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Abstract

Fat curves in two-dimensional Euclidean space are discussed. Previous work on fat curves is reviewed and a new
definition is given for a fat curve having a smooth axis. The joining of two fat curves is discussed and a technique

for scan-converting fat curves is presented.

1. Introduction

In computer graphics it is frequently desirable to represent a
curve or the outline of an object as “thick” or a “fat” curve.
This is particularly true for high-resolution graphics devices
where curves represented by a chain of single pixels are too
faint or where for aesthetic reasons the curve should have
a fixed non-zero width. The definition of such objects pose
particular geometric problems. Implementing the objects in
terms of raster graphics similarly introduces further prob-
lems in the scan-conversion process.

If we look to standard references on algorithms for com-
puter graphics such as Pavlides' then we do not find the
fat line or curve concept. In fact there are only two funda-
mental concepts considered by Pavlides!': a thin curve with
an orientation-dependent average width ranging from 1/+/2
pixels to 1 pixel and a full region. Fat curves are subsumed
under the full region concept and no consideration is given
to the particular problems encountered in dealing with them.

We want here only show a possible citation, such as the
typical citation of the Foley et al. book 2 or a well known
paper on ray tracing of volumetric dataset 5. Fat lines are
discussed in Bresenham under the concept of Widelines and
he poses a number of questions relating to this concept. A
fundamental question is how the fat lines are terminated and
what the assumptions are when such lines are joined at de-
creasing angles. To quote Bresenham:

T On leave from Suzhou Institute of Silk Textile Technology, P.R.
China Since July 1988.

Is Wideline a consistent concept, or is it a poorly
specified and incompletely defined attempt to set
up an implicit but fuzzily understood reference
model of areas in contrast to lines? What is
the shape of wideline ends? Is line width a ge-
ometric property in our original modeling co-
ordinate space, or is such thickness only a picture-
rendering cosmetic attribute akin to pseudo-pen
size in final raster space? How should projective
transformations affect Widelines? If width is a ge-
ometric attribute, what is the implied boundary
definition?

In this paper we discuss some of the problems posed by Bre-
senham and we suggest solutions both in the underlying ge-
ometric setting and in the raster plane. We first give a precise
definition of a fat line or curve as a continuous geometric ob-
ject. Then, using this definition, we develop new algorithms
implementing scan-conversion for such curves.

In the next section we survey previous definitions of fat
lines concluding with the specific problems that we attempt
to solve in this paper. In Section 4 we consider the analytic
definition of smooth fat curves and we verify some simple
properties. The problem of joining fat curves is then dealt
with and we introduce the concept of a piece-wise smooth
fat curve. Finally we give a method for the scan-conversion
of the fat curves we defined in the previous sections.

2. Previous Work

Fat lines are discussed in several recent papers, but here we
cite papers that have nothing in common with the fat line
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topic 3467, The concept is also used by several advanced
workstations (see for example the IRIS User’s Guide) and
by typesetting systems such as PostScript.

Perhaps the most relevant discussion is found in the paper
by Posch-Fellner.> They discuss an algorithm called options
for double precision arithmetic. The impact of using single
precision arithmetic is demonstrated in Table 1. Even when
compiled with the double precision option, the program by
Douglas produces results which deviate significantly from
those produced by others. The formula used to calculate the
squares of offset values presented in Table 1 is as follows:

(el (x1—=x2—x3) +x25x3 4y 1 % (y1—y2—y3) +y2)

= (x2—x1)2+ (y2 —y1)2
x=x1+Ax(x2—x1)
y=yl+Aix(y2—yl)

dis = (3 —x)%+ (3 —y)*

In a recent debate on the accuracy of floating point calcula-
tions, Huggins stated that the arbitrary-precision arithmetic
language ‘bc’ could be used to obtain precise results. We
used this UNIX utility to calculate offset values for points
C and D. On the VAX 8200, SEQUENT SYMMETRY and
SUN 3/60, bc returned identical values for these points:

C: 28143.490838958534 D: 28143.49083895834

Forrest (p. 721) pointed out the well known fact that float-
ing point calculations are still very much machine depen-
dent. Machine dependency exposed further problems, which
could be treated as problems of implementation but which
are arguably more conceptual in nature as explained in the
following sections.

2.1. Equidistant points from the anchor-floater line

The algorithm is based on the assumption that lines may be
subdivided in an unambiguous manner using the maximum
perpendicular offset. To our knowledge, the problem of two
or more points being equidistant from the anchor-floater line
has never been considered. Indeed, we only became con-
scious of this possibility when the same program yielded
different results on ICL 3980 and SUN 3/60 computers. A
sample problem is illustrated in Figure 5. Points C and D are
equidistant from the anchor-floater line A-B. The inexact
representation of floating point numbers results in C being
selected on SUN workstations and D being selected on the
ICL computer by the same program. With double precision
arithmetic, the errors are negligible but are nevertheless suf-
ficient to generate different results since published programs
tend to use either a “greater than” or “less than” condition.
GIMMS and the programs by Douglas and Wade select the
first point from a set of identical offsets. White’s program
selects the last. The results therefore are variable and be-
come dependent on the direction of digitising of lines. If, on
the other hand, we select a point from this set at random,

the procedure would become blatantly arbitrary. This prob-
lem poses other implications, which we will now examine in
greater detail.

Figure 1: Here is a sample figure.

3. Our proposal in detail

This section describes in detail our proposal, as graphically
shown also in Figure 1, with a non-sense text. Non-sense text
follows text text text text text text text text text texttext text
text text texttext text text text texttext.

4. Digitising Errors

Like most cartographic algorithms, the Douglas—Peucker al-
gorithm does not fully address the issue of digitising errors.
When estimating truth values, it is usually assumed that the
true line (in this case the analogue line) lies within the error
band of the digitised line. This band is also known as the
Perkal epsilon band. In his review on issues relating to the
accuracy of spatial databases, Goodchild’ indicated that re-
searchers have proposed uniform, normal and even bimodal
distributions of error across this band. This concept pro-
vides some basis for estimating the position of the true line
at locations between digitised points. Here, we are merely
concerned with the accuracy of digitised points. Whilst it
is probable that operators digitise points along high curva-
tures more carefully than at intermediate positions, there is
at present no sound basis for modelling the distribution of
error along the line. As in the Circular Map Accuracy Stan-
dard, it is usual to assume a bivariate normal distribution of
error when estimating the position of the true point. In the
context of line simplification, absolute positional accuracy
is less important than the relative position of points describ-
ing the shape of features along the line.
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The DoE/SDD boundary data contain some gross digitis-
ing errors. For example, inlet X in Figure 2¢ does not fea-
ture on conventional Ordnance Survey 1: 50 000 maps of the
area. The data are also not very accurate where coastlines are
convoluted. Even if we ignore these and other gross errors,
such as spikes, there will always be an element of random
error in digitised data. It is reasonable to assume that points
digitised from 1:50 000 source material may only be accu-
rate to within +/ — 5 metres. This algorithm does not lead
to a substantial accumulation of rounding errors, hence the
numerical errors discussed earlier tend to be very small com-
pared with digitising errors.

For the purposes of our argument, it is unnecessary to un-
dertake an exhaustive evaluation of the consequences Dou-
glas and Peucker have treated overhangs and closed loops as
different problems, and have used different methods to cope
with each case.

4.1. Numerical Problems

The FORTRAN programs by Douglas, White, and Wade use
single precision REALS when computing offsets (see results
in Table 1). Whilst double precision accuracy may be at-
tained through the use of compiler options, we are unsure
whether previous research has been based on programs com-
piled in this manner. Wade’s program was so compiled for
use in our previous evaluations. Forrest stated that Ramshaw
(1982) had to adopt carefully tuned double and single pre-
cision floating point arithmetic to compute the intersection
of line segments whose end points were defined as integers.
Forrest exclaimed “This is an object lesson to us all: con-
structing geometric objects defined on a grid of points, re-
quiring ten bits for representation can lead to double preci-
sion floating point arithmetic!”.

Most evaluative studies do not cite the co-ordinates in
use. We do not know whether the published test lines were
in original digitiser co-ordinates or whether they had been
converted to geographic references. British National Grid
co-ordinates for the administrative boundaries of England,
Scotland and Wales (digitised by the Department of Environ-
ment (DoE) and Scottish Development Department (SDD))
are input to one metre accuracy and require seven decimal
digits for representation if we include the northern islands
of Scotland. At the South West Universities Regional Com-
puter Centre these co-ordinates have been rounded to 10 me-
tre resolution; even this requires six decimal digits. Seamless
cartographic files at continental and global scales use much
larger ranges of geographic co-ordinates.

A limited number of papers actually described improved
for new algorithms or methods for visualization ¢ 7. This
may be caused by the complexity of the environment in
which a method is used; issues of system architecture, user
interface, data handling, etc. must be dealt with before a new
presentation technique can show its full advantage. But even
so, we think the field can use more contributions of this type.

Machine Points Calculated squares of offset values

Single Precision Double Precision

ICL 3980

(C) 28199.351562500 28143.490838958

(D) 28171.789062500 28143.490838961
VAX 8200

(C) 28253.095703125 28143.490838958

(D) 28165.806640625 28143.490838958
SEQUENT SYMMETRY

(C) 28145.100000000 28143.490838961

(D) 28145.100000000 28143.490838961
SUN 3/60

(C) 28253.095703125 28143.490838961

(D) 28165.806640625 28143.490838961

NOTES

Offsets of points C and D from the anchor-floor line A-B as cal-
culated using Wade’s program. Points A, B, C and D are shown in
Figure 5. The British National Grid coordinates (in metres) of the
points are as follows:

Point A 238040 (x1) 205470 (yl) ANCHOR
Point B 237890 (x2) 205040 (y2) FLOATER
PointC 237810 (x3) 205320 (y3)

Point d 238120 (x3) 205190 (y3)

Note that the above co-ordinates may be used in conjunction with
the expression presented in section 3.2.2a to check the tabulated
results.

Table 1: The Precision of Calculations

There was also a discussion session on the merits of an-
imation and special effects (such as sound) to support visu-
alization. For example, in the area of flow visualization, it
is quite common to use animation, and techniques for video
registration have been developed.

5. Issues in Visualization

Scientific visualization is an interdisciplinary field, which
can only flourish when computer graphics experts cooper-
ate with specialists from application areas, and providers
of computing, visualization, and data management facilities.
Therefore, it is essential that all of these viewpoints are rep-
resented in research projects and also in meetings such as
this workshop. It is not enough that suitable display algo-
rithms, data structures, or user interfaces be developed, but
also that these be integrated in usable systems and evaluated
by expert users. This complex environment, and the complex
systems it requires, call for a common language between
different parties involved, and therefore a reference model,
or an abstract description summarizing the entire process of
data visualization, is needed.

At the Delft workshop, an attempt was made to continue
the meetings of sub-groups as started in Clamart!, but it ap-
peared that a useful description of sub-areas or sub-problems
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should be based on a stable conceptual framework. Except
for the flow visualization group, the subgroup definitions
were abandoned, and instead it was decided to concentrate
on design of an initial reference model; a first attempt is
currently being undertaken by Lesley Carpenter and Michel
Grave. At the same time, the separate flow visualization sub-
group (chaired by Hans-Georg Pagendarm) agreed to design
a general model of the flow visualization process! In addi-
tion, arrangements were made for the exchange of test data
sets for system evaluation, and the exchange of information
on and experience with visualization software.

Special discussion sessions were held about the practice
the “circle-brush” algorithm. In this algorithm a solid disk
is assumed to move along a trajectory in R?. This trajec-
tory is then scan-converted into the raster plane. and expe-
rience of the Stardent AVS system, and about general evalu-
ation methods for visualization software. There is an obvious
need to share experience or even make a formal (compara-
tive) evaluation of systems, but this is also hampered by lack
of a common framework, and also by the continuing devel-
opment of visualization systems.

Interactive visualization was also an interesting subject
for discussion, which yielded a lively debate!. In a session
about visualization facilities, it was suggested from experi-
ence that large research institutes might well have to employ
specialized ‘visualization experts’, to bridge the gap between
complex numerical simulations and sophisticated visualiza-
tion facilities.

6. Results

This section only refers a table with some numerical results
(see Table 1).

Non-sense text follows text text text text text text text text
text text text text text text text text text text text text text text
text text text text text text text text text text text text text text
text text text text text text text text text text text text text text
text text text text text text text text text text text text text text
text text text text text text text text texttext text text text text.

7. Conclusions

Here are conclusions and possible extensions. As shown by
the results reported in Section 6 and in Figure ?? (see color
plates), conclusions conclusions conclusions conclusions
conclusions conclusions conclusions conclusions conclu-
sions conclusions conclusions conclusions conclusions con-
clusions conclusions conclusions conclusions conclusions
conclusions conclusions. Conclusions conclusions conclu-
sions conclusions conclusions conclusions conclusions con-
clusions conclusions conclusions conclusions conclusions
conclusions conclusions conclusions conclusions conclu-
sions conclusions conclusions conclusions conclusions con-
clusions conclusions conclusions.
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