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Abstract
This paper presents a fast approximation method to obtain the point hit by a reflection or refraction ray. The
calculation is based on the distance values stored in environment map texels. This approximation is used to localize
environment mapped reflections and refractions, that is, to make them depend on where they occur. On the other
hand, placing the eye into the light source, the method is also good to generate real-time caustics. Computing
a map for each refractor surface, we can even evaluate multiple refractions without tracing rays. The method is
fast and accurate if the scene consists of larger planar faces, when the results are similar to that of ray-tracing.
On the other hand, the method suits very well to the GPU architecture, and can render ray-tracing and global
illumination effects with few hundred frames per second. The primary application area of the proposed method is
the introduction of these effects in games.

1. Introduction

When computing the light transfer, the basic operation is
tracing a ray from its origin point at a direction to find that
point which is the source of illumination. Current graphics
processing units (GPU) trace rays of the same origin very ef-
ficiently. However, in reflection, refraction and caustic com-
putations the rays are not so coherent, but we need to trace
just a single ray from each of many origins. Although it is
possible to implement such a general ray tracer on the GPU
[PBMH02, PDC∗03], its performance is much poorer than
that of tracing a bundle of rays sharing the same origin.

1. Finding the center 
of the object

2. Taking images
from the center

3. Illumination 
from the images

Figure 1: Steps of environment mapping

A GPU friendly approximation technique isenvironment

mapping, which assumes that the hit point is very (infinitely)
far, and thus it becomes independent of the ray origin. In
this case rays can be translated to the samereference point,
so we get that case back for which the GPU is an optimal
tool. When rays originate at a given object, environment
mapping takes images about the environment from the cen-
ter of the object, then the environment of the object is re-
placed by a cube, or by a sphere, which is textured by these
images (figure1). When the incoming illumination from a
direction is needed, instead of sending a ray we can look
up the result from the images constituting theenvironment
map. Environment mapping [BN76] has been originally pro-
posed to render ideal mirrors in local illumination frame-
works, then extended to approximate general secondary rays
without expensive ray-tracing [Gre84, RTJ94, Wil01]. Envi-
ronment mapping has also become a standard technique of
image based lighting[MH84, Deb98].

A fundamental problem of environment mapping is that
the environment map is the correct representation of the di-
rection dependent illumination only at a single point, the ref-
erence point of the object. For other points, accurate results
can only be expected if the distance of the point of interest
from the reference point is negligible compared to the dis-
tance from the surrounding geometry. However, when the

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



Szirmay-Kalos, Aszódi, Lazányi, Premecz / Approximate Ray-Tracing on the GPU with Distance Impostors

object size and the scale of its movements are comparable
with the distance from the surrounding surface, errors occur,
which create the impression that the object is independent of
its illuminating environment.

A compromise is needed that uses just a single environ-
ment map for the whole object, which is recomputed only
if the object moved far from the reference point. Thus the
computational cost is close to that of the original environ-
ment mapping method. On the other hand, the single envi-
ronment map is used “intelligently” to provide different local
illumination information for every point, based on the rela-
tive location from the reference point. At a given time, we
associate just a single environment map with each dynamic,
reflective object, but make “localized” illumination lookups
when its different points are shaded. Making texture map
lookups depend on the viewing direction has been suggested
in the context of bump mapping [Wel04], displacement map-
ping [WWT∗04], and in image based rendering [LH96]. Lo-
calized image based lighting has been proposed by Bjorke
[Bjo04], where a proxy geometry (e.g. a sphere or a cube)
of the environment is intersected by the reflection ray to ob-
tain the visible point. Due to the fixed and simple proxy ge-
ometry, it is possible to implement ray-tracing on the pixel
shader of the GPU. However, the assumption of a simple and
constant environment geometry creates visible artifacts that
make the proxy geometry apparent during animation.

Unlike previous environment mapping methods, we do
not ray-trace the neighborhood or the proxy geometry, but
rely solely on environment map lookups. The geometric in-
formation required by the localization process is also stored
in the environment map, similarly to nailboards [Sch97] or
layered depth impostors [DSSD99]. This information is the
distance of the source of the illumination from the reference
point where the environment map was taken. The proposed
method picks environment map texels for a ray based on ge-
ometric information. Of course, a single map cannot always
guarantee correct results if view dependent occlusions oc-
cur. As the object moves in the environment, the probability
of such occlusions increases. Thus when the movement ex-
ceeds a threshold, the environment map is regenerated from
the translated reference point. Since the environment map is
not refreshed in every frame, the amortized cost of its gener-
ation becomes negligible.

The new environment mapping process provides exact re-
sults if the surface of the environment is a plane between the
sampled points, and the approximation error is small even
for non-planar surfaces as well. The algorithm is simple and
can be executed by current vertex and pixel shaders at very
high frame rates.

2. Localization of the environment map

The basic idea of this paper to localize environment maps is
discussed using the notations of figure2. Let us assume that

center~o of our coordinate system is the reference point of the
environment map and we are interested in the illumination of
point~x from direction~R. We suppose that direction vector~R
has unit length.
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Figure 2: Localization of the environment map having ref-
erence point~o. When computing the incoming radiance at
point~x from direction~R, ray tracing would select point~q,
classical environment mapping would read the radiance of
point~r, while the proposed method calculates~l approximat-
ing the hit point on the ray and looks up the environment
map in this direction obtaining the radiance of point~l ′.

Classical environment mapping would look up the illu-
mination selected by direction~R, that is, it would use the
radiance of point~r. However,~r is usually not equal to point
~q, which is in direction~R from~x, and thus satisfies the fol-
lowing ray equation for some distanced:

~q =~x+~R·d. (1)

Our localization method finds an approximation ofd us-
ing an iterative process working with distances between the
environment and reference point~o. The required distance in-
formation can be computed during the generation of the en-
vironment map. While a normal environment map stores the
illumination for each direction in R,G,B channels, now we
also obtain the distance of the visible point for these direc-
tions and store it, for example, in the alpha channel. We call
these extended environment maps asdistance impostors.

2.1. Finding ray hit approximations

To find an initial guess for the ray hit, we first assume that the
environment surface at~r is perpendicular to ray direction~R
(figure3). In case of perpendicular surface, the ray would hit
point~p. Points~r,~x and origin~o define a plane, which is the
base plane of figure3. This plane also contains visible point
approximation~p and unit direction vector~R. Multiplying ray
equation

~x+~R·dp = ~p (2)

by direction vector~R and substituting~R·~p = |~r|, which is
the consequence of the perpendicular surface assumption,
we can express ray parameterdp:

dp = |~r|−~R·~x.
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Figure 3: Identifying first approximation point~p assuming
that the surface is perpendicular to~R, and second approxi-
mation point~l supposing that the surface is planar between
points~r and~p′.

If we used the direction of point~p to lookup the environment
map, we would obtain the color of point~p′, which is in the
direction of~p but is on the surface.

If the surface were a plane between~p′ and~r, then the
intersection of the planar surface and the plane defined by
points~r,~x and~o would be a line, and the point visible from~x
at direction~Rwould be~l . Let us assume that the surface can
be well approximated by a plane between points~r and~p′,
and find intersection~l of the plane with the ray. The intersec-
tion is on the ray, thus it satisfies the following ray equation:

~l =~x+~R·dl . (3)

On the other hand, point~l is also on the line of~r and~p′, thus
it can be expressed as a combination of these two points with
unknown weightα:

~l =~r ·α+~p′ · (1−α).

Note that~l is not necessarily between~r and~p′ thusα is not
restricted to[0,1] but can have an arbitrary value. Substitut-
ing identities~p′ = ~p· |~p′|/|~p|,~r = ~R· |~r|, and equation2, we
obtain

~l =~r ·α+(~x+~R·dp) · |~p
′|
|~p| · (1−α) =

~x ·
(

(1−α) · |~p
′|
|~p|

)
+~R·

(
dp · (1−α) · |~p

′|
|~p| +α · |~r|

)
.

Comparing this expression with equation3, we obtain the
following requirements for unknownsα anddl :

(1−α) · |~p
′|
|~p| = 1, dp · (1−α) · |~p

′|
|~p| +α · |~r|= dl .

Solving this equation, we get:

dl = dp + |~r| ·
(

1− |~p|
|~p′|

)
. (4)

Substituting this distance into the ray equation, we obtain
hit point approximation~l , which can be used to look up the
environment map. In this way, we would obtain the radiance
of point~l ′ of figure3.

2.2. Refinement by iteration

So far we obtained two initial guesses of the ray parameter
dp anddl , and consequently two points~p and~l that are on
the ray, but are not necessarily on the surface, and two other
points~p′ and~l ′ that are on the surface, but are not necessarily
on the ray (figure4). These initial results can be refined by an
iteration process, which computes new hit point approxima-
tion~lnewassuming that the surface is planar between sample
points~p′ and~l ′, and then replaces~p by~l and~l by~lnew.
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Figure 4: Refinement by iteration.

Since new approximation~lnew is on the ray, it satisfies the
following ray equation:

~lnew=~x+~R·dnew. (5)

Point~lnew is also on the line of~l ′ and~p′, thus it can be ex-
pressed as their combination with unknown weightα:

~lnew=~l ′ ·α+~p′ · (1−α).

Substituting identities~p′ = ~p· |~p′|/|~p| and~l ′ =~l · |~l ′|/|~l |, as
well as the ray equation fordp anddl , we get:

~lnew= (~x+~R·dl ) · |
~l ′|
|~l |
·α+(~x+~R·dp) · |~p

′|
|~p| · (1−α).

Comparing this expression with equation5, we obtain the
following requirements for unknownsα anddnew:

|~l ′|
|~l |
·α+

|~p′|
|~p| · (1−α) = 1,

dl · |
~l ′|
|~l |
·α+dp · |~p

′|
|~p| · (1−α) = dnew.

Solving this equation, we get:

dnew= dl +(dl −dp) · 1−|~l |/|~l ′|
|~l |/|~l ′|− |~p|/|~p′|

. (6)

A step of the iteration evaluates this formula and replacesdp

by dl anddl by dnew together with their associated points on
the ray and on the surface.

From mathematical point of view, the proposed iteration
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method solves ray equationf (~x+ ~R · d) = 0 with the se-
cant method[Wei03], where f (~r) = 0 is the implicit equa-
tion of the environment surface, which is represented by dis-
crete distance samples of the environment map. The secant
method usually converges very quickly [Wei03], but it may
not converge for high variation functions. Note that in equa-
tion 6 the absolute value of denominator|~l |/|~l ′| − |~p|/|~p′|
can be smaller than the absolute value of enumerator1−
|~l |/|~l ′|, which means that step size|dl − dp| may also in-
crease. While increasing the step size where necessary im-
proves convergence, it is also the cause of divergence.

To address the convergence issue, the basic iteration
should be slightly modified. Let us first recognize that ratios
|~l |/|~l ′| and|~p|/|~p′| showing up in equation6 express the ac-
curacy of approximation points~l and~p. If the point were the
real ray hit, then the ratio would be 1. Values smaller than
1 indicate that the approximation point is anundershooting,
i.e. it is in front of the surface. On the other hand, when
the ratio is greater than one, the approximation is anover-
shootingsince the approximation point is behind the surface.
For example, in figure4 ~p and~lnew are overshooting points,
while~l is an undershooting.

Note that when~l and~p are of different types, the absolute
value of denominator|~l |/|~l ′| − |~p|/|~p′| cannot be smaller
than the absolute value of enumerator1−|~l |/|~l ′|, which re-
sults in a step size reduction. This condition can be enforced
if last approximation~l is paired not necessarily with the last
but one approximation, but the last approximation of op-
posite type. This method is equivalent to thefalse position
root finding method[Wei03]. We can switch from the se-
cant method to the false position method if we have at least
one overshooting point and one undershooting approxima-
tion. Since default point~r corresponds to an infinite ray pa-
rameter, which is a sure overshooting, we can use this ideal
point at infinity if there are no other overshooting results. On
the other hand, if there is no undershooting point, we can ei-
ther follow the secant rule, use reflection point~x, or default
point~r again to substitute the undershooting point. We have
found that the last option is safe and works well.

Note that even with guaranteed convergence, the proposed
method is not necessarily equivalent to exact ray tracing in
the limiting case. Small errors may be due to the discrete
surface approximation, or to view dependent occlusions. For
example, should the ray hit a point that is not visible from
the reference point of the environment map, then the pre-
sented approximation scheme would obviously be unable to
find that. However, when the object is curved and moving,
these errors can hardly be recognized visually.

3. Environment mapping with distance impostors

The computation of distance impostors is very similar to
that of classical environment maps. The only difference is
that the distance from the reference point is also calculated,

which can be stored in a separate texture or in the alpha chan-
nel of the environment map. Since the distance is a non linear
function of the homogeneous coordinates of the points, cor-
rect results can be obtained only by letting the pixel shader
compute the distance values.

Having the distance impostor, we can place an arbitrary
object in the scene and illuminate it with its environment
map using custom vertex and pixel shader programs. The
vertex shader transforms objects to normalized screen space,
and also to the coordinate system of the environment map
first applying the modeling transform, then translating to the
reference point. View vector~V and normal~N are also ob-
tained in world coordinates.

Having the graphics hardware computed the homoge-
neous division and filled the triangle with linearly interpo-
lating all vertex data, the pixel shader is called to find ray hit
~l and to look up the cube map in this direction. The HLSL
code of functionHit computing hit point approximation~l
with the false position method is shown below:

float3 Hit(float3 x, float3 R, sampler mp) {
float rl = texCUBE(mp, R).a; // |r|
float dp = rl - dot(x, R);
float3 p = x + R * dp;
float ppp = length(p)/texCUBE(mp,p).a;
float dun =0, dov =0, pun = ppp, pov = ppp;
if (ppp < 1) dun = dp; else dov = dp;
float dl = max(dp + rl * (1 - ppp), 0);
float3 l = x + R * dl;

// iteration
for(int i = 0; i < NITER; i++) {

float ddl;
float llp = length(l)/texCUBE(mp,l).a;
if (llp < 1) { // undershooting

dun = dl; pun = llp;
ddl = (dov == 0) ? rl * (1 - llp) :

(dl-dov) * (1-llp)/(llp-pov);
} else { // overshooting

dov = dl; pov = llp;
ddl = (dun == 0) ? rl * (1 - llp) :

(dl-dun) * (1-llp)/(llp-pun);
}
dl = max(dl + ddl, 0); // avoid flip
l = x + R * dl;

}
return l;

}

This function gets ray originx and directionR, as well
as cube mapmpof the environment, and returns hit approx-
imation l . We suppose that the distance values are stored
in the alpha channel of the environment map. Ratios|~l |/|~l ′|
and|~p|/|~p′| are represented by variablesllp andppp , re-
spectively. Note that variablesdun anddov store the last
undershooting and overshooting ray parameters. If there has
been no such approximation, the ray parameters are zero. In
this case default point~r takes their roles. In order to avoid

c© The Eurographics Association and Blackwell Publishing 2005.
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classical environment map distance impostor +1 iteration ray traced reference
642 FPS 447 FPS 323 FPS

Figure 5: Comparison of classical and localized environment map reflections with ray traced reflections placing the reference
point at the center of the room and moving a reflective sphere to different locations. Note that even the initial guess made with
the distance impostor is accurate almost everywhere but the corners where one iteration step is enough. The FPS values are
measured with700×700resolution on an NV6800GT.

distance impostor +1 iteration +4 iterations +8 iterations
430 FPS 323 FPS 169 FPS 108 FPS

Figure 6: A more difficult case when the room contains a box that makes the scene strongly concave and is responsible for view
dependent occlusions.

ray flipping, the algorithm limits ray parameters for the non-
negative domain.

The pixel shader calls functionHit and looks up cube
mapenvmap again to find illuminationI of the hit point:

N = normalize(N); V = normalize(V);
R = reflect(V, N); // reflection dir.
float3 l = Hit(x, R, envmap); // ray hit
float3 I = texCUBE(envmap, l).rgb;

The next step is the computation of the reflection of in-
coming radianceI . If the surface is an ideal mirror, the in-
coming radiance should be multiplied by the Fresnel term

evaluated for the angle between surface normal~N and re-
flection direction~R. We applied an approximation of the
Fresnel function, which is similar to Schlick’s approxima-
tion [Sch93] in terms of computational cost, but can take
into account not onlyrefraction indexn but alsoextinction
coefficientk, which is essential for realistic metals [LSK05]:

F(~N,~R) =
(n−1)2 +k2 +4n(1−~N ·~R)5

(n+1)2 +k2 .

Figure 5 compares images rendered by the proposed
method with standard environment mapping and ray tracing.
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classical distance impostor distance impostor +1 iteration ray traced
environment map single refraction double refraction double refraction reference

804 FPS 695 FPS 508 FPS 249 FPS

Figure 7: Refractions of a sphere having refraction indexn = 1.1.

Note that for such scenes where the environment is convex
from the reference point of the environment map, and there
are larger planar surfaces, the new algorithm converges very
quickly. In fact, even the initial guesses are usually accurate,
and iteration is needed only close to edges and corners.

Figure6 shows a difficult case where the box makes the
environment surface concave and of high variation. Note that
the convergence is still pretty fast, but the converged image
is not exactly what we expect. We can observe that the green
edge of the box is visible in a larger portion of the reflection
image. This phenomenon is due to the fact that a part of the
wall is not visible from the reference point of the environ-
ment map, but are expected to show up in the reflection. In
such cases the algorithm can go only to the edge of the box
and substitutes the reflection of the occluded points by the
blurred image of the edge.

4. Multiple refractions

The proposed method can be used to simulate not only re-
flected but also refracted rays, just the direction computation
should be changed from the law of reflection to the Snellius-
Descartes law of refraction, that is, thereflect operation
should be replaced by therefract operation in the pixel
shader. However, tracing a refraction ray on a single level is
usually not enough since the light is refracted at least twice
to go through a refractor. The location of the second refrac-
tion as well as the normal vector at this point depend on the
geometry of the object, which can only be analyzed by ray-
tracing unless the refractor is very special (e.g. a sphere, a
cylinder, etc.).

Applying distance impostors, however, we can solve this
problem as well if the refractor is not strongly concave, i.e.
all surface points can be seen from its center point. We cre-
ate a distance impostor for each refractor, which stores the
distance of the refractor surface from its center and the nor-
mal vector of the surface. If the refractor has static geometry,
these impostors can be obtained during preprocessing. We
call this distance impostor as therefractor map.

refrmap

x
R

RN
N1

p

r

l R1

V

1

ray after second
refraction

refractor

|r|

|p’| N

environment
surface

l1

Figure 8: Multiple refractions without iterative refinement.
The ray refracts at~x to direction~R. The refractor map is
looked up in direction~R to obtain~r. Using the perpendic-
ular surface and planar surface assumptions we get~p and
~l , respectively. The refractor map is looked up in direction
~l to find normal~N1 of the second refraction. Then the ray
is refracted again at~l using normal~N1, and the process is
continued with the environment map localization.

Now let us consider point~x on the surface of the refrac-
tor visible from the camera (figure8). Using the proposed
method for the refractor map, we obtain that point which
is hit by the refraction ray. The normal vector at this point
can be read from the distance impostor. Computing another
refraction at this point and setting the origin of the refrac-
tion ray to the previously identified point, we can continue
with the real environment map and find that point and color,
which is visible after two refractions. The pixel shader of
double refractions uses the refractor map (refrmap ) with
reference point stored in variable calledobjcenter :

N = normalize(N); V = normalize(V);
R = refract(V, N, 1/n); // first refraction
float3 l = Hit(x-objcenter, R, refrmap);
float3 N1 = texCUBE(refrmap, l).xyz;
R1 = refract(R, N1, n); // second refraction

// envmap lookup
float3 l1 = Hit(l+objcenter, R1, envmap);
float3 I = texCUBE(envmap, l1); // in rad.
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Figure7 shows a refracting sphere rendered with classical
environment map and also by the new method with single
and double refractions. Note that multiple refraction has a
significant effect even when the refraction index is close to
1, and also that the proposed method is quite accurate even
with only one additional iteration step.

5. Application to caustics generation

The method presented so far can compute the hit point after
the first (or higher order) reflection or refraction of the vis-
ibility ray. If we replace the eye by a light source, the same
method can also be used to determine the first (or higher or-
der) bounce of the light ray, thus we can compute the indirect
illumination bounced off dynamic objects onto static ones.

caustic
generator

photon hit info
is written into 
the  caustic map environment

surface

caustic map
being generated

x
R

l

distance impostor
of the environment

Figure 9: Caustics generation with environment maps

These indirect effects have a significant impact on the fi-
nal image if the dynamic object is close to be an ideal re-
flector or refractor, when these effects show up in forms of
caustic spots [Jen96, TS00, WS03]. The proposed distance
impostors can thus be used to compute caustics.

When rendering the scene from the point of view of the
light source, the view plane is placed between the light and
the refractor (figure9). The image on this view plane is
calledcaustic map. Note that this step is very similar to the
generation of depth images for shadow maps. In fact, if we
combine the method with shadow mapping, we obtain caus-
tics almost for free. However, implementing the caustic map
generation separately allows us to optimally set the position
and the resolution of the view plane of the caustic map.

Supposing that the surface is an ideal reflector or refractor,
point~l that receives the illumination of a light source after
a single or multiple reflection or refraction can be obtained
by the proposed approximate ray tracing, and particularly
by calling theHit function, after making the following sub-
stitutions: point~x is visible from the light source through a
caustic map pixel,~R is the refraction (or reflection) of the
direction from the light source onto the surface normal at
~x. The localized environment map lookups provide an ap-
proximation of that point~l , which is hit by a photon after
a single reflection, or alternatively,~l is an approximation of

the direction of the photon hit from the reference point of the
environment map.

The photon hit parameters are stored in that caustic map
pixel through which the primary light ray arrived at the caus-
tic generator object. There are several alternatives to rep-
resent a photon hit. Considering that the reflected radiance
caused by a photon hit is the product of the BRDF and the
power of the photon, the representation of the photon hit
should identify the surface point and its BRDF. A natural
identification is the texture coordinates of that surface point,
which is hit by the ray. A caustic map pixel stores the iden-
tification of the texture map, theu andv texture coordinates,
and finally the luminance of the power of the photon. The
photon power is computed from the power of the light source
and the solid angle subtended by the caustic map pixel.

The identification of theu and v texture coordinates
from the direction of the photon hit requires another texture
lookup. Suppose that together with the environment map, we
also render another map, calleduvmap, which has the same
structure, but stores theu,v coordinates and the texture id
in its pixels. Having found the direction of the photon hit,
this map is read to obtain the texture coordinates, which are
finally written into the caustic map.

The vertex shader of caustic map generation transforms
the points and illumination direction~L to the coordinate sys-
tem of the environment map. Then the pixel shader computes
the location of the photon hit and puts it into the target pixel:

N = normalize(N); L = normalize(L);
R = refract(L, N, 1/n); // or reflect ...
float3 l = Hit(x, R, envmap); // photon hit
float3 hituv = texCUBE(uvmap, l).xyz;
return float4(hituv, power); // to caustmap

In order to recognize those texels of the caustic map where
the refractor is not visible, we initialize the caustic map with
−1 alpha values. Checking the sign of the alpha later, we can
decide whether or not it is a photon hit.

The generated caustic map is used to project caustic tex-
tures onto surfaces [GD01], or to modify their light map in
the next rendering pass. Every photon hit should be multi-
plied by the BRDF, and the product is used to modulate a
small filter texture, which is added to the texture of the sur-
face. The filter texture corresponds to Gaussian filtering in
texture space. In this pass we render as many small quadri-
laterals (two adjacent triangles in DirectX) or point sprites
as texels the caustic map has. The caustic map texels are ad-
dressed one by one with variablecaustcoord in the ver-
tex shader shown below. The center of these quadrilaterals is
the origo, and their size depends on the support of the Gaus-
sian filter. The vertex shader changes the coordinates of the
quadrilateral vertices and centers the quadrilateral at theu,v
coordinates of the photon hit in texture space if the alpha
value of the caustic map texel addressed bycaustcoord
is positive, and moves the quadrilateral out of the clipping
region if the alpha is negative. This approach requires the
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texture memory storing the caustic map to be fed back to
the vertex shader, which is possible on 3.0 compatible ver-
tex shaders. The vertex shader of projecting caustic textures
onto surfaces is as follows:

float4 ph = tex2Dlod(caustmap, IN.caustcoord);
OUT.filtcoord = IN.pos.xy; // filter coords
OUT.texcoord.x = ph.x + IN.pos.x / 2;
OUT.texcoord.y = ph.y - IN.pos.y / 2;
OUT.hpos.x = ph.x * 2 - 1 + IN.pos.x;
OUT.hpos.y = 1 - ph.y * 2 + IN.pos.y;
OUT.hpos.w = 1;
if (ph.a < 0) OUT.hpos.z = 2; // ignore
else OUT.hpos.z = 0; // valid
OUT.power = ph.a; // photon power

Note that the originalx,y coordinates of quadrilateral ver-
tices are copied as filter texture coordinates, and are also
moved to the position of the photon hit in the texture space of
the surface. The output position register (hpos ) also stores
the texture coordinates converted from[0,1]2 to [−1,1]2

which corresponds to rendering to this space. Thew andz
coordinates of the position register are used to ignore those
caustic map elements which have no associated photon hit.

The pixel shader computes the color contribution as the
product of the photon power, filter value and the BRDF:

float3 brdf = tex2d(textureid, texcoord);
float w = tex2d(filter, filtcoord);
return power * w * brdf;

The target of this rendering is the light map or the modi-
fied texture map. Note that the contribution of different pho-
tons should be added, thus we should set the blending mode
to “add” before executing this phase.

Figure 10: Real-time caustics caused by a glass sphere (n=
1.3), rendered by the proposed method on 182 FPS

Figure10 shows the implementation of the caustics gen-
eration, when a64× 64 resolution caustic map is obtained
in each frame, which is fed back to the vertex shader. Note
that even with shadow, reflection, and refraction computa-
tion, the method runs with 182 FPS.

6. The complete rendering algorithm

The different techniques proposed by this paper can be com-
bined in a complete real-time rendering algorithm. The input
of this algorithm include

• the definition of the static environment in form of trian-
gle meshes, material data, textures, and light maps having
been obtained with a global illumination algorithm,

• refractor maps of those dynamic objects, which are ex-
pected to refract (or reflect) the light multiple times,

• the definition of dynamic objects set in the actual frame,
• the current position of light sources and the eye.

The image generation requires a preparation phase, and a
rendering phase from the eye. The preparation phase com-
putes the environment maps. Depending on the distribution
of the dynamic objects, we may generate only a single envi-
ronment map for all of them, or we may maintain a separate
map for each of them. Note that this preparation phase is
usually not executed in each frame, only if the object move-
ments are large enough. If we update these maps after every
100 frames, then the cost amortizes and the slow down be-
comes negligible. If the scene has caustic generators, then a
caustic map is obtained for each of them, and caustic maps
are converted to light maps during the preparation phase.

Figure 11: Caustics seen through the refractor object.

The final rendering phase from the eye position consists
of three steps. First the static environment is rendered with
their light maps making also caustics visible. Then dynamic
objects are sent to the GPU, having enabled the proposed
localized environment mapping and also multiple refraction
computation. Note that in this way the reflection or refrac-
tion of caustics can also be generated (figure11).

The presented algorithm has been implemented in Di-
rect3D environment, first as a test application, and then in
a game. The images of the test application are shown by fig-
ures5, 6, 7, 10, 11, and12. The test application computes
the environment map only once to show that the proposed
localization gives good results even if the objects moved sig-
nificantly from their original positions. Note that this appli-
cation runs typically with few hundred frames per second
even in full screen mode on an NV6800GT graphics card
and P4/3GHz CPU, and can maintain this speed for tens of
thousand of triangles. For comparison, the peak performance
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Figure 12: Left: a glass skull (n= 1.3, k= 0) of 61000 trian-
gles rendered on 130 FPS. Right: an alu teapot (n= 0.5..2.3,
k = 5..9) of 2300 triangles rendered on 440 FPS.

Figure 13: A reflective box with shadows in a stone environ-
ment illuminated by dynamic lights (160FPS)

is 1095 FPS for the scene of figure5 when the pixel shader
executes a return instruction for the sphere.

We also included the proposed method in a game execut-
ing shadow computation, collision detection, etc. (figures13,
14, and15) that can run with about a hundred FPS. In this
game we used6×256×256resolution cube maps that are
recomputed in every 150 msec. We have realized that the
speed improves by an additional 20 percent if the distance
values are separated from the color data and stored in an-
other texture map. The reason of this behavior is that the
pixel shader reads the distance values several times from dif-
ferent texels before the color value is fetched, and separating
the distance values increases texture cache utilization.

7. Conclusions

This paper presented a localization method for environment
maps, which uses the distance values stored in environment
map texels. The accuracy of the initial guess can be im-
proved by iteration. In this sense, the localization method is
equivalent to approximate ray-tracing, which solves the ray
equation by numerical root finding.

The proposed solution can introduce effects in games that
are usually simulated by ray tracing, such as single or multi-
ple reflections and refractions on curved surfaces, and caus-
tics. Unlike ray tracing the proposed algorithm works with a
predefined set of rays obtained by rendering the scene from
the reference point, which makes a bridge between tracing
rays and the incremental rendering concept of the GPU.
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