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Abstract

The hemicube is a classical tool to transfer the light power
in diffuse radiosity algorithms. The main advantage of the
hemicube based light transfer is that the visible patches
can easily be identified by the graphics hardware. This
paper extends the hemicube approach to solve the non-
diffuse global illumination problem. In order to get rid
of the quadratic complexity of classical radiosity algo-
rithms and to allow specular surfaces without storing di-
rectional finite-elements, the original iteration is replaced
by stochastic iteration. Unlike classical iteration where
all patches should be selected to gather the radiosity or to
shoot their unshot radiosity, stochastic iteration can exploit
that a randomly selected patch may represent its neigh-
bours as well, thus accurate results can be obtained even if
just a fraction of patches are selected at all. Since stochas-
tic iteration requires just a random approximation of the
patch radiance, it can use just a single variable per patch
even if the general, non-diffuse problem is attacked. Ran-
dom selection, however, may introduce noise that is par-
ticularly significant where the source and receiver patches
are close. We also propose a solution strategy to elimi-
nate these artifacts. The paper also discusses further im-
provements by applying constant radiance step and by the
randomization of the hemicube.

Keywords: Global illumination, hemicube, stochastic it-
eration, finite-element techniques, Monte-Carlo methods.

1 Introduction

Global illumination aglorithms aim at the physically cor-
rect simulation of the light propagation and solve some
form of the rendering equation [9]

L = Le + TfrL;

which expresses the radianceL(~x; !) of point~x at direc-
tion! as a sum of the emissionLe and the reflection of all
point radiances that are visible from here. The reflection
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of the radiance is expressed by an integral operator

TfrL(~x; !) =

Z



L(h(~x;�!0); !0)�fr(!
0; ~x; !)�cos �0 d!0;

which is also called as thelight transport operator. In
this equationh is the visibility function finding that point
which is visible from~x at direction�! 0, fr is the BRDF
and�0 is the angle between the surface normal and direc-
tion�!0.

The radiosity method [6] was the first global illumina-
tion technique. In order to solve the rendering equation,
radiosity algorithms use iteration. Iteration techniques are
based on the fact that the solution of the rendering equa-
tion is the fixed point of the following iteration scheme:

L(m) = Le + TfrL(m� 1):

If this scheme is convergent, then the pixel colors can be
obtained as a limiting value:

C = lim
m!1

ML(m)

whereM is the measuring operator of the camera.
To store the radiance estimates, finite-element ap-

proaches should be used which represent the radiance
function in a finite function series form:

L(~x; !) =
X

Lj � bj(~x; !)

where functionsbj(~x; !) are pre-defined basis functions
and parametersLj are scalars. In the diffuse case ba-
sis functionsbj(~x; !) are independent of the direction!.
In the general, non-diffuse case, these basis functions are
usually decomposed to a product of positional (sk(~x)) and
directional basis functions (di(!)). The positional basis
functions may be either constant or linear on a patch, while
the directional basis functions can also be piece-wise con-
stant [7], spherical harmonics [16] or Haar functions [17].
Due to the fact that the radiance has 4 variates and changes
quickly, an accurate finite-element representation requires
very many basis functions, which makes these algorithms
both storage and time consuming. Although, hierarchical
or multiresolution methods [3] and clustering [2] can help,
the memory requirements are still prohibitive for complex
scenes.



Early radiosity implementations used Gauss-Seidel or
Jacobi-iteration to solve the set of radiosity equations.
Both iteration methods require the entire form factor ma-
trix, which introducesO(N 2) memory complexity, where
N is the number of patches in the diffuse scene. If the
scene is non-diffuse, thenN is the number of patches mul-
tiplied by the number of directional basis functions, which
makes the finite-element approach even more prohibitive
to use. Concerning the time complexity, iteration con-
verges with the speed of a geometric series, i.e. the error
from the limiting value is in the order ofO(am) wherea
is the contraction of integral operatorTfr [20]. The con-
traction is proportional to the average albedo of the sur-
faces and depends on how open the scene is. Since the
contraction is independent on the number of patches, the
number of required iterations is constant. However, in a
single iteration step anN � N matrix is multiplied with
anN element vector, which is a quadratic operation. Thus
the classical iteration is quadratic both in terms of compu-
tational time and storage. Therefore it cannot be used for
complex scenes.

A more advanced method, called the progressive refine-
ment, is based on the Southwell iteration where it is not
necessary to store the entire matrix of form factors, and
only one column of the matrix is computed on the fly in
each iteration step. Each patch is associated with three
values, such as an emission, a radiosity and an unshot ra-
diosity. The algorithm iteratively selects the patch with
the highest unshot energy, and shoots the unshot power
towards other patches in the scene. This trick reduces the
storage complexity and the time complexity of a single op-
eration toO(N). However, the required number of South-
well iterations will be also linear, thus the whole process
is still quadratic [18]. This can also be intuitively under-
stood since, roughly speaking, all patches must be selected
to allow them to get rid of their unshot power.

In practical cases the neighboring patches are usually
very similar, thus it would be enough to select one of them
and transfer the total power of the neighborhood at once
from here. This idea is exploited by hierarchical radiosity
and also by Monte-Carlo radiosity [10, 14]. Monte-Carlo
radiosity selects a patch just with certain probability, but
the transferred radiance is divided with this probability.
Note that this operation simulates the strategy that instead
of all patches, just a few representative ones are picked,
but from these representative patches we also transfer the
radiance of those patches that have not been selected.

Realizing this, for highly complex scenes the progres-
sive radiosity was randomized and called Monte-Carlo ra-
diosity. The calculation of the necessary form factors can
be done by using a hemicube [11] or can be performed by
local or global lines of the ray tracing approach [15, 13].
The unification of the Monte Carlo radiosity and hierar-
chical techniques[1] has also been proposed recently.

When the non-diffuse case is considered, the other
main problem is the enormous number of required finite-
elements. Randomization can also help solving this prob-

lem as has been proposed by the concept ofstochastic iter-
ation [19]. Suppose that we have a random linear operator
T � so that

E[T �L] = TfrL (1)

for any integrable functionL. During stochastic iteration
a random sequence of operatorsT �1 ; T

�

2
; : : : T �i : : : is gen-

erated, which are instantiations ofT �, and this sequence
is used in the iteration:

L(m) = Le + T �mLm�1: (2)

Suppose that at a given point of the iteration, an image
estimate is computed from the actual radiance, that is, the
measured value in each pixel is

Cm =ML(m): (3)

This measured value will also be a random variable which
does not converge but fluctuates around the real solution.
This problem, however, can be solved, if the image esti-
mates are computed after each iteration step and the final
result is obtained as an average of these estimates[19].

Averaging the firstM steps, we obtain:

C(m) =
1

m
�

mX
i=1

ML(i) =

1

m
�ML(m) +

�
1�

1

m

�
� C(m� 1):

If T � is properly constructed, then it does not need the
radiance function everywhere it its domain, which helps
reducing the astronomical storage requirements of direc-
tional dependent finite elements.

As a summary of the previous work we can conclude
that stochastic iteration is theoretically an effective tool
that can reduce the complexity of global illumination al-
gorithms and can result in non-diffuse global illumination
methods that require just a single variable per patch, that
is, their memory requirement is the same as that of the dif-
fuse radiosity case. The critical part of the construction of
such an algorithm is to find an appropriate random trans-
port operator, that can be efficiently computed preferably
with hardware support, thus the computation time of a sin-
gle step is small. On the other hand, the variance intro-
duced by the randomization should be also small, to keep
the number of required iteration steps acceptable.

This paper proposes a stochastic iteration scheme that
uses the hemicube to realize the random transport operator.

2 The new algorithm

In order to use the hemicube as the tool to randomly trans-
fer the radiance in the scene, its origin, i.e. the patch and
a point of the patch is selected randomly. Having identi-
fied the shooting point, its radiance is shot towards other
points in the scene. Suppose that patchj is selected with



probabilitypj and point~y on this patch with uniform1=Aj

probability density. According to importance sampling, it
is worth setting the selection probabilitypi proportional to
the powers of the patches.

Let us define the random transport operator as transfer-
ring the radianceL(~y; ! 0~y!~x) of this point, divided by its
selection probabilitypj=Aj , to all other visible points~x.
When the radiance arrives at point~x, it is reflected accord-
ing to the BRDF of the material here, and thus results in a
new radiance value. Formally, the random transport oper-
ator is

(T �L)(~x; !) =

Aj

pj
�v(~x; ~y) �L(~y; !0~y!~x) �fr(!

0

~y!~x; ~x; !) �
cos �0~x � cos �~y

j~x� ~yj2
;

(4)
wherev(~x; ~y) is the mutual visibility indicator, which is 1
if the two points are visible from each other.

In order to show that this random transport operator is
appropriate, we have to prove that the expected value of its
effect gives back the application of the original light trans-
port operator. The expected value of the random radiance
after the transfer is:

E[T �L] =
X
j

pj �

Z
Aj

(T �L)(~x; !)
d~y

Aj

=

X
j

Z
Aj

v(~x; ~y)�L(~y; !0~y!~x)�fr(!
0

~y!~x; ~x; !)�
cos �0~x � cos �~y

j~x� ~yj2
d~y:

Using the formula of solid anglesd~y � cos �~y=j~x� ~yj2 =

d!~x and assuming that illumination can only come from
surfaces — i.e. there is no external sky light illumination
— the integration over all surfaces can be replaced by an
integration over all incoming solid angles:

E[T �L] =

Z

0

L(h(~x;�!0); !0) �fr(!
0; ~x; !) �cos �0~x d!

0

~x:

Thus we could prove that the expectation of the application
of the random operator really gives back the effect of the
real transport operator, thus the requirement of equation 1
is met.

To obtain the radiance on the receiver patch, the radi-
ances of its points, which have been computed according
to equation 4, are averaged:

L(m)ji =
1

Ai

�

Z
Ai

T �L(m� 1) d~x =

Aj

pjAi

Z
Ai

v(~x; ~y)�L(~y; !0~y!~x)�fr(!
0

~y!~x; ~x; !)�
cos �0~x � cos �~y

j~x� ~yj2
d~x:

(5)
Let us interpret equation 5. The new radiance of patch
i depends on the probabilitypj of selecting the shooting

patch, the radiance of the shooting point towards the re-
ceiver pointsL(~y; !0~y!~x); on a geometric factor

G~y!Ai
=
Aj

Ai

Z
Ai

v(~x; ~y) �
cos �0~x � cos �~y
�j~x� ~yj2

d~x;

and on the BRDF at the receiving point from the direction
of the shooting point

�(~y ! ~x) = fr(!
0

~y!~x; ~x; !) � �:

Conceptually, this is very similar to the diffuse case ex-
cept for the facts that we used the direction dependent ra-
diance and the BRDF instead of the direction independent
radiosity and diffuse albedo. Note that the formula has
been divided by� in the geometric factor and multiplied
by � in the BRDF, in order to give back the classical ra-
diosity interpretation in the special case. The geometric
factor can also be given a classical interpretation. Note
that the integral in the geometric term is the point-to-patch
form factorF~y!Ai

. If patch j is small, then this point-
to-patch form factor well approximates the patch-to-patch
form factorFAj!Ai

, thus

G~y!Ai
=
Aj

Ai

� F~y!Ai
�
Aj

Ai

� FAj!Ai
= FAi!Aj

according to the symmetry relation of the form factors.
Despite to the conceptual similarities, the formulation of
equation 5 is more complicated formally, since these fac-
tors cannot be decomposed and the radiance cannot be ob-
tained as their simple product. The reason of this nota-
tional complexity is that now the radiance and the BRDFs
depend on the direction as well. In fact, the product form
is valid only for differential surface elements on patchi.
However, if patchi is small compared with its distance to
point~y, we can still use the following approximation:

L(m)ji �
L(~y; !0~y!~x) � FAi!Aj

� �(~y ! ~x)

pj
(6)

where~x is the center of patchAi. We should empha-
size that the implementation of the algorithm does not use
this approximation. This formula, however, will be useful
to understand the heuristic variance reduction technique,
which is presented later in subsection 2.5 of this paper.

2.1 Representation of the radiance
function

The radiance function now depends on both the surface
point and the direction, thus its accurate finite-element rep-
resentation would be too expensive. Fortunately, the ra-
diance is needed only for computing the random transfer
from a single patch and its image contribution. Note that
these tasks require the radiance function just in a small
subdomain compared to the set of all points and directions.



In order to compute the radiance transfers and the image
contribution without explicitly storing the direction depen-
dent radiance function itself, instead of the outgoing radi-
anceL, the incoming radianceI is associated with each
patch. If the sender and receiver patches are small com-
pared to their distances, then we can assume that a patch
may receive radiance only from a single direction, thusI

is non-zero only for the direction pointing from the previ-
ously selected patch to the currently selected patch. Thus
the incoming radiance is represented by two variables per
patch, the intensityI and the direction of the transfer! 0.
From the incoming radiance, the outgoing radiance can be
obtained by a multiplication with the local BRDF:

L(~x; !) = I(!0) � fr(!
0; ~x; !) � cos �0~x:

2.2 Computation of the radiance trans-
fer by hemicubes
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patchi
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Figure 1: Hemicube shooting

In order to efficiently determine those~x points that are
visible from~y, the classical hemicube method can be used
[4]. We can note that the integral in equation (5) can also
be evaluated on the five window surfaces (W ) that form a
hemicube around the source~y (figure 1). In the remain-
ing part of this section, we re-derive the basic formulae to
show that the hemicubes can also be used in cases when
the reflection is non-diffuse.

To find formal expressions, let us express the solid angle
d
p, in which a differential surface aread~x is seen through
pixel aread~p, both from the surface area and from the pixel
area:

d
p =
d~x � cos �0~x
j~y � ~xj2

=
d~p � cos �p
j~y � ~pj2

; (7)

where�p is the angle between the direction pointing to
~x from ~y and the normal of the window (figure 1). The
distancej~y � ~pj between pixel point~p and the radiance
source~y equals tof= cos �p wheref is the distance from~y
to the window plane, that is also called thefocal distance.
Using this and equation (7), differential aread~x can be
expressed and substituted into equation (5), thus we can
obtain:

L(m)ji =
Aj

pjAif2
�

Z
W

v(~y; ~x) �L(~y; !0~y!~p) �fr(!
0

~y!~x; ~x; !) �cos �~y �cos �
3

p d~p:

Let Pi be the set of those pixels in which patchi is visi-
ble from~y. Pi is computed by running a z-buffer/constant
shading rendering step for each sides of the window sur-
face, assuming that the color of patchi is i, then reading
back the “images”. The reflected radiance on patchi is
approximated by a discrete sum as follows:

L(m)ji �

AjÆP

pjAif2
�
X
Pi

L(~y; !0~y!~p)�fr(!
0

~y!~x; ~x(~p); !)�cos �~y�cos �
3

p;

(8)
whereÆP is the area of a single pixel in the image. IfR is
the resolution of the image — i.e. the top of the hemicube
containsR�R pixels, while the side faces containR�R=2
pixels – thenÆP = 4f 2=R2:

2.3 Randomization of the hemicube

It is easy to see that when computing the point-to-patch
form factors by hemicubes, sometimes it is not efficient to
render the scene across all sides of the hemicube. This is
the situation when the power distributed through a specific
side of the hemicube is negligible. This can be caused by
the low incoming radiance or by the anti-symmetry of the
outgoing radiance. The main cause of this anti-symmetry
is the specular characteristic of the surface, which trans-
fers most of the radiance towards the ideal reflection di-
rection. If the ratio of specular albedo and diffuse albedo
and theshine parameter of the Phong illumination formula
is large, most of the light power is transferred through that
specific side of the hemicube, which lies in the direction
of the ideal reflection. In these cases it is useless to use the
other sides of the hemicube.

Patch j

Incoming radiance Outgoing radiance

Figure 2: On specular surfaces most of the illumination
goes through just 1 side of the hemicube.

Since we do not want to loose the unbiasedness charac-
teristics of the method, but we want to save computation
time when it is possible, we introduce randomization into



the process. When the selected surface has quite strong
specular characteristics, we randomly select one side of
the hemicube and propagate the radiance through just the
selected side. In that cases, according to Russian Roulette,
the transported radiance is divided by the selection proba-
bility.

2.4 Importance sampling

The stochastic iteration will converge quickly if the ran-
dom noise added by a single iteration step is small. This
means that the randomization of the light transfer should
not be too strong (the optimal level is determined by the
efficiency of transferring the radiance by the random oper-
ator and the variance caused by the randomization).

The variance of the random transfer can be decreased
by the variance reduction techniques of the Monte-Carlo
literature, and particularly by importance sampling. Ac-
cording to importance sampling, the selection probability
is good if it mimics the original integrand, thus the total
transferred power, which is computed as the real power di-
vided by the selection probability, should be roughly con-
stant. This means that the patches are worth selecting with
a probability that is proportional to their output power, and
the sides of the hemicube according to the power trans-
ferred through them.

Recall that before a given iteration step, we store the
emission and the incoming radiance of each patch. If a
patch is selected, then it will shoot the following power:

�j = �ej +Aj � cos �
0 � I(!0m�1) � a(!

0

m�1)

where�e
j is the emission power anda(! 0m�1) is the lo-

cal albedo. Thus in each iteration step, power�j is com-
puted for each patch, and the patch selection is realized
with �j=

P
k �k probability.

The second level of randomization controls the identi-
fication of those hemicube sides through which the trans-
fer is computed. This should be proportional to the rep-
resented solid angle and the average radiance in the direc-
tions of the solid angle. We used a very simple heuristic
scheme. If the surface is highly specular, the algorithm se-
lects that side which is intersected by the ideal reflection
direction by0:6 probability and all the other sides by0:1
probability. If the ratio of the specular and diffuse albedos
is smaller then 1, more than half of the power is distributed
by diffuse light transfer. Since there is a cosine term in the
transferred radiance formula, in these cases most of the
radiance goes through the top of the hemicube. Thus it
is worth selecting the top deterministically and using one
from the four sides randomly.

2.5 Variance reduction by trading bias
with noise

If we implement and run the algorithm described so far, we
can realize that the general convergence of the image will

be very fast, but embarrassing noise occurs at corners and
at object boundaries (figure 3). This problem is mentioned
by the Monte-Carlo radiosity literature, but so far it has
not been solved.

Figure 3: An office scene rendered without the biased vari-
ance reduction.

The explanation of these irritating artifacts is the fol-
lowing. Darker patches are very seldomly selected by the
algorithm. However, when they are selected, the trans-
ferred power is divided by the small probability, thus even
dark patches can result in large power transfers. When the
receiver patches are very close to the shooting patch, then
the point-to-patch form factor is large, thus the receiving
patch gets too much power and tends to be too bright in
the image. As stochastic iteration proceeds this annoying
artifact slowly disappears. Theoretically there is nothing
bad or unusual with these too bright patches, this behav-
ior is caused by the random noise, which is inherent in
all Monte-Carlo methods. As the iteration number goes to
infinity, the radiance values will converge to the mean of
these random variables.

However, when we want to have accurate and nice im-
ages quickly, i.e. after just a few hundred iterations, the
fact that the irritating bright patches would disappear if
we were running the algorithm for much longer time, is
not acceptable. Fortunately a solution exists that can suc-
cessfully attack this problem, which trades bias for noise
in a way that for a given iteration number the result will
not be unbiased, but the total error of the bias and the
Monte-Carlo noise will be still smaller than the Monte-
Carlo noise of the original algorithm.

Let us return to the approximation of the radiance of



patchi after an iteration step (equation 6):

L(m)ji �
L(~y; !0~y!~x) � FAi!Aj

� �(~y ! ~x)

pj
:

The expected value of this random variable is

E[L(m)ji] � E[L(~y; !0~y!xj
)] � FAi!Aj

� �(~y ! ~x):

If M iteration steps are computed altogether, then the
probability of selecting patchj for shooting at least once
is1�(1�pj)M . If pj is really small, because patchj is not
a light source, its size is also small and it does not receive
significant illumination, then the selection probability is
reasonably smaller than one and can be approximated as

1� (1� pj)
M � pjM:

The fact that these patches are not selected at all is not
a problem in itself since according to the fundamen-
tal assumption of hierarchical and Monte-Carlo methods,
patches form homogeneous groups and using one patch
in these groups can also simulate the radiance transfer of
other elements of the group. Suppose that the selected
patch is a member of such a homogeneous group consist-
ing of k similar patches. Then the probability of selecting
at least one member of this group is1� (1� kpj)

M . The
real problem happens when even this group selection prob-
ability is much smaller than one. In this case, this proba-
bility is roughlykpjM . Statistically, such a group should
not be used for radiance transfer in theM step long itera-
tion, but the random selection might find elements also in
this group. If this patch group is selectedn > 0 times, the
random estimator is:

L̂(m)ji = ~L(~y; !0~y!Aj
) � F~y!Ai

� �(~y ! ~x) �
n

kpjM
;

where~L is the average of the radiances in these transfers.
The distance of this estimator from the expected value can
be bigger than the distance between the expected value and
zero, when it is worth replacing the transferred radiance by
zero. If we assume that the average radiance~L is approx-
imately equal to its expected value, then the criterion of
replacing the transfer by zero is:

L̂(m)ji �E[L(m)ji] > E[L(m)ji]� 0 =) pj <
1

2kM
:

In order to find an upper-bound fork, notice that the geo-
metric parameters of the transfer are characterized by form
factorF~y!Ai

. Different patches behave similarly in this
transfer if their respective form factors are also similar.
The sum of form factors is at most one (exactly one in
closed and less than one in open scenes), that is

X
j

FAi!Aj
� 1:

It means that the number of patches that have roughly this
form factor with patchi is bounded by the inverse of the

form factor, thus fork we obtain:

k �
1

FAi!Aj

:

This allows to establish the limit of probability where the
radiosity transfer is not worth executing:

pj <
FAi!Aj

2M
: (9)

The modified algorithm works similarly as the previous
one, it selects patches randomly and computes the radiance
transfer from the selected patch towards those patches that
are visible from here. In order to compute the new radi-
ance value of the receivers, the form-factor is also com-
puted. However, when it turns out that selection probabil-
ity of the shooting patch is smaller as the limit of inequal-
ity 9, then this particular receiving patch is assumed to get
zero radiance in this iteration step.

Note that this trick steals energy from the system, thus
for a fixed iteration numberM the result will be biased.
However, the error is still less than in the unbiased esti-
mate. On the other hand, the bias disappears asM goes to
infinity, thus the method is still unbiased in the asymptotic
case.

For very smallM values, the missing energy becomes
noticeable at the corners since they are darker than ex-
pected. Although this is still much better than the too
bright patches, this problem can be further reduced by a
special type of mean value substitution. When it turns
out that the random estimator of the current transfer is too
large, then instead of replacing it by zero, it can be re-
placed by its approximated meanL(~y; ! 0~y!Aj

) � F~y!Ai
�

�(~y ! ~x). This is as accurate as the radianceL is close to
its converged value.

2.6 Application of the constant radi-
ance term

Usually just a fraction of the patches belong to light
sources. Importance sampling on the other hand will prob-
ably select the shooting patches from the light sources.
One alternative for making it better is the first-shot tech-
nique, but since it selects the center of the light source
patches deterministically, it introduces bias.

Anyway, the hemicube shooting by nature is very good
at performing first-shot, so doing a first-shot before start-
ing the algorithm seems unnecessary. On the other hand,
the selection probability of the non light source patches
can be significantly improved by transforming the radiance
function to a function with smaller amplitude.

A constant radiance value is extracted from the solution
in every surface point and direction. However, we should
be careful, when choosing this constant value. The optimal
constant value is hard to find for each patch separately, but
even a conservative estimate can improve the convergence.



mean

radiance

Figure 4: When subtracting the mean, the importance sam-
pling more probably selects the non light sources.

The average radianceL can be computed by the assump-
tion that all points have the same BRDF and albedo, that
are computed as the average [12].

The average radiance is determined by:

L =

R



R
S

Le(~x; !) cos �d~xd!

S�(1� amean)
:

whereamean is the average albedo of the scene, calculated
by:

amean =
1

S�
�

Z



Z
S

a(~x; !) cos �d~xd!:

Formally, let us decompose the radiance function into
this averageL and a distance from the average�L. Sub-
stitutingL = L+�L into the rendering equation, we can
obtain:

�L(~x; !) = Le(~x; !) + (a(~x; !)� 1) � L+ Tfr�L:

Note that we obtained a rendering equation for the
�L term, having modified the emission function with
(a(~x; !) � 1)L. This new light source term is negative
for physically valid scenes, which means that the non light
source patches emit negative power. Therefore, when do-
ing importance sampling we should use the absolute val-
ues of power for computing the selection probability of the
patches. After the iteration finishes and�L(~x; !) is ob-
tained, we should add the average radianceL to the final
result.

3 Results

The presented algorithm have been implemented in C++
in OpenGL environment. The images have been rendered
with 500� 500 resolution. The faces of the hemicube had
600 � 600 pixels. The algorithm can render moderately
complex scenes within a minute.

We tried the hemicube randomization with scenes of
specular reflectance, and according to our experience the

Figure 5: R2D2 meets an alien in the Cornell-box. The
image was rendered with the new method using the biased
variance reduction and the constant radiance step.

Figure 6: An office scene rendered with the new method
using biased variance reduction.



hemicube randomization resulted in5-15 percent speed-
up. Without using the constant radiance step, importance
sampling selected the light sources very frequently, i.e. in
about50 percents of iterations. When applying the con-
stant radiance step, this decreased to32 percent. This trick
increased the speed by another ten percent.

When the Cornell box scene with R2D2 and the alien
(figure 5) was rendered, the 500 iterations needed 50 sec-
onds on a Pentium III 1Ghz computer using GeForce2 MX
graphics hardware. Note the specular highlight on the back
wall and on the body of R2D2. The specular albedos were
set to0:27 and0:2 and the shine parameters of the Phong
BRDF to28 and10, respectively. Other surfaces also have
specular albedos, usually in the range of0:05� 0:0. Ren-
dering the office room (figure 6), which contains a specular
vase, took about 60 seconds and needed 600 iterations.

4 Conclusions

This paper has presented a new stochastic rendering tech-
nique that is based on the randomization of the classical
hemicube approach. This randomization speeds up the
convergence of the algorithm and ensures rendering non-
diffuse scenes with the same storage space as required by
the radiosity method. In order to get rid of the artifacts
of the randomization, we proposed trading of noise with
bias in a way that the error gets smaller, but the algorithm
is still unbiased asymptotically. We also discussed some
improvements for the basic algorithm, which included the
random selection of the hemicube faces and the applica-
tion of the constant radiance step.
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