
Indirect Diffuse and Glossy Illumination on the GPU

Lászĺo Szirmay-Kalos and Istv́an Laźanyi
Department of Control Engineering and Information Technology

Budapest University of Technology, Hungary
Email: szirmay@iit.bme.hu

Abstract

This paper presents a fast approximation method to obtain the in-
direct diffuse or glossy reflection on a dynamic object, caused by a
diffuse or a moderately glossy environment. Instead of tracing rays
to find the incoming illumination, we look up the indirect illumi-
nation from a cube map rendered from the reference point that is
in the vicinity of the object. However, to cope with the difference
between the incoming illumination of the reference point and of the
shaded points, we apply a correction that uses geometric informa-
tion also stored in cube map texels. This geometric information
is the distance between the reference point and the surface visible
from a cube map texel. The method computes indirect illumination
although approximately, but providing very pleasing visual quality.
The method suits very well to the GPU architecture, and can ren-
der these effects interactively. The primary application area of the
proposed method is the introduction of diffuse and specular inter-
reflections in games.

1 Introduction

Final gathering, i.e. the computation of the reflection of the indi-
rect illumination toward the eye, is one of the most time consuming
steps of realistic rendering. According to the rendering equation,
the reflected radiance of point~x in viewing direction~ω can be ex-
pressed by the following integral

Lr (~x� ~ω) =
∫

Ω′

Lin(~x�~y(~ω ′)) · fr (~ω ′ �~x� ~ω) ·cosθ~x dω ′,

where Ω′ is the set of possible illumination directions,Lin(~x �
~y(~ω ′)) is the incoming radiance arriving at point~x from point~y
visible in illumination direction~ω ′, fr is the BRDF, andθ~x is the
angle between the surface normal at point~x and the illumination
direction.

The evaluation of this integral usually requires many sampling rays
from each shaded point. Ray casting findsilluminating points~y for
shaded point~x at different directions (Figure 1), and the radiance
of these illumination points is inserted into a numerical quadrature
approximating the rendering equation. In practice, numberP of
shaded points is over hundred thousands or millions, while number
D of sample directions is about a hundred or a thousand to eliminate
annoying sampling artifacts. On the other hand, in games and in
real-time systems, rendering cannot take more than a few tens of
milliseconds. This time does not allow tracingP ·D, i.e. a large
number of rays.

To solve this complexity problem, we can exploit the fact that in
games the dynamic objects are usually significantly smaller than
their environment. Thus the global indirect illumination of the en-
vironment can be computed separately, since it is not really affected
by the smaller dynamic objects. On the other hand, when the indi-
rect illumination of dynamic objects is evaluated, their small size
makes it possible to reuse illumination information obtained when
shading its other points.

Figure 1:Indirect illumination with sampling rays.

The first idea of this paper is to trace rays with the graphics hard-
ware just from a single reference point being in the vicinity of the
dynamic object. Then the illuminating points selected by these rays
and their radiance are used not only for the reference point, but
for all visible points of the dynamic object. From a different point
of view, tracing rays locatesvirtual light sourceswhich illuminate
the origin of these rays. We propose to find a collection of virtual
light sources from a reference point, and then use these virtual light
sources to illuminate all shaded points (Figure 2).

This approach has two advantages. On the one hand, instead of
tracingP ·D rays, we solve the rendering problem by tracing only
D rays. On the other hand, these rays form a bundle meeting in the
reference point and are regularly spaced. Such ray bundles can be
very efficiently traced by the graphics hardware. On the other hand,
this simplification also has disadvantages. Assuming that the same
set of illuminating points are visible from each shaded point, self-
shadowing effects are ignored. However, while shadows are crucial
for direct lighting, shadows from indirect lighting are not so visu-
ally important. Thus the user or the gamer finds this simplification
acceptable. Additionally, the used virtual light sources must be vis-
ible from the reference point. In concave environments, however, it
may happen that an environment point is not visible from the refer-
ence point but may illuminate the shaded point. However, indirect
illumination is usually quite smooth, thus ignoring smaller parts of
the potentially illuminating surfaces does not lead to noticeable er-
rors.

Unfortunately, this simplification alone cannot allow real time
frame rates. The evaluation of the reflected radiance at a shaded
point still requires the evaluation of the BRDF and the orientation
angle, and the multiplication with the radiance of the illuminating
point byD times. Although the number of rays traced to obtain in-
direct illumination is reduced fromP ·D to D, but the illumination
formula must be evaluatedP ·D times. These computations would
still need too much time.

In order to further increase the rendering speed, we propose to carry
out as much computation globally for all shaded points, as possi-
ble. Clearly, this is again an approximation, since the weighting
of the radiance of each illumination point at each shaded point is
different. From mathematical point of view, we need to evaluate an
integral of the product of the illumination and the local reflection
for every shaded point. To allow global computation, the integral

Figure 2:The basic idea of the proposed method: first virtual lights sampled from reference point~o are identified, then these point lights are
grouped into large area lights. At shaded points~x the illumination of a relatively small number of area lights is computed without visibility
tests.

of these products is approximated by the product of the integrals of
the illumination and the local reflection, thus the illumination can
be handled globally for all shaded points.

Intuitively, global computation means that the sets of virtual light
sources are replaced by larger homogeneous area light sources.
Since the total area of these lights is assumed to be visible, the re-
flected radiance can be analytically evaluated once for a whole set
of virtual light sources.

2 Previous Work

Environment mapping[Blinn and Newell 1976] has been origi-
nally proposed to render ideal mirrors in local illumination frame-
works, then extended to approximate general secondary rays with-
out expensive ray-tracing[Greene 1984; Reinhard et al. 1994; De-
bevec 1998]. Classical environment mapping can also be applied
for glossy and diffuse reflections as well. The usual trick is the
convolution of the angular variation of the BRDF with the envi-
ronment map during preprocessing [Ramamoorthi and Hanrahan
2001]. This step enables us to determine the illumination of an arbi-
trarily oriented surface patch with a single environment map lookup
during rendering. A fundamental problem of this approach is that
the generated environment map correctly represents the direction
dependent illumination only at a single point, the reference point
of the object. For other points, the environment map is only an ap-
proximation, where the error depends on the ratio of the distances
between the point of interest and the reference point, and between
the point of interest and the surfaces composing the environment
(Figure 3).

One possible solution is to use multiple environment maps [G. et al.
1998; Zhou et al. 2005], which can be compressed using spheri-
cal harmonics [Ramamoorthi and Hanrahan 2001; Kristensen et al.
2005] or wavelets [Zhou et al. 2005]. For example, Greger et al.[G.
et al. 1998] calculate and store the direction dependent illumination
in the vertices of a bi-level grid subdividing the object scene. Dur-
ing run-time, irradiance values of an arbitrary point are calculated
by tri-linearly interpolating the values obtained from the neighbor-
ing grid vertices. While Greger et al. used a precomputed radios-
ity solution to initialize the data structures, Mantiuk et al.[Mantiuk
et al. 2002] calculated these values during run-time using an itera-
tive algorithm that simulates the multiple bounces of light. Unfortu-
nately, the generation and compression of many environment maps
require considerable time which is not available during real-time
rendering. Thus most of this computation should be done during
preprocessing, which imposes restrictions on dynamic scenes.

Instead of working with many environment maps, another possi-

Figure 3:Specular buddha rendered with the classical environment
mapping method (left) and a reference image (right). The reference
point for the environment mapping is located in the center of the
room. Although the buddha’s head is expected to be greenish due
to the green ceiling, the classical environment mapping is unable to
meet this expectation.

ble approach is to use a single or a few environment maps which
are “localized”, so that a single map provides different illumina-
tion information for every point, based on the relative location from
the reference point. GPU based localized image based lighting has
been suggested by Bjorke[Bjorke 2004], where a proxy geometry
(e.g. a sphere or a cube) of the environment is intersected by the
reflection ray to obtain the visible point. TheApproximate Ray-
Tracing approach[Szirmay-Kalos et al. 2005], on the other hand,
stores the distance values between the reference point and the en-
vironment and applies an iterative process to identify the real hit
point of those rays that are not originated in the reference point.

The issue of global computations to reduce the computation re-
quirement of many lights has been addressed byPrecomputed Ra-
diance Transfer[Sloan et al. 2002; Kristensen et al. 2005], by meth-
ods aiming at ignoring possibly unimportant lights [Ward 1994;
Shirley et al. 1996; Wald et al. 2003], and by approaches replac-
ing a cluster of lights by a single point light source [Walter et al.
2005].

If only two-bounce indirect illumination is considered, we can use
the shadow map instead of an environment map. As was pointed
out in [Dachsbacher and Stamminger 2005], points where the light
is bounced for the first time are stored by default in the shadow
map. Adding illumination information to the depth values, the in-

direct illumination, i.e. the second bounce can be computed as the
“reflection” of the shadow map.

The method proposed in this paper consider the last bounce of an ar-
bitrarily evaluated coarse global illumination solution. The method
works with cube maps, but does not require preprocessing to obtain
them in sample points. In fact, thanks to the geometric localiza-
tion procedure, it can use one cubemap for an object or even for
several close objects. The cubemap is regenerated when the respec-
tive object moves significantly, but less frequently than the render-
ing frame rate of the application, amortizing he cubemap genera-
tion cost in multiple frames. Thus the new method can cope with
fully dynamic scenes and changing illumination environments. The
cubemap is downsampled, which corresponds to clustering lights
and replacing a cluster by an area light source. Comparing toLight-
cuts[Walter et al. 2005], our clustering is simpler, but is executed
in real-time by the graphics hardware, and replaces the cluster by
an area light. The radiance values of the single cube map are then
localized for the shaded points taking into account the distances of
the environment, the shaded points, and of the reference point, sim-
ilarly to the approximate ray-tracing method [Szirmay-Kalos et al.
2005]. However, the new technique uses a different localization
approach developed particularly for diffuse and glossy reflections.

3 The new algorithm

Let us assume that we use a single environment map that records
illumination information for reference point~o. Our goal is to reuse
this illumination information for other nearby points as well. To
do so, we apply approximations that allow us to factor out those
components from the rendering equation which strongly depend on
shaded point~x.

In order to estimate the integral of the rendering equation, direc-
tional domainΩ′ is partitioned to solid angles∆ω ′

i , i = 1, . . . ,N,
where the radiance is roughly uniform in each domain. After parti-
tioning, the reflected radiance is expressed by the following sum:

Lr (~x� ~ω) =
N

∑
i=1

∫

∆ω ′
i

Lin(~x�~y(~ω ′)) · fr (~ω ′ �~x� ~ω) ·cosθ~x dω ′.

Let us consider a single term of this sum representing the radiance
reflected from∆ω ′

i . If ∆ω ′
i is small, thenLin has small variation.

Furthermore, considering the illumination and reflectance as ran-
dom variables, the variation of illuminationLin depends on the
surface of theilluminating points, while reflectancefr (~ω ′ � ~x �
~ω) ·cosθ~x depends on theshadedpoint, thus they can be supposed
to be independent. The expected value of the products of indepen-
dent random variables (i.e. the integral of products) equals to the
product of the expected values (i.e. the product of integrals), thus
we can use the following approximation:

∫

∆ω ′
i

Lin(~x�~y(~ω ′)) · fr (~ω ′ �~x� ~ω) ·cosθ~x dω ′ ≈

≈ L̃in(∆yi) ·
∫

∆ω ′
i

fr (~ω ′ �~x� ~ω) ·cosθ~x dω ′ (1)

whereL̃in(∆yi) is theaverage incoming radiancecoming from sur-
face∆yi seen at solid angle∆ω ′

i . Expressing average incoming ra-
dianceL̃in(∆yi) on surface area∆yi , we obtain:

L̃in(∆yi) =
1

∆yi
·
∫

∆yi

L(~y� ~ω~y�~x) dy.

Note that this average is independent of shaded point~x if the envi-
ronment is diffuse, and can be supposed to be approximately inde-
pendent of the shaded point if the environment is moderately glossy.

The second factor of the product in equation 1 is thereflectivityinte-
gral, which is also expressed as the product of the average integrand
and the size of the integration domain:

∫

∆ω ′
i

fr (~ω ′ �~x� ~ω) ·cosθ~x dω ′ = a(∆ω ′
i �~x� ~ω) ·∆ω ′

i

wherea(∆ω ′
i �~x� ~ω) is theaverage reflectivityfrom solid angle

∆ω ′
i . The average reflectivity can be either obtained using only

one directional sample on the fly, or precomputed and stored in
a texture addressed by the angle of direction and the solid angle
where averaging happens.

Putting the results of the average incoming radiance and the reflec-
tivity formula together, the reflected radiance can be approximately
expressed as

Lr (~x� ~ω)≈
N

∑
i=1

L̃in(∆yi) ·a(∆ω ′
i �~x� ~ω) ·∆ω ′

i . (2)

4 Reusing illumination information

As concluded in the previous section, average incoming radiance
valuesL̃in(∆yi) are independent of the shaded point in case of dif-
fuse or moderately glossy environment, thus these values can poten-
tially be reused for all shaded points. To exploit this idea, visible
surface areas∆yi need to be identified and their average radiances
need to be computed first. These areas are found and the averaging
is computed with the help of a cube map placed at reference point
~o in the vicinity of the shaded object.We render the scene from ref-
erence point~o onto the six sides of a cube. In each pixel of these
images we store the radiance of the visible point and also the dis-
tance from the reference point. The pixels of the cube map thus
store the radiance and also encode the position of small indirect
lights.

The small virtual lights are clustered into larger area light sources
while averaging their radiance, which corresponds to downsam-
pling the cube map. A pixel of the lower resolution cube map is
computed as the average of the included higher resolution pixels.
Note that both radiance and distance values are averaged, thus fi-
nally we have larger lights having the average radiance of the small
lights and placed at their average position. The total area corre-
sponding to a pixel of a lower resolution cube map will be elemen-
tary surface∆yi , and its average radiance is stored in the texel.

Supposing that the edge size of the cube map is 2, the solid an-
gle subtended by a texel, i.e. by the surface seen through a texel,
can be expressed with thedisc to point form factor approximation
[Glassner 1995] as:

∆ω ′
i ≈

4

M2|~L|3 +4/π
,

whereM is the resolution of a single cubemap face and~L is a vector
pointing from the center of the cubemap to the texel (figure 4).

According to equation 2 the reflected radiance at the reference point
is:

Lr (~o� ~ω)≈
N

∑
i=1

L̃in(∆yi) ·a(∆ω ′
i �~o� ~ω) ·∆ω ′

i .

Figure 4: Solid angle in which a surface seen through a cubemap
pixel

Let us now consider another point~x close to the reference point~o
and evaluate a similar integral for point~x while making exactly the
same assumption on the surface radiance, i.e. it is constant in areas
∆yi :

Lr (~x� ~ω)≈
N

∑
i=1

L̃in(∆yi) ·a(∆ω ′
i �~x� ~ω) ·∆ω∗

i , (3)

where∆ω∗
i is the solid angle subtended by∆yi from ~x. Unfortu-

nately, the solid angle values can be obtained directly from the ge-
ometry of the cubemap only if the shaded point is the center of the
cube map. In case of other shaded points, special considerations
are needed that are based on the distances from the environment
surface.

Figure 5:The notations of the evaluation of subtended solid angles

Solid angles∆ω ′
i and∆ω∗

i can be expressed using the disc to point
form factor approximation:

∆ω ′
i ≈

∆yi ·cosθ~yi ,~o

|~o−~yi |2 +∆yi ·cosθ~yi ,~o/π
,

∆ω∗
i ≈

∆yi ·cosθ~yi ,~x

|~x−~yi |2 +∆yi ·cosθ~yi ,~x/π
.

whereθ~yi ,~o andθ~yi ,~x are the angle between the normal vector at~yi
and the direction from~yi to ~o, and the angle between the normal
vector and the direction from~yi to~x, respectively (figure 5).

Assume that the environment surface is not very close compared to
the distances of the reference and shaded points, thus the angles be-
tween the normal vector at~yi and reflection vectors from~o and from
~x are similar(cosθ~yi ,~x≈ cosθ~yi ,~o). In this case, we can establish the

following relationship between∆ω∗
i and∆ω ′

i :

∆ω∗
i ≈

|~o−~yi |2 ·∆ω ′
i

|~x−~yi |2 · (1−∆ω ′
i /π)+ |~o−~yi |2 ·∆ω ′

i /π
.

5 Implementation

The proposed algorithm first computes an environment cube map
from the reference point and stores the radiance and distance values
of the points visible in its pixels. We usually generate6×256×256
pixel resolution cube maps. Then the cube map is downsampled to
haveM×M pixel resolution faces (M is 4 or even 2). Texels of the
low-resolution cubemap represent elementary surfaces∆yi whose
average radiance and distance are stored in the texel. The illumina-
tion of these elementary surfaces is reused for an arbitrary pointx,
as shown by the following HLSL pixel shader program calculating
the reflected radiance at this point:

half3 RefRad (half3 N : TEXCOORD0, half3 V : TEXCOORD1,

half3 x : TEXCOORD2) : COLOR0

{
half3 Lr = 0;

V = normalize(V); N = normalize(N);

for (int X = 0; X < M; X++) // for each texel

for (int Y = 0; Y < M; Y++) {
half2 t = half2((X+0.5f)/M, (Y+0.5f)/M);

half2 l = 2 * t - 1; // [0,1]->[-1,1]

Lr += Cntr(x, half3(l.x,l.y, 1), N, V);

Lr += Cntr(x, half3(l.x,l.y,-1), N, V);

Lr += Cntr(x, half3(l.x, 1,l.y), N, V);

// + similarly for the 3 remaining sides

}
return Lr;

}
The Cntr function calculates the contribution of a single texel of
downsampled, low resolution cubemapLREnvMap to the illumina-
tion of the shaded point. Argumentsx, L, N, andV are the relative
position of the shaded point with respect to the reference point, the
unnormalized illumination direction pointing to the center of the
texel from the reference point, the unit surface normal at the shaded
point, and the unit view direction, respectively. The following im-
plementation obtains the average reflectivity on the fly taking one
sample.

half3 Cntr(half3 x, half3 L, half3 N, half3 V) {
half l = length(L);

half dw = 4 / (M*M*l*l*l + 4/PI);

half doy = texCUBE(LRCubeMap, L).a;

half doy2 = doy * doy;

half3 y = L / l * doy;

half dxy2 = dot(y-x, y-x);

half dws = (doy2*dw) /

(dxy2*(1-dw/PI)+doy2*dw/PI);

half3 I = normalize(y - x);

half3 H = normalize(I + V);

half3 a = float3(0,0,0);

if (dot(N,I)>0 && dot(N,V)>0)

a = kd * max(dot(N,I),0) +

ks * pow(max(dot(N,H),0),n);

half3 Lin = texCUBE(LRCubeMap, L).rgb;

return Lin * a * dws;

}
First the solid angle subtended by the texel from the reference point
is computed and stored in variabledw, then illuminating pointy is

obtained looking up the distance value of the cube map. The square
distances between the reference point and the illuminating point,
and between the shaded point and the illuminating point are put
into doy2 anddxy2, respectively. These square distances are used
to calculate solid angledws subtended by the illuminating surface
from the shaded point. Phong-Blinn BRDF is used with diffuse re-
flectancekd, specular reflectanceks, and shininessn. Illumination
directionI and halfway vectorH are calculated, and the reflection
of the radiance stored in the cube map texel is obtained according
to equation 3.

6 Results

In order to demonstrate the results, we took a simple environment
consisting of a cubic room with a divider face in it. The object
to be indirectly illuminated is the bunny, happy buddha, and the
the dragon, respectively. Each of these models consists of approx-
imately 50-60 thousand triangles. Frame rates were measured in
700× 700 windowed mode on an NV6800GT graphics card and
P4/3GHz CPU. The first set of pictures (Figure 6) shows a diffuse
bunny inside the cubic room. The images of the first column are
rendered by the traditional environment mapping technique for dif-
fuse materials where a precalculated convolution enables us to de-
termine the irradiance at the reference point with a single lookup.
Clearly, these precalculated values cannot deal with the position
of the object, thus the bunny looks similar everywhere. The other
columns show the results of our method using different sized cube
maps. Note that even with extremely low resolution (2×2) we get
images similar to the large-resolution reference.

The second set (Figure 7) and the third set (Figure 8) of pictures
show a glossy buddha and a dragon inside a room. The first column
presents the traditional environment mapping technique while the
other three columns present the results of our localized algorithm.
Similarly to the diffuse case, even cube map resolution of2× 2
produced more pleasing results than the classical technique. We
have also implemented the proposed method in a game running at
30 FPS. Images of this game are shown by figure 9.

7 Conclusions

This paper presented a localization method for computing diffuse
and glossy reflections of the incoming radiance stored in environ-
ment maps. The localization uses the distance values stored in the
environment map texels. The presented method runs in real-time
and provides visually pleasing results.

Acknowledgements

This work has been supported by OTKA (T042735) and GameTools
FP6 (IST-2-004363) project.

References

BJORKE, K. 2004. Image-based lighting. InGPU Gems, R. Fer-
nando, Ed. NVidia, 307–322.

BLINN , J. F.,AND NEWELL, M. E. 1976. Texture and reflection
in computer generated images.Communications of the ACM 19,
10, 542–547.

DACHSBACHER, C., AND STAMMINGER , M. 2005. Reflective
shadow maps. InSI3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, ACM Press, New York,
NY, USA, 203–231.

DEBEVEC, P. 1998. Rendering synthetic objects into real scenes:
Bridging traditional and image-based graphics with global illu-
mination and high dynamic range photography. InSIGGRAPH
’98, 189–198.

G., G., SHIRLEY, P., HUBBARD, P.,AND GREENBERG, D. 1998.
The irradiance volume.IEEE Computer Graphics and Applica-
tions 18, 2, 32–43.

GLASSNER, A. 1995.Principles of Digital Image Synthesis. Mor-
gan Kaufmann Publishers, Inc., San Francisco.

GREENE, N. 1984. Environment mapping and other applications of
world projections. IEEE Computer Graphics and Applications
6, 11, 21–29.

KRISTENSEN, A., AKENINE-MOLLER, T., AND JENSEN, H.
2005. Precomputed local radiance transfer for real-time light-
ing design. InSIGGRAPH 2005.

MANTIUK , R., PATTANAIK , S., AND MYSZKOWSKI, K. 2002.
Cube-map data structure for interactive global illumination com-
putation in dynamic diffuse environments. InInternational Con-
ference on Computer Vision and Graphics, 530–538.

RAMAMOORTHI , R., AND HANRAHAN , P. 2001. An efficient
representation for irrandiance environment maps.SIGGRAPH
2001, 497–500.

REINHARD, E., TIJSSEN, L. U., AND JANSEN, W. 1994. Environ-
ment mapping for efficient sampling of the diffuse interreflec-
tion. In Photorealistic Rendering Techniques. Springer, 410–
422.

SHIRLEY, P., WANG, C., AND ZIMMERMAN , K. 1996. Monte
Carlo techniques for direct lighting calculations.ACM Transac-
tions on Graphics 15, 1, 1–36.

SLOAN , P., KAUTZ , J.,AND SNYDER, J.2002. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency
lighting environments. InSIGGRAPH 2002 Proceedings, 527–
536.

SZIRMAY-KALOS, L., ASZÓDI, B., LAZÁNYI , I., AND PRE-
MECZ, M. 2005. Approximate ray-tracing on the GPU with
distance impostors.Computer Graphics Forum 24, 3, 695–704.

WALD , I., BENTHIN, C., AND SLUSSALEK, P. 2003. Interac-
tive global illumination in complex and highly occluded environ-
ments. In14th Eurographics Symposium on Rendering, 74–81.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA , K.,
DONIKIAN , M., AND GREENBERG, D. P. 2005. Lightcuts:
A scalable approach to illumination. InSIGGRAPH 2005.

WARD, G. 1994. Adaptive shadow testing for ray tracing. In
Rendering Workshop ’94, 11–20.

ZHOU, K., HU, Y., L IN , S., GUO, B., AND SHUM , H.-Y. 2005.
Precomputed shadow fields for dynamic scenes. InSIGGRAPH
2005.

classical method localized cubemap localized cubemap reference
16×16 resolution 2×2 resolution 4×4 resolution 16×16 resolution

75 FPS 20 FPS 2 FPS

Figure 6:Diffuse bunny rendered with the classical environment mapping (left column) and with our algorithm using different environment
map resolutions.

classical method localized cubemap localized cubemap reference
16×16 resolution 2×2 resolution 4×4 resolution 16×16 resolution

22 FPS 6 FPS 1 FPS

Figure 7:Specular buddha (the shininess is 5) rendered with the classical environment mapping (left column) and with our algorithm using
different environment map resolutions.

classical method localized cubemap localized cubemap reference
16×16 resolution 2×2 resolution 4×4 resolution 16×16 resolution

21 FPS 7 FPS 1 FPS

Figure 8:Specular dragon (the shininess is 5) rendered with the classical environment mapping (left column) and with our algorithm using
different environment map resolutions.

Figure 9:Glossy objects in a game running at 30 FPS.

