE Trans. Med. Imag, pages 84–93, 1990.

[GSJ+91] S. Grootoonk, T.J. Spinks, T. Jones, C. Michel, and A. Bol. Correction for scatter using
a dual energy window technique with a tomograph operated without septa. In Nuclear
Science Symposium and Medical Imaging Conference, 1991., Conference Record of the 1991
IEEE, pages 1569–1573 vol.3, 1991.

[HCK+07] I. K. Hong, S. T. Chung, H. K. Kim, Y. B. Kim, Y. D. Son, and Z. H. Cho. Ultra
fast symmetry and simd-based projection-backprojection (ssp) algorithm for 3-d pet image
reconstruction. IEEE Trans. Med. Imaging, 26(6):789–803, 2007.

[HDU90] S. F. Haber, S.E. Derenzo, and D. Uber. Application of mathematical removal of positron
range blurring in positron emission tomography. Nuclear Science, IEEE Transactions on,
37(3):1293–1299, 1990.

[HEG+09] J.L. Herraiz, S. Espaa, S. Garcia, R. Cabido, A.S. Montemayor, M. Desco, J.J. Vaquero,
and J.M. Udias. GPU acceleration of a fully 3D iterative reconstruction software for PET
using CUDA. In Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE,
pages 4064–4067, 2009.



BIBLIOGRAPHY 106

[HEV+06] J L Herraiz, S Espaa, J J Vaquero, M Desco, and J M Udas. FIRST: Fast Iterative Recon-
struction Software for (PET) tomography. Physics in Medicine and Biology, 51(18):4547,
2006.

[HHPK81] Edward J Hoffman, Sung-Cheng Huang, Michael E Phelps, and David E Kuhl. Quantitation
in positron emission computed tomography: 4. effect of accidental coincidences. Journal of
computer assisted tomography, 5(3):391–400, 1981.

[HL94] H.M. Hudson and R.S. Larkin. Accelerated image reconstruction using ordered subsets of
projection data. Medical Imaging, IEEE Transactions on, 13(4):601–609, 1994.

[HTC+05] B. Hesse, K. Tgil, A. Cuocolo, C. Anagnostopoulos, M. Bardis, J. Bax, F. Bengel, E. Buse-
mann Sokole, G. Davies, M. Dondi, L. Edenbrandt, P. Franken, A. Kjaer, J. Knuuti, M. Lass-
mann, M. Ljungberg, C. Marcassa, P.Y. Marie, F. McKiddie, M. OConnor, E. Prvulovich,
R. Underwood, and B. Eck-Smit. Eanm/esc procedural guidelines for myocardial perfu-
sion imaging in nuclear cardiology. European Journal of Nuclear Medicine and Molecular
Imaging, 32(7):855–897, 2005.

[IMS07] M. Iatrou, R.M. Manjeshwar, and C.W. Stearns. Comparison of two 3d implementations of
tof scatter estimation in 3d pet. In Nuclear Science Symposium Conference Record, 2007.
NSS ’07. IEEE, volume 5, pages 3474–3477, 2007.
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Mannigfaltigkeiten. Akad. Wiss., 69:262–277, 1917.

[Rad86] J. Radon. On the Determination of Functions from Their Integral Values along Certain
Manifolds. IEEE Transactions on Medical Imaging, 5(4):170–176, 1986.

[RLCC98] Jinyi Qi Richard, Richard M Leahy, Simon R Cherry, and Arion Chatziioannou. High-
resolution 3d bayesian image reconstruction using the micropet small-animal scanner. Med.
Biol, 43:1001–1013, 1998.

[RLT+08] A. Rahmim, M.A. Lodge, J. Tang, S. Lashkari, and M.R. Ay. Analytic system matrix
resolution modeling in PET: An application to Rb-82 cardiac imaging. In Biomedical Imag-
ing: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, pages
1307–1310, 2008.

[RMD+04] M. Rafecas, B. Mosler, M. Dietz, M. Pogl, A. Stamatakis, D.P. McElroy, and S.I. Ziegler.
Use of a monte carlo-based probability matrix for 3-d iterative reconstruction of madpet-ii
data. Nuclear Science, IEEE Transactions on, 51(5):2597–2605, 2004.

[Ros84] A. Rosenfeld. Multiresolution Image Processing and Analysis. Springer series in information
sciences. Springer-Verlag, 1984.



BIBLIOGRAPHY 109

[RSC+06] Andrew J Reader, Florent C Sureau, Claude Comtat, Rgine Trbossen, and Irne Buvat.
Joint estimation of dynamic pet images and temporal basis functions using fully 4d ml-em.
Physics in Medicine and Biology, 51(21):5455, 2006.

[RZ07] A. J. Reader and H. Zaidi. Advances in PET image reconstruction. PET Clinics, 2(2):173–
190, 2007.

[SBM+11] S Stute, D Benoit, A Martineau, N S Rehfeld, and I Buvat. A method for accurate modelling
of the crystal response function at a crystal sub-level applied to pet reconstruction. Physics
in Medicine and Biology, 56(3):793, 2011.

[Ser06] Alain Seret. The number of subsets required for osem reconstruction in nuclear cardiology.
European Journal of Nuclear Medicine and Molecular Imaging, 33(2):231–231, 2006.

[SFK94] Lingxiong Shao, R. Freifelder, and J.S. Karp. Triple energy window scatter correction
technique in pet. Medical Imaging, IEEE Transactions on, 13(4):641–648, 1994.

[SH05] C. Sigg and M. Hadwiger. Fast third-order texture filtering. In GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-Purpose Computation, pages 313–
329. Matt Pharr(ed.), Addison-Wesley, 2005.

[Sid85] R. L. Siddon. Fast calculation of the exact radiological path for a three-dimensional ct
array. Medical Physics, 12(2):252–257, 1985.

[SK91] Lingxiong Shao and J.S. Karp. Cross-plane scattering correction-point source deconvolution
in pet. Medical Imaging, IEEE Transactions on, 10(3):234–239, 1991.

[SK99] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumination. Computer Graph-
ics Forum, 18(3):233–244, 1999.

[SK00] L. Szirmay-Kalos. Photorealistic Image Synthesis with Ray-Bundles. Hungarian Academy
of Sciences, D.Sc. Dissertation, Budapest, 2000. http://www.iit.bme.hu/˜szirmay/ Thesis-
SzKL.htm.

[SK08] L. Szirmay-Kalos. Monte-Carlo Methods in Global Illumination — Photo-realistic Rendering
with Randomization. VDM, Verlag Dr. Müller, Saarbrücken, 2008.
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L2 error, 19
2D imaging, 8

absorption cross section, 4
absorption probability density, 63
acollinearity, 3
analytic model, 16, 17
annihilation, 2
AnyScan human PET/CT, 10
attenuation, 3, 7
attenuation factor, 39
attenuation only model, 57
averaging iteration, 86
axial direction, 8

back projection, 12
balance heuristics, 77, 80
basis functions, 2, 11
Bilateral filter, 73
binned reconstruction, 9

CC (Cross Correlation) error, 19
CELL processor, 15
central limit theorem, 21
coalesced memory access, 15
coincidence, 3
coincidence mode, 9
Compton formula, 5, 49, 50
Compton scattering, 5, 50, 53, 56
contraction, 24
control loop, 72
convolution, 29–31, 62–66
crystal efficiency, 8
crystal transport probability, 62, 66
crystal transport probability function, 62
CT (Computed Tomography), 10
CUDA, 20
curse of dimensionality, 13
Cylinder phantom, 19

dead-time, 9
deconvolution, 30
Derenzo phantom, 19
detection probability, 62
detector model, 8, 14, 61, 63
detector module, 8
detector sensitivity, 61
deterministically matched iteration, 25
direct component, 3, 37, 39
DMC (Direct Monte Carlo) photon tracing, 22, 79

effective radius model, 63, 68
energy range, 9
extinction parameter, 7

factoring, 13
FBP (Filtered Back Projection), 11
filter kernel, 64
filtered sampling, 71
finite function series, 2
fixed iteration, 25
forward projection, 12
Fourier transformation, 30, 32
FOV (Field of View), 9
FPGA, 15
fully 3D imaging, 9

GATE simulations, 16, 17
gathering type algorithm, 16
Gaussian filter, 32, 73
Gaussian pyramid, 74
geometric projection, 14, 37, 39
geometry factor, 40, 48
GPU (Graphics Processing Unit), 15
graphics pipeline, 15, 20

Homogeneity phantom, 19
Human IQ phantom, 19

image filtering, 64, 65
importance sampling, 22, 42, 52, 65
in-scattering, 5, 55
inter-crystal scattering, 8
inverse LOR filtering, 66
iterative algebraic reconstruction, 11

Klein-Nishina formula, 6, 49

law of large numbers, 21
list-mode, 9
LOR (line of response), 3
LOR driven sampling, 16, 40
low discrepancy sampling, 21
low-pass filter, 71, 73

Markov chain, 88
material map, 10
maximum heuristics, 78, 80
MC (Monte Carlo) quadrature, 21
Metropolis iteration, 87
MIP-mapping, 74
MIS (Multiple Importance Sampling), 77
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ML-EM, 11
model-based scatter correction, 49
MRI (Magnetic Resonance Imaging), 10
multi-CPU system, 15
multiple scattering, 50, 53, 54

nanoScan-PET/CT, 10
NEMA, 16
Neumann series, 47, 54

OSEM, 12
out-of-FOV scattering, 49
out-scattering, 4, 48, 55

particle transport problem, 2
path reuse, 50, 54
PET (Positron Emission Tomography), 1
phase function, 5, 56
photoelectric absorption, 4, 48, 50, 51
photomultiplier tube, 8
Planck constant, 5
Point source phantom, 17
Poisson distribution, 12
positron emission decay, 1
positron range, 3, 14, 29, 30
power heuristics, 78, 80
primary sample space, 84

random coincidence, 9
ray marching, 37, 40
Rayleigh scattering, 5
regularization methods, 12
Russian roulette, 51

sample density, 77
sampling, 71
scanner sensitivity, 10
scattered coincidence, 3
scattering, 3, 47, 49
scattering cross section, 5
scattering type algorithm, 15
scintillation detector system, 8
sensitivity image, 85
SIMD (Single Instruction Multiple Data), 15
SM (System Matrix), 11
SNR (Signal to Noise Ratio), 45
spatial-invariant filter, 64
SSS (Single Scatter Simulation), 47, 49
statistically matched iteration, 25
stopping rule, 12

tentative sample, 87
TeraTomoTM system, 20
thread divergence, 15
thread mapping, 15
time window, 9
ToF (Time of Flight), 9
total variation, 12
transaxial direction, 8
transport function, 8

virtual detector, 13
volumetric geometry factor, 63
VOR (volume of response), 3
voxel driven sampling, 16, 42

Watson’s method, 49, 51



Nomenclature

ϵ0 relative photon energy

T̂ attenuation matrix

d detector

A system matrix

G geometric projection matrix

L detector model matrix

P positron range matrix

S scattering matrix

x voxelized positron emission density

xa estimated annihilation density

y measured coincidences

D total surface of detectors

L likelihood function

T scanner sensitivity

X total activity

F Fourier transform

µd detector sensitivity

ν(ω⃗) detection probability

Ω domain of directions

σa absorption cross section

σs scattering cross section

σt extinction parameter

θ angle

ỹ estimated coincidences

ω⃗ direction vector

s⃗ scattering point

v⃗ point in the volume of interest

z⃗ detector surface point

ξm(v⃗) material indicator function

Aϵ(z⃗1, z⃗2) attenuation factor

bV (v⃗) basis function

Bϵ(z⃗1, z⃗2) absorption factor

dω differential solid angle

Et transport function

G(z⃗1, z⃗2) geometry factor

L radiant intensity

Le emission density

m(v⃗) material index

NDet total number of detectors

Ndet number of detector samples

NLOR total number of LORs

Nmarch step number of raymarching

Npath number of path samples

NPT number of simulated photon paths

Nray number of ray samples

Nscatter number of scattering point samples

Nvoxel total number of voxels

Nv number of voxel samples

P (ω⃗′, ω⃗) phase function

pi→d(ω⃗) crystal transport probability

Tϵ(z⃗1, z⃗2) out-scattering factor

x(v⃗) positron emission density

xa(v⃗) annihilation density

V volume of interest
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