
Machine Vision Methods in Computer Games

László Szirmay-Kalos?

BME IIT

Abstract. This paper surveys machine vision and image processing
methods that can be used in games and also shows how machine vi-
sion applications may benefit from the graphics hardware developed for
game applications. By observing image space rendering algorithms, we
come to the conclusion that image processing and rendering methods
require similar algorithms and hardware support.

1 Introduction

In computer games objects live in a virtual world that is stored in the computer
memory. The virtual world has its own laws that are respected by the objects.
The behavior of passive objects is governed solely by these laws. Active objects,
on the other hand, may have their own control (e.g. engine, weapon, force, etc.),
which can modify the behavior and may deliver new objects. The control mecha-
nism is based on artificial intelligence (AI) algorithms [7, 34]. Both the simulation
of laws and AI require communication between the objects. Having defined the
laws and assigned the control to objects, the virtual world comes alive. As time
passes, objects move, interact, die, and new objects may be born.

Virtual world

avatar

User
interface
control

image
synthesis interaction

Fig. 1. A game.

? This work has been supported by the National Office for Research and Technology
and by OTKA K-719922 (Hungary).

2 Szirmay-Kalos

In order to immerse the human user (player) into this virtual world, a special
object called the avatar is defined (Figure 1). This object is similar to other
objects with two exceptions. It does not have AI, but its control is connected to
the user interface. On the other hand, the scene is rendered regularly from the
point of view of the avatar and the image is presented on the computer scene.
The user feels “presence” in the virtual world if he is informed about all changes
without noticeable delay, i.e. at least 20 image frames are generated in every
second, which is perceived as a continuous motion.

Apart from AI, game development should solve the following tasks:

– Modeling involves the description of the graphical properties of objects, like
geometry, texture, and material.

– Animation definition specifies animation properties, like dynamic parame-
ters, skeleton, keyframes, deformation targets, etc. Animation also includes
the description of laws of the virtual world, which are usually, but not neces-
sarily, the simplifications of physics laws, such as Newton’s laws, collisions,
impulse conservation, etc.

– Simulation of the world, including executing AI algorithms, enforcing the
laws, and animating the world.

– User interfacing is responsible for controlling the avatar according to user
actions.

– Rendering the scene from the point of view of the avatar.

Modeling and Animation definition are off-line tasks, while Simulation, User
interfacing, and Rendering should be executed on-line at least 20 times per sec-
ond. This imposes severe requirements on the computer, especially on its render-
ing functionality. Rendering needs to identify the surfaces visible from the avatar
in different directions (i.e. in different pixels) and compute the radiance spec-
trum of the surface. Visibility calculation can be “image centric” when we take
pixels one-by-one, trace a ray through this pixel and retain the ray-surface inter-
section closest to the avatar. Visibility calculation can also be “object centric”
when objects are projected onto the screen one-by-one and their color is merged
into the evolving image always keeping the color of the closest surfaces. The
first approach is called ray tracing, the second is incremental rendering. Graph-
ics processors (GPU) implement incremental rendering and by today have have
reached the performance of supercomputers.

This paper reviews the machine vision and image processing aspects of game
development. On the one hand, we show in which phases of game development
these techniques can be used. On the other hand, we also discuss how machine
vision applications may benefit from the graphics hardware developed for game
applications. The organization of the paper is as follows. In Section 2 we present
the architecture and the programming model of current GPUs. In Section 3 vision
techniques aiming at off-line modeling and animation are discussed. Section 4
reviews vision based game interfaces. Finally, in Section 5 we incorporate image
processing algorithms into the rendering process. Starting from image process-
ing, continuing with deferred shading, we finally discuss image space rendering
algorithm that are conceptually very similar to image processing.

Machine Vision Methods in Computer Games 3

2 Architecture and programming models of GPUs

By today, the GPU has become a general purpose stream processor. If we wish to
exploit the computational power of GPUs we can use two programming models
(Figure 2).

– Shader APIs mimic the incremental rendering process including both fixed
function and programmable stages, which can be controlled through a graph-
ics API (Direct3D or OpenGL).

– Multi-processor model that presents the GPU as a large collection of mainly
SIMD type parallel processors, but hides the fixed function units (e.g. the
merging functionality). CUDA1 is the most famous such library. Addition-
ally, we may use ATI Stream SDK 2, OpenCL3, and the compute shader in
DirectX 11.

vertex buffer

Transform

Clipping + Rasterization +
interpolation

Texturing

Compositing (Z-buffer,
transparency)

Texture
memory

ve
rt

ic
es

tr
ia

ng
le

s
pi

xe
ls

Geometry
Shader

Vertex
Shader

Fragment
Shader

Frame buffer

CPU

GPU

Shader 4 programming model CUDA

Fig. 2. GPU programming models for shader APIs and for CUDA.

In the followings, we discuss the Shader API model, which can be seen as an
incremental rendering pipeline implementation with programable stages [32].

Every object of the virtual world is defined as a triangle mesh in its own
modeling space, thus the virtual world description should be tessellated to a set
of triangle meshes. Triangles output by the tessellation are defined by triplets of
vertices, and usually include the normal vector of the surface before tessellation
1 [http://www.nvidia.com/object/cuda home.html]
2 [http://ati.amd.com/technology/streamcomputing/sdkdwnld.html]
3 [http://www.khronos.org/opencl/]

4 Szirmay-Kalos

at the vertices, and optical material parameters, or a texture address that refer-
ences values of the same parameters stored in the texture memory. The triangle
list defined by vertices associated with surface characteristics is the input of the
incremental rendering process and is stored in the vertex buffer .

The vertex shader gets the vertices one by one. Vertex positions and normals
are transformed to world space where the camera and lights are specified. Making
this transformation time dependent, objects can be animated. Then, the camera
transformation translates and rotates the virtual world to move the camera to
the origin of the coordinate system and to get it to look parallel to axis z.
Perspective transformation, on the other hand, distorts the virtual world in a
way that viewing rays meeting in the virtual camera become parallel to each
other. It means that after perspective transformation, the more complicated
perspective projection of the camera can be replaced by simple parallel projection.
Perspective transformation warps the viewing pyramid to be an axis aligned
clipping box that is defined by inequalities −1 < x < 1, −1 < y < 1, and
0 < z < 1 (or −1 < z < 1).

Triangles formed by three vertices are processed by the geometry shader,
which may change the topology and emit an arbitrary number of triangles in-
stead. Typical applications of the geometry shader is on-line geometry smoothing
[2], detail geometry addition [33] or geometry synthesis [20].

The fixed function clipping unit clips to the clipping box to removes those
parts that fell outside of the viewing pyramid. Taking into account the resolution
and the position of the viewport on the screen, a final transformation step,
called viewport transformation scales and translates triangles to screen space.
In screen space the projection onto the 2D camera plane is trivial, only the
X, Y coordinates should be kept from the X, Y, Z triplet. The Z coordinate of
the point is in [0, 1], and is called the depth value. The Z coordinate is used
by visibility computation since it decides which point is closer to the virtual
camera if two points are projected onto the same pixel. In screen space every
projected triangle is rasterized to a set of pixels. When an internal pixel is filled,
its properties, including the depth value and shading data, are computed via
incremental linear interpolation from the vertex data.

The fragment shader computes the final color from the interpolated data.
Besides the color buffer memory (also called frame buffer), we maintain a depth
buffer , containing screen space depth, that is the Z coordinate of the point whose
color value is in the color buffer. Whenever a triangle is rasterized to a pixel, the
color and the depth are overwritten only if the new depth value is less than the
depth stored in the depth buffer, meaning the new triangle fragment is closer
to the viewer. This process is commonly called the depth buffer algorithm. The
depth buffer algorithm is also an example of a more general operation, called
merging , which computes the pixel data as some function of the new data and
the data already stored at the same location.

To make more use of a computed image, it can be directed to the texture
memory, and used as an input texture in future rendering passes. While the frame
buffer allows just 8-bit data to be stored, textures can hold floating point num-

Machine Vision Methods in Computer Games 5

bers. With this feature some passes may perform general purpose computations,
write the results to textures, which can be accessed later in a final gathering step,
rendering to the frame buffer. The frame buffer or the texture memory, which is
written by the fragment shader and the merging unit, is called the render target .

2.1 Image processing on the GPU through shader API

Image processing is a Single Algorithm Multiple Data (SAMD) method, where
the input is a two-dimensional array L(X, Y) and the output is another array
L̃(X, Y) which might have a different resolution. For every output pixel X, Y ,
the same algorithm A should be executed independently of other output pixels.

In order to execute image processing on the GPU, a single viewport sized quad
needs to be rendered, which covers all pixels of the screen. The viewport is set
according to the required resolution of the output. In normalized device space,
the viewport sized quad is defined by vertices (−1,−1, 0), (−1, 1, 0), (1, 1, 0),
(1,−1, 0). Thus this quad needs to be sent down the pipeline, and the fragment
shader program should implement algorithm A.

The most time consuming part of image processing is fetching the input
texture memory. To reduce the number of texture fetches, we can exploit the
bi-linear interpolation feature of texture units, which takes four samples and
computes a weighted sum requiring the cost of a single texture fetch [13].

Classic image processing libraries and algorithms have already been ported
to the GPU [25]. A good collection of these is the GPGPU homepage4, which
has links to photo-consistency, Fourier transform, stereo-reconstruction, fractal
image compression, etc. solutions.

2.2 Image processing with CUDA

CUDA presents the GPU as a collection of (1..128) multi-processors, that can
communicate with each other through a not-chaced (i.e. slow) global memory.
A single multi-processor has many (e.g. 256) scalar processors that can be syn-
chronized and are interconnected by fast memory. Scalar processors form groups
of 32 (called warps) that share the same instruction unit, thus they perform the
same instruction in a SIMD fashion.

Many different vision and image processing applications have been imple-
mented on this massively parallel hardware. The CUDA homepage includes the
GpuCV vision library, tomographic reconstruction, optical flow, motion tracing,
sliding-window object detection, Canny edge detection, etc.

3 Vision techniques in modeling and animation

An obvious application of vision methods would be the automatic reconstruc-
tion of simpler virtual objects from real objects using, for example, stereo vision

4 [http:gpgpu.org]

6 Szirmay-Kalos

or photo-consistency [37, 15]. While these approaches are viable in engineering,
commerce, archeology, etc. they are not popular in game development. The rea-
son is that games have very special expectations toward the generated meshes.
They should be “low-poly” i.e. should consist of minimal number of vertices,
should be artifact free, and should be smoothly deformed during morphing and
skeleton animation. Unfortunately, vision based reverse engineering techniques
[37] cannot compete with the efficiency of modeling tools and the experience of
professional human modelers.

However, vision based methods are clearly the winners in natural phenom-
ena modeling and in animation definition, which are too complex for human
modelers.

3.1 Image based modeling and animation

The real world has objects of enormous complexity, which would be very difficult
to model or simulate. Thus, we steal from the real world, and take images and
videos from real-world phenomena and include them into the game. However,
putting a 2D image somewhere into the 3D virtual world would be too obvious
cheating since the 2D image cannot provide the same motion parallax that we
are used to in the 3D world. A few notable exceptions are the cases when the
object is very large and very far, like the sky or distant stars, etc.

The missing view parallax can be restored approximately by billboards that
always rotate towards the avatar, with the application of multiple images tex-
tured on an approximate geometry [8], or using image based rendering [18, 11]
that are equivalent to digital holograms. However, these techniques still lack the
controllability of the object itself. What we really need is a method that takes
the image as an example and automatically constructs a model from it, which
can, among others, deliver this particular object, but is also capable of producing
many other, similar objects.

Conceptually, we may use the input image as the basis of determining the
parameters of a model. Suppose, for example, that we are modeling a cloud. We
know the operation of the cloud (Navier-Stokes equations) and how it should be
rendered (radiative transfer equation), but we do not know the internal param-
eters. In this case, a reverse-engineering approach should be taken that fits the
model onto the image sequence [21].

Another approach is the example based synthesis that decomposes the input
to low-frequency and high-frequency components. The low-frequency compo-
nents that are responsible for the general behavior are redefined by the modeler.
However, the complicated high-frequency components are ported to the new
model, including scaling and normalization as well. In order to separate impor-
tant features, Principal Component Analysis (PCA) has proven to be successful.
Individual examples are interpreted as a collection of numbers, i.e. points in
high-dimensional spaces. PCA finds a subspace spanned by eigenvectors. Mod-
ifying the coordinates with respect to the eigenvectors, an infinite collection of
new objects can be obtained [3]. Example based methods have been successful in

Machine Vision Methods in Computer Games 7

texture synthesis [16], animating still images [39], geometry synthesis [22], and
building generation [24].

....

Video clip (3D texture)
Frame 1 Frame 2 Frame n

Particle 1 Particle 2 Particle 3 Virtual explosion

Fig. 3. Explosion rendering when the high-frequency details are added from a video.

Now we take the example of explosion rendering, where a few particles are
simulated according to the laws of physics [36]. However, when the system is
rendered, we take a video from a real explosion, and its sample parts are used
to modulate the temperature variations of the simulated explosion (Figure 3).

3.2 Motion capture based animation

Motion capture animation is the most common technique in games because many
of the subtle details of human motion are naturally present in the data that would
be difficult to model manually.

Traditionally, only finite number of markers attached to joints are followed
by stereo-vision techniques (left of Fig. 4). However, this requires special setup
and cannot follow garment motions. Markerless techniques that usually process
silhouette images can even handle garment deformations, but are much more
difficult to implement and less robust [38] (right of Fig. 4). We note that marker
based motion caption is also important in medical applications [40]. Research
has also focused on techniques for modifying and varying existing motions [10].

4 Vision based game interfaces

In today’s games, the common goal is creating user interfaces where the user
feels the “immersion” of the virtual world. Obviously, bodily user interfaces
are more natural than using just the keyboard or mouse. Although intensive
research has been executed in this area, the mass market remained unchanged
for a longer time, because the developed systems were too cumbersome to use
and very expensive. The first, really revolutionary device showed up in 2006
when the Wiimote5 controller was introduced. With a three-axis accelerometer,
5 [http://www.wii.com/]

8 Szirmay-Kalos

Motion capture with markers Motion capture with silhouettes

Skeleton-animated
character

Fig. 4. Motion capture that follows markers attached to joints (left) and following
silhouettes [27] (right).

distance sensing (via the Sensor Bar), and a simple BlueTooth interface, the
Wiimote controller offered developers the opportunity to create many different
types of novel interfaces [29].

The other promising direction is the inclusion of one or more cameras in
the game system and to use its images to control the avatar [17]. We may note
that a similar problem is investigated in presentation control (i.e. Powerpoint
presentation) as well [1]. In this respect, vision based user interfacing is similar
to vision based animation modeling. However, there are critical differences. In
user interfacing, the algorithms must be real-time, robust, but neither precise
calibration nor special clothing, lighting, markers etc. are allowed. This makes
these methods really challenging.

The camera is placed in front of the user who can control the application
action with his body movements [14]. Today there are also several commercial
camera based body-driven game systems available, e.g. the Mandala GX System
by Vivid Group6 and Eyetoy7.

Almost all computer vision approaches rely on tracking to analyze human mo-
tion from video input [9]. In general, these systems assume accurate initialization
and then track changes in pose based on an articulated 3D human model. From
the cameras we get synchronized images. For each camera image, the background
is subtracted and only the foreground character image is kept. The silhouette
for each viewpoint corresponds to a cone of rays from the camera through all
points of the objects. The intersection of these cones is the approximation of the
object’s volume. A volumetric representation, e.g. a voxel array, can be easily
derived from the images. Each voxel center is projected onto each camera image,
and we check whether or not the projection is a foreground pixel. If it is for
all camera images, then the voxel belongs to the object, otherwise, the voxel is
outside of the object.

6 [http://www.vividgroup.com/]
7 [http://www.fmod.org/]

Machine Vision Methods in Computer Games 9

Suppose we have an articulated model, i.e. a mesh with a skeleton and bind-
ing, which defines the degree of freedom for the model and also the possible
deformations. The task is then to find the rotation angles in the joints to match
the model to the approximate volume of the measured object. This requires
non-linear optimization.

Alternatively, a robust vision-based interface can directly estimate the 3D
body pose without initialization and incremental updates, thus avoiding prob-
lems with initialization and drift. For example, Rosales et al. [28] trained a
neural network to map each 2D silhouette to 2D positions of body joints and
then applied an EM algorithm to reconstruct a 3D body pose based on 2D body
configurations from multiple views. Mori and Malik [23] explored an example-
based approach to recover 2D joint positions by matching extracted image fea-
tures (shape context features) with those of cached examples and then directly
estimating the 3D body pose from the 2D configuration considering the fore-
shortening of each body segment in the image.

5 Image processing in rendering

Rendering converts the geometric description of the virtual world to an image.
As the render target can be a floating point texture as well, it is also possible to
process the generated image before presenting it to the user. This post-processing
step may include features that could not be handled during the incremental
rendering which considers vertices and pixels independently of others. In this
section we take the examples of realistic camera effects that are ignored during
incremental rendering working with the pin-hole camera model.

5.1 Glow

Glow or bloom occurs when a very bright object in the picture causes the neigh-
boring pixels to be brighter than they would be normally. It is caused by scat-
tering in the lens and other parts of the eye, giving a glow around the light and
dimming contrast elsewhere.

To produce glow, first we distinguish pixels where glowing parts are seen
from the rest. After this pass we use Gaussian blur to distribute glow in the
neighboring pixels, which is added to the original image (Figure 5).

5.2 Tone mapping

Off the shelf monitors can produce light intensity just in a limited, low dynamic
range (LDR). Therefore the values written into the frame buffer are unsigned
bytes in the range of [0x00, 0xff], representing values in [0,1], where 1 corre-
sponds to the maximum intensity of the monitor. However, rendering results
in high dynamic range (HDR) luminance values that are not restricted to the
range of the monitors. The conversion of HDR image values to displayable LDR
values is called tone mapping [26]. The conversion is based on the luminance

10 Szirmay-Kalos

Original image Glowing parts Final image with glow

Fig. 5. The glow effect.

the human eye is adapted to. Assuming that our view spans over the image, the
adaptation luminance will be the average luminance of the whole image. The lu-
minance value of every pixel is obtained with the standard CIE XYZ transform
Y = 0.21R + 0.72G + 0.07B, and these values are averaged to get adaptation
luminance Ỹ . Having adaptation luminance Ỹ , relative luminance Yr = Y/Ỹ is
computed, and relative luminance values are then mapped to displayable [0,1]
pixel intensities D using the following function:

D =
αYr

1 + αYr
, (1)

where α is a constant of the mapping, which is called the key value. Finally, the
original R,G, B values are scaled by D/Y (Fig. 6). The exact key value α can be
left as a user choice, or it can be estimated automatically based on the relations
between minimum, maximum, and average luminance in the scene [26].

Original image Tone mapped image

Fig. 6. Tone mapping results using α = 1.8 key.

Tone mapping requires two image filters, the first one computes the average
luminance, the second scales the colors of pixels independently.

Machine Vision Methods in Computer Games 11

5.3 Depth of field

Computer graphics generally implicitly uses the pinhole camera model . Only a
single ray emanating from each point in the scene is allowed to pass through the
pinhole, thus only a single ray hits the imaging plane at any given point. This
creates an image that is always in focus. In the real world, however, all lenses
have finite dimensions and let through rays coming from different directions. As
a result, parts of the scene are sharp only if they are located at a specific focal
distance. Let us denote the focal length of the lens by f , the lens diameter by D.

D

image plane lens

r

r
circle of
confusion

d

k t

object

object
in focus

Fig. 7. Image creation of real lens.

It is known from geometric optics (see Figure 7) that if the focal length of a
lens is f and an object point is at distance t from the lens, then the corresponding
image point will be in sharp focus on an image plane at distance k behind the
lens, where f, t, and k satisfy the following equation:

1
f

=
1
k

+
1
t
. (2)

If the image plane is not at proper distance k, but at distance d as in Figure 7,
then the object point is mapped onto a circle of radius r:

r =
|k − d|

k

D

2
. (3)

This circle is called the circle of confusion corresponding to the given object
point. It expresses that the color of the object point affects the color of not only
a single pixel but all pixels falling into the circle.

A given camera setting can be specified in the same way as in real life by
the aperture number a and the focal distance P , which is the distance of those
objects from the lens, which appear in sharp focus (not to be confused with the
focal length of the lens). The focal distance and the distance of the image plane
also satisfy the basic relation of the geometric optics, thus the radius of the circle

12 Szirmay-Kalos

of confusion can also be obtained from the distance of the focal plane and the
object:

1
f

=
1
d

+
1
P

=⇒ r =
∣∣∣∣
1
t
− 1

P

∣∣∣∣
D

2d
.

Fig. 8. The Moria game with (left) and without (right) the depth of field effect.

This is also a non-linear image filtering using not only the color but also the
depth information. The neighborhood of a pixel is visited and the difference of
the reciprocal of the depth and of the focal distance is evaluated. Depending on
this, the color of that pixel is blurred into the current one. (Figure 8).

5.4 Deferred shading

The classical incremental rendering algorithm processes objects one by one, in
an arbitrary order. An object is transformed to screen space, then projected
onto the screen, and finally the projection is rasterized. When a pixel is visited
during rasterization, the corresponding point on the object is illuminated. For
each pixel, the color of this object is composited with the content of the frame
buffer using the depth buffer algorithm, alpha blending, none of them, or both.
Thus, a general pseudo-code for incremental rendering is:

depthbuffer = infinity;

for each object

color = 0;

for each light source

color += Illuminate(object, light);

colorbuffer = DepthComp(color);

The computational complexity of this approach is proportional to the product
of the number of lights and the number of objects. Note that this approach might

Machine Vision Methods in Computer Games 13

needlessly compute the color of an object point, since the computed color could
be ignored during compositing.

In order to reduce the computational complexity, deferred shading decom-
poses the rendering process to two different phases. In the first phase only ge-
ometry operations are executed without illumination, and in the second phase
lighting is performed but for only those points that have been reported to be
visible in the first phase. The result of the first phase should include all data
needed by later illumination computation. These data are stored in and image
called the G-buffer. In the second phase a single viewport sized quad is rendered
and the color is computed for every pixel of the G-buffer. The pseudo-code of
deferred shading is

depthbuffer = infinity;

colorbuffer = 0;

for each object

G-buffer = DepthComp(object’s geometry data);

for each light source

colorbuffer += Illumination(G-buffer, light);

Deferred shading reduces the computational complexity from the product of
the number of objects and of the number of light sources to their sum. From
the point of view of the implementation, deferred shading is an image processing
algorithm that transforms pixels’ geometry data to color data.

5.5 Image space rendering methods

As image processing is a Single Algorithm Multiple Data (SAMD) method that
computes an output image using textures, if the texture data is considered as
the definition of the virtual world, image processing gets equivalent to rendering.
Indeed, if we encode the world in textures, then sending a single viewport sized
quad down the pipeline we can obtain an image. This is the basic idea of image
space rendering algorithms.

In image space rendering methods, the scene is stored in textures. A texture is
a 1, 2 or 3D array of four-element vectors (r,g,b,a), thus a general data structure
storing, for example, triangles, should be translated to these arrays. On the other
hand, it is also possible to store geometry in representations other than triangle
meshes. The popular representations are the following:

– Voxel array [5], which samples the 3D space at a regular grid and specifies
a density v at each grid point. Between the grid points we assume that the
density can be obtained with tri-linear interpolation. Then, the iso-surface
of the object is defined by equation v(x, y, z) = i where i is the iso-value [6].

– Geometry image [12, 4] is a pair of two 2D textures that store the 3D loca-
tions and normal vectors at those points that are mapped to texel centers.

– Depth or distance map [35] stores the distances of points sampled by a 2D
camera window from an eye position. The depth map used in shadow algo-
rithms is a classical example of this [30].

14 Szirmay-Kalos

– Height field [33] is a 2D texture storing the distance to a planar surface.
– Distance field [19] is similar to the voxel array, but here we store the distance

to the surface at the grid points.

As the fragment shader program is responsible for the calculation of the
color of this pixel, any kind of ray-tracing like algorithm can be implemented
(Figure 9).

triangle mesh RT [31] isosurface RT [6] distance field RT[19]

distance map RT [35] height field RT [33] volume RT

Fig. 9. Images rendered with ray-tracing (RT) different geometric representations.

6 Conclusions

In this paper we reviewed game components like the incremental rendering
pipeline and the GPU as its hardware implementation, and discussed what kind
of roles image processing and machine vision algorithms have. From another
point of view, we also emphasized that vision can also benefit from this archi-
tecture. We can also observe a convergence of image processing and rendering
methods, due to the fact that image processing is a SAMD type problem and
the last stage of GPUs is also a SAMD machine.

Machine Vision Methods in Computer Games 15

References

1. T. Szirányi A. Licsár. User-adaptive hand gesture recognition system with inter-
active training. Image and Vision Computing, 23(12):1102–1114, 2005.

2. Gy. Antal and L. Szirmay-Kalos. Fast evaluation of subdivision surfaces on Di-
rect3D 10 graphics hardware. In Wolfgang Engel, editor, ShaderX 6: Advanced
Rendering Techniques, pages 5–16. Charles River Media, 2008.

3. William Baxter and Ken ichi Anjyo. Latent doodle space. Computer Graphics
Forum, 25(3):477–485, 2006.

4. N. Carr, J. Hoberock, K. Crane, and J. Hart. Fast GPU ray tracing of dynamic
meshes using geometry images. In Graphics Interface 2006, pages 203–209, 2006.

5. Balázs Csébfalvi and Eduard Gröller. Interactive volume rendering based on a
”bubble model”. In Graphics interface 2001, pages 209–216, 2001.

6. B. Domonkos, A. Egri, T. Fóris, T. Juhász, and L. Szirmay-Kalos. Isosurface
ray-casting for autostereoscopic displays. In Proceedings of WSCG, pages 31–38,
2007.

7. Funge. Artificial Intelligence for Computer Games: An Introduction. A K Peters,
2004.

8. I. Garcia, M. Sbert, and L. Szirmay-Kalos. Leaf cluster impostors for tree rendering
with parallax. In Eurographics Conference. Short papers., 2005.

9. D. M. Gavrila. The visual analysis of human movement: a survey. Comput. Vis.
Image Underst., 73(1):82–98, 1999.

10. Micheal Gleicher. Comparing constraint-based motion editing methods. Graph.
Models, 63(2):107–134, 2001.

11. S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In SIG-
GRAPH 96, pages 43–56, 1996.

12. Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, pages 355–361, 2002.

13. M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-time ray-
casting and advanced shading of discrete isosurfaces. Computer Graphics Forum
(Eurographics ’05), 22(3):303–312, 2005.

14. Perttu Hämäläinen, Tommi Ilmonen, Johanna Höysniemi, Mikko Lindholm, and
Ari Nykänen. Martial arts in artificial reality. In CHI ’05: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 781–790, New
York, NY, USA, 2005. ACM.

15. Zsolt Jankó, Dmitry Chetverikov, and Anikó Ekárt. Using genetic algorithms
in computer vision: Registering images to 3D surface model. Acta Cybernetica,
18(2):193–212, 2007.

16. Vivek Kwatra and Li-Yi Wei. Example-based texture synthesis. In SIGGRAPH’07
Course notes, 2007. http://www.cs.unc.edu/˜kwatra/SIG07 TextureSynthesis/.

17. Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.
Pollard. Interactive control of avatars animated with human motion data. ACM
Trans. Graph., 21(3):491–500, 2002.

18. M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96, pages 31–42,
1996.

19. Gábor Liktor. Ray tracing implicit surfaces on the GPU. In Central European
Seminar on Computer Graphics, CESCG ’08, 2008.

20. Milán Magdics. Formal grammar based geometry synthesis on the GPU using the
geometry shader. In KÉPAF: 7th Conference of the Hungarian Association for
Image Processing and Pattern Recognition, 2009.

16 Szirmay-Kalos

21. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid control
using the adjoint method. In SIGGRAPH ’04, pages 449–456, 2004.

22. Paul Merrell. Example-based model synthesis. In I3D ’07: Proceedings of the 2007
symposium on Interactive 3D graphics and games, pages 105–112, New York, NY,
USA, 2007. ACM.

23. Greg Mori and Jitendra Malik. Estimating human body configurations using shape
context matching. In ECCV ’02: Proceedings of the 7th European Conference on
Computer Vision-Part III, pages 666–680, London, UK, 2002. Springer-Verlag.

24. Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based proce-
dural modeling of facades. ACM Trans. Graph., 26(3):85, 2007.

25. Zoltán Prohászka and Andor Kerti. Development of the GPU based gpCV++
image processing library. In IV. Magyar Számı́tógépes Grafika és Geometria Kon-
ferencia, pages 102–107, 2007.

26. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec. High Dynamic Range Imag-
ing. Morgan Kaufmann, 2006.

27. Liu Ren, Gregory Shakhnarovich, Jessica Hodgins, Hanspeter Pfister, and Paul
Viola. Learning silhouette features for control of human motion. ACM Transactions
on Graphics, 24(4):1303–1331, 2005.

28. Romer Rosales, Matheen Siddiqui, Jonathan Alon, and Stan Sclaroff. Estimating
3D body pose using uncalibrated cameras. Technical report, Boston, MA, USA,
2001.

29. Takaaki Shiratori and Jessica K. Hodgins. Accelerometer-based user interfaces for
the control of a physically simulated character. In SIGGRAPH Asia ’08: ACM
SIGGRAPH Asia 2008 papers, pages 1–9, 2008.

30. László Szécsi. Alias-free hard shadows with geometry maps. In Wolfgang Engel,
editor, ShaderX5: Advanced Rendering Techniques, pages 219–237. Charles River
Media, 2007.

31. László Szécsi and Kristóf Ralovich. Loose kd-trees on the GPU. In IV. Magyar
Számı́tógépes Grafika és Geometria Konferencia, pages 94–101, 2007.

32. L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based Techniques for Global
Illumination Effects. Morgan and Claypool Publishers, San Rafael, USA, 2008.

33. L. Szirmay-Kalos and T. Umenhoffer. Displacement mapping on the GPU - State
of the Art. Computer Graphics Forum, 27(1), 2008.

34. I. Szita and A. Lorincz. Learning to play using low-complexity rule-based policies:
Illustrations through Ms. Pac-Man. Image and Vision Computing, 30:659–684,
2007.

35. T. Umenhoffer, G. Patow, and L. Szirmay-Kalos. Robust multiple specular reflec-
tions and refractions. In Hubert Nguyen, editor, GPU Gems 3, pages 387–407.
Addison-Wesley, 2007.

36. T. Umenhoffer, L. Szirmay-Kalos, and G. Szijártó. Spherical billboards and their
application to rendering explosions. In Graphics Interface, pages 57–64, 2006.

37. T. Várady, R. Martin, and J. Cox. Reverse engineering of geometric models - an
introduction. Computer-Aided Design, 29(4):255–268, 1997.

38. Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. Articulated mesh
animation from multi-view silhouettes. ACM Trans. Graph., 27(3):1–9, 2008.

39. Chuang Y., Goldman D., Zheng K., Curless B., Salesin D., and Seliski R. Animat-
ing pictures with stochastic motion textures. In SIGGRAPH’05, pages 853–860,
2005.

40. Kertész Zsolt and Loványi István. 3D motion capture methods for pathological and
non-pathological human motion analysis. In 2nd Information and Communication
Technologies, 2006. ICTTA ’06., pages 1062–1067, 2006.

