Adaptív bilaterális szűrés PET rekonstrukcióhoz

Tóth Balázs¹, Papp László², Jakab Gábor², Patay Gergely², and Szirmay-Kalos László¹

> ¹ Budapesti Műszaki és Gazdaságtudományi Egyetem szirmay@iit.bme.hu ² Mediso Kft., laszlo.papp@mediso.hu

Kivonat A becsült aktivitás eloszlás szűrése az iteratív Pozitron Emissziós Tomográfia (PET) rekonstrukció során több szempontból is előnyös. A túlillesztés miatt keletkező nagyfrekvenciás komponensek kiszűrése miatt regularizációs hatása van, illetve a vetítések során keletkező zajok elnyomásával nő a számítások numerikus stabilitása. Az alkalmazott szűrési sémának azonban meg kell felelnie néhány kritériumnak: meg kell őriznie a valódi aktivitást, nem szabad az éles éleket elmosnia, de ki kell tudnia szűrni a zajokból eredő hibákat. Az egyik lehetséges szűrő, amely megfelel a követelményeinknek a bilaterális szűrő. A szűrő alkalmazását nehezíti, hogy szükséges hozzá az aktivitás lokális szórásának ismerete, amely a rekonstrukció során nem áll rendelkezésünkre. Ez a probléma az általunk javasolt módszerrel feloldhatóvá válik. A javasolt statisztikai alapú szűrő a rekonstrukció során előállított aktivitás eloszlás lokális tulajdonságai alapján képes meghatározni az optimális szórást. A cikkünkben bemutatjuk, hogy a javasolt megoldás kedvezőbb tulajdonságokkal rendelkezik, mint a klasszikus Gauss szűrő alkalmazása, melyet egy egyszerűsített 2D PET modellben és egy valószerű, 3D humán PET rekonstrukcióban egyaránt demonstrálunk.

1.. Bevezetés

¹ Az iteratív PET rekonstrukció eredménye az előrevetítő és visszavetítő lépések egymás utáni sorozatos alkalmazásából áll elő. Az előrevetítő lépés számítja ki az aktuális $x(\boldsymbol{v})$ aktivitás becslés, azaz a \boldsymbol{v} középpontú egységnyi térfogatban történt bomlások száma alapján a detektor párokban (LOR-okban) mért foton találatok $\tilde{\boldsymbol{y}} = (\tilde{y}_1, \ldots, \tilde{y}_{N_{\text{LOR}}})$ várható számát. A visszavetítő lépés a LOR-okban mért és a becsült találatok száma alapján módosítja az aktivitás eloszlás becslését. Az aktivitás eloszlás az egyes voxelekben $\mathbf{x} = (x_1, \ldots, x_{N_{\text{voxel}}})$ -ként írható le. Az voxelek és a LOR-ok közötti kapcsolatot az \mathbf{A}_{LV} rendszermátrix írja le, amely minden eleme megadja annak a valószínűségét, hogy az adott V voxelben keletkező fotonpárt az adott L LOR-ban detektáljuk.

Az ML-EM séma azokat a voxel együtthatókat keresi, amelyekkel annak a valószínűsége, hogy a mérés eredménye $\mathbf{y} = (y_1, \ldots, y_{N_{\text{LOR}}})$ a legnagyobb. Az

¹ Ez a cikk a 2014. évi Molecular Imaging Congress publikáció magyarra fordított változata

egyes iterációk során az $x_V^{(n)}$ eloszlás becslést az s_V faktorral skálázzuk, amely a mért és az *n*-edik iterációban becsült LOR értékekből az alábbiak szerint számítható ki [8]:

$$x_V^{(n+1)} = x_V^{(n)} \cdot s_V, \text{ abol } s_V = \mathcal{B}(\tilde{\mathbf{y}}) = \frac{\sum_L \mathbf{A}_{LV} \frac{y_L}{\tilde{y}_L}}{\sum_L \mathbf{A}_{LV}}.$$
 (1)

A \mathcal{B} művelet a visszavetítés művelete. A rekonstrukciós algoritmus értelmezhető szabályozási körként is (1. ábra), amely a visszavetítés mellett az alábbi előrevetítő lépést is tartalmazza:

$$\tilde{y}_L = \mathcal{F}(\mathbf{x}) = \sum_{V=1}^{N_{\text{voxel}}} \mathbf{A}_{LV} x_V.$$

1. ábra. A rekonstrukció szabályozási körként. Az \mathcal{F} előrevetítés számítja ki a LOR-okban az \tilde{y}_L várható beütésszámot az $x_V^{(n)}$ voxel értékekből. A \mathcal{B} visszavetítés az s_V skálafaktorokat az y_L/\tilde{y}_L arány alapján határozza meg minden egyes voxelre.

A szabályozási kör akkor stabil, ha $\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)}$, azaz ha az s_V skálafaktorok értéke 1. Ez **x**-re az alábbi egyenlet megoldásával egyenértékű:

$$\mathcal{B}(\mathcal{F}(\mathbf{x})) = 1. \tag{2}$$

A szűrés beillesztésére a szabályozási körbe több javaslat is fellelhető az irodalomban [9,3], amely ekvivalensnek bizonyult az ún. szita módszerrel. E módszer az ML-EM séma megoldását egy sávkorlátos altérre szűkíti le [10,11,16]. Az előszűrés hatásának vizsgálatához illesszük be a \mathcal{G} szűrés műveletét az \mathcal{F} előrevetítés elé a rekonstrukciós hurokba (2. ábra). A \mathcal{G} szűrés valójában egy leképzést valósít meg az iterációk során előállított x_V aktivitás becslés és az \hat{x}_V szűrt értékek között. A módosított rekonstrukciós séma is abban az esetben stabil, ha az s_V skálafaktorok értéke 1. Ennek megfelelően

$$s_V = \mathcal{B}(\mathcal{F}(\hat{\mathbf{x}})) = \mathcal{B}(\mathcal{F}(\mathcal{G}(\mathbf{x}))) = 1.$$

Az $\hat{\mathbf{x}}$ -re kapott egyenlet megegyezik az eredeti (2. egyenlet) összefüggéssel \mathbf{x} -re, azaz ha feltételezzük, hogy $\hat{\mathbf{x}}$ a szabályozott rendszer kimenete, akkor a módosított rendszer hasonlóképpen viselkedik, mint az eredeti rendszerünk abban

2. ábra. A módosított rekonstrukciós hurok. Az \mathcal{F} előrevetítés számítja ki a LOR-okban \tilde{y}_L várható beütésszámot az \hat{x}_V szűrt voxel értékekből, amelyek az előző iteráció $x_V^{(n)}$ eredményéből a javasolt \mathcal{G} szűrő alkalmazásával állítható elő. A \mathcal{B} visszavetítés az s_V skála faktorokat az y_L/\tilde{y}_L arány alapján határozza meg minden egyes voxelre.

az esetben, ha az eredmény a becsült **x** aktivitás eloszlás szűrésével leírható. Esetünkben x és \hat{x} is diszkrét mintákként adottak, így az alkalmazott szűrésnek sávkorlátozottnak kell lennie, amely nem teszi lehetővé tetszőleges függvény alkalmazását a \hat{x} kimenet előállításához. A módosított iterációs hurok a voxelmintákkal reprezentált x szűréseként előálló \hat{x} megoldásokhoz konvergálhat. Ennek eredményeképp a keresési tér limitálttá válik, vagyis a szűrés beépítése regularizációként működik.

Az aluláteresztő szűrők, mint a Gauss szűrő, a túlillesztés miatt keletkező nagyfrekvenciás komponensek kiszűrésével jó hatással vannak a regularizációra, azonban ezzel egyidejűleg a határozott élek elmosásával rontják a rekonstrukció minőségét. A képminőség megőrzésére kínál megoldást a *bilaterális szűrő* alkalmazása [15,7], amely egy nemlineáris, élmegtartó, zajcsökkentő és simító szűrés képekhez. A lineáris szűrőkkel ellentétben a súlyok nem kizárólag a voxelek euklideszi távolságától függnek, hanem az értékek különbségétől is, mely PET esetén a bomlássűrűségbeli eltérést jelenti. A súlyok beállítása tehát a szomszéd voxeleknek megfelelően történik, így megőrizhetőek az erős élek.

Az x(v) bilaterális szűrésének képlete:

$$\hat{x}(\boldsymbol{v}') = \frac{\int G_{\sigma}(||\boldsymbol{v} - \boldsymbol{v}'||)G_{\xi}(x(\boldsymbol{v}) - x(\boldsymbol{v}'))x(\boldsymbol{v})\mathrm{d}\boldsymbol{v}}{\int G_{\sigma}(||\boldsymbol{v} - \boldsymbol{v}'||)G_{\xi}(x(\boldsymbol{v}) - x(\boldsymbol{v}'))\mathrm{d}\boldsymbol{v}}$$

ahol G_{λ} azt az egydimenziós Gauss függvényt jelöli, amelynek szórása λ . Az elmosás mértékét a σ térbeli szórás paraméter adja meg, a részletek megtartását a ξ intenzitástartománybeli szórás paraméter befolyásolja. Az intenzitás függő Gauss súlyozás biztosítja, hogy azok a voxelek, amelyek egy ugrásfüggvény azonos oldalán helyezkednek el mint a \boldsymbol{v}' szűrt voxel nagyobb hozzájárulással szerepelnek a végeredményben, mint azok a voxelek amelyek az él másik oldalán helyezkednek el. A szűrés így jobban megtartja az éleket, mint az egyszerű Gauss szűrő. A megfelelő ξ intenzitástartománybeli szórás meghatározása azonban nem magától értetődő, hiszen az intenzitástartomány függ a mért objektumtól.

Az általunk javasolt megoldás az intenzitás tartománybeli szórást statisztikai alapon állapítja meg a rekonstrukció során, így érve el az optimális szórás paraméter beállítását.

2.. Az új módszer

Az általunk javasolt új módszer egyszerű szűrések segítségével állapítja meg az intenzitástartománybeli szórást az egyes voxelekben, amely segítségével a bilaterális szűrés a voxeltér minden pontjában optimális paraméterekkel hajtható végre. Az egyes lépéseket az alábbi zajjal terhelt 1D ugrásfüggvényen mutatjuk be (3. ábra):

1. Az a(v) térbeli átlagos aktivitás számítása szeparálható Gauss függvénnyel végzett konvolúcióval történhet (a továbbiakban a konvulúció jelölésére a * operátor szolgál):

$$a(\boldsymbol{v}) = x(\boldsymbol{v}) * G_{\sigma}.$$

A konvolúció eredményeként kapott a(v) térbeli átlag mentes a nagyfrekvenciás zajoktól, azonban a valódi átmenetnél található él is el lesz mosva.

2. Meghatározzuk a jel és annak átlaga közötti különbségnek a szórását. A szórás meghatározását a Gauss függvénnyel végzett konvolúcióval végezhetjük:

$$d(\boldsymbol{v}) = \sqrt{(x(\boldsymbol{v}) - a(\boldsymbol{v}))^2 * G_{\sigma} - ((x(\boldsymbol{v}) - a(\boldsymbol{v})) * G_{\sigma})^2}.$$

A különbség szórása az élek és a jel jelentős változásainak helyétől eltekintve nagyjából konstans, így a szórás alkalmas ezek meghatározására.

3. Meghatározzuk a szórás maximumát:

$$d_{\max} = \max d(\boldsymbol{v})$$

4. A tértartománybeli szórás és annak maximuma alapján meghatározzuk a tér minden pontjában a lokális simaságot:

$$i(\boldsymbol{v}) = \left(1 - \frac{d(\boldsymbol{v})}{d_{\max}}\right)^{\alpha} * G_{\sigma},$$

ahol az α paraméter befolyásolja az élek megtartását. A lokális simaság értéke a [0, 1] intervallumba esik, a jelentős változások környékén nulla közeli értéket vesz fel. Azokon a helyeken, ahol az eredeti jel sima és közel konstans, ott a lokális simaság értéke közel lesz egyhez.

5. Az utolsó lépés a bilaterális szűrés végrehajtása az eredeti jelen. A szűréshez szükséges intenzitástartománybeli szórást $\xi(\boldsymbol{v}) = \beta d(\boldsymbol{v})i(\boldsymbol{v})$ -ként határozzuk meg, ahol $d(\boldsymbol{v})$ a tértartománybeli szórás, $i(\boldsymbol{v})$ az intenzitástartománybeli lokális simaság és β a felhasználó által beállított szűrési erősség. Megjegyezzük, hogy stacionárius folyamat esetén a szórás megegyezne a tértartománybeli szórással $(d(\boldsymbol{v}))$, azonban ez túlbecsülné azokon a helyeken, ahol az eredeti jelben változások vannak. Ennek elkerülése érdekében módosítjuk a szórást a simasági paraméter alapján.

Az első, másodk és negyedik lépés megvalósítható egyszerű Gauss szűrővel, amely szeparálható függvény lévén hatékonyan implementálható GPGPU környezetben [14]. A harmadik lépésben a maximum keresésére szintén létezik hatékony párhuzamos algoritmus. A javasolt algoritmus legköltségesebb lépése a bilaterális szűrés végrehajtása, amely nem szeparálható függvény, így a szükséges műveletek száma a szűrendő térfogat dimenziónkénti kiterjedésének szorzatával arányos.

4

3. ábra. A statisztikai szűrés egymás után végrehajtott lépéseinek eredménye. A szűrendő jel egy Perlin zajjal [6] terhelt 1D ugrásfüggvény. A szűrő paramétereiként a $\sigma = 15, \alpha = 3$ és $\beta = 5$ értékeket választottuk. Az átlagot a Gauss függvénnyel vett konvolúció segítségével határoztuk meg, amely jelentősen csökkenti a zajt, azonban az eredeti jel lényeges változásait is elmossa. A számított simasági paraméter kis értékeket vesz fel az ugrás környezetében, így megakadályozza az él elmosását.

3.. Eredmények: 2D PET modell

A javasolt algoritmust hatékonyságát először egy egyszerű 2D PET modellen [13] mutatjuk be, ahol $N_{\rm LOR} = 2115$ és $N_{\rm voxel} = 1024$ (4. ábra).

4. ábra. 2D tomográf modell: A detektor gyűrű 90 detektor kristályt tartalmaz, amelyek mérete egyenként 2,2 voxelnyi és összesen 47 LOR valamely végpontjaként szerepel a modellben. A teljes LOR szám a modellünkben ezek alapján 90 × 47/2 = 2115. A rekonstruálandó voxel tömb a gyűrű közepén helyezkedik el, kiterjedése 32 × 32, azaz 1024 voxel. Az eredeti Három Négyzet fantom három eltérő méretű és aktivitású meleg foltot tartalmaz. A négyzetek aktivitása 1, 4 és 16, a kiterjedésük 8², 4², and 2² voxel.

A javasolt algoritmust négy lényegesen eltérő tulajdonságokkal rendelkező fantomon mutatjuk be:

- Három Négyzet fantom, amely minden egyes meleg foltja 64 Bq aktivitást tartalmaz.
- Három Piramis fantom, amelyben a konstans négyzetek folytonosan változó aktivitásúakra lettek cserélve.
- *Pontforrás* fantom, amely meleg foltja egyetlen voxel kiterjedésű és 20 Bq aktivitást tartalmaz.
- Homogenitás fantom, amely négy eltérő aktivitású homogén régiót tartalmaz. Az fantom összaktivitása $2 \cdot 10^4$ Bq.

A fantomok alapján a méréseket Monte Carlo részecske transzport szimulációval állítottuk elő, a szimulált részecskék száma 5 másodperig tatró mérésnek felelt meg mindegyik fantom esetén (5. ábra). A Három Négyzet és Három Piramis fantomok esetén 1000 fotonpárt, a Pontforrás fantom esetén 100 fotonpárt és a Homogenitás fantom esetében 10^5 fotonpár szimulációjára került sor. A mérések eredményének jel-zaj viszonya (SNR) a Három Négyzet fantom esetén

Három Négyzet

5. ábra. A méréshez alkalmazott négy fantom, a mérések szinogramja és a regularizáció nélküli rekonstrukciók eredménye.

1,21, a Pontforrás fantom esetén 1,07 és a Homogenitás fantom esetében 1,69. A szimuláció során csak a geometriai hatásokat szimuláltuk, az elnyelődés és szóródás hatását elhanyagoltuk. A fantomok közül a Pontforrás és a Homogenitás fantom a szélsőséges aktivitás eloszlásokat szimulálja. A Pontforrás csak egyetlen voxelben tartalmaz aktivitást, így az aktivitás eloszlás variációja nagy. Az aktivitás mérésének eredménye jól határozott lesz, így a rekonstrukciójához nincs szükség regularizációra, sőt a regularizáció alkalmazása lassítja a rekonstrukció konvergenciáját. A Homogenitás fantom esetében az aktivitás eloszlása egyenletes, hiszen a fanom négy eltérő aktivitású homogén régiót tartalmaz. A szimuláció eredménye a Homogenitás fantom esetén erősen zajos lesz, így regularizáció nélkül a rekonstrukciója nehézkes. A Három Négyzet és Három Piramis fantomok a valódi mérések során előforduló aktivitás eloszlást szimulálják.

6. ábra. A Három Négyzet fantom rekonstrukciójának L_2 hibája $\sigma = 1, \alpha = 2$ és $\beta = 5$ paraméterek esetén.

A Három Négyzet fantom mérésének rekonstrukcióit az 6. és 10. ábrákon mutatjuk be. A rekonstrukciók paraméterei $\sigma = 1$, $\alpha = 2$ és $\beta = 5$ voltak. A szűrés nélküli rekonstrukció erősen zajjal terhelt, míg a Gauss szűrés erőteljes elkenést okoz. A bilaterális szűrés jó kompromisszum a két előbbi eset között. A hibagörbék tanúsága szerint a szűrés nélküli változatban a rekonstrukciós hiba kezdetben gyorsan csökken, azonban a későbbi iterációkban a túlillesztésből kifolyólag nő. A Gauss szűrés lassítja vagy akár meg is rekeszti a konvergenciát, cserébe megszűnteti a rekonstrukció divergenciáját. A bilaterális szűré kezdeti konvergenciasebessége a szűrés nélküli esethez hasonló, azonban a hiba tovább csökken és a túlillesztésből adódó divergencia is kevésbé jelentős.

7. ábra. A Három Piramis fantom rekonstrukciójának L_2 hibája $\sigma=1,\,\alpha=1$ paraméterek esetén.

8. ábra. A Pontforrás fantom rekonstrukciójának L_2 hibája $\sigma=1,~\alpha=1$ paraméterek esetén.

9. ábra. A Homogenitás fantom rekonstrukciójának L_2 hibája $\sigma=1,\,\alpha=1$ paraméterek esetén.

10. ábra. A Három Négyzet fantom rekonstrukciója.

11. ábra. A Három Piramis fantom rekonstrukciója.

12. ábra. A Pontforrás fantom rekonstrukciója.

13. ábra. A Homogenitás fantom renkonstrukciója.

A Három Piramis, Pontforrás és Homogeintás fantomok rekonstrukcióinak eredményei az 7–9. és 11–13. ábrákon láthatóak. A rekonstrukciók paraméterei $\sigma = 1, \alpha = 1$ és kettő eltérő értékű β voltak. Az eredményeken jól látható, hogy a Gauss szűrés nem csak a mérés és a rekonstrukció pontatlanságaiból fakadó zajt szűrte ki, hanem a valódi jelet is elmosta. Ezzel szemben a Bilaterális szűrő a fantomok éleit megőrizve nyomta el a mérésből fakadó nagyfrekvenciás zajt. A hibagörbék a rekonstrukció szűrés előtti állapotának hibáját is mutatják. Megjegyezzük, hogy ez a becslés nem a rekonstrukció valódi eredménye, hanem a rekonstrukció élesített változatának tekinthető. Az élesített változat kezdetben gyorsabban konvergál, de később rosszabb viselkedést mutat a szűrt jelnél. A Pontforrás jó statisztikájú mérés melynek pontos rekonstrukciójához nincs szükség regularizációra, így a Gauss szűrés erős elkenést okoz és befagyasztja a konvergenciát néhány iterációs lépés után. A bilaterális szűrő ezzel szemben a szűrés nélküli esethez hasonló eredményeket ad. Mind a Három Piramis, mind a Homogenitás fantomok rekonstrukciójához regularizációra van szükség, így sok iterációt tekintve még a Gauss szűrés is segít, de a kezdeti konvergenciasebessége lassabb, mint a szűrés nélkül vagy a bilaterális szűrés alkalmazásával kapott módszeré. Mivel ez utóbbiak a túlillesztés kiküszöbölésében rosszabbak, ezért amennyiben az iterációt nem termináljuk időben, a Gauss szűrés végül jobb eredményt ad, mint az a Homogenitás fantom rekonstrukciójánál is megfigyelhető.

4.. Eredmények: 3D rekonstrukció

A javasolt algoritmus CUDA implementációját beépítettük a TeraTomoTM 3D rekonstrukciós rendszerbe [1,12]. A grafikus hardver nagy számítási teljesítményének és memória-sávszélességének köszönhetően a javasolt szűrő az előrevetítő és visszavetítő operátorokhoz képest elhanyagolható időráfordítással hajtható végre még nagyfelbontású rekonstruált térfogatok esetén is.

14. ábra. A Humán IQ fantom rekonstrukciójána hibagörbéje.

15. ábra. A Humán IQ fantom rekonstrukciója.

A javasolt módszerünket a NEMA NU2-2007 fantom rekonstrukcióján keresztül mutatjuk be. A mérést a Mediso AnyScan PET/CT rendszer paraméterei alapján a GATE szimulációs rendszer segítségével állítottuk elő. A renkonstrukciók eredményeit a 15 ábrán mutatjuk be. Az ábrákból jól látható, hogy a javasolt

12

adaptív bilaterális szűrés a Gauss szűrés eredményének alacsony zaját a szűrés nélküli rekonstrukció nagy kontrasztarányának megőrzésével együtt képes előállítani.

5.. Összefoglalás

Cikkünkben az iteratív PET rekonstrukciós algoritmusok regularizációjára javasoltunk egy adaptív, statisztikai alapú szűrő módszert. A javasolt szűrő a bilaterális szűrésre épít, azonban a klasszikus megoldásokkal szemben képes az optimális intenzitástartománybeli szórás automatikus meghatározására. A javasolt algoritmus minimális járulékos futási idővel, teljes egészében implementálható a grafikus hardveren.

Köszönetnyilvánítás

A témában folyó kutatást az OTKA K–104476 támogatta.

Hivatkozások

- 1. M. Magdics et al. TeraTomo project: a fully 3D GPU based reconstruction code for exploiting the imaging capability of the NanoPET/CT system. In *World Molecular Imaging Congress*, 2010.
- S. Jan and et al. GATE: A simulation toolkit for PET and SPECT. Physics in Medicine and Biology, 49(19):4543-4561, 2004.
- M. Magdics, L. Szirmay-Kalos, B. Tóth, and T. Umenhoffer. Filtered sampling for PET. In IEEE Nuclear Science Symposium Conference Record (NSS/MIC), 2012.
- $4. \ http://www.mediso.com/products.php?fid=1,9\&pid=73.$
- $5. \ http://www.mediso.com/products.php?fid{=}2,11\&pid{=}86.$
- 6. K. Perlin. An image synthetisizer. In Computer Graphics, pages 287–296, 1985.
- I. Rodrigues, J. Sanches, and J. Bioucas-Dias. Denoising of medical images corrupted by poisson noise. In 15th IEEE International Conference on Image Processing, 2008. ICIP 2008., pages 1756-1759, 2008.
- L. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography. *IEEE Trans. Med. Imaging*, 1:113-122, 1982.
- E.T.P. Slijpen and R. J. Beekman. Comparison of post-filtering and filtering between iterations for SPECT reconstruction. *IEEE Trans. Nuc. Sci.*, 46(6):2233-2238, 1999.
- D. L. Snyder and M.I. Miller. The use of sieves to stabilize images produced with the em algorithm for emission tomography. *IEEE Trans. on Nuc. Sci.*, 32(5):3864– 3872, 1985.
- D. L. Snyder, M.I. Miller, L. J. Thomas, and D.G. Politte. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. *IEEE Trans. on Med. Imaging*, 6(3):228-238, 1987.
- L. Szirmay-Kalos, M. Magdics, and B. Tóth. Multiple importance sampling for PET. *IEEE Trans. Med. Imaging*, 33(4):970-978, 2014.
- L. Szirmay-Kalos, M. Magdics, B. Tóth, and T. Bükki. Averaging and metropolis iterations for positron emission tomography. *IEEE Trans. Med. Imaging*, 32(3):589– 600, 2013.

- 14. L. Szirmay-Kalos, L. Szécsi, and M. Sbert. *GPU-Based Techniques for Global Illumination Effects*. Morgan and Claypool Publishers, San Rafael, USA, 2008.
- C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, ICCV '98, pages 839-, 1998.
- 16. E. Veklerov and J. Llacer. The feasibility of images reconstructed with the methods of sieves. *IEEE Trans. Nuc. Sci.*, 37(2):835–841, 1990.

14