
Unifying Continuous Random-Walk and Finite-Element
Based Iteration Type Global Illumination Algorithms

László Szirmay-Kalos�

Department of Control Engineering and Information Technology,
Budapest University of Technology and Economics

Budapest, P´azmány Péter s. 1/D, H-1112, HUNGARY
szirmay@iit.bme.hu

Abstract

The paper introduces a method that can combine continuous and finite-element approaches, pre-
serving the speed of finite-element based iteration and the accuracy of continuous random walks.
The basic idea is to decompose the radiance function to a finite-element component that is only a
rough estimate and to a difference component that is obtained by Monte-Carlo techniques. The clas-
sical iteration using finite-elements and random walks are handled uniformly in the framework of
stochastic iteration. This uniform treatment allows the finite-element component to be built up adap-
tively aiming at minimizing the Monte-Carlo component. The method is also suited for interactive
walkthroughs and view-animation since when the viewpoint changes, only the small Monte-Carlo
component needs to be recomputed. Using this approach quite complex scenes consisting of tens of
thousands of surface elements can be rendered in about a minute, and when the solution is available,
we can walk in the scene interactively.

Keywords: Global illumination, stochastic iteration, finite-element techniques, Monte-Carlo methods

1 Introduction

Global illumination algorithms, which aim at the physically correct simulation of the light propagation,
solve the rendering equation

L = Le + TfrL;

which expresses the radianceL(~x; !) of point~x at direction! as a sum of the emission and the reflection
of all point radiances that are visible from here. The reflection of the visible points is expressed by an
integral operator

TfrL(~x; !) =

Z

L(h(~x;�!0); !0) � fr(!
0; ~x; !) � cos �0 d!0;

which is also called as the light transport operator. In this equationh is the visibility function finding that
point which is visible from~x at direction�!0, fr is the BRDF and�0 is the angle between the surface
normal and direction�!0.

The solution of the rendering equation and the computation of an image from the radiance of the
points visible in different pixels are rather time consuming. The timing requirements become even more
prohibitive when animation sequences are needed. The computation time can be reduced if the similarity
or coherence of the radiance function in a single frame and even in multiple frames in the sequence are

�This work has been supported by the National Scientific Research Fund (OTKA ref.No.: T029135) and the Spanish-
Hungarian Fund, ref.No.: E9.

1

exploited. It means that the radiance of neighboring points in an image or in subsequent frames in the
animation are quite close thus a great portion of the illumination and visibility information can be reused
during the solution.

Global illumination algorithms can be classified as random-walk and iteration techniques.

1. Random walkalgorithms search light paths following adepth-firststrategy [15, 9, 5, 12, 25]. From
mathematical point of view, they are based on the Neumann series expansion of the rendering
equation and compute the color of a pixel as

C =
1X
i=0

MT
i
fr
Le; (1)

whereM is the measurement operator finding the radiance of the point visible in this pixel,Tfr

is the light transport operator andLe is the emission function. The terms of this series are ever
increasing high-dimensional integrals that are estimated by Monte-Carlo quadrature in order to
avoid the exponential core of classical quadrature rules. Monte-Carlo quadrature takes randomly
or quasi-randomly [10] selected discrete samples in the domain of the possible light-paths, evaluate
their contribution to the camera and obtain the final image as the average of these contributions.
The convergence of Monte-Carlo quadrature is in the order ofO(m�0:5), wherem is the number
of light paths. Quasi-Monte Carlo quadrature is faster, but for infinite dimensional domains and
for the infinite variation integrand of the rendering equation, the order of convergence is worse
than theO(m�(1��)) convergence, which could be predicted for smooth integrands [21]. Since
just discrete samples of the radiance and the geometry are needed, these methods can work with
the original geometry and require no tesselation. The samples are generated independently, thus
this approach is free from the error accumulation problem and can be run on parrallel machines
easily. The obtained result will be the asymptotically correct solution of the original problem.
Unfortunately, we have to pay a high-price for this asymptotically correct solution. Since the
paths are generated independently, the earlier results cannot be efficiently stored and reused in the
computations. On the one hand, these methods are unable to utilize the space and time coherence
of the radiance function. An exception is the Metropolis light transport [24] which obtains the new
path by perturbating the last path rather than rebuilding it from scratch. Although remembering just
the last path is a very limited knowledge of the previous paths, this trick can result in significant
performance improvements in scenes containing highly specular materials or allowing just a small
fraction of paths to have non-zero contribution. On the other hand, queries to the geometry are
unstructured, thus instead of efficient visibility methods the algorithms use ray-shooting. Note also
that in equation 1 the measurement operator that depends on the camera is included in all terms,
thus this approach is strongly view dependent. If the camera changes, the complete calculation
should be started from scratch. In their original form, random walk methods are unable to utilize
any coherence among frames thus they cannot be used in fast animation sequences.

2. Iteration techniques, on the other hand, generate paths according to abreadth-firstsearch [4, 3].
In a single step all paths are advanced once simultaneously. These techniques are based on the fact
that the solution of the rendering equation is the fixed point of the following iteration scheme

L(m) = Le + TfrL(m� 1);

thus if this scheme is convergent, then the pixel colors can be obtained as a limiting value:

C = lim
m!1

ML(m):

Iteration converges with the speed of a geometric series, i.e. the error from the limiting value
is in the order ofO(am) wherea is the contraction of integral operatorTfr . The contraction is

2

proportional to the average albedo of the surfaces and depends on how open the scene is. Note
that iteration uses the estimate of the complete radiance function, thus it can potentially exploit
coherence and reuse previous information, and can optimize geometric queries allowing fast and
hardware supported visibility algorithms. Since the complete radiance function is inserted into the
iteration formula, parallelization is not as trivial as for random walks, and the error introduced in
each step may accumulate to a large value [21]. To store the radiance estimates, finite-element
approaches should be used which represent the radiance function in a finite function series form:

L(~x; !) =
X

Lj � bj(~x; !):

Basis functionsbj are usually decomposed as a product of positional (sk(~x)) and directional basis
functions (di(!)). The positional basis functions may be either constant or linear on a patch,
while the directional basis functions can also be piece-wise constant [6], spherical harmonics [16]
or Haar functions [18]. Due to the fact that the radiance has 4 variates and changes quickly, an
accurate finite-element representation requires very many (a few million) basis functions, which
makes these algorithms both storage and time consuming. If the number of basis functions is less
than necessary, light-leaks may occur and the shadows and highlights may be placed incorrectly.
Unlike in random walks, the radiance estimatesL(m) are completely view-independent, thus when
they are available, the image can be obtained from any viewpoint. Thus iteration can potentially
exploit the coherence of frames. However, it has a high prize in terms of storage space.

Comparing random walk and iteration we can conclude that random walk requires just one light-path
to be stored while iteration needs very many variables, but random walk uses practically no coherence
information while iteration can strongly exploit it. Iteration is slow due to the handling of the very
many finite elements, while random walks are slow due to the lack of the utilization of the coherence.
Although a single iteration step requires much more computation than a single random light-path, the
O(am) convergence of iteration still seems to be far superior to theO(m�0:5) convergence of random
walks. However, random walk converges to the real solution while iteration to the solution of the finite-
element approximation of the original problem. Furthermore, if the light-transport operator is not exactly
evaluated, the limiting value is also distorted by the cumulative error. Thus only the initial behaviour of
iteration overcomes random walk. Finite-element methods are good when the radiance is smooth, i.e.
for diffuse or glossy scenes. Random walk, on the other hand, is effective when BRDF sampling can
significantly reduce the candidates of directions, that is when the surfaces are highly specular. Since
the two approaches can complement each other, their combination is a promising alternative. Multi-pass
[26, 19] approaches separately run different algorithms being good in finding different types of light-
paths, and combine their results. Two-pass methods, on the other hand, store the result of the first-phase
in some approximation form, which is then used by the view-dependent random-walk second phase.
The information of the first phase can be a radiosity solution [26], a photon-map [8], irradiance vectors
[1], i.e. incomplete light-paths that are completed by the second phase. Alternatively, the result of the
first phase can be some importance information that is used later to guide the walks towards important
regions [7, 22]. A common problem of these methods is that the computational time given to a particular
algorithm should be decided before starting the rendering and the different approaches cannot strenghten
each other on the fly. Another interesting combination of the random-walk and iteration methods occurs
in multi-path [14] algorithms. Since they were designed to solve the diffuse radiosity problem, the
original problem is projected to a finite-element base, where it is solved by a special random walk.
The speciality of this random walk is that in a single step several, but not all light-paths are advanced
simultaneously.

2 The unified approach

In this paper we present a combined approach which tries to get the benefits from both approaches in
a single pass. Intuitively, iteration is used only for those components that can be stored in a simple

3

way but which are responsible for the greater part of the radiance function. Components that would
have expensive finite-element representation, on the other hand, are estimated by Monte-Carlo method
on the fly. The method can be thought of as an adaptation strategy that automatically subdivides the
original global illumination problem into a simple finite-element problem and a low-variance Monte-
Carlo estimation problem. The Monte-Carlo part is responsible for building up the finite-element part in
order to keep itself relatively small. The finite-element part, in turn, reduces the variance of the Monte-
Carlo integration. In this way, the finite-element method and the Monte-Carlo simulation help each
other. The accuracy and the resolution of the finite-element representation is not important, since it is
only used as a rough estimate that is corrected by the Monte-Carlo simulation. Due to this and to the
adaptive evolution of the finite-element decomposition, accurate results can be obtained with relatively
few basis functions. The separation of Monte-Carlo and the finite-element part seems to be similar to
a classical variance reduction technique called the separation of the main part [17]. However, here the
main part is not known in advance, neither is it analytically integrable. In [11] this problem has been
solved by function approximation. Here the main part is generated adaptively and is integrated by a
special Monte-Carlo quadrature rule.

In order to work out the details, a formal framework is needed that can incorporate both continuous
random walks and finite-element based iterations. The formal basis is the stochastic iteration, which was
originally proposed for the solution of the linear equations obtained in the radiosity setting [13, 14, 2],
then extended for the continuous rendering equation [20]. It means that in the iteration sequence a
random transport operator is used instead of the light-transport operator, which gives back the light-
transport operator in the average case:

L(m) = Le + T
�

fr
L(m� 1); E[T �frL] = TfrL: (2)

The pixel colors are computed as an average of the estimates: of all iteration steps

C(m) =
1

m
�

mX
i=1

ML(i) =
1

m
� ML(m) +

�
1�

1

m

�
� C(m� 1):

Note that stochastic iteration can find a flexible compromise between finite-element based iteration
and random walks. If the random light transport operator is deterministic, then we get back the classical
iteration. However, if it is randomized to a degree that it uses the radiance function just in a single point
and single direction, then it gives back the random walk [20].

3 Decomposition of the radiance function

Let us decompose the radiance functionL to the emissionLe, to a reflected component~L that can be
approximated by the linear composition of the finite-elements (called thefinite-element component), and
to a reflected residuum�L(!) (called theMonte-Carlo component) that is estimated by Monte-Carlo
simulation:

L = Le + ~L+�L: (3)

Suppose that the positional and directional basis functions and the adjoint basis functions aresi(~x); dj(!)

and~si(~x); ~dj(!), respectively, thus the component approximated by the finite-elements is

~L(~x; !) =
X
i

X
j

si(~x)dj(!) � Lij ; Lij = hL� Le; ~si ~dji;

where
hu; vi =

Z
S

Z

u(~x; !) � v(~x; !) � cos � d!d~x

is the scalar product of two functions.

4

Let us substitute this decomposition into the stochastic iteration formula:

L(m) = Le + T
�

fr
L(m� 1) = Le + T

�

fr
(Le + ~L(m� 1) + �L(m� 1)):

The finite-element component is

~L(m) =
X
i

X
j

sidj � hL(m)� Le; ~si ~dji: (4)

Sincefr is the only term that depends on the output direction!, we can further obtain:

~L(m) =
X
i

si(~x) �

Z
S

T
�

~fr
L(m� 1) � ~si(~x) d~x (5)

where ~fr is the projected BRDF:

~fr(!
0; ~x; !) =

X
j

dj(!) �

Z

fr(!
0; ~x; !) � ~dj(!) � cos � d!:

For example, if piece-wise constant basis functions are used, i.e.si(~x) and ~si(~x) are1 and1=Ai

respectively if~x is in patchi and zero otherwise, anddj(!) and ~dj(!) are1 and1=
j respectively if!
is in solid angle
j and zero otherwise, then the resulting formulae are as follows:

~L(m) =
X
i

si(~x) �
1

Ai

�

Z
Ai

T
�

~fr
L(m� 1) d~x (6)

where
~fr(!

0; ~x; !) =
X
j

dj(!) �
1

j

�

Z

j

fr(!
0; ~x; !) � cos � d!:

The projected BRDF~fr can be computed in the preprocessing phase for each possible material. Note
that if a single directional basis function is used, then the projected BRDF becomes the albedo.

The Monte-Carlo component can be obtained by subtracting the emission and the finite-element
component from the reflected radiance:

�L(m) = L� Le
� ~L = T

�

fr
L(m� 1)�

X
i

si(~x) �

Z
S

T
�

~fr
L(m� 1) � si(~x) d~x:

This Monte-Carlo component should be stored until it is substituted into the iteration formula in the next
step.

4 The new algorithm

The new unified algorithm follows a stochastic iteration scheme and in each iteration step the radiance
is projected to the adjoint base and an image estimate is computed from the actual radiance. Note
that the image estimates and the projected radiance values, as stochastic iteration in general, will not
converge, but they will fluctuate around the real solution. Thus the final image is obtained as the average
of these image estimates, and the finite-element component as the average of the projected radiance
approximations. If the finite-element projection of the radiance at stepm is ~L0(m), then the finite-
element part may be derived as follows:

~L(m) =
1

m
�

mX
n=1

~L0(n) =
1

m
� ~L0(m) +

�
1�

1

m

�
� ~L(m� 1): (7)

5

The Monte-Carlo component, which is obtained as a difference between the actual radiance estimate
and its finite-element projection, is used to correct the finite-element approximation. This also means that
its behaviour in the support of a given basis function shows how accurately this basis function represents
the radiance function and whether or not it should be refined. To exploit this fact, the iteration is broken
down to phases and in each phase the variances of the Monte-Carlo components for all basis function
domains are evaluated. Then using these variances, the finite-element structure is refined and patches
and solid angles are broken down appropriately.

The complete algorithm is:

UnifiedIteration
~L(0) = 0, �L(0) = 0

for m = 1 to M do
Lr = T �fr

(Le + ~L(m� 1) + �L(m� 1))
~L0(m) = projection ofLr to an adjoint base
�L(m) = Lr � ~L0(m)
~L(m) = 1=m � ~L0(m) + (1� 1=m) � ~L(m� 1)

C(m) = 1=m � M(Le + ~L(m) + �L(m)) + (1� 1=m) � C(m� 1)

Contribute to the variancesj�Lji
if m is an end of the phase

Refine the finite-element structure based on the variancesj�Lji
Initialize the variancesj�Lji to zero

endif
endfor

end

This is a generic algorithm from which different specific versions can be built by inserting the random
transport operator, the system of basis functions and the refinement oracle. Having selected the random
transport operator and the family of basis functions, the following subproblems should be considered:

1. Temporary representation of the Monte-Carlo component�L(m) and the computation of its re-
flection to obtain the image estimate and the radiance in the next iteration cycle.

2. Refinement criterion.

5 Iterating with parallel radiance transfers

In this section a specific algorithm is discussed that transfers the radiance of all patches to a randomly
selected global direction in each iteration cycle. The basis functions will be piece-wise constant and
when refinement is necessary, the support of the given basis function is divided into four equal areas.
However, unlike other deterministic iteration techniques, this finite-element representation does not aim
at the accurate representation of the radiance, it is only for a rough approximation which is corrected by
the radiance component obtained by Monte-Carlo simulation. On the other hand, the number of basis
functions are not determined a-priori. The algorithm is started with a single constant basis function per
patch which is refined on the fly if the Monte-Carlo component turns out to be too big on this patch.

Since the algorithm transfers the radiance into a randomly selected direction!0, the random transport
operator is

Lr(~x; !) = T
�

fr
L = 4� � L(h(~x;�!0); !0) � fr(!

0; ~x; !) � cos �0:

Indeed, if the direction is sampled uniformly, then its probability density is1=4�, thus the expectation

6

of the random transport operator gives back the light transport operator as required by equation 2:

E[T �frL] =

Z

0

4� � L(h(~x;�!0); !0) � fr(!
0; ~x; !) � cos �0 �

1

4�
d!0 = TfrL:

The radiance transfer needs the identification of the mutually visible points in the global direction.
In order to solve this global visibility problem, a window is placed perpendicular to the global direction.
The window is decomposed into a number of pixels. A pixel is capable to store a list of patch indices
and z-values. Thus instead of considering all points, the visibility problem is discretized and is solved
for the pixels. The patches are rendered one after the other into the buffer using a modified z-buffer
algorithm which keeps all visible points not just the nearest one. Traversing the generated lists results a
pair of mutually visible points. For this pair of points, the radiance transfer is computed resulting in the
reflected radianceLr.

From the reflected radiance the finite-element component can be obtained by a simple averaging
operation according to equation 6. Note that if the integral is evaluated on the window, then the cosine
factor is compensated:

~L(m)ji =
1

Ai

�

Z
Ai

T
�

~fr
L(m� 1) d~x �

4� � ÆP

Ai

�
X
P

Lin(P) � ~fr(!
0; P; !): (8)

whereP runs through the pixels covering the projection of patchi, Lin(P) is the radiance of the surface
point visible in pixelP , fr(!0; P; !) is the BRDF of that point which receives this radiance coming
through pixelP andÆP is the area of the pixels.

Note that it would be straightforward to extend the method to take into account bi-directional trans-
fers, however, we discuss only the one-directional formulation for the sake of notational simplicity.

Now let us consider the specific problems of the temporary representation of the Monte-Carlo com-
ponent and the refinement criterion.

5.1 Temporary representation of the reflected component

The Monte-Carlo component�L(m) should temporarily be represented until it is included in the image
estimate and is used to obtain the reflected radiance of the consequtive iteration. Since the radiance is
transferred in a single direction through a discretized window, called transillumination buffer, snapshots
of this discretized window can serve that purpose. Suppose that each pixel stores the radiance informa-
tion arriving through the given pixel. If we are interested in the reflected radiance of a point on a triangle,
then this point is projected onto the window surface to select that pixel which stores the incoming radi-
ance information. From the incoming radiance, the outgoing radiance for any possible direction can be
obtained by multiplying with the local BRDF.

This calculations can be made fast using the incremental concept. Suppose that the outgoing radi-
ance is required for the points of a triangle to compute the radiance transfer of the image estimates. In
both cases the triangle is projected onto a pixel grid, which either corresponds to the image or to the
transillumination buffer of the next iteration. Let us call this grid as the output grid to distinquish from
the transillumination buffer which serves as the input buffer. The correspondance of the coordinates of
the input and output buffers is linear if parallel projection is used and rational for perspective projection.
Note that the projection onto the transillumination buffers is always parallel, while the projection onto
the image plane may be perspective. The operation is basically equivalent to texture mapping, where the
input buffer serves as the texture.

5.2 Refinement criterion

Having run the algorithm and computing the Monte-Carlo component as the difference of the reflected
radiance and the finite-element component on the support of all basis functions, we can determine where

7

patch

projected patch
at step -1

projected patch
at step

global direction
global
direction -1

linear function

m

m

m

i

window at
step -1 m

window at
step m

pixel

pixel

Figure 1: Reflection of the radiance wavefront of a ray-bundle

the Monte-Carlo component is large, thus the corresponding basis should be refined. Recall that the
finite-element structure is formed by triangles with discretized hemispheres. Now the question is that
when the Monte-Carlo component over a triangle is significant, then whether the triangle or the direc-
tional hemisphere should be broken down.

patch

global direction m reflected
radiance

finite-element component

average of the Monte-Carlo componentpixels

i

Figure 2: Errors of the positional and directional discretization

Since the input and output directions are the same for all points of the triangle, the error of the
directional discretisation appears as a constant shift for different pixels in the output buffer. Considering
this fact, let us use two variance measures:

Vs =
1

N

X
(�LP �

1

N

X
�LP)

2; Vd =
1

N
(
X

�LP)
2

whereP runs for theN different pixels covering the projection of the patches in the output buffer. These
measures are computed in every iteration step and averaged in each phase. Then at the end of the phase
if the average ofVs is high, then the corresponding triangle is decomposed into 4 subtriangles. However,
whenVd is high, then the directional hemisphere of the triangle is refined by dividing each discrete solid
angle into four.

6 Optimizing further: incoming first shot

The proposed method selects bundles of parallel lines to transfer the radiance blindly without even con-
sidering where the important sources are. On the one hand, this is good, since very many rays can be

8

traced simultaneously in a single step (note that a single transfer corresponds to tracing a million global
lines where all intersections are used, i.e. at least 2 million rays). On the other hand, this becomes ineffec-
tive if the initial radiance is very heterogeneous due to the small bright lightsources. These lightsources
need special treatment that is generally called as the first-shot or direct lightsource computation.

First-shot can be formulated as decomposing the radiance into emission and reflection and deriving
an appropriate form of the rendering equation for the reflection term. Substituting theL = Le + Lr

decomposition into the rendering equation, we can obtain the following equation:

Le + Lr = Le + Tfr(L
e + Lr) =) Lr = (TfrL

e) + TfrL
r = Ldirect + TfrL

r;

thus the obtained equation is similar to the original rendering equation. The only difference is that the
original emission function is replaced by its single reflection.

In order to compute and store the first reflection of the emission function, point samples are de-
fined on the small lightsources and hemicubes are placed above these point samples [23]. Running
z-buffer/constant shading visibility algorithms for the sides of the hemicubes, the visible triangles and
their visible portions can be identified. Then if the radiances of the grid points on a triangle point are
computed, first it is determined whether or not the triangle is seen through some hemicube face from
the lightsource. If it is seen, then the same texture mapping-like algorithm can be used to map pixels
onto hemicube points. Another possibility is the calculation of those light vectors [27] on each patch,
which can represent the illumination coming from the lightsources. Note that unlike in other first-shot
algorithms developed for diffuse radiosity, here the incoming radiance is stored, from which the outgoing
radiance can be obtained by multiplying it with the BRDF taking into account the incoming and outgoing
directions.

The combination of this method with the proposed incoming first-shot technique is quite straightfor-
ward. At a given iteration step not only the incoming radiance of previous transfer is reflected towards
the new direction, but also the illumination of the lightsources that are associated with the given patch.
Thus the overhead is justl BRDF computations per each patch at each iteration, wherel is the number
of those point lightsources and point samples on the area lightsources which are visible from the patch.

7 Radiance updates during the animation

In general animations both the objects and the camera may move. Walk-through animations represent
an important special case when the objects are still but the camera may follow an arbitrary path. Walk-
throughs involve a higher level of coherence among frames, thus more speed-ups can be expected from
its proper utilization.

So far we have assumed that the eye position and the objects are fixed. Let us now examine what
happens if the eye position changes during the walkthrough animation. In the decomposed radiance

L = Le + Ldirect + ~Lr +�Lr

~Lr is view independent thus remains valid for the new viewpoint. The emission functionLe should be
re-evaluated at each sample point. The update ofLdirect is also easy since the incoming radiance from the
lightsource samples are stored. Using these incoming radiances and the BRDF function for the incoming
directions and for the new view direction, the new values can be quickly obtained. The only term which
poses difficulties is the Monte-Carlo component�Lr.

One way of handling this is to continue the stochastic iteration having altered the eye position. If
the surfaces are not highly specular and the change of the view direction is small, then the sum of the
emission, the direct reflection and the finite-element approximation of the indirect reflection is a good
approximation also for the next viewpoint, thus the iteration will converge quickly. On the other hand, if
the finite-element component is well adapted, the Monte-Carlo component represents just a small fraction
of the total power in the scene, thus its inaccuracy does not create visible artifacts.

9

7 secs, first-shot 20 secs, 10 iterations 45 secs, 30 iterations

Figure 3: Sierpiensky set after the first-shot and after 10 and 30 iterations

Figure 4: Sierpiensky set

10

7 secs, first-shot 20 secs, 10 iterations 45 secs, 30 iterations

Figure 5: The “Cornell chickens” after the first-shot and after 10, 30 iterations

Figure 6: The Cornell Chickens scene

11

8 Simulation results

The presented algorithms have been implemented in C++ in OpenGL environment. The images have
been rendered with800�800 resolution. The running times given in the following sections are measured
on a laptop with 500 MHz Pentium III processor and with no graphics accelerator.

Figure 3 shows a scene with a 3D Sierpiensky set, that has 38552 patches. The diffuse albedo of the
patches in this set is(0:18; 0:06; 0:12) on the wavelengths 400 nm, 552 nm and on 700 nm, respectively.
The specular albedo is wavelength independent and is between 0.8 and 0.4 depending on the viewing
angle. The “shine” parameter is 3. The walls are diffuse.

In the “Cornell chickens” scene the egg is purely specular and has albedo 0.9, the chickens have 0.5
specular albedo and about0 : : : 0:4 wavelength dependent diffuse albedo, and the walls have0 : : : 0:4

diffuse and 0.2 specular albedo. The shine parameter of all surfaces is 10.
Note that with the combination of the incoming first-shot and stochastic iteration, non-diffuse global

illumination of moderately complex scenes (20 K patches) becomes possible in about a minute.

9 Conclusions

This paper proposed the combination of continuous random-walk and finite-element based iteration in a
way that the asymptotic accuracy of the random-walk and the high speed of iteration could be preserved.
In addition to a general framework of unified algorithms, a particular method using ray-bundles has also
been presented. This method applies a brutal force strategy, which generates a large number of ray-paths
exploiting coherence principles, but without taking into account local importance. Consequently, the
method is particularly efficient for scenes of glossy reflection, and moderately complex models of tens
of thousands of patches can be rendered in about a minute. If the solution is available, walk-throughs
with close to interactive speed are possible.

References

[1] J. Arvo. Application of irradiance tensors to the simulation of non-lambertian phemomena. InComputer
Graphics (SIGGRAPH ’95 Proceedings), pages 335–342, 1995.

[2] Ph. Bekaert.Hierarchical and stochastic algorithms for radiosity. PhD thesis, University of Leuven, 1999.
http://www.cs.leuven.ac.be/ cwis/research/graphics/ CGRG.PUBLICATIONS/PHBPPHD.

[3] P. H. Christensen, E. J. Stollnitz, D. H. Salesin, and T. D. DeRose. Global illumination of glossy environments
using wavelets and importance.ACM Transactions on Graphics, 15(1):37–71, 1996.

[4] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. A progressive refinement approach to fast
radiosity image generation. InComputer Graphics (SIGGRAPH ’88 Proceedings), pages 75–84, 1988.

[5] Ph. Dutre, E. Lafortune, and Y. D. Willems. Monte Carlo light tracing with direct computation of pixel
intensities. InCompugraphics ’93, pages 128–137, Alvor, 1993.

[6] D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for non-diffuse environments. In
Computer Graphics (SIGGRAPH ’86 Proceedings), pages 133–142, 1986.

[7] H. W. Jensen. Importance driven path tracing using the photon maps. InRendering Techniques ’95, pages
326–335, 1995.

[8] H. W. Jensen. Global illumination using photon maps. InRendering Techniques ’96, pages 21–30, 1996.

[9] J. T. Kajiya. The rendering equation. InComputer Graphics (SIGGRAPH ’86 Proceedings), pages 143–150,
1986.

[10] A. Keller. A quasi-Monte Carlo algorithm for the global illumination in the radiosity setting. In H. Nieder-
reiter and P. Shiue, editors,Monte-Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages
239–251. Springer, 1995.

12

[11] A. Keller. Verbal communication. 2000.

[12] E. Lafortune and Y. D. Willems. Bi-directional path-tracing. InCompugraphics ’93, pages 145–153, Alvor,
1993.

[13] L. Neumann. Monte Carlo radiosity.Computing, 55:23–42, 1995.

[14] M. Sbert. The Use of Global Directions to Compute Radiosity. PhD thesis, Catalan Technical University,
Barcelona, 1996.

[15] P. Shirley. Time complexity of Monte-Carlo radiosity. InEurographics ’91, pages 459–466. Elsevier Science
Publishers, 1991.

[16] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global illumination solution for general
reflectance distributions.Computer Graphics (SIGGRAPH ’91 Proceedings), 25(4):187–198, 1991.

[17] I. Sobol.Die Monte-Carlo Methode. Deutscher Verlag der Wissenschaften, 1991.

[18] M. Stamminger, A. Scheel, A. Granier, F. Perez-Cazorla, G. Drettakis, and F. Sillion. Efficient glossy global
illumination with interactive viewing. InGraphics Interface’99, Kingston, Ontario, 1999.

[19] F. Suykens and Y. D. Willems. Weighted multipass methods for global illumination.Computer Graphics
Forum, 18(3):209–220, 1999.

[20] L. Szirmay-Kalos. Stochastic iteration for non-diffuse global illumination.Computer Graphics Forum (Eu-
rographics’99), 18(3):233–244, 1999.

[21] L. Szirmay-Kalos. Photorealistic Image Synthesis Using Ray-Bundles. D.Sc. Dissertation, Hungarian
Academy of Sciences, 2000. www.iit.bme.hu/˜szirmay/diss.html.

[22] L. Szirmay-Kalos, B. Cs´ebfalvi, and W. Purgathofer. Importance driven quasi-random walk solution of the
rendering equation.Computers and Graphics, 23(2):203–212, 1999.

[23] L. Szirmay-Kalos, M. Sbert, R. Martinez, and R.F. Tobler. Incoming first-shot for non-diffuse global illumi-
nation. InSpring Conference of Computer Graphics ’00, Budmerice, 2000.

[24] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University,
http://graphics.stanford.edu/papers/veachthesis, 1997.

[25] E. Veach and L. Guibas. Bidirectional estimators for light transport. InComputer Graphics (SIGGRAPH ’95
Proceedings), pages 419–428, 1995.

[26] J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass solution to the rendering equation: A synthesis
of ray tracing and radiosity methods. InComputer Graphics (SIGGRAPH ’87 Proceedings), pages 311–324,
1987.

[27] J. Zaninetti, P. Boy, and B. Peroche. An adaptive method for area light sources and daylight in ray tracing.
Computer Graphics Forum, 18(3):139–150, 1999.

13

