
Chapter 7

INCREMENTAL SHADING

TECHNIQUES

Incremental shading models take a very drastic approach to simplifying

the rendering equation, namely eliminating all the factors which can cause

multiple interdependence of the radiant intensities of di�erent surfaces. To

achieve this, they allow only coherent transmission (where the refraction

index is 1), and incoherent re
ection of the light from abstract lightsources,

while ignoring the coherent and incoherent re
ection of the light coming

from other surfaces.

The re
ection of the light from abstract lightsources can be evaluated

without the intensity of other surfaces being known, so the dependence

between them has been eliminated. In fact, coherent transmission is the

only feature left which can introduce dependence, but only in one way,

since only those objects can alter the image of a given object which are

behind it, looking at the scene from the camera.

Suppose there are nl abstract lightsources (either directional, positional

or
ood type) and that ambient light is also present in the virtual world.

Since the
ux of the abstract lightsources incident to a surface point can

be easily calculated, simplifying the integrals to sums, the shading equation

has the following form:

Iout = Ie+ ka � Ia+ kt � It+
nlX
l

rl � Il � kd � cos �in+
nlX
l

rl � Il � ks � cos
n (7:1)

where ka is the re
ection coe�cient of the ambient light, kt, kd and ks are the

203

204 7. INCREMENTAL SHADING TECHNIQUES

transmission, di�use and specular coe�cients respectively, �in is the angle

between the direction of the lightsource and the surface normal, is the

angle between the viewing vector and the mirror direction of the incident

light beam, n is the specular exponent, Il and Ia are the incident intensities

of the normal and ambient lightsources at the given point, It is the intensity

of the surface behind a transmissive object, Ie is the own emission, and rl
is the shadow factor representing whether a lightsource can radiate light

onto the given point, or whether the energy of the beam is attenuated by

transparent objects, or whether the point is in shadow, because another

opaque object is hiding it from the lightsource:

rl =

8>>>>><
>>>>>:

1 if the lightsource l is visible from this point

Q
i

k
(i)
t if the lightsource is masked by transparent objects

0 if the lightsource is hidden by an opaque object

(7:2)

where k
(1)
t ; k

(2)
t ; : : : ; k

(n)
t are the transmission coe�cients of the transparent

objects between the surface point and lightsource l.

The factor rl is primarily responsible for the generation of shadows on

the image.

7.1 Shadow calculation

The determination of rl is basically a visibility problem considering whether

a lightsource is visible from the given surface point, or equally, whether

the surface point is visible from the lightsource. Additionally, if there are

transparent objects, the solution also has to determine the objects lying in

the path of the beam from the lightsource to the surface point.

The second, more general case can be solved by ray-tracing, generating

a ray from the surface point to the lightsource and calculating the intersec-

tions, if any, with other objects. In a simpli�ed solution, however, where

transparency is ignored in shadow calculations, that is where rl can be ei-

ther 0 or 1, theoretically any other visible surface algorithm can be applied

setting the eye position to the lightsource, then determining the surface

parts visible from there, and declaring the rest to be in shadow. The main

di�culty of shadow algorithms is that they have to store the information

7.1. SHADOW CALCULATION 205

regarding which surface parts are in shadow until the shading calculation,

or else that question has to be answered during shading of each surface

point visible in a given pixel, preventing the use of coherence techniques

and therefore limiting the possible visibility calculation alternatives to ex-

pensive ray-tracing.

An attractive alternative algorithm is based on the application of the z-

bu�er method, requiring additional z-bu�ers, so-called shadow maps, one

for each lightsource (�gure 7.1).

eye
pixel

visible object

possible hiding object

X,Y,Z
X Y Zl l l

* * *, ,

lightsource zlight

Zbuffer

Figure 7.1: Shadow map method

The algorithm consists of a z-bu�er step from each lightsource l setting

the eye position to it and �lling its shadow map zlightl[X;Y], then a single

modi�ed z-bu�er step for the observer's eye position �lling Zbuffer[X;Y].

From the observer's eye position, having checked the visibility of the sur-

face in the given pixel by the Zsurface[X;Y] < Zbuffer[X;Y] inequality, the

algorithm transforms the 3D point (X;Y;Zsurface[X;Y]) from the observer's

eye coordinate system (screen coordinate system) to each lightsource coor-

dinate system, resulting in:

(X;Y;Zsurface[X;Y])
T

=) (X�

l
; Y �

l
; Z�

l
): (7:3)

If Z�

l
> zlight[X�

l
; Y �

l
], then the surface point was not visible from the

lightsource l, hence, with respect to this lightsource, it is in shadow (rl = 0).

The calculation of shadows seems time consuming, as indeed it is. In

many applications, especially in CAD, shadows are not vital, and they can

206 7. INCREMENTAL SHADING TECHNIQUES

even confuse the observer, making it possible to speed up image generation

by ignoring the shadows and assuming that rl = 1.

7.2 Transparency

If there are no transparent objects image generation is quite straightforward

for incremental shading models. By applying a hidden-surface algorithm,

the surface visible in a pixel is determined, then the simpli�ed shading

equation is used to calculate the intensity of that surface, de�ning the color

or (R;G;B) values of the pixel.

Should transparent objects exist, the surfaces have to be ordered in de-

creasing distance from the eye, and the shading equations have to be eval-

uated according to that order. Suppose the color of a \front" surface is

being calculated, when the intensity of the \back" surface next to it is al-

ready available (Iback), as is the intensity of the front surface, taking only

re
ections into account (Ireffront). The overall intensity of the front surface,

containing both the re
ective and transmissive components, is:

Ifront[X;Y] = Ireffront + kt � Iback[X;Y]: (7:4)

The transmission coe�cient, kt, and the re
ection coe�cients are obvi-

ously not independent. If, for example, kt were 1, all the re
ection param-

eters should be 0. One way of eliminating that dependence is to introduce

corrected re
ection coe�cients by dividing them by (1�kt), and calculating

the re
ection I�front with these corrected parameters. The overall intensity

is then:

Ifront[X;Y] = (1 � kt) � I
�

front + kt � Iback[X;Y]: (7:5)

This formula can be supported by a pixel level trick. The surfaces can be

rendered independently in order of their distance from the eye, and their

images written into the frame bu�er, making a weighted sum of the re
ective

surface color, and the color value already stored in the frame bu�er (see also

subsection 8.5.3 on support for translucency and dithering).

7.3. APPLICATION OF THE INCREMENTAL CONCEPT IN SHADING 207

7.3 Application of the incremental concept

in shading

So far, the simpli�ed shading equation has been assumed to have been eval-

uated for each pixel and for the surface visible in this pixel, necessitating the

determination of the surface normals to calculate the angles in the shading

equation.

The speed of the shading could be signi�cantly increased if it were possible

to carry out the expensive computation just for a few points or pixels, and

the rest could be approximated from these representative points by much

simpler expressions. These techniques are based on linear (or in extreme

case constant) approximation requiring a value and the derivatives of the

function to be approximated, which leads to the incremental concept. These

methods are e�cient if the geometric properties can also be determined in

a similar way, connecting incremental shading to the incremental visibil-

ity calculations of polygon mesh models. Only polygon mesh models are

considered in this chapter, and should the geometry be given in a di�erent

form, it has to be approximated by a polygon mesh before the algorithms

can be used. It is assumed that the geometry will be transformed to the

screen coordinate system suitable for visibility calculations and projection.

There are three accepted degrees of approximation used in this problem:

1. Constant shading where the color of a polygon is approximated by a

constant value, requiring the evaluation of the shading equation once

for each polygon.

2. Gouraud shading where the color of a polygon is approximated by

a linear function, requiring the evaluation of the shading equation at

the vertices of the polygon. The color of the inner points is determined

by incremental techniques suitable for linear approximation.

3. Phong shading where the normal vector of the surface is approx-

imated by a linear function, requiring the calculation of the surface

normal at the vertices of the polygon, and the evaluation of the shad-

ing equation for each pixel. Since the color of the pixels is a non-linear

function of the surface normal, Phong shading is, in fact, a non-linear

approximation of color.

208 7. INCREMENTAL SHADING TECHNIQUES

ambient

diffuse

specular

Figure 7.2: Typical functions of ambient, di�use and specular components

In �gure 7.2 the intensity distribution of a surface lit by positional and

ambient lightsources is described in terms of ambient, di�use and specular

re
ection components. It can be seen that ambient and di�use components

can be fairly well approximated by linear functions, but the specular term

tends to show strong non-linearity if a highlight is detected on the surface.

That means that constant shading is acceptable if the ambient lightsource is

dominant, and Gouraud shading is satisfactory if ks is negligible compared

with kd and ka, or if there are no highlights on the surface due to the relative

arrangement of the lightsources, the eye and the surface. If these conditions

do not apply, then only Phong shading will be able to provide acceptable

image free from artifacts.

Other features, such as shadow calculation, texture or bump mapping (see

chapter 12), also introduce strong non-linearity of the intensity distribution

over the surface, requiring the use of Phong shading to render the image.

7.4 Constant shading

When applying constant shading, the simpli�ed rendering equation miss-

ing out the factors causing strong non-linearity is evaluated once for each

polygon:

Iout = Ie + ka � Ia +
nlX
l

Il � kd �maxf(~N � ~L); 0g: (7:6)

7.5. GOURAUD SHADING 209

In order to generate the unit surface normal ~N for the formula, two

alternatives are available. It can either be the \average" normal of the real

surface over this polygon estimated from the normals of the real surface in

the vertices of the polygon, or else the normal of the approximating polygon.

7.5 Gouraud shading

Having approximated the surface by a polygon mesh, Gouraud shading re-

quires the evaluation of the rendering equation at the vertices for polygons,

using the normals of the real surface in the formula. For the sake of sim-

plicity, let us assume that the polygon mesh consists of triangles only (this

assumption has an important advantage in that three points are always on

a plane). Suppose we have already evaluated the shading equation for the

vertices having resultant intensities I1, I2 and I3, usually on representative

wavelengths of red, green and blue light. The color or (R;G;B) values of the

inner pixels are determined by linear approximation from the vertex colors.

This approximation should be carried out separately for each wavelength.

n r =(X , Y , i)3 3 33

r =(X , Y , i)2 2 2 2
r =(X , Y , i)1 1 11

i(X,Y)

X

 Y

Figure 7.3: Linear interpolation in color space

Let i be the alias of any of Ired, Igreen or Iblue. The function i(X;Y) of the

pixel coordinates described in �gure 7.3 forms a plane through the vertex

points ~r1 = (X1; Y1; i1), ~r2 = (X2; Y2; i2) and ~r3 = (X3; Y3; i3) in (X;Y; i)

space. For notational convenience, we shall assume that Y1 � Y2 � Y3
and (X2; Y2) is on the left side of the [(X1; Y1); (X3; Y3)] line, looking at the

triangle from the camera position. The equation of this plane is:

~n � ~r = ~n � ~r1 where ~n = (~r2 � ~r1)� (~r3 � ~r1): (7:7)

210 7. INCREMENTAL SHADING TECHNIQUES

Denoting the constant ~n � ~r1 by C, and expressing the equation in scalar

form substituting the coordinates of the normal of the plane, ~n = (nX ; nY ; ni),

the function i(X;Y) has the following form:

i(X;Y) =
C � nX �X � nY � Y

ni
: (7:8)

The computational requirement of two multiplications, two additions and

a division can further be decreased by the incremental concept (recall section

2.3 on hardware realization of graphics algorithms).

Expressing i(X + 1; Y) as a function of i(X;Y) we get:

i(X+1; Y) = i(X;Y)+
@i(X;Y)

@X
�1 = i(X;Y)�

nX

ni
= i(X;Y)+�iX : (7:9)

(X ,Y ,i)1 1 1

(X ,Y ,i)

(X ,Y ,i)2

3

22

3 3

X

Y

i

i = i(X,Y)

Y
i sδ

Y X eδ

X iδ

YX sδ

Figure 7.4: Incremental concept in Gouraud shading

Since �iX does not depend on the actual X;Y coordinates, it has to be

evaluated once for the polygon. Inside a scan-line, the calculation of a

pixel color requires a single addition for each color coordinate according

to equation 7.9. Concerning the X and i coordinates of the boundaries of

the scan-lines, the incremental concept can also be applied to express the

starting and ending pixels.

7.5. GOURAUD SHADING 211

Since i and X vary linearly along the edge of the polygon, equations

2.33, 2.34 and 2.35 result in the following simple expressions in the range

of Y1 � Y � Y2, denoting Ks by Xstart and Ke by Xend, and assuming that

the triangle is left oriented as shown in �gure 7.4:

Xstart(Y + 1) = Xstart(Y) +
X2 �X1

Y2 � Y1
= Xstart(Y) + �Xs

Y

Xend(Y + 1) = Xend(Y) +
X3 �X1

Y3 � Y1
= Xend(Y) + �Xe

Y

istart(Y + 1) = istart(Y) +
i2 � i1

Y2 � Y1
= istart(Y) + �is

Y
(7.10)

The last equation represents in fact three equations, one for each color

coordinate, (R;G;B). For the lower part of the triangle in �gure 7.4, the

incremental algorithm is then:

Xstart = X1 + 0:5; Xend = X1 + 0:5;

Rstart = R1 + 0:5; Gstart = G1 + 0:5; Bstart = B1 + 0:5;

for Y = Y1 to Y2 do

R = Rstart; G = Gstart; B = Bstart;

for X = Trunc(Xstart) to Trunc(Xend) do

write(X;Y;Trunc(R);Trunc(G);Trunc(B));

R += �RX ; G += �GX ; B += �BX;

endfor

Xstart += �Xs

Y
; Xend += �Xe

Y
;

Rstart += �Rs

Y
; Gstart += �Gs

Y
; Bstart += �Bs

Y
;

endfor

Having represented the numbers in a �xed point format, the derivation

of the executing hardware of this algorithm is straightforward by the meth-

ods outlined in section 2.3 (on hardware realization of graphics algorithms).

Note that this algorithm generates a part of the triangle below Y2 coordi-

nates. The same method has to be applied again for the upper part.

Recall that the very same approach was applied to calculate the Z coor-

dinate in the z-bu�er method. Because of their algorithmic similarity, the

same hardware implementation can be used to compute the Z coordinate,

and the R, G, B color coordinates.

The possibility of hardware implementation makes Gouraud shading very

attractive and popular in advanced graphics workstations, although it has

212 7. INCREMENTAL SHADING TECHNIQUES

surface

polygon mesh approximation

perceived color

calculated color

Figure 7.5: Mach banding

several severe drawbacks. It does not allow shadows, texture and bump

mapping in its original form, and introduces an annoying artifact called

Mach banding (�gure 7.5). Due to linear approximation in color space,

the color is a continuous, but not di�erentiable function. The human eye,

however, is sensitive to the drastic changes of the derivative of the color,

overemphasizing the edges of the polygon mesh, where the derivative is not

continuous.

7.6 Phong shading

In Phong shading only the surface normal is approximated from the real

surface normals in the vertices of the approximating polygon; the shad-

ing equation is evaluated for each pixel. The interpolating function of the

normal vectors is linear:

nX = aX �X + bX � Y + cX;

nY = aY �X + bY � Y + cY ;

nZ = aZ �X + bZ � Y + cZ :

(7:11)

Constants aX; : : : ; cZ can be determined by similar considerations as in

Gouraud shading from the normal vectors at the vertices of the polygon

(triangle). Although the incremental concept could be used again to reduce

the number of multiplications in this equation, it is not always worth doing,

since the shading equation requires many expensive computational steps

7.6. PHONG SHADING 213

which mean that this computation is negligible in terms of the total time

required.

Having generated the approximation of the normal to a surface visible in

a given pixel, the complete rendering equation is applied:

Iout = Ie + ka � Ia +
nlX
l

rl � Il � kd �maxf(~N � ~L); 0g+

nlX
l

rl � Il � ks �maxf[2(~N � ~H)2 � 1]n; 0g (7:12)

Recall that dot products, such as ~N � ~L, must be evaluated for vectors in

the world coordinate system, since the viewing transformation may alter the

angle between vectors. For directional lightsources this poses no problem,

but for positional and
ood types the point corresponding to the pixel in

the world coordinate systemmust be derived for each pixel. To avoid screen

and world coordinate system mappings on the pixel level, the corresponding

(x; y; z) world coordinates of the pixels inside the polygon are determined

by a parallel and independent linear interpolation in world space. Note that

this is not accurate for perspective transformation, since the homogeneous

division of perspective transformation destroys equal spacing, but this error

is usually not noticeable on the images.

Assuming only ambient and directional lightsources to be present, the

incremental algorithm for half of a triangle is:

Xstart = X1 + 0:5; Xend = X1 + 0:5;
~Nstart = ~N1;

for Y = Y1 to Y2 do
~N = ~Nstart;

for X = Trunc(Xstart) to Trunc(Xend) do

(R;G;B) = ShadingModel(~N);

write(X;Y;Trunc(R);Trunc(G);Trunc(B));
~N += � ~NX;

endfor

Xstart += �Xs

Y
; Xend += �Xe

Y
;

~Nstart += � ~N s

Y
;

endfor

214 7. INCREMENTAL SHADING TECHNIQUES

The rendering equation used for Phong shading is not appropriate for

incremental evaluation in its original form. For directional and ambient

lightsources, however, it can be approximated by a two-dimensional Taylor

series, as proposed by Bishop [BW86], which in turn can be calculated incre-

mentally with �ve additions and a non-linear function evaluation typically

implemented by a pre-computed table in the computer memory.

The coe�cients of the shading equation, ka, kd, ks and n can also be

a function of the point on the surface, allowing textured surfaces to be

rendered by Phong shading. In addition it is possible for the approximated

surface normal to be perturbed by a normal vector variation function caus-

ing the e�ect of bump mapping (see chapter 12).

