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Abstract. This paper presents a Monte Carlo scatter estimation algo-
rithm for Positron Emission Tomography (PET) where positron-electron
annihilations induce photon pairs that fly independently in the medium
and eventually get absorbed in the detector grid. The path of the photon
pair will be a polyline defined by the detector hits and scattering points
where one of the photons changed its direction. The values measured by
detector pairs will then be the total contribution, i.e. the integral of such
polyline paths of arbitrary length. This integral is evaluated with Monte
Carlo quadrature, using a sampling strategy that is appropriate for the
graphics processing unit (GPU) that executes the process. We consider
the contribution of photon paths to each pair of detectors as an integral
over the Cartesian product set of the volume. This integration domain
is sampled globally, i.e. a single polyline will represent all annihilation
events occurred in any of its points. Furthermore, line segments contain-
ing scattering points will be reused for all detector pairs, which allows
us to significantly reduce the number of samples. The scatter estimation
is incorporated into a PET reconstruction algorithm where the scattered
term is subtracted from the measurements.

1 Introduction

In positron emission tomography (PET) we need to find the spatial intensity dis-
tribution of positron–electron annihilations. During an annihilation event, two
oppositely directed 511 keV photons are produced [Gea07]. We collect the num-
ber of simultaneous photon hits in detector pairs, also called Lines Of Responses
or LORs: (y1, y2, . . . , yNLOR

). The required output of the reconstruction method
is the emission density function x(v) that describes the number of photon pairs
(i.e. the annihilation events) born in a unit volume around point v. Tomography
reconstruction algorithms are usually iterative. They start with an initial emis-
sion density, compute the detector response by simulating the photon transport
and update the emission density taking into account the actual simulated and
the measured detector responses [SV82]. Before being detected in the detectors,
photons might interact with the matter in many ways, but in our energy range
and for living organs only Compton scattering and the photoelectric absorption
are relevant. The probability of scattering in unit distance is the scattering cross
section σs. When scattering happens, there is a unique correspondence between
the relative scattered energy and the cosine of the scattering angle θ, as defined



by the Compton formula:

ϵ =
1

1 + ϵ0(1− cos θ)
,

where ϵ = E1/E0 expresses the ratio of the scattered energy E1 and the incident
energy E0, and ϵ0 = E0/(mec

2) is the incident photon energy relative to the
energy of the electron. The differential of the scattering cross section, i.e. the
probability density that the photon is scattered from direction ω′ into differential
solid angle dω in direction ω, is given by the Klein-Nishina formula [Yan08]:

dσs(v, cos θ, ϵ0)

dω
=

r2eC(v)

2
(ϵ+ ϵ3 − ϵ2 sin2 θ),

where cos θ = ω ·ω′, C(v) is the electron density, and re = 2.82 ·10−15 [m] is the
classical electron radius. The Klein-Nishina formula defines the product of the
scattering cross section σs(v, ϵ0) and the conditional probability density of the
scattering direction. The scattering cross section can be obtained as the direc-
tional integral of the Klein-Nishina formula over the whole directional sphere:

σs(v, ϵ0) =

∫
Ω

dσs(v, cos θ, ϵ0)

dω
dω =

r2eC(v)

2
σ0
s(ϵ0) (1)

where Ω is the directional sphere and σ0
s is the normalized scattering cross sec-

tion:

σ0
s(ϵ0) =

∫
Ω

ϵ+ ϵ3 − ϵ2 sin2 θdω = −2π

1∫
−1

ϵ+ ϵ3 − ϵ2 sin2 θd cos θ.

The ratio of the Klein-Nishina formula and the scattering cross section is the
phase function, which defines the probability density of the reflection direction,
provided that reflection happens:

PKN (cos θ, ϵ0) =
dσs

dω
/σs =

ϵ+ ϵ3 − ϵ2 sin2 θ

σ0
s(ϵ0)

.

The absorption cross section σa(ϵ0) due to the photoelectric effect is approx-
imately inversely proportional to the cube of the photon energy, thus

σa(v, ϵ0) ≈
const

E3
=

σa(v, 1)

ϵ30
. (2)

The proportionality ratio σa(v, 1) depends on the material compounds and grows
rapidly (with a power between 4 and 5) with the atomic number of the elements.



2 Previous work

A physically plausible scatter correction needs photon transport simulation and
the evaluation of high-dimensional integrals in photon path space. As classi-
cal quadrature rules fail in higher dimensions due to the curse of dimension-
ality, these high-dimensional integrals are estimated by Monte Carlo or quasi-
Monte Carlo methods [SK08]. Unfortunately, available Monte Carlo tools, like
Geant4/GATE [Gea07,ABB+04], MCNP3, SimSet4, PeneloPET [EHV+06], are
too general, and therefore not optimized for the particular task and not suitable
for GPU execution. Thus, they are too slow to be incorporated into an on-line
iterative reconstruction.

For effective simulation, we run our algorithm on the graphics processing
unit (GPU), which is a massively parallel supercomputer. It can reach teraflops
performance if its quasi-SIMD architecture is respected, i.e. if threads execute
the same instruction sequence with no communication. The direct simulation of
the photon transport would not meet this requirement since different photons
may end up in the same detector which needs synchronized writes. Thus, we
consider the adjoint problem and take a detector oriented viewpoint. For efficient
evaluation, we transform the integral over the path space to a volumetric integral.

3 Scatter estimation

If we consider photon scattering, the path of the photon pair will be a polyline
containing the emission point somewhere inside one of its line segments (Fig. 1).
This polyline includes scattering points s1, . . . , sS where one of the photons
changed its direction in addition to detector hit points z1 = s0 and z2 = sS+1.
The values measured by detector pairs will then be the total contribution, i.e.
the integral of such polyline paths of arbitrary length.

We consider the contribution of photon paths as an integral over the Carte-
sian product set of the volume. This integration domain is sampled globally, i.e.
a single sample is used for the computation of all detector pairs. Sampling parts
of photon paths globally and reusing a partial path for all detector pairs allow
us to significantly reduce the number of samples.

To express the contribution of a polyline path, we take its line segments one-
by-one and consider a line segment as a virtual LOR with two virtual detectors
of locations, si−1 and si, and of differential areas projected perpendicularly to
the line segment, dA⊥

i−1 and dA⊥
i (Fig. 1). The contribution of a virtual LOR

at its endpoints, i.e. the expected number of photon pairs going through dA⊥
i−1

and dA⊥
i is C(si−1, si)dA

⊥
i−1dA

⊥
i , where contribution C is the product of several

factors:

C(si−1, si) = G(si−1, si)X(si−1, si)T1(si−1, si)B1(si−1, si),

3 http://mcnp-green.lanl.gov/
4 http://depts.washington.edu/simset/html/simset main.html
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Fig. 1. The scattered photon path is a polyline (left) made of virtual LORs (right).
The left figure depicts the case of S = 2.

where G(si−1, si) is the geometry factor, X(si−1, si) is the total emission along
the line segment, Tϵ0(si−1, si) is the total attenuation due to out-scattering, and
Bϵ0(si−1, si) is the total attenuation due to photoelectric absorption, assuming
photon energy ϵ0:

G(si−1, si) =
1

|si−1 − si|2
, X(si−1, si) =

1

2π

si∫
si−1

x(l)dl,

Tϵ0(si−1, si) = e

−
si∫

si−1

σs(l,ϵ0)dl

, Bϵ0(si−1, si) = e

−
si∫

si−1

σa(l,ϵ0)dl

In the line segment of the emission, the original photon energy has not changed
yet, thus ϵ0 = 1.

Suppose that scattering happens around end point si of the virtual LOR in
differential volume dsi = dA⊥

i dl, i.e. at run length dl (right of Fig. 1). Let us
extend this virtual LOR by a single scattering step to form polyline si−1, si, si+1.
The probability that the photon scatters along distance dl and its new direction

is in solid angle dω is differential cross section dσs(si, cos θi, ϵ
(i)
0 )/dω ·dl where θi

is the scattering angle. The scattered photon will go along virtual LOR (si, si+1)
with differential area dA⊥

i+1 at its end if area dA⊥
i+1 subtends solid angle dω,

that is:

dω =
dA⊥

i+1

|si − si+1|2
.

Upon scattering the photon changes its energy to

ϵ
(i+1)
0 =

ϵ
(i)
0

1 + ϵ
(i)
0 (1− cos θ)

.

This photon arrives at the other end of this virtual LOR if there is no further
collision, which happens with probability T

ϵ
(i+1)
0

(si, si+1)Bϵ
(i+1)
0

(si, si+1).

Summarizing, the expected number of photon pairs born between si−1 and
si and reaching differential areas dA⊥

i−1 and dA⊥
i+1 via scattering at differential



volume dsi = dl · dA⊥
i is:

C(si−1, si)
dσs(si, cos θi, ϵ

(i)
0 )

dω
T
ϵ
(i+1)
0

(si, si+1)Bϵ
(i+1)
0

(si, si+1)dA
⊥
i−1dsidA

⊥
i+1.

The integral of the contributions of paths of S scattering points is the product
of these factors. For example, the integral of the contribution of paths of one
scattering point is

ỹ
(1)
L =

∫
D1

∫
D2

∫
V

cos θ(0) cos θ(2)
dσs(s, cos θ, 1)

dω
P(z1, s, z2)dsdz2dz1

where θ(0) is the angle between the first detector’s normal and the direction of
z1 to s, θ(2) is the angle between the second detector’s normal and the direction
of z2 to s, and P(z1, s, z2) is the contribution of this polyline:

P(z1, s, z2) = C(z1, s)Tϵ0(s, z2)Bϵ0(s, z2) + Tϵ0(z1, s)Bϵ0(z1, s)C(s, z2). (3)

The photon’s energy level ϵ0 is obtained from the Compton formula for scattering
angle θ formed by directions s− z1 and z2 − s.

When the attenuation is computed, we should take into account that the
photon energy changes along the polyline and the scattering cross section also
depends on this energy, thus different cross section values should be integrated
when the annihilations on a different line segment are considered. As we wish to
reuse the line segments and not to repeat ray-marching redundantly, each line
segment is marched only once assuming photon energy ϵ0 = 1, and attenuations
T1 and B1 for this line segment is computed. Then, when the place of annihilation
is taken into account and the real value of the photon energy ϵ0 is obtained,
initial attenuations T1 and B1 are transformed. The transformation is based on
the decomposition of equations (1) and (2):

σs(l, ϵ0) = σs(l, 1) ·
σ0
s(ϵ0)

σ0
s(1)

, σa(l, ϵ0) =
σa(l, 1)

ϵ30
.

Using this relation, we can write

Tϵ0 = e

−
si∫

si−1

σs(l,ϵ0)dl

= e

−σ0
s(ϵ0)

σ0
s(1)

si∫
si−1

σs(l,1)dl

= T

σ0
s(ϵ0)

σ0
s(1)

1 .

Bϵ0 = e

−
si∫

si−1

σa(l,ϵ0)dl

= e

− 1

ϵ3
0

si∫
si−1

σa(l,1)dl

= B

1

ϵ3
0

1 .

The energy dependence of the cross section σ0(ϵ0) is a scalar function, which
can be pre-computed and stored in a table.



4 High-dimensional quadrature computation

In the previous section we concluded that the scattered contribution is a sequence
of increasing dimensional integrals. Numerical quadratures generate M discrete
samples u1,u2, . . . ,uM in the domain of the integration and approximate the
integral as: ∫

f(u)du ≈ 1

M

M∑
j=1

f(uj)

p(uj)
(4)

where p(uj) is a density of samples. In the integral of the contribution, a sam-
ple uj is a photon path connecting two detectors via S scattering points and
containing an emission point somewhere:

uj = (s
(j)
0 , s

(j)
1 , . . . , s

(j)
S+1) where s

(j)
0 = z1 and s

(j)
S+1 = z2.

For example, if S = 1 i.e. we consider single scattering, then uj = (z1, s
(j), z2).
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Fig. 2. Steps of the sampling process.

As the computation of a single segment of such a path requires ray-marching
and therefore is rather costly, we reuse the segments of a path in many other
path samples. The basic steps of the path sampling process are shown by Fig. 2:

1. First, Nscatter scattering points s1, . . . , sNscatter are sampled.



2. In the second step global paths are generated. If we decide to simulate paths
of at most S scattering points, Npath ordered subsets of the scattering points
are selected and paths of S points are established. If statistically independent
random variables were used to sample the scattering points, then the first
path may be formed by points s1, . . . , sS , the second by sS+1, . . . , s2S , etc.
Each path contains S − 1 line segments, which are marched assuming that
the photon energy has not changed from the original electron energy. Note
that building a path of length S, we also obtain many shorter paths as well.
A path of length S can be considered as two different paths of length S − 1
where one of the end points is removed. Taking another example, we get S−1
number of paths of length 1. Concerning the cost, rays should be marched
only once, so the second step altogether marches on Npath(S − 1) rays.

3. In the third step, each detector is connected to each of the scattering points in
a deterministic manner. Each detector is assigned to a computation thread,
which marches along the connection rays. The total rays processed by the
third step is NdetNscatter.

4. Finally, detector pairs are given to GPU threads that compute the direct
contribution and combine the scattering paths ending up in them. The direct
contribution needs altogether NdetlineNLOR ray-marching computations.

The described sampling process generates point samples. As these point sam-
ples are connected to all detectors, paths of length 2 (single scattering, S = 1)
can be obtained from them. Paths longer than 2, i.e. simulating at least dou-
ble scattering requires the formation of global paths. The integral quadrature of
equation (4) is evaluated with these samples.

To reduce the variance of the random estimator, we should find a sampling
density p that mimics the integrand. When inspecting the integrand, we should
take into account that we evaluate a set of integrals (i.e. an integral for every
LOR) using the same set of global samples, so the density should mimic the
common factors of all these integrals. These common factors are the electron
density C(v) of the scattering points, so we mimic this function when sampling
points. We store the scattering cross section at the energy level of the electron,
σ(v, 1), which is proportional to the electron density. As the electron density
function is provided by the CT reconstruction as a voxel grid, we, in fact, sample
voxels. The probability density of sampling point v is:

p(v) =
σs(v, 1)∫

V σs(v, 1)dv
=

σs[V ]

C
Nvoxel

V
,

where σs[V ] is the scattering cross section at the energy level of the electron

in voxel V , C =
∑Nvoxel

V=1 σs[V ] is the sum of all voxels, and V is the volume of
interest.

5 Results

The presented algorithm have been implemented in CUDA and run on nVidia
GeForce 480 GFX GPUs. We have modeled the PET system of NanoPET/CT
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Fig. 3. Reconstruction results of the Derenzo phantom. The upper two rows depict a
coronal and a sagittal slice of the reconstructed data, densities shown in the lower two
rows are scaled by 5 in order to highlight the differences.



[Med] consisting of twelve square detector modules organized into a ring, and the
system measures LORs connecting a detector to three other detectors being at
the opposite sides of the ring, which means that 12×3/2 = 18 module pairs need
to be processed. Each of the 12 detector modules consists of 81 × 39 crystals,
thus Ndet = 12 · (81× 39).

The computation effort can be analyzed by counting the number Nray of rays
needed to march on, which is

Nray = Npath(S − 1) +NdetNscatter +NdetlineNLOR.

In our particular case S = 1, Nscatter = 128, and Ndetline = 4, thus — thanks to
the heavy reuse of rays — scatter compensation requires just slightly more rays
than the NdetlineNLOR rays of the unscattered contribution computation.

Geometry only Absorption compensation Scatter compensation

Fig. 4. 3D views of the Derenzo phantom reconstructions. We used a transfer function
that emphasizes the cold noise in blue to make the differences more noticeable.

The reconstruction algorithm is an iteration of photon transfer simulation
and density correction. We compared different options during the transfer sim-
ulation like computing only the geometry factors, adding the attenuation due
to out-scattering and photoelectric absorption, and finally scattering compen-
sation. To compute single scattering, 128 scattering points are used, which are
re-sampled in each iteration step. The algorithm has been tested on a Derenzo
phantom that contains pipes with radioactive material. The Derenzo phantom is
put in a cube of “super bone” of edge length 32 [mm]. Super bone has the same
chemical compounds as the normal bone but it is ten times denser. In fact, it is
even denser than steal, thus it can emphasize scattering and absorption phenom-
ena. The results of the different options after 100 iteration steps are shown in
Fig. 3 and Fig. 4. Note that getting the forward-projection to simulate more of
the underlying physical process, the reconstruction can be made more accurate.



6 Conclusion

This paper proposed a GPU based scatter compensation algorithm for the recon-
struction of PETmeasurements. The approach is restructured to exploit the mas-
sively parallel nature of GPUs. Based on the recognition that the requirements
of the GPU prefer a detector oriented viewpoint, we solve the adjoint problem,
i.e. originate photon paths in the detectors. The detector oriented viewpoint also
allows us to reuse samples, that is, we compute many annihilation events with
tracing a few line segments. The resulting approach can reduce the computation
time of the fully 3D PET reconstruction to a few minutes.
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