
EUROGRAPHICS 2006 Tutorial

GPUGI: Global Illumination Effects on the GPU

László Szirmay-Kalos

Budapest University of Technology and Economics, Budapest, Magyar Tudósok krt. 2., H-1117, HUNGARY
Email: szirmay@iit.bme.hu

URL: http://www.iit.bme.hu/˜szirmay

László Szécsi
Budapest University of Technology and Economics, Budapest, Magyar Tudósok krt. 2., H-1117, HUNGARY

Email: szecsi@iit.bme.hu
URL: http://www.iit.bme.hu/˜szecsi

Mateu Sbert

University of Girona, Campus Montilivi, Edifici PIV, 17071 Girona, Spain
Email: mateu@ima.udg.es

URL: http://ima.udg.es/˜mateu

Abstract
In this tutorial we explain how global illumination rendering methods can be implemented on Shader
Model 3.0 GPUs. These algorithms do not follow the conventional local illumination model of Di-
rectX/OpenGL pipelines, but require global geometric or illumination information when shading a
point. In addition to the theory and state of the art of these approaches, we go into the details of a
few algorithms, including mirror reflections, reflactions, caustics, diffuse/glossy indirect illumination,
precomputation aided global illumination for surface and volumetric models, obscurances and tone
mapping, also giving their GPU implementation in HLSL or Cg language.

Keywords: Global illumination, GPU programming,
HLSL, Radiosity, Soft shadow algorithms, Environ-
ment mapping, Diffuse/Glossy indirect illumination,
Mirror Reflection/Refraction, Caustics generation,
Monte-carlo methods, Pre-computation aided global
illumination, PRT, Ambient Occlusion, Obscurances,
Participating Media, Multiple scattering.

Contents of the tutorial

This tutorial presents techniques to solve various
subproblems of global illumination rendering on the
Graphics Processing Unit (GPU). The state of the
art is discussed briefly and we also go into the details
of a few example methods. Having reviewed the global
illumination rendering problem and the operation of
the rendering pipeline of the GPUs, we discuss six cat-
egories of such approaches.

1. Simple improvements of the local illumination light-
ing model. First, to warm up, we examine two rel-
atively simple extensions to the local illumination
rendering, shadow mapping and image based light-
ing. Although these are not considered global il-
lumination methods, they definitely represent the
first steps from pure local illumination rendering
toward more sophisticated global illumination ap-
proaches. These techniques already provide some
insight on how the basic functionality of the local
illumination pipeline can be extended with the pro-
grammable features of the GPU.

2. Ray-tracing. Here we present the implementation
of the classic ray-tracing algorithm on the GPU.
Since GPUs were designed to execute rasterization
based rendering, this approach fundamentally re-
interprets the operation of the rendering pipeline.

3. Specular effects with rasterization. In this section

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

we return to rasterization and consider the genera-
tion of specular effects, including mirror reflections,
refractions, and caustics. Note that these meth-
ods are traditionally rendered by ray-tracing, but
for the sake of efficient GPU implementation, we
need to generate them with rasterization. Having
surveyed the proposed possibilities, we concentrate
here on the method called Approximate ray tracing
with distance impostors.

4. Diffuse/glossy indirect illumination. This section
deals with non-specular effects, which require spe-
cial data structures stored in the texture memory,
from which the total diffuse/glossy irradiance for
an arbitrary point may be efficiently retrieved. Of
course, these representations always make compro-
mises between accuracy, storage requirements, and
final gathering computation time. We present two
algorithms in detail. The first is the implementa-
tion of the stochastic radiosity algorithm on the
GPU, which stores the radiance in a color tex-
ture. The second considers final gathering of diffuse
and glossy indirect illumination using localized cube
maps.

5. Pre-computation aided global illumination. These
algorithms pre-compute the effects of light paths
and store these data compactly in the texture mem-
ory for later reuse. Of course, pre-computation is
possible if the scene is static. Then during the real-
time part of the process, the actual lighting is com-
bined with the prepared data and real-time global
illumination results are provided. Having presented
the theory of finite element methods and sampling,
we discuss three methods in details: Pre-computed
radiance transfer (PRT) using finite-element repre-
sentation, Light path maps that are based on sam-
pling, and Participating media illumination net-
works, which again use sampling.

6. Fake global illumination. There are methods that
achieve high frame rates by simplifying the under-
lying problem. These approaches are based on the
recognition that global illumination is inherently
complex because the illumination of every point
may influence the illumination of every other point
in the scene. However, the influence diminishes with
the distance, thus it is worth considering only the
local neighborhood of each point during shading.
Methods using this simplification include obscu-
rances and ambient occlusion, from which the first
is presented in details. Note that these methods are
not physically plausible, but provide satisfying re-
sults in many applications.

When the particular methods are discussed, images
and rendering times are also provided. If it is not
stated explicitly, the performance values (e.g. frames
per second) have been measured on an Intel P4 3 GHz

PC with 1GB RAM and NVIDIA GeForce 6800 GT
graphics card in full screen mode (1280× 1024 resolu-
tion).

Notations

In this tutorial we tried to use unified notations when
discussing different approaches. The most general no-
tations are also listed here.

• L(~x, ~ω): the radiance of point ~x at direction ~ω.
• Lr(~x, ~ω): the reflected radiance of point ~x at direc-

tion ~ω.
• Le(~x, ~ω): the emission radiance of point ~x at direc-

tion ~ω.
• Lenv(~ω): the radiance of the environment illumina-

tion from direction ~ω.
• fr(~ω

′, ~x, ~ω): BRDF function at point ~x for illumina-
tion direction ~ω′, viewing direction ~ω. If the surface
is diffuse, the BRDF is denoted by fr(~x).

• θ′: the angle between the illumination direction and
the surface normal.

• ~x: the point to be shaded, which is the receiver of
the illumination.

• ~y: the point that is the source of the illumination.
• v(~x, ~y): visibility indicator which is 1 if points ~x and

~y are visible from each other and zero otherwise.
• World: a uniform parameter of the shader program

of type float4x4, which transforms from modeling
to world space.

• WorldIT: a uniform parameter of the shader pro-
gram of type float4x4, the inverse-transpose of
World, used to transform normal vectors from the
modeling space to the world space. This matrix is
also used to transform rays from world space to
modeling space, transposed in shader.

• WorldView: a uniform parameter of the shader pro-
gram of type float4x4, which defines the transfor-
mation matrix for place vectors (points) from the
modeling space to the camera space

• WorldViewIT: a uniform parameter of the shader
program of type float4x4, which defines the
inverse-transpose of WorldView, used to transform
normal vectors from the modeling space to the cam-
era space.

• WorldViewProj: a uniform parameter of the shader
program of type float4x4, which defines the trans-
formation matrix from the modeling space to the
clipping space.

• DepthWorldViewProj: a uniform parameter of the
shader program of type float4x4, which defines the
transformation matrix from the modeling space to
the clipping space used when rendering the depth
map.

• DepthWorldViewProjTex: a uniform parameter of
the shader program of type float4x4, which defines

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

the transformation matrix from the modeling space
to the texture space of the depth map.

• EyePos: a uniform parameter of the shader program
of type float3, which defines the camera position
in world space.

• Pos, wPos, cPos, hPos: vertex or fragment po-
sitions in modeling, world, camera and clipping
spaces, respectively.

• Norm, wNorm, cNorm: vertex or fragment normals
in modeling, world and camera spaces, respectively.

• oColor, oTex: vertex shader output color and tex-
ture coordinates.

1. Global illumination rendering

Global illumination algorithms should identify all light
paths connecting the eye and the light sources via one
or more scattering points, and should add up their
contribution to obtain the power arriving at the eye
through the pixels of the screen [Kaj86]. The scatter-
ing points of the light paths are on the surface in case
of opaque objects, or can even be inside of translucent
objects (subsurface scattering [JMLH01]).

x
L(x,)

ω

ω

’

θ
’

ω

L (y, ω’

’

)

y

Figure 1: Notations of the computation of the re-
flected radiance

Let us first consider just a single scattering or one-
bounce light transport (figure 1). Denoting the radi-
ance of point ~y in direction ~ω′ by L(~y, ~ω′), reflected
radiance Lr(~x, ~ω) at scattering point ~x is the sum of
contributions from all incoming directions ~ω′:

Lr(~x, ω) =

∫

Ω′

L(~y, ~ω′) · fr(~ω
′, ~x, ~ω) · cos+ θ′~x dω′, (1)

where ~y is the point visible from ~x at direction
−~ω′, Ω′ is the directional sphere, fr(~ω

′, ~x, ~ω) is the
bi-directional reflection/refraction function (BRDF),
and θ′~x is the angle between the surface normal and
direction −ω′ at ~x. If θ′~x is greater than 90 degrees,
then the negative cosine value should be replaced by
zero, which is indicated by superscript +.

In order to consider not only single bounce but also

multiple bounce light paths, the same integral should
also be recursively evaluated at visible points ~y, which
leads to a sequence of high dimensional integrals:

Lr =

∫

Ω′1

f1 cos+ θ′1

Le +

∫

Ω′2

f2 cos+ θ′2 · (Le . . .) dω′2

 dω′1

(2)
where Le is the emission radiance.

A straightforward technique to compute high-
dimensional integrals is the Monte Carlo (or quasi-
Monte Carlo) method [Sob91, SK99a, DBB03], which
generates finite number of random light paths and ap-
proximates the integral as the sum of the individual
path contributions divided by the probability of gen-
erating this sample path.

Accurate results need a huge number of light paths.
For comparison, in reality a 100 W electric bulb emits
about 1042 number of photons in each second, and
the nature “computes” the paths of these photons in
parallel with the speed of the light independently of
the scene complexity. Unfortunately, when it comes to
computer simulation, we shall never have 1042 parallel
processors running with the speed of light. It means
that the number of simulated light paths must be sig-
nificantly reduced and we should accept longer render-
ing times. For real-time applications, the upper limit
for rendering times comes from the requirement that
to maintain interactivity and to provide smooth ani-
mations, computers must generate at least 20 images
per second. Note that on an 1000 × 1000 resolution
display this allows 50 nsec to compute the light paths
going through a single pixel.

To meet this performance requirement, the problem
to be solved is often simplified. One popular simplifi-
cation approach is the local illumination model that
ignores indirect illumination (figure 2). The local illu-
mination model examines only one-bounce light paths
having a single scattering point and thus can use only
local surface properties when the reflection of the illu-
mination of a light source toward the camera is com-
puted. In local illumination shading, having obtained
the point visible from the camera through a pixel,
the reflected color can be determined without addi-
tional geometric queries. In the simplest case when
even shadows are ignored, visibility is needed only
from the point of the camera. To solve such visibil-
ity problems, the GPU rasterizes the scene and finds
the visible points using the z-buffer hardware.

Global illumination algorithms also compute indi-
rect illumination. It means that we need visibility in-
formation not only from the camera but from every

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 2: Comparison of local illumination rendering (left), local illumination with shadows (middle), and global
illumination rendering (right)

shaded point. This is a requirement GPUs are not
built for, which makes GPU based global illumination
algorithms hard and challenging.

One option is to follow the research directions
of the era when global illumination was fully sepa-
rated from the graphics hardware and its algorithms
were running on the CPU, and try to port those
algorithms onto the GPU. For example, it is time
to revisit the research on efficient ray-shooting and
to consider what kind of space partitioning schemes
and algorithms can be implemented on the GPU
[PBMH02b, PDC∗03, OLG∗05, FS05]. Another fam-
ily of techniques that has been proven to be suc-
cessful in CPU implementations recognizes that it
is not worth generating paths completely indepen-
dently from scratch, but the visibility and illumination
information gained when generating a path should
be reused for other paths as well. Photon mapping
[Jen96], instant radiosity [Kel97], and deterministic or
stochastic iterative radiosity [SK99b] all reuse parts of
the previously generated paths to speed up the compu-
tation. Furthermore, if the scene is static, then paths
can be pre-computed only once and reused during ren-
dering without repeating the expensive computation
steps. Reuse and pre-computation are promising tech-

niques in GPU based real-time global illumination al-
gorithms as well.

On the other hand, GPUGI is not just porting al-
ready known global illumination algorithms to the
GPU. The GPU is a special purpose hardware, so to
efficiently work with it, its special features and limi-
tations should also be taken into account. This con-
sideration may result in solutions that are completely
different from the CPU based methods.

2. Local illumination rendering pipeline of
current GPUs

2.1. Evolution of the fixed function rendering
pipeline

Current, highly programmable graphics hardware
evolved from simple monitor adapters. Their task was
barely more than to store an image in memory, and
channel the data to control the electron beam light-
ing monitor pixels. Already this had to be done at a
then incredible speed, making it a feat that could only
be achieved through parallelization. However, raster
adapters began their real revolution when they started
supporting incremental 3D graphics, earning them the
name graphic accelerators. Indeed, the first achieve-

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

ment was to implement linear interpolation in hard-
ware very effectively, by obtaining values in consecu-
tive pixels using a single addition [SKe95].

The coordinates of the internal points of a triangle
can be obtained by linearly interpolating the vertex
coordinates. Other attributes, such as color, texture
coordinates, etc. can be approximated by linear in-
terpolation. Thus, when a triangle is rasterized, i.e.
its corresponding pixels are found, linear interpolation
can be used for all data.

Any virtual world description can be translated to
a set of triangle mesh surface models with some level
of fidelity. The basic assumption of incremental 3D
rasterization is that we render triangles, defined by
triplets of vertices, the position of which is given as
3D vectors, in coordinates relative to the screen (later
this space will be referred to as normalized device space
or clipping space depending on whether Cartesian or
homogeneous coordinates are used). Thus, the third
Cartesian coordinate, z, denotes depth. For every ver-
tex, a color is given, which is obtained from shading
computations. The array in graphics memory contain-
ing records of vertex data (position and color) is called
the vertex buffer.

When rendering, every triangle is clipped to the
viewport and rasterized to a set of pixels, in which the
color and the depth value is computed via incremental
linear interpolation. Besides the color buffer memory
(also called frame buffer), we maintain a depth buffer,
or z-buffer, containing depth related to the current
color value in the color buffer. Whenever a triangle is
rasterized to a pixel, the color and depth are only over-
written if the new depth value is less, meaning the new
triangle fragment is closer to the viewer. As a result,
we get a rendering of triangles correctly occluding each
other in 3D. The quality of shading depends on how
we computed the colors for the vertices. But even if
those are highly accurate, colors will be smeared over
triangles, meaning that image quality depends on the
level of tessellation. Furthermore, every pixel will be
filled with a uniform color, computed for a single sur-
face point. Therefore, aliasing artifacts, jagged edges
will appear, making image quality highly dependent
on image resolution, too. The rendering time already
depends linearly on two factors: the number of trian-
gles to be rendered, and the number of pixels to be
colored, whichever is the bottleneck.

Triangle mesh models have to be very detailed to
offer a realistic appearance. An ancient and essential
tool to provide the missing details is texture mapping.
Texture images are stored in graphics card memory
as 2D arrays of color records. How the texture should
be mapped onto triangle surfaces is specified by tex-
ture coordinates assigned to every vertex. Thus, the

vertex buffer does not only contain position and color
data, but also texture coordinates. These are linearly
interpolated within triangles just like colors, and for
every pixel, the interpolated value is used to fetch the
appropriate color from the texture memory. A num-
ber of filtering techniques combining more texel values
may also be applied. Then the texture color is used to
modulate the original color received from the vertices.

Textures already allow for a great degree of real-
ism in incremental 3D graphics. Not only do they pro-
vide detail, but missing shading effects, shadows, in-
direct lighting may be painted or precomputed into
textures. Clearly, these static substitutes do not re-
spect dynamic scenes or changing lighting or viewing
conditions.

The architecture described above requires the ver-
tex positions and colors to be computed on the CPU,
involving transformations and local illumination light-
ing. However, these are well-established procedures in-
tegrated into the pipeline of graphics libraries. Sup-
porting them on the graphics card was a straightfor-
ward advancement.

The vertex records in the vertex buffer store the
raw data. Vertex positions are given in modeling co-
ordinates. The transformation to camera space and
then from camera to screen space (or clipping space)
are given as 4× 4 homogeneous linear transformation
matrices, the world-view, and the perspective one, re-
spectively. They are of course uniform for all vertices,
not stored in the vertex buffer, but in a few registers
of the graphics card. Whenever these matrices change
due to object or camera animation, the vertex buffer
does not need to be altered.

Instead of including already computed color values
in the buffer, the data required to evaluate the lo-
cal shading formula are stored. This includes the sur-
face normal and the diffuse and Phong-Blinn reflection
coefficients. Light positions, directions and intensities
are specified as uniform parameters over all the ver-
tices.

For every vertex, the coordinates are transformed
and shading is evaluated. Thus, the screen position
and vertex color are obtained. Then the rasterization
and linear interpolation are performed to color the
pixels, just like without transformation and lighting.

When a final fragment color is computed, it is not
directly written to the color buffer. First of all, as dis-
cussed above, the depth test against the depth buffer
is performed to account for occlusions. However, some
more computations are also supported in the hard-
ware. A third buffer called the stencil buffer is also
provided. For most of the time, stencil buffer bits are
used as flags set when a pixel is rendered to. While

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

CPU command
processor

vertex shader
(transform
& lighting)

memory

clipping &
homogeneous

division

rasterization
&

interpolation

fragment
shader

(texturing)

texture memory

stencil+depth tests
blending & rasterops

depth
buffer

color
buffer

Graphics Processing Unit

render to
texture

texture copytexture upload

texture
fetch

texture
fetch

Host Display
vertex
buffer

stencil
buffer

Figure 3: Shader Model 3.0 GPU architecture

drawing other objects, the stencil test may be enabled,
discarding pixels previously not flagged. This way,
reflections in a planar mirror, or shadows might be
rendered. The functionality called blending allows for
combining the computed fragment color with the color
already written to the color buffer. This is the tech-
nique commonly used to achieve transparency. Colors
are typically given as quadruplets of values, containing
a so-called alpha channel besides the red, green and
blue ones. The alpha value generally represents some
opacity measure, and the alpha values already in the
color buffer and that of the computed fragment color
are used to weight the colors when combining them.
Multiple blending formulae are usually supported.

With transformation and lighting modules, the
hardware is able to render images using local illumina-
tion with per-vertex lighting. The computed color can
be replaced or modulated using texture maps. Every
improvement towards global illumination must make
use of this architecture.

2.2. Architecture of programmable GPUs

Current, Shader Model 3.0 — also called DirectX 9
compatible — GPUs implement the complete process
of rendering triangle meshes. Figure 3 shows a typical
GPU architecture. Figure 4 depicts the dataflow of
such systems. Note that in this tutorial we do not
cover hardware having DirectX 10 features [Bly05].

The commands to the graphics API (e.g. DirectX or
OpenGL) are passed to the command processor, which
fills up the vertex buffer with modeling space vertices
and their attributes, and also controls the operation
of the whole pipeline. Whenever the data belonging
to a vertex is ready, the vertex shader module starts
working. It gets all attributes belonging to a vertex in
its input registers. In the fixed-function pipeline, this
module is responsible for transforming the vertex to
homogeneous clipping space and may modify the color
properties if lighting computations are also requested.

POSITION, NORMAL, COLOR0, TEXTCOORD0, ...

* WorldViewProj

* WorldView * WorldViewIT

Illumination

POSITION, COLOR0, TEXTCOORD0, ...

vertex
shader

vertex normal color
texture

coordinates

State:
Transformations

Light sources
Materials

Clipping: -w<X<w, -w<Y<w, -w<Z<w
linear interpolation for the new vertices

Rendering state

Homogenous division:
X=X/w, Y=Y/w, Z=Z/w

POSITION, COLOR0, TEXTCOORD0, ...

Triangle setup and rasterization
Vertex attributes are interpolated

Viewport transformation

 COLOR

fragment
shaderTexturing

State:
Texture
params

Texture
memory

Scissor+Alpha+Stencil+Depth tests
Blending and RasterOps Color

buffer

if render
to texture

GPU

CPU

Depth
buffer

Stencil
buffer

Figure 4: Dataflow in a GPU assuming standard local
illumination rendering

Then the fixed pipeline waits for a complete trian-
gle and the clipping hardware keeps only those parts
where the [x, y, z, w] homogeneous coordinates meet
the following requirements defining an axis aligned,
origin center cube of corners (−1,−1,−1) and (1, 1, 1)
in normalized screen space:

−w ≤ x ≤ w, −w ≤ y ≤ w, −w ≤ z ≤ w.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

These equations are valid in OpenGL. In DirectX,
however, the normalized device space contains points
of positive z coordinates, which consequently modifies
the last pair of inequalities to 0 ≤ z ≤ w.

Clipping may introduce new vertices for which all
properties (e.g. texture coordinates or color) are lin-
early interpolated from the original vertex properties.
After clipping the pipeline executes homogeneous di-
vision, that is, it converts homogeneous coordinates
to Cartesian ones by dividing the first three homoge-
neous coordinates by the fourth (w). The points are
then transformed to viewport space where the first two
Cartesian coordinates select that pixel in which this
point is visible. If triangle primitives are processed, the
rasterization module waits for three vertices, forms
a triangle from them, and fills its projection on the
x, y plane, visiting each pixel that is inside the projec-
tion. During filling the hardware interpolates all ver-
tex properties to obtain the attributes of a particular
fragment. The fragment shader hardware takes the at-
tributes of the particular fragment and computes the
fragment color. This computation may involve texture
lookups if texturing is enabled, and its multiplication
with the color attribute in case of modulative textur-
ing. The computed color may participate in raster op-
erations, such as alpha blending, and its z coordinate
goes to the z-buffer to detect visibility. If the fragment
is visible, the result is written into the color buffer, or
alternatively to the texture memory.

Programmable GPUs allow the modification of the
fixed-function pipeline at two stages. We can cus-
tomize the vertex shading and the fragment shading
steps, using assembly language or high level shading
languages, such as HLSL, Cg, etc.

2.2.1. Vertex shader

A vertex shader is connected to its input and output
register sets defining the attributes of the vertex be-
fore and after the operation. All registers are of type
float4, i.e. are capable of storing a four element vec-
tor. The input register set describes the vertex po-
sition (POSITION), colors (COLOR0, COLOR1), normal
vector (NORMAL), texture coordinates (TEXCOORD0,...,
TEXCOORD8), etc. The vertex shader unit computes the
values of the output registers from the content of the
input register. During this computation it may also
use global, also called uniform, variables.

The following example shader realizes the vertex
processing of the fixed-function pipeline when the
lighting is disabled. It applies the World, View, and
Projection transformations to transform the vertex
from modeling to world, from world to camera, and
from camera to homogeneous clipping space, respec-
tively:

// homogenous linear transformation

// from modeling to homogeneous clipping space

float4x4 WorldViewProj;

void StandardNoLightingVS(

in float4 Pos : POSITION, // modeling space

in float3 Color : COLOR0, // vertex color

in float2 Tex : TEXCOORD0,// texture uv

out float4 hPos : POSITION, // clipping space

out float3 oColor : COLOR0, // vertex color

out float2 oTex : TEXCOORD0 // texture uv

) {

// transform to clipping space

hPos = mul(Pos, WorldViewProj);

oColor = Color; // copy input color

oTex = Tex; // copy texture coords

}

The second example executes local illumination
computation for the vertices, and replaces the color
attribute by the result. The illumination is evaluated
in camera space where the eye is in the origin and
looks at the −z direction assuming OpenGL, and at
the z direction in DirectX. In order to evaluate the
Phong-Blinn illumination formula, normal, lighting,
and viewing directions should be obtained in camera
space. Note that if the shaded point is transformed
to camera space by the WorldView matrix, the trans-
formation of its associated normal vector should mul-
tiply with the inverse-transpose of the same matrix
(WorldViewIT). We consider just a single point light
source in the example.

// from modeling to homogeneous clipping space

float4x4 WorldViewProj;

// from modeling to camera space

float4x4 WorldView;

// Inverse-transpose of WorldView

// to transform normals

float4x4 WorldViewIT;

// Light source properties

float3 LightPos; // pos in camera space

float4 Iamb, Idiff, Ispec; // intensity

// Material properties

float4 ka, kd, ks; // reflectances

float shininess;

void StandardLightingVS(

in float4 Pos : POSITION, // modeling space

in float3 Norm : NORMAL, // normal vector

in float2 Tex : TEXCOORD0,// texture uv

out float4 hPos : POSITION, // clipping space

out float3 oColor : COLOR0, // vertex color

in float2 oTex : TEXCOORD0 // texture uv

) {

hPos = mul(Pos, WorldViewProj);

// transform normal to camera space

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

float3 N = mul(Norm, WorldViewIT).xyz;

N = normalize(N);

// transform vertex to camera space and

// obtain the lighting direction

float3 cPos = mul(Pos, WorldView);

float3 L = normalize(LightPos - cPos);

// evaluate the Phong-Blinn reflection

float costheta = sat(dot(N, L));

// Obtain view direction using that

// the eye is the origin in camera space

float3 V = normalize(-cPos); // viewing direction

float3 H = normalize(L + V); // halfway vector

float cosdelta = sat(dot(N, H));

oColor = Iamb * ka + Idiff * kd * costheta +

Ispec * ks * pow(cosdelta, shininess);

oTex = Tex; // copy texture coords

}

2.2.2. Fragment shader

The fragment shader (also called pixel shader) receives
the fragment properties of those pixels which are in-
side of the clipped and projected triangles, and also
uniform parameters. The main goal of the fragment
shader is the computation of the fragment color.

The following example program executes modula-
tive texturing. Taking the fragment input color and
texture coordinates interpolated from vertex colors
and texture coordinates, respectively, the fragment
shader looks up the texture memory with the texture
coordinates, and the read texture data is multiplied
with the fragment input color:

sampler2D texture; // 2D texture sampler

float4 TexModPS(in float2 Tex : TEXCOORD0,

in float3 Color : COLOR0

) : COLOR // output

{

return tex2D(texture, Tex) * Color;

}

2.3. Modification of the standard pipeline
operation

Programmable vertex and fragment shaders offer a
higher level of flexibility on how the data from the ver-
tex buffer is processed, and how shading is performed.
However, the basic pipeline model remains the same:
a vertex is processed, the results are linearly interpo-
lated, and they are used to find the color of a frag-
ment. The flexibility of the programmable stages will
allow us to change the shading model, implement per-
fragment lighting, or render unfolded triangle charts
instead of the models themselves, among the infinite
number of other possibilities.

What programmable vertex and pixel shaders alone
do not help us with is non-local illumination. All the

data passed to shaders is still only describing local ge-
ometry and materials, or global constants, but noth-
ing about other pieces of geometry. When a point is
shaded with a global illumination algorithm, its ra-
diance will be the function of all other points in the
scene. From a programming point of view it means
that we need to access the complete scene descrip-
tion when shading a point. While this is granted in
CPU based ray tracing systems [WKB∗02, WBS03],
the stream processing architecture of current GPUs
fundamentally contradicts to this requirement. When
a point is shaded on the GPU we have just its limited
amount of local properties stored in registers, and may
access texture data. Thus the required global proper-
ties of the scene must be stored in textures.

If the textures must be static, or they must be com-
puted on the CPU, then the lions share of illumination
is not making use of the processing power of the par-
allel hardware, and the graphics card merely presents
CPU results. Textures themselves have to be com-
puted on the GPU. The render-to-texture feature al-
lows this: anything that can be rendered to the screen,
may be stored in a texture. Such texture render tar-
gets may also require depth and stencil buffers. Along
with programmability, various kinds of data may be
computed to textures. These data may also be stored
in floating point format in the texture memory, unlike
in the color buffer which usually stores data of 8 bit
precision.

To use textures generated by the GPU, the render-
ing process must be decomposed to passes, where one
pass may render into a texture and may use the tex-
tures generated by the previous passes. Since the re-
flected radiance also depends on geometric properties,
these textures usually contain not only conventional
color data, but they also encode geometry and pre-
pared, reusable illumination information as well.

Figure 5: Environment mapping using a metal shader

Straightforwardly, we may render the surroundings

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

of a particular scene entity. Then, when drawing the
entity, the fragment shader may be written so that
it retrieves colors from this texture based on the re-
flected eye vector (computed from the local position
and normal, plus the global eye position). This is the
technique known as environment mapping (figure 5).

Figure 6: A texture atlas of a rocking horse (left), and
a texture atlas of a staircase storing radiance values.
(right)

It is also possible to write a vertex shader which ex-
changes the texture and position coordinates. When
drawing a model mesh, the result is that the triangles
are rendered to their positions in texture space. Any-
thing computed for the texels may later be mapped on
the mesh by conventional texture mapping. This tech-
nique assumes that the mapping is unique, and such a
render texture resource is usually called a texture atlas
(figure 6).

When textures are used to achieve various effects, it
becomes a necessity to be able to access multiple tex-
tures when computing a fragment color. This is called
multi-texturing. This day, fragment shaders are able to
access as many as 16 textures, any one of them mul-
tiple times. They all can be addressed using different
modes or sets of texture coordinates, and their results
can be combined freely in the fragment program. This
allows the simultaneous use of different techniques like
environment mapping, bump mapping, light mapping,
shadow mapping, etc.

It is also a likely scenario that we need to com-
pute multiple values for a rendering setup. This is
accomplished using multiple render targets: a frag-
ment shader may output several pixel colors or val-
ues, that will be written to corresponding pixels of re-
spective render targets. With this feature, computing
data that would not fit in a single texture is feasi-
ble. For instance, deferred shading [HH04] renders all
visible geometry and material properties into screen-
sized textures, and then uses these textures to render
the shaded scene without actually rendering the ge-
ometry.

Programmability and render-to-texture together

make it possible to create some kind of processed rep-
resentation of geometry and illumination as textures,
and then access the data when rendering and shading
other parts of the scene. This is the key to addressing
the self-dependency of the global illumination render-
ing problem. In all GPUGI algorithms, we use multiple
passes to different render targets to capture some as-
pects of the scene like the surrounding environment,
the shadowing or the refracting geometry, illumination
due to light samples, etc. These passes belong to the
illumination information generation part of rendering
(figure 7). In a final pass, also called final gathering,
scene objects are rendered to the frame buffer mak-
ing use of previously computed information to achieve
non-local shading effect like shadows, reflections, caus-
tics, or indirect illumination.

Illumination
info precomputation

CPU+GPU

Texture
memory

On the fly
reuseable illumination

info generation
GPU

Final gathering
GPU

Slower than 20 FPS At least 20 FPS

Off-line preprocessing

frame
buffer

Figure 7: Structure of real-time global illumination
shaders

Passes of the illumination information generation
part are responsible for preparing the reusable illumi-
nation information and storing it in the texture mem-
ory, from which the final gathering part produces the
image for the particular camera. To produce contin-
uous animation, the final gathering part should run
at high frame rates. Since the scene may change, the
illumination information generation should also be re-
peated. However, if the illumination information is ap-
propriately defined, then its elements can be reused for
many points and many frames. Thus the illumination
information data structure is compact and might be
regenerated at significantly lower frequency than the
final gathering frame rate.

As we shall discuss in these tutorial, these features
give us enough freedom to implement global illumi-
nation algorithms and even ray-tracing approaches.
However, we must be aware that it is not worth go-
ing very far from the original concepts of the pipeline,
namely rasterization and texturing, because it might
have serious performance penalties. This is why GPU
implementation often means the invention of brand
new approaches and not just adapting or porting ex-
isting ones.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

3. Simple improvements of the local
illumination lighting model

Local illumination models simplify the rendering prob-
lem to shading a surface fragment according to a given
point-like light source. This is based on several false
assumptions, which results in less realistic images:

The light source is always visible. In reality, in-
coming lighting depends on the materials and geom-
etry found between the light source and the shaded
point. Most prominently, solid objects may occlude
the light. Neglecting this effect, we will render im-
ages without shadows. In order to eliminate this
shortcoming, we may capture occluding geometry
in texture maps, and test the light source for visi-
bility when shading. This technique is called shadow
mapping.

The light illuminates from a single direction.
In reality, light emitters occupy some volume.
While the point-like or directional model is suit-
able for small artificial lights or the sun, in most
environments we encounter extended light sources.
Most prominently, the sky itself is a huge light
source. In image based lighting, we place virtual
objects in a computed or captured environment,
which is also a lighting problem where the en-
vironment image is an extended light source.
Volumetric or area lights generate more elaborate
shadows, as they might be only partly visible from
a given point. These shadows are often called soft
shadows, as they do not feature a sharp boundary
between shadowed and lighted surfaces. Generally,
point-sampling of extended light sources is required
to render accurate shadows. However, with some
simplifying assumptions for the light source, faster
approximate methods may be obtained, generating
perceptionally plausible soft shadows.

No indirect lighting. In reality, all illuminated ob-
jects reflect light, lighting other objects. While this
indirect lighting effect constitutes a huge fraction
of light we perceive, it tends to be low-frequency
and less obvious, as most surfaces scatter the light
diffusely. However, for highly specular, metallic,
mirror-like or refractive materials, this does not
apply. Indirect illumination may exhibit elaborate
high frequency patterns called caustics, and of
course the color we see on a mirror’s surface depends
on the surrounding geometry. These issues require
more sophisticated methods, based on the approach
of environment mapping, capturing incoming envi-
ronment radiance in textures.

3.1. Shadow mapping

Shadows are important not only to make the image
realistic, but also to allow humans to perceive depth

and distances. Shadows occur when an object called
shadow caster occludes the light source from another
object, called shadow receiver, thus prevents the light
source from illuminating the shadow receiver. In real
time applications shadow casters and receivers are of-
ten distinguished, which excludes self shadowing ef-
fects. However, in real life all objects may act as both
shadow receiver and shadow caster.

Point and directional light sources generate hard
shadows having well defined boundaries of illumina-
tion discontinuities. However, realistic light sources
have non zero area, resulting in soft shadows having
continuous transition between the fully illuminated re-
gion and the occluded region, called umbra. The tran-
sition is called the penumbra region. With hard shad-
ows only the depth order can be perceived, but not the
distance relations. Shadows should have real penum-
bra regions with physically accurate size and density
to allow the observer to reconstruct the 3D scene.

The width and the density of the penumbra regions
depend on the size of the area light source, on the
distance between the light source and shadow caster
object, and on the distance between the shadow caster
and shadow receiver object.

Real-time shadow algorithms can be roughly cat-
egorized as image space shadow map or object space
shadow volume techniques. Shadow volumes construct
invisible faces to find out which points are in the
shadow and require geometric processing. Exact ge-
ometric representation allows exact shadow bound-
aries, but the computation time grows with the ge-
ometric complexity, and partially transparent objects,
such as billboards become problematic. Furthermore,
these methods cannot cope with geometries modified
during rendering, as happens when displacement map-
ping is applied.

Shadow maps, on the other hand, work with a depth
image, which is a sampled version of the shadow cast-
ers. Since shadow map methods use only a captured
image of the scene as seen from the light, they are
independent of the geometric complexity, can conve-
niently handle displacement mapped and transparent
surfaces as well. However, their major drawback is that
the shadowing information is in a discretized form, as
a collection of shadow map pixels called lexels, thus
sampling or aliasing artifacts are likely to occur.

For the sake of simplicity, we assume that the light
sources are either directional or spot lights having
a main illumination direction. Omnidirectional lights
are not considered. Note that this is not a limitation
since an omnidirectional light can be replaced by 6
spot lights radiating towards the six sides of a cube
placed around the omnidirectional light source.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Shadow map algorithms use several coordinate sys-
tems which are briefly reviewed here:

World space: This is the arbitrary global frame of
reference for specifying positions and orientations
of virtual world objects, light sources and cameras.
Object models are specified using modeling coordi-
nates. For an actual instance of a model, there is a
transformation that moves object points from mod-
eling space to world space. This is typically a homo-
geneous linear transformation, called the modeling
transformation or World.

Eye’s camera space: In this space the eye position
of the camera is in the origin, the viewing direc-
tion is the z axis in DirectX and the −z direction in
OpenGL, and the vertical direction of the camera is
the y axis. Distances and angles are not distorted,
lighting computations can be carried out identically
to the world space. The transformation from mod-
eling space to this space is WorldView.

Light’s camera space: In this space the light is in
the origin, and the main light direction is the z axis.
This space is similar to the eye’s camera space hav-
ing replaced the roles of the light and the eye. The
transformation from modeling space to this space
is DepthWorldView, which must be set according to
the light’s position.

Eye’s normalized device space: Here the eye is at
an ideal point [0, 0, 1, 0], thus the viewing rays get
parallel. The visible part of the space is an axis
aligned box of corners [−1,−1, 0] and [1, 1, 1] in
Cartesian coordinates. The transformation to this
space is not an affine transformation, thus the fourth
homogeneous coordinate is usually not equal to 1.
The transformation from modeling space to this
space is WorldViewProj.

Light’s normalized device space: Here the light
is at an ideal point [0, 0, 1, 0], thus the lighting rays
get parallel. The illuminated part of the space is an
axis aligned box of corners [−1,−1, 0] and [1, 1, 1]
in Cartesian coordinates. The transformation to this
space is not an affine transformation, thus the fourth
homogeneous coordinate is usually not equal to 1.
The transformation from modeling space to this
space is DepthWorldViewProj. This matrix should
be set according to light characteristics. For a di-
rectional light, the light rays are parallel without
any non-affine transformation, so we only need an
orthographic projection to scale the interesting, illu-
minated objects into the unit box. For point lights, a
perspective projection matrix is needed, identical to
that of perspective cameras. The field of view should
be large enough to accommodate for the spread of
the spotlight. Omnidirectional lights need to be sub-
stituted by six 90◦ FOV angle lights.

Shadow mapping has two stages, shadow map gen-

eration when the camera is placed at the light, and
image generation when the camera is at the eye posi-
tion.

3.1.1. Shadow map generation

Shadow map generation is a regular rendering pass
where the z-buffer should be enabled. The actual out-
put is the z-buffer texture with the depth values. Al-
though a color target buffer is generally required, color
writes should be disabled to increase performance.

Transformation DepthWorldViewProj is set to
transform points to the world space, then to the light-
camera space, and finally to the light’s normalized de-
vice space. The shader executes a regular rendering
phase. Note that the pixel shader color is meaningless
since it is ignored by the hardware anyway.

//model to depth map’s screen space

float4x4 DepthWorldViewProj;

void DepthVS(in Pos : POSITION,

out hPos : POSITION) {

hPos = mul(Pos, DepthWorldViewProj);

}

float4 DepthPS() : COLOR0 {

return 0;

}

3.1.2. Rendering with the shadow map

In the second phase, the scene is rendered from the
eye camera. Each visible point is transformed to the
light space, then to texture space, and its depth value
is compared to the stored depth value. The texture
space transformation is responsible for mapping spa-
tial coordinate range [−1, 1] to [0, 1] texture range,
inverting the y coordinate, since the spatial y coordi-
nates increase from bottom to top, while the texture
coordinates increase from top to bottom. Furthermore,
the transformation shifts the u, v texture address by
half a texel, and possibly also adds a small bias to the
z coordinate to avoid self-shadowing.

The necessary transformation steps convert point p
in light’s normalized device space to projective texture
space t:

// center is 0.5 and add half texel

offset = 0.5 + 0.5 / SHADOWMAP_SIZE;

t.x = 0.5*p.x + offset; //[-1,1]->[0,1]+halftex

t.y = -0.5*p.y + offset; //[1,-1]->[0,1]+halftex

t.z = p.z - bias;

t.w = p.w;

Here SHADOWMAP SIZE denotes the resolution of the
shadow map and bias the z bias.

It is often a delicate issue to choose an appropri-

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

ate bias for a given scene. Values exceeding the di-
mensions of geometric details will cause light leaks,
non-shadowed surfaces closely behind shadow casters.
With a bias not large enough, z-fighting will cause
interference-like shadow stripes on lighted surfaces.
Both atrifacts are extremely disturbing and unreal-
istic. The issue might be more severe when the depth
map is rendered with a large FOV angle, as depth
distortion can be extreme. A convenient solution is
the second depth value technique. Assuming all our
shadow casters are non-intersecting, opaque manifold
objects, the backfaces cast the same shadow as the
object itself. By reversing the backface culling mecha-
nism, we can render depth values into the depth map
that do not coincide with any front face depth. The
bias in the above code can be set to zero.

The texture space transformation can also be im-
plemented as a matrix multiplication. The following
TT , or TexScaleBias matrix must be appended to the
transformation to light’s normalized device space:

0.5 0 0 0
0 −0.5 0 0
0 0 1 0

offset offset −bias 1

 ,

producing DepthWorldViewProjTex. The vertex
shader executes this transformation:

// To the normalized screen space of the eye camera

float4x4 WorldViewProj;

// To the texture space of the depth map

float4x4 DepthWorldViewProjTex;

void ShadowVS(

in float4 Pos : POSITION, // model space

in float4 Color : COLOR0, // input color

out float4 hPos : POSITION, // clip space

out float4 depthPos : TEXCOORD0, // depth tex

out float4 oColor : COLOR0) // output color

{

oColor = Color; // copy color

// transform model-space vertex position

// to light’s (depth map’s) texture space

depthPos = mul(Pos, DepthWorldViewProjTex);

// transform model-space vertex position

// to eye’s normalized device space:

hPos = mul(Pos, WorldViewProj);

}

In the pixel shader we check if the stored depth
value is smaller than the given point’s depth. That is,
the point is in shadow:

sampler2D ShadowMap; // depth map in texture

float4 ShadowPS(

float4 depthPos : TEXCOORD0,// depth tex

float4 Color : COLOR0 // input color

) : COLOR

{

// returns 0 or 1 as a comparison result

// [if shadowMapSampler uses linear

// interpolation, these 0/1 values are

// interpolated, not depth])

float vis = tex2Dproj(ShadowMap, depthPos).r;

return vis * Color;

}

The code for the shadow map query is virtually
identical to the code for projective textures. Projec-
tive texturing tex2Dproj(sampler, p) divides p.x,
p.y, p.z by p.w and looks up the texel addressed
by (p.x/p.w, p.y/p.w). Shadow maps are like other
projective textures, except that in projective tex-
ture lookups instead of returning a texture color,
tex2Dproj returns the boolean result of the compar-
ison of p.z/p.w and the value stored in the texel.
To force the hardware to do this, the associated tex-
ture unit should be configured by the application for
depth compare texturing; otherwise, no depth com-
parison is actually performed. In DirectX, this is done
by creating the texture resource with the usage flag
D3DUSAGE DEPTHSTENCIL. Note that tex2D will not
work on this texture, only tex2Dproj will.

Figure 8: Hardware shadow mapping with 512× 512
shadow map resolution at 210 FPS.

Classical shadow mapping requires just a single tex-
ture lookup in the pixel shader. This naive implemen-
tation has many well known problems, caused by stor-
ing only sampled information in the depth map. These
problems include shadow acnes and aliasing.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

3.2. Image based lighting

In many computer graphics applications it is desir-
able to augment the virtual objects with high dy-
namic range images representing a real environment
(sky, city, wood, etc.). In order to provide the illusion
that the virtual objects are parts of the real scene, the
illumination of the environment should be taken into
account when the virtual objects are rendered.

The very same approach can also be used for purely
virtual scenes if they can be decomposed to smaller dy-
namic objects and to a larger static or slowly changing
part (such distinction is typical in games and virtual
reality systems). In this case, the illumination reflected
off the static part of the scene is computed from a
reference point placed in the vicinity of the dynamic
objects, and is stored in images. Then the static part
of the scene is replaced by these images when dynamic
objects are rendered.

In both cases, the illumination of virtual objects
is defined by these images, also called environment
maps. The illumination computation process is called
environment mapping [BN76].

The radiance values representing environment illu-
mination may differ by orders of magnitude, thus they
cannot be mapped to the usual [0, 255] range. Instead,
the red, green, and blue colors of the pixels in these
images should be stored as floating point values to
cope with the high range. Floating point images are
called high dynamic range images.

Environment mapping assumes that the illumina-
tion stored in images comes from very (infinitely) far
surfaces. It means that a ray hitting the environment
becomes independent of the ray origin. In this case
rays can be translated to the same reference point,
and environment maps can be queried using only the
direction of the ray.

Environment mapping has been originally pro-
posed to render ideal mirrors in local illumina-
tion frameworks, then extended to approximate gen-
eral secondary rays without expensive ray-tracing
[Gre84, RTJ94, Wil01]. Environment mapping has
also become a standard technique of image based light-
ing [MH84, Deb98].

In order to compute the image of a virtual object un-
der infinitely far environment illumination, we should
evaluate the reflected radiance Lr due to the environ-
ment illumination at every visible point ~x at view di-
rection ~ω (figure 9):

Lr(~x, ~ω) =

∫

Ω′

Lenv(~ω′)·fr(~ω
′, ~x, ~ω)·cos+ θ′~x·v(~x, ~ω′) dω′,

(3)

x

L(x,)ω ω

v=0

v=1

environment
map

occluder

r ω’
θ’

Figure 9: The concept of environment mapping and
an environment map stored in a cube map.

where Lenv(~ω′) is the radiance of the environment
map at direction ~ω′, and v(~x, ~ω′) is the visibility factor
checking whether no virtual object is seen from ~x at
direction ~ω′ (that is, the environment map can illumi-
nate this point from the given direction). Note that
the assumption that illumination arrives from very
distant sources allowed the elimination of the posi-
tional dependence from the incoming radiance and its
replacement by direction dependent environment ra-
diance Lenv(~ω′).

The illumination of the environment map on the
virtual objects can be obtained by tracing rays from
the points of the virtual object in the directions of
the environment map, and checking whether or not
occlusions occur [Deb98, KK03]. The computation of
the visibility factor, that is the shadowing of objects, is
rather time consuming. Thus most of the environment
mapping algorithms simply ignore this factor and take
into account the environment illumination everywhere
and in all possible illumination directions.

A natural way of storing the direction dependent en-
vironment map Lenv(~ω′) as an angular mapped float-
ing point texture. Direction ~ω′ is expressed by spher-
ical angles θ′, φ′ where φ ∈ [0, 2π] and θ′ ∈ [0, π/2]
in case hemispherical lighting and θ′ ∈ [0, π] in case
of spherical lighting. Then texture coordinates [u, v]
are scaled from the unit interval to these ranges. For
example, in case of spherical lighting

~ω′ = (cos 2πu · sin πv, sin 2πu · sin πv, cos πv),

where u, v ∈ [0, 1].

Another, more GPU friendly possibility is to param-
eterize the directional space as sides of a cube centered
at the origin and having edge size 2. A point x, y, z on
the cube corresponds to direction

~ω′ =
(x, y, z)√

x2 + y2 + z2
.

One of the three coordinates is either 1 or −1.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

For example, the directions corresponding to the right
(z = 1) face of the cube are

~ω′ =
(x, y, 1)√
x2 + y2 + 1

, x, y ∈ [−1, 1].

Current GPUs have built in support to compute
this formula and to obtain the stored value from one
of the six textures of the six cube map faces (texCUBE
in HLSL).

3.2.1. Mirrored reflections and refractions

Let us assume that there are no self occlusions, so
v(~x, ~ω′) = 1. If the surface is an ideal mirror, then its
BRDF allows the reflection just from a single direc-
tion, thus the rendering equation simplifies to:

Lr(~x, ~ω) =

∫

Ω′

Lenv(~ω′)·fr(~ω
′, ~x, ~ω)·cos+ θ′~x·v(~x, ~ω′) dω′

= Lenv(~R) · F (~N, ~R),

where ~N is the unit surface normal at ~x, ~R is the
unit reflection direction of viewing direction ~ω onto the
surface normal, and F is the Fresnel function. We can
apply an approximation of the Fresnel function, which
is similar to Schlick’s approximation [Sch93] in terms
of computational cost, but can take into account not
only refraction index n but also extinction coefficient
k, which is essential for realistic metals [LSK05]:

F (~N, ~R) = F⊥ + (1− F⊥) · (1− ~N · ~R)5,

where

F⊥ =
(n− 1)2 + k2

(n + 1)2 + k2
(4)

is the Fresnel function (i.e. the probability that the
photon is reflected) at perpendicular illumination.
Note that F⊥ is constant for a given material, thus
this value can be computed on the CPU from the re-
fraction index and extinction coefficient and passed to
the GPU as a global variable.

Environment mapping approaches can be used to
simulate not only reflected but also refracted rays, just
the direction computation should be changed from the
law of reflection to the Snellius-Descartes law of refrac-
tion, that is, the reflect operation should be replaced
by the refract operation in the pixel shader. The in-
trinsic function refract will return a zero vector when
total reflection should occur. We should note that trac-
ing a refraction ray on a single level is a simplification
since the light is refracted at least twice to go through
a refractor. Here we discuss only this simplified case

(a method addressing multiple refractions is presented
in [SKALP05]).

The amount of refracted light can be computed us-
ing weighting factor 1−F where F is the Fresnel func-
tion. However, this is true just at the point of refrac-
tion. While the light traverses inside the object, its
intensity decreases exponentially according to the ex-
tinction coefficient. For metals, where the extinction
coefficient is not negligible, the refracted component is
completely eliminated (metals can never be transpar-
ent). For dielectric materials, on the other hand, we
usually assume that the extinction coefficient is zero,
thus that the light intensity remains constant inside
the object. The following shader uses this assumption
and computes both the reflected and refracted illumi-
nation of an infinitely distant environment map:

float Fp; // Fresnel at perpendicular dir.

float n; // index of refraction

void EnvMapVS(

in float4 Pos : POSITION, // modeling space

in float3 Norm : NORMAL, // modeling space

out float4 hPos : POSITION, // clipping space

out float3 cNorm : TEXCOORD0,// camera space

out float3 cView : TEXCOORD1 // camera space

) {

hPos = mul(Pos, WorldViewProj);

cNorm = mul(Norm, WorldViewIT);

cView = -mul(Pos, WorldView);

}

samplerCUBE EnvMap; // environment map

float4 EnvMapPS(

float3 Norm : TEXCOORD0, // camera space

float3 View : TEXCOORD1 // camera space

) : COLOR {

float3 Norm = normalize(IN.Norm);

float3 View = normalize(IN.View);

float3 R = reflect(View, Norm);

float3 T = refract(View, Norm, 1/n);

// sampling from the cube map

float4 refl = texCUBE(EnvMap, R);

float4 refr = texCUBE(EnvMap, T);

// approximation of the Fresnel Function

float cos_theta = -dot(View ,Norm);

float F = Fp + pow(1-cos_theta, 5.0f) * (1-Fp);

return F * refl + (1-F) * refr;

}

3.2.2. Diffuse and glossy reflections without
self-shadowing

Classical environment mapping can also be applied
for both glossy and diffuse reflections. If we ignore self
occlusions (v(~x, ~ω′) = 1), the usual trick is the convo-
lution of the angular variation of the BRDF with the

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 10: Environment mapped reflection (left), refraction (middle), and combined reflection and refraction
(right).

environment map during preprocessing [RH01]. The
integral of equation 3 is evaluated using a finite num-
ber of samples. For example, approximating the ren-
dering equation with N samples requires the evalua-
tion of the following numerical quadrature (i.e. a sum
approximating the integral):

Lr(~x, ~ω) ≈
N∑

i=1

Lenv(~ω′i) · fr(~ω
′
i, ~x, ~ω) · cos+ θ′i ∆ω′i

In case of diffuse objects the BRDF is constant, thus
the reflected radiance becomes:

Lr(~x, ~ω) ≈ fr ·
N∑

i=1

Lenv(~ω′i) · cos+ θ′i ∆ω′i

Note that the only factor in this sum that depends on
shaded point ~x is cos+ θ′i = (~N~x · ~ωi)

+, which is the
cosine of the angle between the sample direction and
the surface normal of the shaded point. These sums
are pre-computed for a sufficient number of normal
vectors and store irradiance values

Ij =

N∑
i=1

Lenv(~ω′i) · (~Nj · ~ωi)
+ ∆ω′i.

In order to compute the diffuse reflectance we need
to determine the normal at the shaded point, look up
the corresponding irradiance value, and modulate it
with the diffuse BRDF. Irradiance values are stored in
an environment map called diffuse environment map
or irradiance environment map. Assuming that each
value is stored in the direction of the corresponding
normal vector, we can determine the illumination of
an arbitrarily oriented surface patch during render-
ing with a single environment map lookup toward the
normal direction of the surface. In other words, the

query direction for the environment map lookup will
be the surface normal. Assuming cubic environment
maps, the pixel shader implementation is as follows:

float4 PS_Diffuse(float3 N : NORMAL) : COLOR0 {

return texCUBE(EnvMap, N);

}

In case of glossy objects, assuming Phong illumina-
tion model, the illumination depends on both the nor-
mal direction and the view direction, but this depen-
dence can be described with a single vector that is ob-
tained by mirroring the view direction on the surface
normal. This reflection direction will serve as query
direction in case of glossy objects:

float4 PS_Glossy(float3 N : NORMAL,

float3 V : TEXCOORD1) : COLOR0

{

V = normalize(V);

N = normalize(N);

// compute the reflection direction

float3 R = reflect(V, N);

return texCUBE(EnvMap, R); // query

}

The precalculation of the irradiance environment
map is rather computation intensive for both diffuse
and glossy objects. In order to obtain a single irradi-
ance value, we have to consider all possible incoming
directions and sum up their cosine-weighted incom-
ing intensities. This convolution must be performed
for each texel of the irradiance environment map. The
computation process can be sped up using spherical
harmonics [Kin05].

If we perform the convolution only once, at startup,
the frame rate is above 600 FPS.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 13: Diffuse objects.

Figure 14: Specular objects, shininess = 60

Figure 11: Original high dynamic range environment
map (uffizi cross.dds).

Figure 12: Diffuse irradiance map obtained by con-
volution.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

3.2.3. Diffuse and glossy reflections with
shadowing

Classical image based lighting algorithms ignore oc-
clusions and assume that the environment is visible
from everywhere. If shadows are also needed, occlu-
sions should also be taken into account, thus shadow
mapping should be combined with image based light-
ing.

The key idea of the solution is to decompose the
environment map to a finite number of directional do-
mains. In order to estimate the integral of equation 3,
directional domain Ω′ is decomposed to solid angles
∆ω′i, i = 1, . . . , N meeting the following criteria:

• the radiance is roughly uniform within each domain,
• the solid angles are small and light flux arriving

from every domain has the same magnitude, thus
it is enough to test the visibility of the environment
map with a single sample in each solid angle:

Lr(~x, ~ω) =

N∑
i=1

∫

∆ω′
i

Lenv(~ω′) · fr(~ω
′, ~x, ~ω) · cos+ θ′~x · v(~x, ~ω′) dω′ ≈

v(~x, ~ω′i) · Ψ̃env
i · a(∆ω′i, ~ω),

where

Ψ̃env
i =

∫

∆ω′
i

Lenv(~ω′) dω′

is the total incoming power from solid angle ∆ω′i, and

a(∆ω′i, ~ω) =
1

∆ω′i
·
∫

∆ω′
i

fr(~ω
′, ~x, ~ω) · cos+ θ′~x dω′.

is the average reflectivity from solid angle ∆ω′i to view-
ing direction ~ω. In order to use this approximation, the
following tasks need to be solved:

1. The directional domain should be decomposed
meeting the prescribed requirements, and the total
radiance should be obtained in them. Since these
computations are independent of the objects and
of the viewing direction, we can execute them in
the preprocessing phase.

2. The visibility of the environment map in the di-
rections of the centers of the solid angles needs to
be determined. Since objects are moving, this cal-
culation is done on the fly. Note that this step is
equivalent to shadow computation assuming direc-
tional light sources.

3. The average reflectivity values need to be computed
and multiplied with the total radiance and the vis-
ibility for each solid angle. Since the average re-
flectivity also depends on the normal vector and
viewing direction, we should execute this step as
well on the fly.

For a static environment map, the generation of
sample directions should be performed at loading
time, making it a non time-critical task. The goal is
to make the integral quadrature accurate while keep-
ing the number of samples low. This requirement is
met if solid angles ∆ω′i are selected in a way that the
environment map radiance is roughly homogeneous in
them, and their area is inversely proportional to this
radiance. The task is completed by generating random
samples with a probability proportional to the power
of environment map texels, and applying Lloyd’s re-
laxation [Llo82] to spread the samples more evenly.
A weighted version of the relaxation method is used
to preserve the density distribution. As the basic idea
of Lloyd’s relaxation is to move the sample points to
the center of their respective Voronoi areas, the rela-
tively expensive computation of the Voronoi mesh is
necessary.

Figure 15: Radiance values of texels within the
Voronoi areas are summed to compute their total
power and the final Delaunay grid on high dynamic
range image. The centers of Voronoi cells are the sam-
ple points.

A Voronoi cell is defined as the set of points to which
a given sample is the closest one. The dual of the
Voronoi decomposition is the Delaunay mesh of tri-
angles, with the defining property that no circumcir-
cle of any triangle contains any of the sample points.
On the unit sphere of directions, this means that no
sample can lie on the outer side of a triangle’s plane.
Inserting a new sample point goes according to the
Bowyer-Watson algorithm:

1. you start with a Delaunay mesh that is a convex

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

polyhedron which only has triangle faces, and all
nodes on the unit sphere

2. delete all triangles for which the new sample direc-
tion lies on the outer side of the triangle’s plane
(which the outer side is is defined by the order of
the triangles nodes, but for usual meshes the inner
side is where the origin is)

3. connect the new sample to the edges of the cavity
just created (it will always be a convex cavity in the
sense that the resulting mesh will be a legal convex
Delaunay polyhedron)

Alternatively, extremely fast algorithms using Pen-
rose tiling [ODJ04] and Wavelet importance sampling
have been published to attack the well-distributed im-
portance sampling problem. These methods should be
considered if non-static environment maps are to be
used. However, if we wish to assign the most accurate
light power values to the sampled directions, we have
to add up the contributions of those texels that fall
into the Voronoi region of the direction. In this case,
Lloyd’s relaxation means no significant overhead, as
rigorously summing the texel contributions takes more
time.

Visibility determination

We have decomposed the environment map to solid
angles and we want to test visibility with a single sam-
ple in each subdomain. The problem is traced back to
rendering shadow caused by directional light sources.
In order to render shadows effectively, a hardware-
supported shadow technique has to be applied. Depth
map shadows [Wil78] generated for every discrete di-
rection are well suited for the purpose (figure 16).

z = 1

z = 0

x = -1

x = 1

y = -1

y = 1

depth
map

bounding
sphere

sampled
direction

texels

Figure 16: The concept of depth mapped shadows for
the directional lights corresponding to Voronoi cells
and a particular depth image.

Lighting using the samples

When average reflectivity a(∆ω′i, ~ω) from solid angle
∆ω′i to viewing direction ~ω is computed, we have to ac-
cept simplifications to make the method real time. We

consider a standard diffuse + specular BRDF, where
the specular part is defined by the Phong model:

fr(~ω
′, ~x, ~ω) · cos θ′ = kd · cos θ′ + ks · cosn ψ,

where kd is the diffuse reflection parameter, ks is the
specular reflectivity, n is the shininess of the surface,
and ψ is the angle between the ideal reflection direc-
tion of view vector ~ω and the illumination direction
~ω′. We assume that the integrand has low variation,
which is true for not highly specular materials and
small directional domains (meaning we have enough
directional samples). In this case the integral is esti-
mated from a single sample associated with the center
of the Voronoi region:

ad(∆ω′i, ~ω) ≈ kd · cos θc

where θc is the angle between the surface normal
and direction ~ω′i corresponding to the center of this
Voronoi region. This means lighting happens just like
in the case of any ordinary directional light source.

However, if the surface is more glossy or the Voronoi
cells are large, then the approach results in artifacts.
The reflection will be noisy even at points where there
is no self occlusion. The problem is that both the
albedo and the shadowing factor are estimated with
the same, low number of discrete samples.

In such cases, the two computations should be sep-
arated. We need better approximations for the albedo
integral, but use the low number of discrete samples
for shadow estimation [BSKS05].

Implementation

The demo application ImageBasedLighting realizes
the above algorithm. Contributions of directional light
samples are rendered in batches.

1. Depth is laid down using technique renderBlack.
Using the z-test, in further rendering passes to the
frame buffer, only visible pixels will be evaluated.

2. For every batch of light samples:

a. A set of depths maps are rendered for all
light samples in the batch using technique
renderDepth.

b. Using blending, the contribution of all light sam-
ples in the batch is added to the frame buffer
(technique renderFinal).

3. The environment map is rendered behind the scene
using technique renderBackground.

Rendering times depend heavily on the number of
samples used. Real-time results (30 FPS) are possi-
ble for moderately complex scenes with a few objects
(Figure 18). However, difficult scenes (Figure 19) re-
quire more samples for acceptable quality, and there-
fore only run at interactive frame rates (5 FPS).

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 17: Spheres in Florence rendered with taking
a single sample in each Voronoi cell, assuming direc-
tional light sources (left) and using a better albedo ap-
proximation for the average reflectance over Voronoi
cells (right). The shininess of the spheres is 100.

Figure 18: Two images from a video rendered on 18
FPS. Observe how the illumination of the standing Ar-
madillo changes when the other Armadillo flies over.

Figure 19: Two images of difficult scene, where only
a small fraction of the environment is visible from sur-
face points inside the room. 1000 directional samples
are necessary, animation with 5 FPS is possible.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

4. Ray tracing on the GPU

Due to the success of texture based approaches, accu-
rate ray casting has lately been confined to perform-
ing preprocessing in realtime applications. Though
GPU based ray casting implementations outperform
the CPU now, they either do not scale well for higher
primitive counts, or require the costly construction of
spatial hierarchies. In this section we describe an im-
proved algorithm based on the Ray Engine approach,
which builds a hierarchy of rays instead of objects,
completely on the graphics card.

Generally, our objective would be to eliminate time
consuming ray casting from illumination algorithms,
or to move it to a preprocessing step computing tex-
ture maps. However, there are some light transport ef-
fects that exhibit inherently recursive behavior, most
prominently visible refractive objects, or caustics via
multiple reflections or refractions. Accurate maps or
transport factor matrices cannot be constructed with
a feasible storage requirement. However, these prob-
lems are effectively handled by recursive ray tracing
or photon tracing, both based on ray casting. More-
over, if we consider eye rays or light rays from small
light sources, hitting reasonably smooth objects, the
rays to be traced will be coherent, even after multiple
reflections of refractions.

One delivering research direction has spawned from
the approach of Purcell et al.[PBMH02a], imple-
mented by Foley and Sugerman[FS05]. The kd-tree
acceleration hierarchy, formerly confined to the CPU,
is traversed on the GPU using algorithms not optimal
in the worst-case algorithmic sense, but eliminating
the need of a stack. This offers a competitive alterna-
tive to CPU ray tracing, but it is not directly targeted
on real-time applications, and it is ill-suited for highly
dynamic scenes because of the construction cost of the
kd-tree.

However, there is a solution which does not
rely on a pre-built acceleration structure: the Ray
Engine[CHH02]. Based on the recognition that ray
casting is a crossbar on rays and primitives, while scan
conversion is a crossbar on pixels and primitives, the
ray engine computes all possible ray-primitive inter-
sections on the GPU.

4.1. The ray engine

As the ray engine serves as the basis of our approach,
let us reiterate its working mechanism in current GPU
terminology. Figure 20 depicts the rendering pass re-
alizing the algorithm. Every pixel of the render target
is associated with a ray. The origin and direction of
rays to be traced are stored in textures that have the
same dimensions as the render target. One after the

rays texture

raytracing
primitives

full screen
quad

RayCastPS
ray-primitive
intersection

draw

fetch

z-test

refracted rays

Figure 20: Rendering pass implementing the ray en-
gine.

other, a single ray casting primitive is taken, and it is
rendered as a full-screen quad, with the primitive data
attached to the quad vertices. Thus, pixel shaders for
every pixel will receive the primitive data, and can
also access the ray data via texture reads. The ray-
primitive intersection calculation can be performed in
the shader. Then, using the distance of the intersec-
tion as a depth value, a depth test is performed to
verify that no closer intersection has been found yet.
If the result passes the test, it is written to the render
target and the depth buffer is updated. This way ev-
ery pixel will hold the information about the nearest
intersection between the scene primitives and the ray
associated with the pixel. The pitfall of the ray engine
is that it implements the naive ray casting algorithm
of testing every ray against every primitive.

From this point on, we will refer to the primitives
for the ray casting as triangles, this being the more
general case. However, please note that the method is
applicable to any other type of object for which an
intersection test against a ray can be implemented in
a shader.

4.2. Acceleration hierarchy built on rays

CPU-based acceleration schemes are spatial object hi-
erarchies. The basic approach is that, for a ray, we try
to exclude as many objects as possible from intersec-
tion testing. This cannot be done in the ray engine
architecture, as it follows a per primitive processing
scheme instead of the per ray philosophy. Therefore,
we also have to apply an acceleration hierarchy the
other way round, not on the objects, but on the rays.

In typical applications, realtime ray casting aug-
ments scan conversion image synthesis where recursive
ray tracing from the eye point or from a light sample
point is necessary. In both scenarios, the primary ray
impact points are determined by rendering the scene
from either the eye or the light. As nearby rays hit

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

DirectX point
primitives

covering the screen

RayCastPS
ray-primitive
intersection

draw

fetch

z-test

rays texture refracted rays

raytracing
primitives

Figure 21: Point primitives are rendered instead of
full screen quads, to decompose the array of rays into
tiles.

similar surfaces, it can be assumed that reflected or
refracted rays may also travel in similar directions,
albeit with more and more deviation on multiple iter-
ations. If we are able to compute enclosing objects for
groups of nearby rays, it may be possible to exclude
all rays within a group based on a single test against
the primitive being processed. This approach fits well
with the ray engine. Whenever the data of a primi-
tive is processed, we should find a way not to render
it on the entire screen as a quad, but invoke the pixel
shaders only where an intersection is possible. The so-
lution (as illustrated in Figure 21) is to split the render
target into tiles, render a set of tile quads instead of
a full screen one, but make a decision for every tile
beforehand whether it should be rendered at all. At a
first glimpse, this may appear counterproductive, as,
apparently, far more quads will be rendered. However,
there is a set of issues that disprove concerns.

• The ray engine is pixel shader intensive, and makes
practically no use of the vertex processing unit. The
number of pixel shader runs, which remains crucial,
is by no means increased.

• Instead of small quads, one can use point primi-
tives, described by a single vertex. This eliminates
the fourfold overhead of processing the same vertex
data for all quad vertices, and needlessly interpolat-
ing values.

• The high level test of whether a tile may include
valid intersections can be performed in the vertex
shader. If the intersection test fails, the vertex is
transformed out of view, and discarded by clipping.
Moving the vertices out of view does not require any
computation, they are simply assigned an outlying
extreme position.

• We can render all the triangles (the primitives of ray
casting) for a single tile at once. With a vertex buffer
encoding the triangles, this will be a single draw call

of point primitives. Tile data will be constant for all
triangles, and can be passed in uniform registers.

rays texture cones texture

ConePS
compute enclosing

cone for tile
fetch

render
to

texture

copy

cone array in system memory

Figure 22: The shader computing enclosing cones for
tiles of rays. The result is read back to system memory.

To be able to perform the preliminary test, for rays
grouped in the same tile an enclosing object should
be computed. This object will be an infinite cone. If
we test it against the enclosing sphere of the triangle,
we can exclude tiles not containing any intersections.
As rays are described in textures, and are not static,
the computation of ray-enclosing cones should be per-
formed on the GPU, in a rendering pass, computing
data to a texture. This step is shown in Figure 22. The
shader is detailed in Section 4.6. To set the uniform
parameters for the tiles, this texture has to be read
back from the graphics card. However, as it contains
only as many texels as many tiles are used (32× 32 is
typical), this is not an expensive operation.

rays texture

RayCastPS
ray-primitive
intersection

fetch

z-test

refracted rays

raytracing
primitives and
enclosing
spheres
as vertex buffer

RayCastVS
cone-sphere
intersection

clipped away

draw

uniform tile
position

and cone data

Figure 23: The rendering pass implementing the hi-
erarchical ray engine. For every tile, the vertex buffer
containing triangle and enclosing sphere data is ren-
dered. The vertex shader discards the point primitive if
the encoded triangle’s circumsphere does not intersect
the cone of the tile.

Figure 23 shows how the hierarchical ray engine pass
proceeds. The vertex buffer must also contain enclos-
ing sphere data. For all the tiles, this vertex buffer is
drawn. The tile position, and the ray-enclosing object

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

description for the current tile are uniform parameters
to the vertex shader. Based on the intersection test
between the current triangle’s and the tile’s enclosing
objects, the vertex shader either transforms the vertex
out of view, or moves it to the desired tile position.
The pixel shader performs the classic ray engine ray-
triangle intersection test.

4.3. Implementation of recursive ray tracing
using the ray engine

vertex buffer
with ray casting
primitives data

ray
texture

render primary
refracted rays

compute
enclosing cones

cone
texture

test primitive
against cone

(vertex shader)

ray-primitive
intersection,

refraction
(pixel shader)

refracted
rays

texture

for every tile

for every frame

copy back
for next iteration

for
every
iteration

compute
ray casting

primitive data,
enclosing sphere

Figure 24: Block diagram of the recursive ray tracing
algorithm. Only the initial construction of the vertex
buffer is performed on the CPU.

Figure 24 depicts the data flow in the demo applica-
tion for tracing refracted rays. The ray engine passes
are iterated to render consecutive refractions of rays.
The pixel shader performing the intersection tests out-
puts the refracted ray. That is, the ray defining the
next segment of the refraction path is written to the
render target. Then these results are copied back to
the ray texture, and serve as input for the next itera-
tion. Those pixels in which the path has not already
terminated must not be processed. In the beginning of
every iteration, an enclosing cone of rays is built for
every tile, and stored in a texture. Data from this tex-
ture is used in ray-casting vertex shader runs to carry
out preliminary intersection tests.

Note that the cones have to be reconstructed for ev-
ery new generation of rays, before the pass computing
the nearest intersections.

The steps of the complete algorithm therefore can
be listed as follows:

1. Assembly of the vertex buffer encoding triangles
(Section 4.4).

2. For every frame:

a. Generation of the primary ray array. This is
done by rendering the scene with a shader that
outputs primary refracted rays (Shader tech-
nique PrimaryRays in Section 4.5).

b. Compute the enclosing cones for tiles of rays,
and read back the result to system memory
(Shader technique Cone in Section 4.6).

c. For every tile, draw the vertex buffer, render-
ing refracted rays where an intersection is found
(Shader technique RayCast in Section 4.7). Valid
results are flagged in the stencil buffer.

d. Copy valid refracted rays back to the ray texture
(Shader technique CopyBack).

e. Repeat from step 2.b. until desired refraction
depth is reached.

f. Draw a full-screen quad, using the refracted ex-
iting rays in the ray texture to address an en-
vironment map. This renders the refractive ob-
jects with environment mapping (Shader tech-
nique Background).

4.4. Construction of the vertex buffer

We need to be able to perform the intersection test
between the enclosing object and the ray casting prim-
itive as fast as possible. At the same time, represen-
tation of both the triangles and the cones must be
compact, because triangle has to be passed in a very
limited number of vertex registers, and enclosing cones
must be described by a few texels when computed to
a render target.

The triangle description must be adequate for two
operations: cone-circumsphere intersection, and ray-
triangle intersection. For the cone-circumsphere inter-
section, the center (3 floats) and the radius (1 float)
of the sphere are stored. As this information will only
be necessary in the vertex shader, we can use the
POSITION slot in the vertex description. Evaluation of
the ray-triangle intersection consist of following steps:

1. Find the intersection point of the ray and the plane
of the triangle. For this we store the distance vector
from the origin to the plane (3 floats). We use the
NORMAL slot.

2. It has to be decided, whether the point is within
the triangle. We can transform the Cartesian world
coordinates to the triangle’s Barycentric coordi-
nates with a multiplication by a 3 × 3 matrix. If
all barycentric coordinates are positive, there is an
intersection. The rows of the transformation matrix
are stored in TEXCOORD slots.

3. The data assigned to the vertices of the trian-
gle should be interpolated. In our case this means
the normals. These are the vectors assigned to the

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

model vertices in modeling, not to be confused with
the normal vector of the triangles plane (the flat
normal). We can find the interpolated surface nor-
mal by weighting triangle vertex normals with the
barycentric coordinates. Normals are stored in ad-
ditional TEXCOORD slots. If we also wish to add tex-
turing, we need to encode and interpolate the tex-
ture coordinates of the triangles vertices in a similar
manner.

4. The ray origin and direction should be read from
the input textures, and knowing the surface nor-
mal, the refracted ray should be found and its ori-
gin and direction written to the render targets.

The shader implementation of the intersection al-
gorithm will be detailed in Section 4.7. The structure
representing a vertex in system memory is defined as
follows:

// a vertex encoding a triangle

struct ProcessedTriangle {

// enclosing sphere centre : POSITION.xyz

float3 sphereCentre;

// enclosing sphere radius : POSITION.w

float radius;

// triangle plane point

// nearest to origin : NORMAL

float3 planePos;

// Cartesian-to-barycentric

// transformation matrix : TEXCOORD0-2

float3 inverseVertexMatrix[3];

// model normals

// at triangle vertices : TEXCOORD3-5

float3 normals[3];

// model texture coords

// at triangle vertices : TEXCOORD6-8

float3 tex[3];

};

The 3×3 transformation matrix is computed as the
inverse of the matrix containing vertex coordinates.
Barycentric coordinates are defined as:

[
ax bx cx

ay by cy

az bz cz

][
Ba

Bb

Bc

]
=

[
px

py

pz

]
,

where a, b and c are Cartesian 3D triangle vertex po-
sitions, and Ba, Bb and Bc are the Barycentric co-
ordinates of point p. To get the transformation from
Cartesian coordinates, we have to invert this matrix.

4.5. Rendering primary rays

In order to create the initial rays for the ray engine,
we must render the scene using standard modeling and
camera transformations. The pixel shader outputs the
fragment position in world coordiantes as the origin,
and computes the refracted view direction. The ray
origin and direction textures are set as render targets.

void PrimaryRaysVS (

in float4 Pos : POSITION,

in float3 Norm : NORMAL,

out float4 hPos : POSITION,

out float3 wNorm : TEXCOORD0,

out float3 wPos : TEXCOORD1)

{

hPos = mul(Pos, WorldViewProj);

wNorm = mul(Norm, WorldIT);

wPos = mul(Pos, World).xyz;

}

void PrimaryRaysPS (

in float3 wNorm : TEXCOORD0,

in float3 wPos : TEXCOORD1,

out float4 Origin : COLOR0,

out float4 Dir : COLOR1)

{

Origin = float4(wPos, 1);

wNorm = normalize(wNorm);

float3 ViewDir = wPos - EyePos;

ViewDir = normalize(ViewDir);

float3 refractedDir =

refract(ViewDir, wNorm, RefractionIndex);

//total internal reflection

if(dot(refractedDir, refractedDir) < 0.5)

refractedDir = reflect(ViewDir, wNorm);

//4th channel is used to store object color

Dir = float4(refractedDir, color);

}

4.6. Construction of an enclosing cone

The intersection test between an infinite cone and a
sphere is simple is simple enough to be quicky per-
formed in the vertex shader. Enclosing infinite cones
of rays are described by an origin, a direction and an
opening angle.

Enclosing spheres for all ray casting primitives can
easily be computed when the model mesh is loaded
and the vertex buffer is assembled. A sphere is de-
scribed by a 3D position and a radius. Note that these
are always given in modeling coordinates, and trans-
formations have to be applied when using them in
shaders. In the vertex buffer, the POSITION value slot
can be used for passing the enclosing sphere data, as
it will simply be exchanged with the tile position in
the vertex shader.

The infinite enclosing cones must be constructed in
a pixel shader, in a pass before rendering the intersec-
tion records themselves. Note that in a practical appli-
cation, the rays to be traced will be different for every
frame, and for every level of refraction, so the recon-
struction of the cones is also time critical. Therefore,
a fast incremental approach is preferred over a tedious

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

one, which could possibly produce more compact re-
sults, via, for instance, linear programming. The algo-
rithm goes as follows:

1. Start with the zero angle enclosing cone of the first
ray.

2. For each ray

a. Check if the direction of the ray lies within the
solid angle covered by the cone, as seen from its
apex. If it does not, extend the cone to include
both the original solid angle and the new direc-
tion.

b. Check if the origin of the ray is within the vol-
ume enclosed by the cone. If it is not, translate
the cone so that it includes both the original
cone and the origin of the ray. The new cone
should touch both the origin of the ray and the
original cone, along one of its generator lines.

void ConeVS(

in float4 Pos : POSITION,

in float2 Tex : TEXCOORD0,

out float4 oPos : POSITION,

out float2 oTex : TEXCOORD0

)

{

oPos = Pos;

oTex = Tex;

}

void

ConePS(

in float2 Tex : TEXCOORD0,

out float4 oConePeak : COLOR0,

out float4 oConeDir : COLOR1)

{

//current cone data

//will be extended for every ray

//if necessary

float3 peak = 0;

float3 dir = 0;

float cosAngle = 1.0;

float sinAngle = 0.0;

// for all rays in tile

for(int i=0; i < 16; i++)

for(int j=0; j < 16; j++)

{

float3 currentRayDir =

tex2D(rayDirTableSampler, Tex

+ float2(

(float)j/RAY_TABLE_SIZE,

(float)i/RAY_TABLE_SIZE));

if(dot(currentRayDir, currentRayDir)>0.5)

{ // a valid ray

float3 currentRayOrigin =

tex2D(rayOriginTableSampler, Tex

+ float2(

(float)j/RAY_TABLE_SIZE,

(float)i/RAY_TABLE_SIZE));

if(dot(dir,dir) < 0.5)

{ // no valid ray found before this one

dir = currentRayDir;

peak = currentRayOrigin;

}

else

{ // extend the cone to include ray

float ncos = dot(currentRayDir,dir);

if(ncos < cosAngle)

{ //open cone wider

float3 perpdir = normalize(

currentRayDir - ncos * dir);

float3 farConeEdge =

cosAngle * dir

- sinAngle * perpdir;

dir = farConeEdge + currentRayDir;

dir = normalize(dir);

cosAngle = dot(dir, currentRayDir);

sinAngle =

sqrt(1.0 - cosAngle * cosAngle);

}

float3 pd = currentRayOrigin - peak;

float3 ptop = normalize(pd);

float cospp = dot(dir, ptop);

if(cospp < cosAngle)

{ //transplate cone to include origin

float3 perpdir =

ptop - cospp * dir;

perpdir = normalize(perpdir);

float3 farConeEdge =

cosAngle * dir

- sinAngle * perpdir;

float3 nearConeEdge =

cosAngle * dir

+ sinAngle * perpdir;

float3 g =

currentRayOrigin - peak

- nearConeEdge

* dot(nearConeEdge, pd);

peak += farConeEdge

* dot(g,g) / dot(farConeEdge, g);

}

}

}

}

oConePeak = float4(peak, 1.0);

oConeDir = float4(dir, cosAngle);

if(dot(dir, dir)<0.5)//no valid rays in tile

{

//cone far away not intersecting anything

oConePeak = float4(1000000.0, 0 , 0, 0.0);

oConeDir = float4(1, 0, 0, 1.0);

}

}

4.7. Ray casting

Using shader technique PrimaryRays we have rendered
an array of rays to be traced, specified by the ori-
gin and the direction in world space. We have built a

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

texture of enclosing cones, also in world space, cor-
responding to rays of tiles with Cone. Now, in the
RayCast pass, we have to test these against primi-
tives encoded in vertices, given in modeling space. We
transform the cones and rays to modeling space for the
intersection computation, and transform the results
back, if necessary. The algorithm for the ray-triangle
intersection was described in Section 4.4.

The cone intersects the sphere if

ϕ > arccos[(~v − ~a) · ~x]− arcsin[r/|~v − ~a|],
where ~a is the apex, ~x the direction and ϕ the half
opening angle of the cone, ~v is the center of the sphere
and r is its radius. The vertex shader has to test for
this, and pass all the information necessary for the ray
intersection test to the pixel shader. The cone is trans-
formed using the inverse World transform to model
space.

void RayCastVS(

in float4 Sphere : POSITION,

in float3 PlanePos : NORMAL,

in float3 Invmx0 : TEXCOORD0,

in float3 Invmx1 : TEXCOORD1,

in float3 Invmx2 : TEXCOORD2,

in float3 Normals0 : TEXCOORD3,

in float3 Normals1 : TEXCOORD4,

in float3 Normals2 : TEXCOORD5,

out float4 hPos : POSITION,

out float3 oPlanePos : TEXCOORD6,

out float3 oInvmx0 : TEXCOORD0,

out float3 oInvmx1 : TEXCOORD1,

out float3 oInvmx2 : TEXCOORD2,

out float3 oNormals0 : TEXCOORD3,

out float3 oNormals1 : TEXCOORD4,

out float3 oNormals2 : TEXCOORD5

)

{

oPlanePos = PlanePos;

oInvmx0 = Invmx0;

oInvmx1 = Invmx1;

oInvmx2 = Invmx2;

oNormals0 = Normals0;

oNormals1 = Normals1;

oNormals2 = Normals2;

hPos = float4(TilePos, 1);

ConeDirAndCosAngle.xyz =

mul(WorldIT,

float4(ConeDirAndCosAngle.xyz, 0));

ConePeak.xyz =

mul(WorldIT, float4(ConePeak.xyz, 1));

float3 sfc = Sphere.xyz - ConePeak.xyz;

float lsfc = length(sfc);

if(Sphere.w < lsfc)

{ // cone peak not in sphere

// angle difference between cone’s

// main direction

// and direction to sphere centre

float angSpMidConeMid =

acos(dot(ConeDirAndCosAngle.xyz,

sfc) / lsfc);

// the half of the opening angle

// at which the sphere is seen

float angSpRad = asin(Sphere.w / lsfc);

// cone opening angle

float angCone = acos(ConeDirAndCosAngle.w);

// if sphere direction not

// within (cone direction + sphere angle),

// discard tile for this triangle

if(angCone + angSpRad < angSpMidConeMid)

{

hPos = float4(10000000.0,

10000000.0,

10000000.0, 1.0);

}

}

}

The pixel shader performs the intersection test on
ray data read from the textures. The ray is trans-
formed into model space, and the refracted ray origin
and direction are transformed back usign the World

transformation.

void RayCastPS(

in float3 PlanePos : TEXCOORD6,

in float3 Invmx0 : TEXCOORD0,

in float3 Invmx1 : TEXCOORD1,

in float3 Invmx2 : TEXCOORD2,

in float3 Normals0 : TEXCOORD3,

in float3 Normals1 : TEXCOORD4,

in float3 Normals2 : TEXCOORD5,

in float2 vPos : VPOS,

out float4 oOrigin : COLOR0,

out float4 oDir : COLOR1,

out float1 oDepth : DEPTH)

{

// to texture coordinates

float2 pixpos = vPos.xy;

pixpos /= RAY_TABLE_SIZE;

float3 rayOrigin =

tex2D(rayOriginTableSampler, pixpos.xy);

rayOrigin =

mul(WorldIT, float4(rayOrigin, 1));

float3 rayDir =

tex2D(rayDirTableSampler, pixpos.xy);

rayDir = mul(WorldIT, float4(rayDir, 0));

//ray-plane

float hitDepth =

(dot(PlanePos, PlanePos)

- dot(rayOrigin, PlanePos))

/ dot(rayDir, PlanePos);

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

if(hitDepth < MIN_RAY_DEPTH

|| hitDepth > MAX_RAY_DEPTH)

{

oDepth = 1000000.0;

oOrigin = oDir = 0;

}

else

{

float3 hitPoint =

rayOrigin + (rayDir * hitDepth);

float3 worldDist =

mul(float4(hitPoint - rayOrigin, 0),

World).xyz

oDepth = length(worldDist) / MAX_RAY_DEPTH;

float baryA = dot(Invmx0, hitPoint);

float baryB = dot(Invmx1, hitPoint);

float baryC = dot(Invmx2, hitPoint);

if(baryA > -0.001

&& baryB > -0.001

&& baryC > -0.001)

{

oOrigin =

mul(float4(hitPoint, 1), World);

float3 normalAtHit = Normals0 * baryA;

normalAtHit += Normals1 * baryB;

normalAtHit += Normals2 * baryC;

normalAtHit = normalize(normalAtHit);

if(dot(normalAtHit, rayDir) > 0)

{ // exiting ray

normalAtHit = -normalAtHit;

RefractionIndex =

1.0 / RefractionIndex;

}

float3 refractedDir =

refract(rayDir, normalAtHit,

RefractionIndex);

// total internal reflection

if(dot(refractedDir,refractedDir)<0.5)

refractedDir =

reflect(rayDir, normalAtHit);

oDir = float4(

mul(float4(refractedDir,0), World).xyz,

1);

}

else

{

oOrigin = float4(10.0, 0, 0, 1);

oDir = float4(10.0, 0, 0, 1);

oDepth = 1000000.0;

}

}

}

4.8. Excluding terminated ray paths

In our demo recursive ray tracing application, we ren-
der refractive objects in a cube map environment. To
render a frame, we first have to generate a texture of

initial rays. Then, we follow these rays through mul-
tiple refractions, until the exiting rays do not hit a
refractive surface any more. As a result, we get the ex-
iting rays, which can be used to query the cube map,
realizing environment mapping.

Firstly, there may be pixels in which no refractive
surface is visible. Furthermore, in every iteration re-
placing rays with their refracted successors, there will
be rays not arriving on any refractive surface, produc-
ing no output. For those pixels where there is no ray
to trace, the pixel shader is not invoked at all. We
achieve this using the stencil buffer and early sten-
cil testing. When rendering intersections, every bit of
the stencil serves as a flag for a specific iteration. The
stencil read and write masks select the flag bit of the
previous and current iterations, respectively. Should
ray casting fail to hit any object, the stencil bit will
not be set, and in the next iteration the pixel will be
skipped. With an eight bits deep stencil buffer, this al-
lows for eightfold reflection or refraction to be traced.
Further iterations are possible without excluding fur-
ther terminated paths.

In the PrimaryRays pass, we mark valid pixels:

device->SetRenderState(

D3DRS_STENCILENABLE, TRUE);

device->SetRenderState(

D3DRS_STENCILFUNC, D3DCMP_ALWAYS);

device->SetRenderState(

D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);

device->SetRenderState(

D3DRS_STENCILREF, 0x1);

hr=device->SetRenderState(

D3DRS_STENCILMASK, 0x1);

hr=device->SetRenderState(

D3DRS_STENCILWRITEMASK, 0x01);

Before every RayCast pass, we have to set:

device->SetRenderState(

D3DRS_STENCILREF, 0xff);

device->SetRenderState(

D3DRS_STENCILFUNC, D3DCMP_EQUAL);

device->SetRenderState(

D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);

device->SetRenderState(

D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);

device->SetRenderState(

D3DRS_STENCILMASK, 0x1 << iterationCount);

device->SetRenderState(

D3DRS_STENCILWRITEMASK, 0x2 << iterationCount);

This will preemt output for pixels not successfully
processed previously, and set a flag for those pixels
where an intersection was found. The flag shifting is
necessary because multiple primitives will be rendered
onto the same pixel in a single pass. Overwriting the
stencil bit would be unacceptable.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

4.9. Conclusion

The DirectX demo application renders multiple refrac-
tive objects in a cube map environment (Figure 26).
The rendering resolution is 512 × 512, divided into
32 × 32 tiles, all rendered as 16 × 16 sized DirectX
point primitives.

Figure 25: Images rendered using the hierarchical al-
gorithm at 256× 256 resolution.

As the application demonstrates, the ray engine ap-
proach is capable of performing recursive ray trac-
ing at interactive frame rates. However, performance
depends linearly on ray-casting primitive count. You
should also remember that not oly triangles, but any
kind of raytracable objects can be used. Therefore,
when the ray engine is integrated into an interac-
tive environment, it should be used cleverly together
with incremental 3D to add highly accurate reflec-
tions, refractions and caustics generated by relatively
low primitive count objects.

Figure 26: Images rendered using the hierarchical al-
gorithm at 512× 512 resolution.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

5. Specular effects with rasterization

When computing the light transfer, the basic oper-
ation is tracing a ray from its origin point at a di-
rection to find that point which is the source of il-
lumination. To obtain a complete path, ray tracing
should be continued at the hit point to get second and
further scattering points. Current graphics processing
units (GPU) trace rays of the same origin very effi-
ciently taking a “photo” from the shared ray origin.
The photographic process involves the rasterization
of the scene geometry and the exploitation of the z-
buffer to find the first hits of the rays passing through
the pixels. Note that this process finds light paths of
length 1 starting at the same point.

N
reflected point

reflection point

R

Figure 27: Specular effects require searching for com-
plete light paths in a single step.

However, in reflection, refraction, and caustic com-
putations the rays required to be traced are not so
coherent. Having identified the points visible from the
camera, from each point just a single ray needs to be
cast into the reflection or refraction direction. Ideal
reflection, refraction, or caustic computation can be
regarded as a search process that finds light paths
containing more than one scattering points (figure 27).
For example, in case of reflection we first find the point
visible from the camera, which is the place of reflec-
tion. Then from the reflection point we need to find the
reflected point to reflect its radiance at the reflection
point toward the camera. Refraction is similar, just
we have to follow the refraction rather than the reflec-
tion direction. Note also that even caustics is similar
with the difference that the search process starts from
the light source and not from the camera. It might be
mentioned that in all cases the multiple points cor-
respond to the shortest optical path according to the
Fermat principle.

Searching for a complete light path at a single step
is not easy since it requires the processing of the
scene multiple times, which is not compatible with the
stream processing architecture of the GPU (this ar-
chitecture assumes that each vertex and fragment are
processed at once and independently). A GPU friendly
approximation technique to simulate paths containing
two scattering points is environment mapping [BN76],
which assumes that the reflected points are very (in-
finitely) far, and thus the hit points of the rays become

1. Finding the center
of the object

2. Taking images
from the center

3. Illumination
from the images

Figure 28: Steps of environment mapping

independent of the reflection points, i.e. the ray ori-
gins. In this case rays can be translated to the same
reference point, so we get that case back for which the
GPU is an optimal tool. A fundamental problem of en-
vironment mapping is that the environment map is the
correct representation of the direction dependent illu-
mination only at its reference point. For other points,
accurate results can only be expected if the distance
of the point of interest from the reference point is neg-
ligible compared to the distance from the surrounding
geometry (figure 29).

Figure 29: Ray tracing (left) compared to approxi-
mate environment mapping (right)

To obtain more accurate results, the origin of the
ray and the distances from the environment sur-
faces must also be taken into account during ray-
tracing [SKALP05, Bjo04, PMDS06]. However, in-
stead of working directly with the meshes of the sur-
faces, we use the depth [Pat95] or distance values be-
tween the reference point and the points of the envi-
ronment surface visible at texels of the environment

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

map. The environment map storing per texel distance
information is called distance impostor. Note that the
distance impostor is the sampled representation of the
environment geometry. Thus when a ray is traced, the
intersection calculation can use this information in-
stead of the triangular meshes. Since vertex and pixel
shaders can lookup texture maps but cannot directly
access meshes, this replacement is crucial for the GPU
implementation.

Of course, a single map cannot always guarantee
correct results if view dependent occlusions occur. As
the ray origin gets far from the reference point of the
distance impostor, the probability of such occlusions
increases. Thus we might have to maintain multiple
maps or regenerate the environment map when the
movement exceeds a threshold. Since the environment
map is not refreshed in every frame, the amortized
cost of its generation becomes negligible.

Note that distance impostors may support searches
for the second, third, etc. points of the light path,
while the first point is identified by rasterization.
Searches can also be organized differently. For exam-
ple, we can start at the reflected points, i.e. at the
vertices of the environment, and search for the re-
flection points, i.e. identify those points that reflect
the input points. This means searching on the re-
flector surface rather than on the environment sur-
face [EMD∗05, RHS06, EMDT06]. The comparative
advantages of searching on the environment surface
or searching on the reflector depend on the geometric
properties of these surfaces. The algorithm searching
on the environment surface can handle arbitrary re-
flector surfaces and is efficient if the environment sur-
face is either far or simple. On the other hand, the
algorithm searching on the reflector surface can cope
with arbitrary environment surfaces, but is limited to
either concave or convex reflectors.

Here we detail an algorithm searching on the envi-
ronment surface represented by a distance impostor
[SKALP05].

5.1. Approximate ray-tracing with distance
impostors

The basic idea is discussed using the notations of fig-
ure 30. Let us assume that center ~o of our coordinate
system is the reference point of the environment map
and we are interested in the illumination of point ~x
from direction ~R. We suppose that direction vector ~R
has unit length.

Classical environment mapping would look up the
illumination selected by direction ~R, that is, it would
use the radiance of point ~r. However, ~r is usually not
equal to really reflected point ~q, which is in direction

r

x

l

Ro

l’

d
dl

environment
surfaceq

Figure 30: Localization of the environment map hav-
ing reference point ~o. When computing the incoming
radiance at point ~x from direction ~R, ray tracing would
select point ~q, classical environment mapping would
read the radiance of point ~r, while the proposed method
calculates ~l approximating the hit point on the ray and
looks up the environment map in this direction obtain-
ing the radiance of point ~l′.

~R from ~x, and thus satisfies the following ray equation
for some distance d:

~q = ~x + ~R · d. (5)

Ray parameter d can be found by an iterative pro-
cess working with distances between the environment
and reference point ~o. The required distance informa-
tion can be computed during the generation of the
environment map. While a normal environment map
stores the illumination for each direction in R,G,B
channels, now we also obtain the distance of the visi-
ble point for these directions and store it, for example,
in the alpha channel.

5.1.1. Finding initial ray hit approximations

In order to start the iterative ray intersection method,
we need initial guesses for the solution. Classical en-
vironment mapping would look up the illumination
selected by direction ~R, that is, it would use the ra-
diance of point ~r. This can be considered as the first
guess for the ray hit.

To find a second guess, we assume that the environ-
ment surface at ~r is perpendicular to ray direction ~R
(figure 31). In case of perpendicular surface, the ray
would hit point ~p. Points ~r, ~x and origin ~o define a
plane, which is the base plane of figure 31. This plane
also contains visible point approximation ~p and unit
direction vector ~R. Multiplying ray equation

~x + ~R · dp = ~p

by direction vector ~R and substituting ~R · ~p = |~r|,
which is the consequence of the perpendicular surface
assumption, we can express ray parameter dp:

dp = |~r| − ~R · ~x. (6)

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

r

x

l

Ro

l’

d
dl

perpendicular
surface

p

planar
approximationp’

p

environment
surface

Figure 31: Identifying first approximation point ~p as-
suming that the surface is perpendicular to ~R, and sec-
ond approximation point ~l supposing that the surface
is planar between points ~r and ~p′.

If we used the direction of point ~p to lookup the envi-
ronment map, we would obtain the radiance of point
~p′, which is in the direction of ~p but is on the surface.

The accuracy of an arbitrary approximation ~l can
be checked by reading the distance stored with the
direction of ~l in the environment map (|~l′|) and com-

paring it with |~l|. If |~l| = |~l′|, then we have found the
intersection. If visible point approximation is in front
of the surface, that is |~l| < |~l′|, the current approxima-
tion is an undershooting of distance parameter d. On
the other hand, the case when point ~l is behind the
surface (|~l| < |~l′|) is called overshooting.

Since point ~r corresponds to infinite ray parameter,
it is the projected point of an overshooting. Point ~p ob-
tained with the perpendicular surface assumption can
be either undershooting or overshooting. On the other
hand, if the object does not intersect the environment,
shaded point ~x is an undershooting.

The iteration process finds the real intersection
starting with two initial guesses.

5.1.2. Refinement by iteration

Suppose that we have two initial guesses of the ray
parameter dp and dl, and consequently two points ~p
and ~l that are on the ray, but are not necessarily on the
surface, and two other points ~p′ and ~l′ that are on the
surface, but are not necessarily on the ray (figure 32).

Note that if ~l′ is equal to ~r, then ~l does not exist in
the Euclidean space and ray parameter dl gets infinite,
thus this case requires special considerations.

If the surface were a plane between ~p and ~l, then
the intersection of the planar surface and the plane
defined by points ~p, ~l and ~o would be a line, and the
point visible from ~x at direction ~R would be ~lnew. Let
us assume that the surface can be well approximated
by a plane between points ~p and~l, and find intersection
~lnew of the plane with the ray.

lx

l

Ro

l’

d

new planar
approximation

p

p’

p

new

d
newd

l

environment
surface

Figure 32: Refinement by iteration.

Since new approximation ~lnew is on the ray, it sat-
isfies the following ray equation:

~lnew = ~x + ~R · dnew. (7)

Point ~lnew is also on the line of ~l′ and ~p′, thus it can be
expressed as their combination with unknown weight
α:

~lnew = ~l′ · α + ~p′ · (1− α).

If one of the ~p and ~l points is an undershooting while
the other is an overshooting, then α is in [0, 1]. If both
points have the same type, then α is not restricted to
[0, 1] but can have an arbitrary value.

Assuming first that ~l′ 6= ~r and substituting identi-
ties ~p′ = ~p · |~p′|/|~p| and ~l′ = ~l · |~l′|/|~l|, as well as the
ray equation for dp and dl, we get:

~lnew = (~x + ~R · dl) · |
~l′|
|~l|
·α + (~x + ~R · dp) · |~p

′|
|~p| · (1−α).

Comparing this expression with equation 7, we ob-
tain the following requirements for unknowns α and
dnew:

|~l′|
|~l|
· α +

|~p′|
|~p| · (1− α) = 1,

dl · |
~l′|
|~l|
· α + dp · |~p

′|
|~p| · (1− α) = dnew.

Solving this equation, we get:

dnew = dl + (dl − dp) · 1− |~l|/|~l′|
|~l|/|~l′| − |~p|/|~p′|

. (8)

Examining the special case when ~l′ = ~r, then we
obtain:

~lnew = ~r · α + (~x + ~R · dp) · |~p
′|
|~p| · (1− α).

Solving this equation we get:

dnew = dp + |~r| ·
(

1− |~p|
|~p′|

)
. (9)

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Having obtained new distance approximation dnew

we can replace one of the previous approximations dl

or dp and proceed with the same iteration step. We can
select from different options. On the one hand, we can
replace the last but one guess dp by last guess dl and
dl by dnew together with their associated points on the
ray and on the surface [SKALP05]. On the other hand,
we can examine the types of the two previous guesses
and of the new point, and replace the previous guesses
in a way that we always have an undershooting and
an overshooting approximation [SKAL05].

From mathematical point of view, the proposed it-
eration method solves ray equation f(~x + ~R · d) = 0
where f(~r) = 0 is the implicit equation of the environ-
ment surface, which is represented by discrete distance
samples of the environment map.

The solution algorithm is equivalent to the secant
method [Wei03] if always the last but one guess is
dropped. However, when we always keep one over-
shooting and one undershooting approximations, the
solution algorithm is equivalent to the false position
method [Wei03]. Both the secant and the false posi-
tion method obtains exact results in a single step if
the equation is linear. Note that this is the case if the
two guesses happen to be on the same polygon. Thus
having the algorithm iterated until the two guesses
are on the same polygon, the next step provides exact
solution.

The false position method is known to converge
surely. The secant method usually converges even
faster than the false position method [Wei03], but it
may not converge for high variation functions. Note
that in equation 8 the absolute value of denominator
|~l|/|~l′|− |~p|/|~p′| can be smaller than the absolute value

of enumerator 1 − |~l|/|~l′|, which means that step size
|dl − dp| may also increase. While increasing the step
size where necessary improves convergence, it might
also cause divergence. It may happen, for example,
that wild fluctuations cause the ray parameter to get
a negative value, which should be avoided. Thus when
the secant method is used, the sign of the ray param-
eter is checked and the ray parameter is forced to be
always positive.

Note that even with the guaranteed convergence of
the false position method, the proposed method is not
necessarily equivalent to exact ray tracing in the lim-
iting case. Small errors may be due to the discrete
surface approximation, or to view dependent occlu-
sions. For example, should the ray hit a point that is
not visible from the reference point of the environment
map, then the presented approximation scheme would
obviously be unable to find that. However, when the
object is curved and moving, these errors can hardly
be recognized visually.

5.2. Reflections

In order to render objects specularly reflecting their
environment, we need to generate the distance impos-
tor of the environment, then run the approximate ray
tracing scheme if the reflection object is shaded in a
fragment.

The computation of distance impostors is very sim-
ilar to that of classical environment maps. The only
difference is that the distance from the reference point
is also calculated, which can be stored in a separate
texture or in the alpha channel of the environment
map. For the sake of simplicity, we suppose that the
distance values are stored in the alpha channel of the
environment map. However, when implementing the
method it is worth putting the distance values into a
separate texture to increase performance.

Since the distance is a non linear function of the
homogeneous coordinates of the points, correct results
can be obtained only by letting the pixel shader com-
pute the distance values. Environment maps are usu-
ally parameterized by cube mapping, which projects
onto the six faces of a cube. Having placed the camera
at the reference point and set its viewing direction to
the directions of coordinate axes, the scene is rendered
six times.

Having the distance impostor, we render the reflec-
tive objects and activate custom vertex and fragment
shader programs. The vertex shader transforms the
reflective object to clipping space, and also to the co-
ordinate system of the environment map first applying
the modeling transform, then translating to the refer-
ence point. This space may be called as environment
map space. View vector ~V and normal ~N are also ob-
tained in this space.

void SpecularReflectionVS(

in float4 Pos : POSITION, // modeling space

in float3 Norm : NORMAL, // normal vector

in float2 Tex : TEXCOORD0,// texture uv

out float4 hPos : POSITION, // clipping space

out float3 x : TEXCOORD1,// env. space

out float3 N : TEXCOORD2,// normal in env.

out float3 V : TEXCOORD3 // view in env.

) {

hPos = mul(Pos, WorldViewProj);

x = mul(Pos, World) - refpoint;

N = mul(Norm, WorldIT);

V = x - EyePos;

}

Having the graphics hardware computed the homo-
geneous division and filled the triangle with linearly
interpolating all vertex data, the pixel shader is called
to find ray hit ~l and to look up the cube map in this
direction.

In the fragment shader we can call the following

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

HLSL function computing hit point approximation ~l
with initial secant approximation and then turning to
the false position method is shown below:

float3 Hit(half3 x, half3 R, sampler mp) {

half rl = texCUBE(mp, R).a; // |r|

half dp = rl - dot(x, R);

half3 p = x + R * dp;

half ppp = length(p)/texCUBE(mp,p).a; //|p|/|p’|

half dun = 0, dov = 0, pun = ppp, pov = ppp;

if (ppp < 1) dun = dp; else dov = dp;

half dl = max(dp + rl * (1 - ppp), 0);

half3 l = x + R * dl;

// iteration

for(int i = 0; i < NITER; i++) {

half ddl;

half llp = length(l)/texCUBE(mp,l).a; //|l|/|l’|

if (llp < 1) { // undershooting

dun = dl; pun = llp;

ddl = (dov == 0) ? rl * (1 - llp) :

(dl-dov) * (1-llp)/(llp-pov);

} else { // overshooting

dov = dl; pov = llp;

ddl = (dun == 0) ? rl * (1 - llp) :

(dl-dun) * (1-llp)/(llp-pun);

}

dl = max(dl + ddl, 0); // avoid flip

l = x + R * dl;

}

return l;

}

This function gets ray origin x and direction R, as
well as cube map mp of the environment, and returns
hit approximation l.

Ratios |~l|/|~l′| and |~p|/|~p′| are represented by vari-
ables llp and ppp, respectively. Note that variables
dun and dov store the last undershooting and over-
shooting ray parameters. If there has been no such
approximation, the ray parameters are zero. In this
case default point ~r takes their roles. In order to avoid
ray flipping, the algorithm limits ray parameters for
the non-negative domain.

An alternative implementation starts with over-
shooting ~r and undershooting ~x thus the false position
algorithm can be executed from the beginning:

float3 Hit(float3 x, float3 R, sampler mp) {

float rl = texCUBE(mp, R).a; // |r|

float pun = length(x)/texCUBE(mp, x).a; //|p|/|p’|

float dun = 0, dov = 0, pov;

float dl = rl * (1 - pun);

float3 l = x + R * dl; // ray equation

for(int i = 0; i < NITER; i++) { // iteration

float llp = length(l)/texCUBE(mp,l).a;

if (llp < 0.999) { // undershooting

dun = dl; pun = llp; // last undershooting

dl += (dov == 0) ? rl * (1 - llp) :

(dl-dov) * (1-llp)/(llp-pov);

} else if (llp > 1.001) { // overshooting

dov = dl; pov = llp; // last overshooting

dl += (dl-dun) * (1-llp)/(llp-pun);

}

l = x + R * dl; // ray equation

}

return l; // computed hit point

}

The fragment shader calls function Hit and looks
up cube map envmap again to find illumination I of
the hit point. The next step is the computation of
the reflection of incoming radiance I. If the surface
is an ideal mirror, the incoming radiance should be
multiplied by the Fresnel term evaluated for the an-
gle between surface normal ~N and reflection direction
~R. The Fresnel function is approximated according to
equation 4 [LSK05].

samplerCUBE envmap; // distance impostor

float4 SpecularReflectionPS(

float3 x : TEXCOORD1, // env. space

float3 N : TEXCOORD2, // normal in env.

float3 V : TEXCOORD3 // view in env.

) : COLOR

{

V = normalize(V);

N = normalize(N);

float3 R = reflect(V, N); // reflection dir.

float3 l = Hit(x, R, envmap); // ray hit float3

float3 I = texCUBE(envmap, l).rgb; // in radiance

// Fresnel reflection

float F = Fp + pow(1-dot(N, -V), 5) * (1-Fp);

return F * I;

}

Figure 33 compares images rendered by the pro-
posed method with standard environment mapping
and ray tracing. Note that for such scenes where the
environment is convex from the reference point of the
environment map, and there are larger planar surfaces,
the new algorithm converges very quickly. In fact, even
the initial guesses are usually accurate, and iteration
is needed only close to edges and corners.

Figure 34 shows a difficult case where the box makes
the environment surface concave and of high variation.
Note that the convergence is still pretty fast, but the
converged image is not exactly what we expect. We
can observe that the green edge of the box is visible
in a larger portion of the reflection image. This phe-
nomenon is due to the fact that a part of the wall is
not visible from the reference point of the environment
map, but are expected to show up in the reflection. In
such cases the algorithm can go only to the edge of
the box and substitutes the reflection of the occluded
points by the blurred image of the edge.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

distance impostor +1 iteration ray traced reference
447 FPS 323 FPS

Figure 33: Comparison of classical and localized environment map reflections with ray traced reflections placing
the reference point at the center of the room and moving a reflective sphere to different locations. Note that even
the initial guess made with the distance impostor is accurate almost everywhere but the corners where one iteration
step is enough. The FPS values are measured with 700× 700 resolution on an NV6800GT.

distance impostor +1 iteration +8 iterations
430 FPS 323 FPS 108 FPS

Figure 34: A more difficult case when the room contains a box that makes the scene strongly concave and is
responsible for view dependent occlusions.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

5.3. Multiple refractions

The proposed method can be used to simulate not
only reflected but also refracted rays, just the direc-
tion computation should be changed from the law of
reflection to the Snellius-Descartes law of refraction,
that is, the reflect operation should be replaced by
the refract operation in the pixel shader. However,
tracing a refraction ray on a single level is usually not
enough since the light is refracted at least twice to go
through a refractor. The location of the second refrac-
tion as well as the normal vector at this point depend
on the geometry of the object, which can only be ana-
lyzed by ray-tracing unless the refractor is very special
(e.g. a sphere, a cylinder, etc.). This problem is usually
solved by ignoring the second and further reflections,
which is obviously a drastic simplification [Wym05].

Applying distance impostors, however, we can solve
this problem as well if the refractor is not strongly
concave, i.e. all surface points can be seen from its
center point. We create a distance impostor for each
refractor, which stores the distance of the refractor
surface from its center and the normal vector of the
surface. If the refractor has static geometry, these im-
postors can be obtained during preprocessing. We call
this distance impostor as the refractor map (refrmap
in the program).

refrmap

x
R

RN
N1

p

r

l R1

V

1

ray after second
refraction

refractor

|r|

|p’| N

environment
surface

l1

Figure 35: Multiple refractions without iterative re-
finement. The ray refracts at ~x to direction ~R. The
refractor map is looked up in direction ~R to obtain ~r.
Using the perpendicular surface and planar surface as-
sumptions we get ~p and ~l, respectively. The refractor
map is looked up in direction ~l to find normal ~N1 of
the second refraction. Then the ray is refracted again
at ~l using normal ~N1, and the process is continued with
the environment map localization.

Now let us consider point ~x on the surface of the
refractor visible from the camera (figure 35). Using
the proposed method for the refractor map, we obtain
that point which is hit by the refraction ray. The nor-
mal vector at this point can be read from the distance
impostor. Computing another refraction at this point
and setting the origin of the refraction ray to the pre-
viously identified point, we can continue with the real

environment map and find that point and color, which
is visible after two refractions.

The pixel shader of double refractions uses the re-
fractor map (refrmap) with reference point stored in
variable called refpoint:

float Fp; // Fresnel at perpendicular dir.

float n; // index of refraction

samplerCUBE envmap; // distance impostor of the environment

samplerCUBE refrmap;// refractor map

float4 SpecularMultipleRefractionPS(

float3 x : TEXCOORD1,// env. space

float3 N : TEXCOORD2,// normal in env.

float3 V : TEXCOORD3 // view in env.

) : COLOR

{

V = normalize(V);

N = normalize(N);

float3 R = refract(V, N, 1/n); // first refract.

float3 l = Hit(x-refpoint, R, refrmap);

// Fresnel

float F1 = Fp + pow(1-dot(N, -V), 5) * (1-Fp);

float3 N1 = texCUBE(refrmap, l).xyz;

R1 = refract(R, N1, n); // second refract.

// distance impostor lookup

float3 l1 = Hit(l+refpoint, R1, envmap);

// Fresnel

float F2 = Fp + pow(1-dot(N1, -R1), 5) * (1-Fp);

float3 I = texCUBE(envmap, l1); // in rad.

// Fresnel attenuation of the two refractions

return (1-F1) * (1-F2) * I;

}

Figure 36 shows a refracting sphere rendered with
classical environment map and also by the new
method with single and double refractions. Note that
multiple refraction has a significant effect even when
the refraction index is close to 1, and also that the
proposed method is quite accurate even with only one
additional iteration step.

Reflection and refraction are computed by the same
basic mechanism, thus their combination is straight-
forward. At each step the Fresnel function is respon-
sible for weighting the two contributions.

When the ray arrives at the surface boundary from
an optically dense material (e.g. glass) and goes to a
less dense material (air), the relative index of refrac-
tion becomes less than one. In such cases, at higher
incident angles, the sine of the refraction angle com-
puted by the Snellius-Descartes law gets larger than
1, which prohibits any refraction. The phenomenon is
called the case of total reflection, when the light is
completely reflected at the surface. In such cases, the
refract function returns with a zero vector. When it
happens, only the reflection direction should be fol-

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

distance impostor distance impostor +1 iteration ray traced
single refraction double refraction double refraction reference

695 FPS 508 FPS 249 FPS

Figure 36: Refractions of a sphere having refraction index n = 1.1.

lowed and the Fresnel function should be adjusted to
1.

5.4. Caustics

The method presented so far can compute the hit
point after the first (or higher order) reflection or re-
fraction of the visibility ray. If we replace the eye by
a light source, the same method can also be used to
determine the first (or higher order) bounce of the
light ray, thus we can compute the indirect illumi-
nation bounced off dynamic objects onto static ones
[Pat97, SKALP05, SP05, WD06b, WD06a].

caustic
generator

photon hit info
is written into
the caustic map environment

surface

caustic map
being generated

x
R

l

distance impostor
of the environment

Figure 37: Caustics generation with distance impos-
tors

These indirect effects have a significant impact on
the final image if the dynamic object is close to be
an ideal reflector or refractor, when these effects show
up in forms of caustic spots [Jen01, TS00, WS03]. The
proposed distance impostors can thus be used to com-
pute caustics.

When rendering the scene from the point of view
of the light source, the view plane is placed between

the light and the refractor (figure 37). The image on
this view plane is called caustic map. Note that this
step is very similar to the generation of depth images
for shadow maps. In fact, if we combine the method
with shadow mapping, we obtain caustics almost for
free. However, implementing the caustic map genera-
tion separately allows us to optimally set the position
and the resolution of the view plane of the caustic
map.

Supposing that the surface is an ideal reflector or
refractor, point ~l that receives the illumination of a
light source after a single or multiple reflection or re-
fraction can be obtained by the proposed approximate
ray tracing, and particularly by calling the Hit func-
tion, after making the following substitutions: point ~x
is visible from the light source through a caustic map
pixel, ~R is the refraction (or reflection) of the direc-
tion from the light source onto the surface normal at
~x. The localized environment map lookups provide an
approximation of that point ~l, which is hit by a pho-
ton after a single reflection, or alternatively, ~l is an
approximation of the direction of the photon hit from
the reference point of the environment map.

The photon hit parameters are stored in that caustic
map pixel through which the primary light ray arrived
at the caustic generator object. There are several al-
ternatives to represent a photon hit. Considering that
the reflected radiance caused by a photon hit is the
product of the BRDF and the power of the photon,
the representation of the photon hit should identify
the surface point and its BRDF. A natural identifica-
tion is the texture coordinates of that surface point,
which is hit by the ray. A caustic map pixel stores the
identification of the texture map, the u and v texture
coordinates, and finally the luminance of the power of
the photon. The photon power is computed from the
power of the light source and the solid angle subtended
by the caustic map pixel.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

The identification of the u and v texture coordinates
from the direction of the photon hit requires another
texture lookup. Suppose that together with the en-
vironment map, we also render another map, called
uvmap, which has the same structure, but stores the
u, v coordinates and the texture id in its pixels. Hav-
ing found the direction of the photon hit, this map
is read to obtain the texture coordinates, which are
finally written into the caustic map.

The vertex shader of caustic map generation trans-
forms the points and illumination direction ~L to the
coordinate system of the environment map.

void CausticGenerationVS(

in float4 Pos : POSITION, // modeling space

in float3 Norm : NORMAL, // normal vector

out float4 hPos : POSITION, // clipping space

out float3 x : TEXCOORD1,// env. space

out float3 N : TEXCOORD2,// normal in env.

out float3 L : TEXCOORD3)// light in env.

{

hPos = mul(Pos, WorldLightProj);

x = mul(Pos, World) - refpoint;

N = mul(Norm, WorldIT);

L = x - LightPos; // light dir

}

Then the pixel shader computes the location of the
photon hit and puts it into the target pixel. For the
sake of simplicity, we did not include the computation
of the Fresnel attenuation in the following pixel shader
code:

float power; // power of a single photon

samplerCUBE uvmap; // texcoords of visible points

samplerCUBE envmap; // distance impostor

float4 CausticGenerationPS(

float3 x : TEXCOORD1,// env. space

float3 N : TEXCOORD2,// normal in env.

float3 L : TEXCOORD3 // light in env.

) : COLOR

{

N = normalize(N);

L = normalize(L);

R = refract(L, N, 1/n); // or reflect ...

float3 l = Hit(x, R, envmap); // photon hit

// get the texture coord of point l

float3 hituv = texCUBE(uvmap, l).xyz;

// Fresnel

float F = Fp + pow(1-dot(N, -L), 5) * (1-Fp);

return float4(hituv, (1-F)*power); // to caustmap

}

In order to recognize those texels of the caustic map
where the refractor is not visible, we initialize the caus-
tic map with −1 alpha values. Checking the sign of the
alpha later, we can decide whether or not it is a photon
hit.

The generated caustic map is used to project caus-

tic textures onto surfaces [GD01], or to modify their
light map in the next rendering pass. Every photon hit
should be multiplied by the BRDF, and the product is
used to modulate a small filter texture, which is added
to the texture of the surface. The filter texture corre-
sponds to Gaussian filtering in texture space. In this
pass we render as many small quadrilaterals (two ad-
jacent triangles in DirectX) or point sprites as texels
the caustic map has (figure 38).

The caustic map texels are addressed one by one
with variable caustCoord in the vertex shader shown
below. The center of these quadrilaterals is the origo,
and their size depends on the support of the Gaussian
filter. The vertex shader changes the coordinates of the
quadrilateral vertices and centers the quadrilateral at
the u, v coordinates of the photon hit in texture space
if the alpha value of the caustic map texel addressed
by caustCoord is positive, and moves the quadrilat-
eral out of the clipping region if the alpha is negative.
This approach requires the texture memory storing
the caustic map to be fed back to the vertex shader,
which is possible on 3.0 compatible vertex shaders.

The vertex shader of projecting caustic textures
onto surfaces is as follows:

void CausticRenderVS(

in float4 Pos : POSITION,

in float2 caustCoord : TEXCOORD0,

out float4 hPos : POSITION,

out float2 filtCoord : TEXCOORD1,

out float Power : TEXCOORD2,

out float4 Tex : TEXCOORD3)

{

// Photon position in texture space

float4 ph = tex2Dlod(caustmap, IN.caustCoord);

filtCoord = Pos.xy; // filter coords

// Place quad vertices in texture space

Tex.x = ph.x + Pos.x / 2;

Tex.y = ph.y - Pos.y / 2;

// Transforms to clipping space

hPos.x = ph.x * 2 - 1 + Pos.x + HALF;

hPos.y = 1 - ph.y * 2 + Pos.y - HALF;

// Is it a real Hit?

if (ph.a > 0) hPos.z = 0; // valid

else hPos.z = 2; // ignore

hPos.w = 1;

// pass power

Power = ph.a;

}

Note that the original x, y coordinates of quadrilat-
eral vertices are copied as filter texture coordinates,
and are also moved to the position of the photon hit
in the texture space of the surface. The output posi-
tion register (hPos) also stores the texture coordinates
converted from [0, 1]2 to [−1, 1]2 which corresponds to
rendering to this space. The w and z coordinates of

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 38: A photon map, a room without blending, and a room with blending enabled.

the position register are used to ignore those caustic
map elements which have no associated photon hit.

The pixel shader computes the color contribution as
the product of the photon power, filter value and the
BRDF:

float4 CausticRenderPS(

float2 filtCoord : TEXCOORD1,

float Power : TEXCOORD2,

float4 Tex : TEXCOORD3) : COLOR

{

float4 brdf = tex2D(brdfmap, TexCoord);

float4 w = tex2D(filter, filtCoord);

return power * w * brdf;

}

The target of this rendering is the light map or
the modified texture map. Note that the contribution
of different photons should be added, thus we should
set the blending mode to “add” before executing this
phase. Note that it is not obligatory to render the
caustics directly to a light map. Instead we can gener-
ate caustic patterns in a shadow map or a cube map,
and project these patterns on the surfaces similarly
to shadow mapping algorithms [SP05]. Note also that
image space filtering is only an approximation, but
since the billboards are usually small, this approxima-
tion is generally used in not real-time photon mapping
algorithms as well.

Figure 39 shows the implementation of the caustics
generation, when a 64 × 64 resolution caustic map is
obtained in each frame, which is fed back to the vertex
shader. Note that even with shadow, reflection, and re-
fraction computation, the method runs with 182 FPS.

5.5. Combining different specular effects

The different techniques based on approximate ray-
tracing can be combined in a complete real-time ren-
dering algorithm. The input of this algorithm include

Figure 39: Real-time caustics caused by a glass ob-
jects (n = 1.3), rendered by the proposed method

• the definition of the static environment in form of
triangle meshes, material data, textures, and light
maps having been obtained with a global illumina-
tion algorithm,

• refractor maps of those dynamic objects which are
expected to refract (or reflect) the light multiple
times,

• the definition of dynamic objects set in the actual
frame,

• the current position of light sources and the eye.

The image generation requires a preparation phase,
and a rendering phase from the eye. The prepara-
tion phase computes the distance impostors maps. De-
pending on the distribution of the dynamic objects, we
may generate only a single cube map for all of them,
or we may maintain a separate map for each of them.
Note that this preparation phase is usually not exe-
cuted in each frame, only if the object movements are
large enough. If we update these maps after every 100
frames, then the cost amortizes and the slow down be-
comes negligible. If the scene has caustic generators,
then a caustic map is obtained for each of them, and

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

caustic maps are converted to light maps during the
preparation phase.

Figure 40: Caustics seen through the refractor object.

The final rendering phase from the eye position con-
sists of three steps. First the static environment is ren-
dered with their light maps making also caustics visi-
ble. Then dynamic objects are sent to the GPU, hav-
ing enabled the proposed localized environment map-
ping and also multiple refraction computation. Note
that in this way the reflection or refraction of caustics
can also be generated (figure 40).

Figure 41: Left: a glass skull (n = 1.3, k = 0) of
61000 triangles rendered on 130 FPS. Right: an alu
teapot (n = 0.5..2.3, k = 5..9) of 2300 triangles ren-
dered on 440 FPS.

Figure 42: A reflective box with shadows in a stone
environment illuminated by dynamic lights (160 FPS)

The presented algorithm has been implemented in
Direct3D environment, first as a test application, and
then in a game. The images of the test application
are shown by figures 33, 34, 36, 39, 40, and 41. The
test application computes the environment map only
once to show that the proposed localization gives good
results even if the objects moved significantly from
their original positions. Note that this application runs
typically with few hundred frames per second even
in full screen mode on an NV6800GT graphics card
and P4/3GHz CPU, and can maintain this speed for
tens of thousand of triangles. For comparison, the peak
performance is 1095 FPS for the scene of figure 33
when the pixel shader executes a return instruction
for the sphere.

We also included the proposed method in a game ex-
ecuting shadow computation, collision detection, etc.
(figures 42, 43, and 44) that can run with about a
hundred FPS. In this game we used 6 × 256 × 256
resolution cube maps that are recomputed in every
150 msec. We have realized that the speed improves
by an additional 20 percent if the distance values are
separated from the color data and stored in another
texture map. The reason of this behavior is that the
pixel shader reads the distance values several times
from different texels before the color value is fetched,
and separating the distance values increases texture
cache utilization.

Figure 43: A knight in reflective armor in textured
environment illuminated by dynamic lights (130 FPS).

Figure 44: Reflective and refractive spheres in a game
environment (105 FPS)

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

6. Diffuse/glossy indirect illumination
computation

In case of diffuse/glossy surfaces a path may be contin-
ued at infinitely many directions (figure 45), thus even
a single pixel center may correspond to infinitely many
paths. Unlike in case of specular effects, the identifi-
cation of paths providing dense enough sampling is
not possible in a single step. Instead these algorithms
should be decomposed into multiple passes where each
pass advances just certain subset of paths.

Light paths can be built from the eye [Kaj86] by
gathering the illumination, from the light sources
[DLW93] by shooting the power of the lights, or even
starting paths simultaneously from the eye and from
the light sources and connecting them [LW93, JC95].
A particularly efficient but simple combination of
shooting and gathering computes multiple bounces by
shooting and then a single bounce by gathering. Such
algorithms distribute the power of the light sources in
the scene during shooting steps providing similar error
level everywhere in the scene. Then, the points visi-
ble from the camera are identified, and the radiance
is obtained at these points as the reflection of the ra-
diance of those points that are visible from here. Such
a view dependent refinement is called final gathering.
Note that we could use the radiance of the shooting
step directly when a point visible from the camera
is identified. However, final gathering significantly re-
duces the error of the image, since it reiterates the
computation once more only for those points that are
visible from the camera. Monte Carlo random walk
algorithms usually find light paths sequentially send-
ing rays from the last visited point. However, this ap-
proach is not GPU friendly since using rasterization
the GPU can efficiently identify a set of points visi-
ble from a single point, thus it is better to advance a
path into many directions in a single step. Rasteriza-
tion corresponds to tracing a bundle of rays that are
either parallel or sharing the same origin. Thus it is
worth worth organizing rays to be traced at once as ray
bundles [SKP98, CHL04, Hac04, BSKS05, Hac05].

GPU native local illumination algorithms compute
a single light bounce. Since global illumination re-
quires multiple bounces, the results of a single bounce
should be stored and whole computation be repeated.
The main problem is the temporary storage of the illu-
mination information, which requires data structures
to be stored in the GPU.

A color texture of the surface can be interpreted as
the radiance function sampled at points corresponding
to the texel centers [BGZ97, NC02]. An elementary
surface area A(i) is the surface which is mapped onto
texel i. The radiance is valid in all outgoing directions
for diffuse surfaces, or can be considered as sampled

Figure 45: At diffuse/glossy surfaces light paths split

at a single direction per each point if the surfaces are
non-diffuse [BSKS05]. Alternatively, the texture can
be viewed as the finite element representation of the
radiance function using piece-wise constant or linear
basis functions depending on whether bi-linear texture
filtering is enabled or not. Such radiance representa-
tion is ideal for obtaining the image from a particular
camera since the texturing algorithm of the graphics
hardware automatically executes this task.

In addition to textures, illumination information
can be stored with the vertices, or even indepen-
dently of the scene geometry. For example, Greger et
al. [GSHG98] calculated and stored the direction de-
pendent illumination in the vertices of a bi-level grid
subdividing the object scene. During run-time, irra-
diance values of an arbitrary point are calculated by
tri-linearly interpolating the values obtained from the
neighboring grid vertices. While Greger et al. used a
precomputed radiosity solution to initialize the data
structures, Mantiuk et al. [MPM02] calculated these
values during run-time using an iterative algorithm
that simulates the multiple bounces of light.

A shadow map is the sampled representation of
those points that are visible from the light source, thus
a shadow map can mediate the first bounce illumina-
tion to obtain two-bounce reflection at the surfaces of
the scene [DS03][DS05].

Finally, a cube map is also a representation of the
incoming illumination for a point (the cube map cen-
ter), or approximately for a set of points that are not
very far from the center.

In this section we examine two techniques in detail,
a GPU based stochastic radiosity algorithm [BSKS05],
which uses color texture radiance representation, and
a cube map based final gathering method [SKL06],
which also stores distance information in texels, which
allows the application of the stored illumination infor-
mation for a wider set of points.

6.1. Radiosity on the GPU

The iterative radiosity method is one of the oldest
global illumination techniques, and is also a pioneer
of the exploitation of the graphics hardware [CG85].

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

It has been recognized for a long time that the form
factors belonging to a single point can be obtained
by rendering the scene from this point, for which the
graphics hardware is an ideal tool. In the era of non-
programable GPUs the result of the rendering, i.e. the
image, was read back to the CPU where the form fac-
tor computation and the radiosity transfer took place.

The programmability of GPUs, however, offered
new possibilities for radiosity as well. Now it is fea-
sible to execute the complete algorithm on the GPU,
without expensive image read backs.

Let us revisit the reflected radiance formula (equa-
tion 1) for diffuse surfaces, but now express it as an
integral over the surfaces, and not over the illumina-
tion directions:

Lr(~x) = Tfr L =

∫

S

L(~y) · fr(~x) ·G(~x, ~y) dy, (10)

where S is the set of surface points, fr is the BRDF
and

G(~x, ~y) = v(~x, ~y) · cos+ θ~x · cos+ θ~y

|~x− ~y|2

is the geometric factor, where v(~x, ~y) is the mutual
visibility indicator which is 1 if points ~x and ~y are
visible from each other and zero otherwise, θ~x and
θ~y are the angles between the surface normals and
direction ω~y�~x that is between ~x and ~y.

If the emission radiance is Le the first bounce il-
lumination is Tfr Le, the second bounce illumination
is TfrTfr Le, etc. The full global illumination solution
is the sum of all bounces. Iteration techniques take
some initial reflected radiance function, e.g. Lr

0 = 0,
and keep refining it by computing the reflection of the
sum of the emission and the previous reflected radi-
ance estimate. Formally, the global illumination solu-
tion which includes paths of all lengths is the limiting
value of the following iteration scheme:

Lr
m = Tfr Lm−1 = Tfr (Le + Lr

m−1).

Each iteration step adds the next bounce in the re-
flected radiance. Iteration works with the complete
radiance function, whose temporary version should be
represented somehow. The classical approach is the
finite-element method, which approximates the radi-
ance function in a function series form. In the sim-
plest diffuse case we decompose the surface to small
elementary surfaces A(1), . . . , A(n) and apply a piece-
wise constant approximation, thus the reflected radi-
ance function is represented by the reflected radiance
of these patches, that is by Lr,(1), . . . , Lr,(n). CPU ra-
diosity algorithms usually decompose general surfaces
to triangular patches. However, in GPU approaches

this is not feasible since the GPU processes patches in-
dependently thus the computation of the interdepen-
dence of patch data is difficult. Instead, the radiance
function can be stored in a texture, thus the elemen-
tary surfaces will correspond to different texel areas.
Texture based radiance representation is practically
independent of the patch decomposition, surfaces de-
scribe only the geometry. We may call this approach
as patchless rendering, since having detected the vis-
ibility between two points, all computations are done
on texels independently of the surfaces. It allows us to
work with the original geometry, no patch subdivision
is necessary.

If the elementary surfaces are small, we can consider
just a single point of them in the algorithms, while
assuming that the properties of other surface points
are similar. Surface properties, such as the BRDF and
the emission can be given by values f

(1)
r , . . . , f

(n)
r , and

Le,(1), . . . , Le,(n), respectively, in each finite element,
i.e. in each texel. In case of small elementary surfaces
we can check the mutual visibility of two elementary
surfaces by inspecting only their centers. In this case
the update of the average reflected radiance corre-
sponding to texel i in a single iteration can be ap-
proximated in the following way:

Lr,(i)
m =

1

A(i)
·

∫

A(i)

Lr
m(~x) dx =

1

A(i)
·

∫

A(i)

∫

S

(Le(~y) + Lr
m−1(~y)) · f (i)

r ·G(~x, ~y) dydx ≈

n∑
j=1

(Le,(j) + L
r,(j)
m−1) · f (i)

r ·G(~yj , ~xi) ·A(j), (11)

where ~yj and ~xi are the centers of elementary surfaces
A(j) and A(i) belonging to texels j and i, respectively.

Iteration simultaneously computes the interaction
between all surface elements, which has quadratic
complexity in terms of the number of finite elements,
and its GPU implementation turned out not to be su-
perior than the CPU version [CHH03]. The complex-
ity of a single iteration step can be attacked by special
iteration techniques, such as Southwell iteration (also
called progressive radiosity) [WEH89], hierarchical ra-
diosity [HSA91, AH93, Bek99], or by randomization
[Shi91, Neu95]. Southwell iteration computes the in-
teraction of the element having the highest unshot ra-
diosity and all other surface elements [CCWG88]. It is
quite simple to implement on the GPU [CHL04], but
has also quadratic complexity [SKM95], which limits
these approaches for simple models and low texture
resolutions.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Monte Carlo techniques, on the other hand,
have sub-quadratic complexity, and can greatly
benefit from the hardware. The method dis-
cussed here is based on the stochastic iteration
[SK99b, Neu95, Sbe96, Bek99]. Stochastic iteration
means that in the iteration scheme a random trans-
port operator T ∗fr

is used instead of the light-transport
operator Tfr . The random transport operator has to
give back the light-transport operator in the expected
case:

Lr
m = T ∗fr

(Le + Lr
m−1), E[T ∗fr

L] = Tfr L.

Note that such an iteration scheme does not con-
verge, but the iterated values will fluctuate around
the real solution. To make the sequence converge, we
compute the final result as the average of the estimates
of subsequent iteration steps:

Lr =
1

m
·

m∑
k=1

Lr
k.

The core of all stochastic iteration algorithms is the
definition of the random transport operator. We prefer
those random operators that can be efficiently com-
puted on the GPU and introduce small variance. Note
that randomization gives us a lot of freedom to de-
fine an elementary step of the iteration. This is very
important for GPU implementation since we can use
iteration steps that fit to the features of the GPU.

texture space world space

y
x

A j

i
i

j

i

shooter

receiver

hemicube

Figure 46: A single iteration step

One approach meeting these requirements is the
random hemicube shooting (perspective ray bundles)
[SKAB03], which selects a patch (i.e. a texel) ran-
domly, assumes that the total power of the scene is
concentrated here, and this power is shot toward other
surfaces visible from here. Note that this elementary
step is similar to that of progressive radiosity. How-
ever, while progressive radiosity selects that patch
which has the highest unshot radiosity, and shoots this
unshot radiosity, stochastic hemicube shooting finds
a patch randomly, and shoots the total power of the
scene.

Note that the proposed scheme is equivalent to the
Monte Carlo evaluation of the sum of equation 11. A
surface element A(j) is selected with probability pj ,
and ~yj is set to its center. This randomization allows
to compute the interaction between shooter surface
element A(j) and all other receiver surface elements
A(i), instead of considering all shooters and receivers
simultaneously. Having selected shooter A(j) and its
center point ~yj , the radiance of this point is sent to
all those surface elements that are visible from here.
The Monte Carlo estimate of the reflected radiance of
finite element A(i) after this transfer is

L̂r,(i)
m =

L
(j)
m−1 · f (i)

r ·G(i)
m

pj
. (12)

In order to realize this random transport operator,
two tasks need to be solved, including the random
selection of a texel identifying point ~yj , and the update
of the radiance at those texels which correspond to
points ~xi visible from ~yj .

Random texel selection

The randomization of the iteration introduces some
variance in each step, which should be minimized in
order to get an accurate result quickly. According to
importance sampling, the introduced variance can be
reduced with a selection probability that is propor-
tional to the integrand or to the sampled term of the
sum of equation 11. Unfortunately, this is just approx-
imately possible, and the selection probability is set
proportional to the current power of the selected texel.
If the light is transferred on several wavelengths simul-
taneously, the luminance of the texel should be used.

The random selection proportional to the luminance
can be supported by a mipmapping scheme. Mipmap-
ping has originally been proposed for texture filtering.
Later it was also used to find the maximum value in
an image [CHL04]. In this approach, however, we use
mipmapping to sample randomly, proportional to the
stored luminance value. A mipmap can be imagined
as a quadtree, which allows the selection of a texel
in log2R steps, where R is the resolution of the tex-
ture. Each texel is the sum of the luminance of four
corresponding texels on a lower level. The top level
of this hierarchy has only one texel, which contains
the average of the luminance of all elementary texels.
Both generation and sampling require the rendering
of a textured rectangle (also called a full screen quad)
by log2 R times.

The generated mipmap is used to sample a texel
with a probability that is proportional to its lumi-
nance. First the luminance of the top level texel is re-
trieved from a texture and is multiplied by a random
number uniformly distributed in the unit interval.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Then the next mipmap level is retrieved, and the
four texels corresponding to the upper level texel is
obtained. The coordinates of the bottom right texel
are passed in uv, and the coordinates of the three other
texels are computed by adding parameter rr that is
the distance between two neighboring texels. The lu-
minance of the four texels are summed until the run-
ning sum (denoted by cmax in the program below) gets
greater than selection value r obtained on the higher
level. When the running sum gets larger than the se-
lection value from the higher level, the summing is
stopped and the actual texel is selected. A new selec-
tion value is obtained as the difference of the previous
value and the luminance of all texels before the found
texel (r-cmin). The new selection value and the tex-
ture coordinates of the selected texel are returned in c.
Then the same procedure is repeated in the next pass
on the lower mipmap levels. This procedure terminates
at a leaf texel with a probability that is proportional
to its luminance.

The shader of a pass of the mipmap based sampling
selects according to random value r passed from the
upper level and originally set randomly with uniform
distribution between zero and the total luminance of
the scene:

float cmin = 0;

float cmax = tex2D(texture, uv); // texel 1

if(cmax >= r) {

c = float3(r-cmin, uv.x, uv.y);

} else {

cmin = cmax;

float2 uv1 = float2(uv.x-rr, uv.y);

cmax += tex2D(texture, uv1); // texel 2

if(cmax >= r) {

c = float3(r-cmin, uv1.x, uv1.y);

} else {

cmin = cmax;

uv1 = float2(uv.x, uv.y-rr);

cmax += tex2D(texture, uv1);// texel 3

if(cmax >= r) {

c = float3(r-cmin, uv1.x, uv1.y);

} else { // texel 4

cmin = cmax;

uv1 = float2(uv.x-rr, uv.y-rr);

c = float3(r-cmin, uv1.x, uv1.y);

}

}

}

return c; // r and uv on the next level

Update of the radiance texture

The points visible from selected shooter ~y can be found
by placing a hemicube around ~y, and then using the z-
buffer algorithm to identify the visible patches. Since
it turns out just at the end, i.e. having processed all
patches by the z-buffer algorithm, which points are

really visible, the application of the random transfer
operator requires two passes.

The center and the base of the hemicube are set
to ~y and to the surface at ~y, respectively. Taking the
hemicube center and side faces as the eye and win-
dow, respectively, the scene is rendered five times, also
computing the z coordinate of the visible points. These
values are written into a texture, called the depth map.

We also tried the application of hemispherical map-
ping [CHL04], which would require just a single ren-
dering pass, but we gave it up because the distortion
of hemispherical projection introduced many artifacts.
The problem is that hemispherical projection is non-
linear, and maps triangles to regions bounded by el-
lipses. However, the current graphics hardware always
assumes that the points leaving the vertex shader are
triangle vertices, and generates those pixels that are
inside these triangles. This is acceptable only if the tri-
angles are very small, i.e. when the distortion caused
by the hemispherical mapping is negligible. Recall that
in our “patchless” rendering approach, no tessellation
of the geometry is required, thus hemispherical pro-
jection is not feasible.

In the second pass we render into the rectangle of
the radiance texture. It means that the pixel shader
visits each texel, and updates the stored actual radi-
ance. The vertex shader is set to map a point of the
unit texture square onto the the full screen. Normal-
ized device space coordinate hpos (which is identical
to clipping space coordinate since the fourth homoge-
neous coordinate is set to 1) is computed from texture
coordinate texx as follows:

hpos.x = 2 * texx.x - 1;

hpos.y = 1 - 2 * texx.y;

hpos.z = 0;

hpos.w = 1;

This transformation between texture and normal-
ized device space coordinates is necessary because the
device space coordinates must be in [−1, 1], while the
texture coordinates are expected in [0, 1]. Direct3D
has a texture space which defines the upper left cor-
ner as (0, 0) and the lower right corner as (1, 1), so we
need to flip y coordinates.

The vertex shader also transforms input vertex Pos

to camera space (x), as well as its normal vector
xnorm to compute radiance transfer, determines homo-
geneous coordinates vch for the location of the point
in the depth map.

x = mul(Pos, WorldView).xyz;

xnorm = mul(xnorm, WorldViewIT).xyz;

vch = mul(Pos, WorldViewProj);

The geometric factor depends on the receiver point,

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

1 iteration, 15 msec 10 iterations, 130 msec 100 iterations, 1.2 sec 1000 iterations, 10 sec

Figure 47: Images rendered with stochastic hemicube shooting. All objects are mapped to a single texture map of
resolution 128× 128, which corresponds to processing 16 thousand patches.

thus its accurate evaluation could be implemented by
the fragment shader:

float3 ytox = normalize(x); // dir y to x

float xydist2 = dot(x, x); // |x - y|^2

float cthetax = dot(xnorm, -ytox);

if (cthetax < 0) costhetax = 0;

float3 ynorm = float3(0, 0, 1);

float cthetay = ytox.z;

if (cthetay < 0) costhetay = 0;

float G = cthetax * cthetay / xydist2;

Note that we took advantage of the fact that ~y is
the eye position of the camera, which is transformed to
the origo by the WorldView transform, and the normal
vector at this point is transformed to axis z.

When a texel of the radiance map is shaded, it is
checked whether or not the center of the surface corre-
sponding this texel is visible from the shooter by com-
paring the depth values stored in the visibility map.
The pixel shader code responsible for converting ho-
mogeneous coordinates (vch) to Cartesian coordinates
(vcc) and computing the visibility indicator is:

float3 vcc = vch.xyz / vch.w; // Cartesian

vcc.x = (vcc.x + 1) / 2; // Texture space

vcc.y = (1 - vcc.y) / 2;

float depth = tex2D(depthmap, vcc).r;

float vis = (abs(depth - vcc.z) < EPS);

Instead of coding these steps manually, we could use
projective depth texturing as well as discussed in the
section on Shadow mapping.

To obtain the radiance transfer from shooter ~y to
the processed point ~x, first the radiance of shooter ~y is
calculated from its reflected radiance stored in radmap,
and its emission stored in emissmap. Shooter’s texture
coordinates texy are passed as uniform parameters:

float3 Iy = tex2D(radmap, texy);

float3 Ey = tex2D(emissmap, texy);

float3 Ly = Ey + Iy;

The new reflected radiance at ~x is obtained from
the radiance at ~y multiplying it with visibility indi-
cator vis and geometric factor G computed before,
and divided by shooter selection probability p passed
as a uniform parameter. The emission and the surface
area of this texel are read from texture map emissmap.
Texel luminance (lum) at ~x is also computed to allow
importance sampling in the subsequent iteration step,
and stored in the alpha channel of the reflected radi-
ance.

float4 brdfx = tex2D(brdfmap, texx);

float3 Lx = Ly * G * vis * brdfx / p;

float4 Ex = tex2D(emissmap, texx);

float Ax = Ex.a; // surface area

// compute the luminance

float3 em = float3(0.21, 0.39, 0.4);

float lum = dot(E, em) + dot(Lx, em);

return float4(Lx, lum);

The implementation has been tested with a room
scene of figure 47, and we concluded that a single iter-
ation requires less than 20 msec for a few hundred ver-
tices and for 128×128 resolution radiance maps, while
keeping the depth maps at 256×256 (the algorithm is
pixel shader limited). Using 64×64 resolution radiance
maps introduced a minor amount of shadow bleed-
ing, but increased iteration speed by approximately
40%. Since we can expect converged images after 40
– 80 iterations for normal scenes, this corresponds to
0.5 – 1 frames per second, without exploiting frame-
to-frame coherence. In order to eliminate flickering,
we should use the same random number generator in
all frames. On the other hand, as in all iterative ap-
proaches, frame to frame coherence can be easily ex-
ploited. In case of moving objects, on the other hand,
we can take the previous solution as a good guess to
start the iteration. This trick not only improves ac-
curacy, but also makes the error of subsequent steps
highly correlated, which also helps eliminating flicker-
ing.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

6.2. Final gathering of diffuse/glossy indirect
illumination with cube maps

A cube map can represent the incoming illumination
of a single point in all directions, thus is a primary can-
didate for storing illumination [SKL06]. However, the
problem is that a single cube map is good only for a
single point, and the application of many cube maps is
limited by memory constraints. To solve this problem,
we can store geometric information in cube map tex-
els, for example, the distance between the cube map
center and the point visible in a given texel. Then
when the illumination of a point not being in the cube
map center is computed, this geometric information is
used to correct the incoming radiance of the cube map
texels.

Let us assume that we use a single cube map that
was rendered from reference point ~o. Our goal is to
reuse this illumination information for other nearby
points as well. To do so, we apply approximations that
allow us to factor out those components from the re-
flected radiance formula (equation 1) which strongly
depend on shaded point ~x.

In order to estimate the reflected radiance integral,
directional domain Ω′ is partitioned to solid angles
∆ω′i, i = 1, . . . , N , where the radiance is roughly uni-
form in each domain. After partitioning, the reflected
radiance is expressed by the following sum:

Lr(~x, ~ω) =

N∑
i=1

∫

∆ω′
i

L(~y, ~ω′) · fr(~ω
′, ~x, ~ω) · cos+ θ′~x dω′.

Let us consider a single term of this sum representing
the radiance reflected from ∆ω′i. If ∆ω′i is small, then
we can use the following approximation:

Lr(~x, ~ω) ≈ L̃in(∆yi) ·
∫

∆ω′
i

fr(~ω
′, ~x, ~ω) ·cos θ′~x dω′ (13)

where L̃in(∆yi) is the average incoming radiance from
surface ∆yi seen at solid angle ∆ω′i. Expressing aver-
age incoming radiance L̃in(∆yi) on surface area ∆yi,
we obtain:

L̃in(∆yi) =
1

∆yi
·
∫

∆yi

L(~y, ~ω~y�~x) dy.

Note that this average is independent of shaded point
~x if the environment is diffuse, and can be supposed
to be approximately independent of the shaded point
if the environment is moderately glossy.

The second factor of the product in equation 13 is
the reflectivity integral, which is also expressed as the
product of the average integrand and the size of the

integration domain:
∫

∆ω′
i

fr(~ω
′, ~x, ~ω) · cos+ θ′~x dω′ = a(∆ω′i � ~x � ~ω) ·∆ω′i

where a(∆ω′i � ~x � ~ω) is the average reflectivity from
solid angle ∆ω′i. The average reflectivity can be either
obtained using only one directional sample on the fly,
or precomputed and stored in a texture addressed by
the angle of direction and the size of solid angle where
averaging happens.

Putting the results of the average incoming radiance
and the reflectivity formula together, the reflected ra-
diance can be approximately expressed as

Lr(~x, ~ω) ≈
N∑

i=1

L̃in(∆yi) · a(∆ω′i � ~x � ~ω) ·∆ω′i.

(14)

Average incoming radiance values L̃in(∆yi) are in-
dependent of the shaded point in case of diffuse or
moderately glossy environment, thus these values can
potentially be reused for all shaded points. To exploit
this idea, visible surface areas ∆yi need to be identi-
fied and their average radiances need to be computed
first. These areas are found and the averaging is com-
puted with the help of a cube map placed at reference
point ~o in the vicinity of the shaded object.We render
the scene from reference point ~o onto the six sides of a
cube. In each pixel of these images we store the radi-
ance of the visible point and also the distance from the
reference point. The pixels of the cube map thus store
the radiance and also encode the position of small in-
direct lights (figure 48).

The small virtual lights are clustered into larger area
light sources while averaging their radiance, which cor-
responds to downsampling the cube map. A pixel of
the lower resolution cube map is computed as the av-
erage of the included higher resolution pixels. Note
that both radiance and distance values are averaged,
thus finally we have larger lights having the average
radiance of the small lights and placed at their average
position. The total area corresponding to a pixel of a
lower resolution cube map will be elementary surface
∆yi, and its average radiance is stored in the texel.

The solid angle subtended by a cube map lexel can
be approximated by the formula of the solid angle of
a circle. If a circle of area A is perpendicular at its
center to the viewing direction, and is at distance d,
then it subtends solid angle:

∆ω = 2π ·
(

1− 1√
1 + A

d2π

)
. (15)

When the surface is not perpendicular, its area should

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 48: The basic idea of diffuse/glossy final gathering: first virtual lights sampled from reference point ~o
are identified, then these point lights are grouped into large area lights. At shaded points ~x the illumination of a
relatively small number of area lights is computed without visibility tests.

Figure 49: Solid angle in which a surface seen
through a cubemap pixel

be multiplied with cos θ where θ is the angle between
the normal vector at the viewing direction.

Supposing that the edge size of the cube map is 2,
the area of a lexel is 2/M where M is the resolution
of a single cubemap face. Let vector ~L be the vector
pointing from the center of the cubemap to the texel
(figure 49). In this case the distance is |~L| and cos θ =
1/|~L|. Thus the solid angle subtended by a texel is:

∆ω′i ≈ 2π ·

1− 1√

1 + 4

M2π|~L|3

 .

According to equation 14 the reflected radiance at
the reference point is:

Lr(~o, ~ω) ≈
N∑

i=1

L̃in(∆yi) · a(∆ω′i � ~o � ~ω) ·∆ω′i.

Let us now consider another point ~x close to the refer-
ence point ~o and evaluate a similar integral for point
~x while making exactly the same assumption on the

surface radiance, i.e. it is constant in areas ∆yi:

Lr(~x, ~ω) ≈
N∑

i=1

L̃in(∆yi) · a(∆ω′i � ~x � ~ω) ·∆ω∗i ,

(16)
where ∆ω∗i is the solid angle subtended by ∆yi from ~x.
Unfortunately, the solid angle values can be obtained
directly from the geometry of the cubemap only if the
shaded point is the center of the cube map. In case of
other shaded points, special considerations are needed
that are based on the distances from the environment
surface.

Figure 50: The notations of the evaluation of sub-
tended solid angles

Solid angle ∆ω∗i is expressed from ∆ω′i using the
formula of the solid angle of a circle (equation 15).
Assume that the environment surface is not very close
compared to the distances of the reference and shaded
points, thus the angles between the normal vector at
~yi and reflection vectors from ~o and from ~x are similar.
In this case, using equation 15, we can establish the
following relationship between ∆ω∗i and ∆ω′i:

∆ω∗i ≈ 2π − 2π −∆ω′i√
(2π −∆ω′i)2 ·

(
1− |~o−~yi|2

|~x−~yi|2
)

+ |~o−~yi|2
|~x−~yi|2

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Note that the estimation could be made more accurate
if the normal vectors were also stored in cube map
texels and the cosine angles were evaluated on the fly.

The proposed algorithm first computes an environ-
ment cube map from the reference point and stores
the radiance and distance values of the points visible
in its pixels. We usually generate 6 × 256 × 256 pixel
resolution cube maps. Then the cube map is downsam-
pled to have M×M pixel resolution faces (M is 4 or even
2). Texels of the low-resolution cubemap represent ele-
mentary surfaces ∆yi whose average radiance and dis-
tance are stored in the texel. The illumination of these
elementary surfaces is reused for an arbitrary point x,
as shown by the following HLSL pixel shader program
calculating the reflected radiance at this point:

half3 RefRadPS (

half3 N : TEXCOORD0, // normal

half3 V : TEXCOORD1, // view

half3 x : TEXCOORD2) : COLOR0

{
half3 Lr = 0; // reflected radiance

V = normalize(V);

N = normalize(N);

for (int X = 0; X < M; X++) // for each texel

for (int Y = 0; Y < M; Y++) {
half2 t = half2((X+0.5f)/M, (Y+0.5f)/M);

half2 l = 2 * t - 1; // [0,1]->[-1,1]

Lr += Cntr(x, half3(l.x,l.y, 1), N, V);

Lr += Cntr(x, half3(l.x,l.y,-1), N, V);

Lr += Cntr(x, half3(l.x, 1,l.y), N, V);

// + similarly for the 3 remaining sides

}
return Lr;

}
The Cntr function calculates the contribution of a
single texel of downsampled, low resolution cubemap
LREnvMap to the illumination of the shaded point. Ar-
guments x, L, N, and V are the relative position of the
shaded point with respect to the reference point, the
unnormalized illumination direction pointing to the
center of the texel from the reference point, the unit
surface normal at the shaded point, and the unit view
direction, respectively.

half3 Cntr(half3 x, half3 L, half3 N, half3 V) {
half l = length(L);

half dwc = 1 / sqrt(1 + 4/(M*M*l*l*l*PI));

half doy = texCUBE(LRCubeMap, L).a;

half doy2 = doy * doy;

half3 y = L / l * doy;

half doy_dxy2 = doy2 / dot(y-x, y-x);

half dws = 2*PI - dwc /

sqrt((dwc*dwc*(1-doy_dxy2)+doy_dxy2));

half3 I = normalize(y - x);

half3 H = normalize(I + V);

half3 a = kd * max(dot(N,I),0) +

ks * pow(max(dot(N,H),0),n);

half3 Lin = texCUBE(LRCubeMap, L).rgb;

return Lin * a * dws;

}
First the solid angle subtended by the texel from

the reference point is computed and stored in vari-
able dw, then illuminating point y is obtained looking
up the distance value of the cube map. The square
distances between the reference point and the illumi-
nating point, and between the shaded point and the
illuminating point are put into doy2 and dxy2, respec-
tively. These square distances are used to calculate
solid angle dws subtended by the illuminating surface
from the shaded point. Phong-Blinn BRDF is used
with diffuse reflectance kd, specular reflectance ks, and
shininess n. Illumination direction I and halfway vec-
tor H are calculated, and the reflection of the radiance
stored in the cube map texel is obtained according to
equation 16.

In order to demonstrate the results, we took a sim-
ple environment consisting of a cubic room with a
divider face in it. The object to be indirectly illu-
minated is the bunny, happy buddha, and the the
dragon, respectively. Each of these models consists of
approximately 50-60 thousand triangles. Frame rates
were measured in 700 × 700 windowed mode on an
NV6800GT graphics card and P4/3GHz CPU. The
first set of pictures (Figure 51) shows a diffuse bunny
inside the cubic room. The images of the first column
are rendered by the traditional environment mapping
technique for diffuse materials where a precalculated
convolution enables us to determine the irradiance at
the reference point with a single lookup. Clearly, these
precalculated values cannot deal with the position of
the object, thus the bunny looks similar everywhere.
The other columns show the results of our method
using different sized cube maps. Note that even with
extremely low resolution (2×2) we get images similar
to the large-resolution reference.

The second set (Figure 52) and the third set (Fig-
ure 53) of pictures show a glossy buddha and a dragon
inside a room. The first column presents the tradi-
tional environment mapping technique while the other
three columns present the results of our localized al-
gorithm. Similarly to the diffuse case, even cube map
resolution of 2×2 produced more pleasing results than
the classical technique. We have also implemented the
proposed method in a game running at 30 FPS. Im-
ages of this game are shown by figure 54.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

classical method localized cubemap localized cubemap reference
16× 16 resolution 2× 2 resolution 4× 4 resolution 16× 16 resolution

75 FPS 20 FPS 2 FPS

Figure 51: Diffuse bunny rendered with the classical environment mapping (left column) and with localized cube
maps using different environment map resolutions.

classical method localized cubemap localized cubemap reference
16× 16 resolution 2× 2 resolution 4× 4 resolution 16× 16 resolution

22 FPS 6 FPS 1 FPS

Figure 52: Specular buddha (the shininess is 5) rendered with the classical environment mapping (left column)
and with localized cube maps using different environment map resolutions.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

classical env.map localized cubemap localized cubemap reference
16× 16 resolution 2× 2 resolution 4× 4 resolution 16× 16 resolution

21 FPS 7 FPS 1 FPS

Figure 53: Specular dragon (the shininess is 5) rendered with the classical environment mapping (left column)
and with localized cube map mediators using different cube map resolutions.

Figure 54: Glossy objects rendered with cube map mediators in a game running at 30 FPS.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

7. Pre-computation aided global illumination

As stated, global illumination algorithms should in-
tegrate the contribution of all light paths connecting
the eye and the light sources via scattering points. If
the scene is static, that is, its geometry and its mate-
rial properties do not change in time, then the struc-
ture of these light paths remain the same except for
the first light and the last viewing rays, which might
be modified due to moving lights and camera. Pre-
computation aided approaches pre-compute the effects
of the static parts of the light paths.

Let us consider a light beam of radiance Lin(~y, ~ωi)
approaching entry point ~y on the object surface from
direction ~ωi (figure 55). Note that this light beam may
be occluded from ~y, prohibiting the birth of the path
at ~y, and making the contribution zero. If the light
beam really reaches ~y, then it may be reflected, re-
fracted even several times, and finally it may arrive at
the eye from exit point ~x with viewing direction ~ωo.
Entry and exit points can be connected by infinitely
many possible paths, from which a finite number can
be generated by Monte Carlo simulation, for exam-
ple, by path tracing, light tracing, bi-directional path
tracing, or by iterative techniques [SK99a, DBB03].

The total contribution of the set of these paths to
the visible radiance Lout(~x, ~ωo) at ~x is

Lin(~y, ~ωi) · T (~y, ~ωi � ~x, ~ωo),

where T (~y, ~ωi � ~x, ~ωo) is the transfer function. The
total visible radiance Lout(~x, ~ωo) is the sum of the
contributions of all paths entering the scene at every
possible point and from every possible direction, thus
it can be expressed by the following double integral:

Lout(~x, ~ωo) =

∫

S

∫

Ω

Lin(~y, ~ωi) · T (~y, ~ωi � ~x, ~ωo) dωidy

(17)
where S is the set of surface points and Ω is the set
of directions. In the general case the output radiance
is obtained as a double integral of the product of a
four-variate and a two-variate functions.

There are a couple of important special cases:

• Diffuse surfaces have direction independent out-
going radiance, thus both exit radiance Lout and
transfer function T become independent of ~ωo:

Lout(~x) =

∫

S

∫

Ω

Lin(~y, ~ωi) · T (~y, ~ωi � ~x) dωidy.

The number of variables is reduced by one in the
transfer function.

• In case of directional lights and environment map
lighting (also called sky illumination) the incoming

radiance Lin gets independent of entry point ~y, thus
we can write:

Lout(~x, ~ωo) =

∫

S

∫

Ω

Lin(~ωi)·T (~y, ~ωi � ~x, ~ωo) dωidy =

∫

Ω

Lin(~ωi) · T env(~ωi � ~x, ~ωo) dωi.

where

T env(~ωi � ~x, ~ωo) =

∫

S

T (~y, ~ωi � ~x, ~ωo) dy.

Again, we can observe the reduction of the num-
ber of independent variables by one in the transfer
function.

• Diffuse surfaces illuminated by directional lights or
environment maps have an even simpler formula
where the number of variables of the transfer func-
tion are reduced to two:

Lout(~x) =

∫

Ω

Lin(~ωi) · T env(~ωi � ~x) dωi.

The transfer function depends on just the geome-
try and the material properties of the objects, and is
independent of the actual lighting, thus it can be pre-
computed for certain entry and exit parameters.

The problem is then how we can determine and rep-
resent a function defined for infinitely many points
and directions, using finite amount of data. There are
two straightforward solutions, sampling and the finite-
element method.

Sampling

Sampling does not aim at representing the function
everywhere in its continuous domain, but only at finite
number of sample points.

For example, we usually do not need the output ra-
diance everywhere only at sample points ~x1, . . . , ~xK .
Such sample points can be the points visible by a
static camera, or vertices of a highly tessellated mesh
(per-vertex approach), or even the points correspond-
ing to the texel centers (per-vertex approach). In the
last two cases it might happen that non sample points
may also turn out to be visible, and their radiance
is needed. In such cases, interpolation can be applied
taking the neighboring sample points. Linear interpo-
lation is directly supported by the graphics hardware.
When sample points are the vertices, Gouraud shad-
ing can be applied, or when the points correspond to
the texel centers, bi-linear texture filtering executes
the required interpolation.

Similarly, when equation 17 is evaluated, some kind

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

reflection path subsurface scattering path occluded path

y
xω

ω

i

o

y
x

ω
ω

i
o

y

ωi

Figure 55: Light paths sharing the same light and viewing rays

of numerical quadrature is used, which takes finite
number of ~y1, . . . , ~yN , and ~ωin,1, . . . , ~ωin,M samples,
thus the transfer function is needed only for these sam-
ples.

Interestingly, such approaches may completely elim-
inate pre-processing and provide real-time visualiza-
tion exploiting data obtained during previous frames
of the animation. Light path reuse [SSSK04] is a Monte
Carlo technique to speed up animated light sequences
assuming that the objects and the camera are still.
Paths of many frames are combined together in a sin-
gle frame. The combination is governed by multiple
importance sampling guaranteeing that the variance
of the solution in a frame is close to what could be
obtained if we dedicated all paths solely to this par-
ticular frame.

Radiance transfer precomputation has also been
applied to translucent objects [LGB∗03], where the
vertex-to-vertex radiosity transfer factors are stored
and the response to an illumination is obtained by a
finite-element series using these factors as weights.

On the other hand, Mei et al. [MSW04] have pro-
posed a solution to render both shadows and self illu-
mination. Their method is based on spherical radiance
transfer maps including spherical shadow maps for
both mutual and self-shadow rendering. These maps
have to be pre-computed for every mesh vertex, and
their resolution should be high enough to cover hun-
dreds of sampled directions.

Finite-element method

According to the concept of the finite element method,
the transfer function is approximated by a finite func-
tion series form:

T (~y, ~ωi � ~x, ~ωo) ≈

N∑
n=1

M∑
m=1

K∑
k=1

L∑
l=1

Tnmkl · sn(~y) · dm(~ωi) · Sk(~x) ·Dl(~ωo).

where sn(~x) and Sk(~x) are pre-defined spatial basis
functions, and dm(~ωi) and Dl(~ωi) are pre-defined di-
rectional basis functions. Since the basis functions are
known, the transfer function at any ~y, ~ωi, ~x, ~ωo is de-
termined by coefficients Tnmkl. In the general case we
have N ×M ×K × L number of such coefficients.

B1

B2

B3

1

1

1

function
approximation

B1

B2

B3

1

1

1

B4
1

B1

B2

B3

1

1

1

B1

B2

B3

1

1

1

Piece-wise constant Piece-wise linear Harmonic Haar wavelet

Figure 56: Basis function systems and finite-element
approximations

There are many possible choices for the basis func-
tions with different advantages and disadvantages (fig-
ure 56). Note that we can use different basis function
sets for the spatial and directional domains, and even
for the entry and exit parameters. The particularly
popular choices are the following:

• Piece-wise constant basis functions partition the do-
main into subdomains and each basis function is 1
in exactly one subdomain and zero elsewhere. Piece-
wise constant basis functions became very popular
in radiosity algorithms.

• Piece-wise linear basis functions require the identifi-
cation of sample points in the subdomain. Each ba-
sis function is non-zero at one sample point and lin-
early decreasing to zero between this sample point
and the neighboring sample points. Piece-wise lin-
ear basis functions are equivalent to linear inter-
polation which is directly supported by the graph-
ics hardware. Sample points can be the vertices
when Gouraud shading can be applied, or the points

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

corresponding to the texel centers when bi-linear
texture filtering executes linear interpolation. Note
that sampling and finite-element approaches are
close relatives in this sense.

• Harmonic functions correspond to the Fourier series
approximation.

• Real spherical harmonics are similar to Fourier se-
ries but work in the directional domain.

• Haar wavelets also provide piece-wise constant ap-
proximation, but now a basis function is non-zero
in more than one subdomains.

Having selected the basis functions, the coefficients
are obtained evaluating the following integrals, using
usually Monte Carlo quadrature:

Tnmkl =

∫

S

∫

Ω

∫

S

∫

Ω

T (~y, ~ωi � ~x, ~ωo)·Ãnmkl(~y, ~ωi, ~x, ~ωo) dωidydωodx,

where

Ãnmkl(~y, ~ωi, ~x, ~ωo) = s̃n(~y) · d̃m(~ωi) · S̃k(~x) · D̃l(~ωo)

and s̃n(~y), d̃m(~ωi), S̃k(~x), D̃l(~ωo) are adjoints of basis
functions sn(~y), dm(~ωi), Sk(~x), Dl(~ωo), respectively.
Basis functions s̃1, . . . , s̃N are said to be adjoints of
s1, . . . , sN if the following conditions hold:

∫

S

s̃i(~y) · sj(~y) dy = δij ,

where δij = 0 if i 6= j and δii = 1. A similar definition
holds for directional basis functions as well.

Piecewise constant basis functions are adjoints with
themselves. To guarantee that normalization con-
straint is also met, that is

∫
S

s̃i(~y) · si(~y) dy = 1, the

adjoint constant basis functions are equal to the re-
ciprocal of the size of their respective domains. Real
spherical harmonics and Haar wavelets are also self-
adjoint.

Substituting the finite-element approximation into
the exit radiance, we can write

Lout(~x, ~ωo) =

K∑
k=1

L∑
l=1

N∑
n=1

M∑
m=1

Sk(~x) ·Dl(~ωo) · Tnmkl·

·
∫

S

∫

Ω

Lin(~y, ~ωi) · sn(~y) · dm(ωi) dωidy. (18)

Note that after pre-computing coefficients Tnmkl just
a low dimensional integral needs to be evaluated. This
computation can further be speeded up if illumination

function Lin(~y, ~ωi) is also approximated by a finite-
element form

Lin(~y, ~ωi) ≈
N∑

n′=1

M∑
m′=1

Ln′m′ · s̃n′(~y) · d̃m′(~ωi)

where the basis functions s̃n′ and d̃m′ are the adjoints
of sn and dm, respectively.

Substituting the finite-element approximation of the
incoming radiance into the integral of equation 18, we
can write∫

S

∫

Ω

Lin(~y, ~ωi) · sn(~y) · dm(~ωi) dωidy ≈

∫

S

∫

Ω

N∑
n′=1

M∑
m′=1

Ln′m′ ·s̃n′(~y)·d̃m′(~ωi)·sn(~y)·dm(~ωi) dωidy

= Lnm

since only those terms are non-zero where n′ = n and
m′ = m. Thus the exit radiance is:

Lout(~x, ~ωo) =

K∑
k=1

L∑
l=1

N∑
n=1

M∑
m=1

Sk(~x) ·Dl(ωo) · Tnmkl · Lnm. (19)

Different pre-computation aided real-time global il-
lumination algorithms can be classified according to
where they use sampling or finite-element methods,
and to the considered special cases. For example, all
methods published so far work with sample points
and apply linear interpolation to handle the positional
variation of exit point ~x. However, the incoming di-
rection is attacked both by different types of finite-
element basis functions and by sampling.

Compression of transfer coefficients

The fundamental problem of pre-computation aided
global illumination algorithms is that they require
considerable memory space to store the transfer func-
tion coefficients. To cope with the memory require-
ments, data compression methods should be ap-
plied. A particularly popular approach is the prin-
cipal component analysis (PCA) [SHHS03]. Values
Tnmkl can be imagined as K number of points T1 =
[Tnm1l], . . . ,T

K = [TnmKl] in an N ×M × L dimen-
sional space. To compress this data, we find a subspace
(a “hyperplane”) in the high dimensional space and
project points Ti onto this subspace. Since the sub-
space has lower dimension, the projected points can be
expressed by fewer coordinates, which results in data
compression.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

original set of points
in a high dimensional space

T

M B

i

Projecting the points to a
low dimensional "plane"

of origin M and spanning vectors B

Ti

representing the projected points
by coordinates w

T
M B

i

Ti wi

~
~

Figure 57: The basic idea of principal component analysis. Points in a high dimensional (two dimensional in
the figure) space are projected onto a lower, D-dimensional subspace (D = 1 in the figure, thus the subspace is a
line), and are given by coordinates in this low dimensional subspace. To define these coordinates, we need a new
origin M and basis vectors B1, . . . ,BD in the lower dimensional subspace. The origin can be the mean of original
sample points. In the example of the figure there is only one basis vector, which is the direction vector of the line.

Let us denote the origin of the subspace by M and
the basis vectors of the low-dimensional subspace by
B1, . . . ,BD. Projecting into this subspace means the
following approximation:

Ti ≈ T̃i = M + wi
1 ·B1 + . . . + wi

D ·BD,

where wi
1, w

i
2, . . . , w

i
D are the coordinates of the pro-

jected point in the subspace coordinate system. Of
course, origin M and basis vectors B1, . . . ,BD must
be selected to minimize the total approximation error,
i.e. the sum of the square distances between the orig-
inal and projected points. As can be shown, the error
is minimal if the origin is the mean of the original data
points

M =

K∑
k=1

Tk,

and the basis vectors are the eigenvectors correspond-
ing to the largest D eigenvalues of covariance matrix

K∑
k=1

(Tk −M)T · (Tk −M),

where superscript T denotes transpose operation (a
row vector is turned to be a column vector).

If the transfer function samples are compressed, the
reflected radiance can be obtained as follows:

Lr(~xi) ≈ L ·T(~xi) ≈

L ·
(
M + wi

1 ·B1 + . . . + wi
n ·BD

)
=

L ·M +

D∑
d=1

wi
d · (L ·Bd).

If there are many original points, we usually cannot

expect them to be close to a plane, thus this approach
may have large error. This error, however, can be sig-
nificantly decreased if we do not intend to find a sub-
space for all points at once, but cluster points first in
a way that points of a cluster are roughly in a plane,
then carry out PCA separately for each cluster. This
process is called Clustered Principal Component Anal-
ysis (CPCA). Clustering can be based on the normal
vectors, or on a real clustering method, such as the
K-means algorithm [KMN∗02].

Let us denote the means and the basis vectors of the
cluster c by Mc, and Bc

1, . . . ,B
c
D, respectively. Each

sample point ~xi belongs to exactly one cluster. If point
~xi belongs to cluster c, then its reflected radiance is

Lr(~xi) ≈ L ·T(~xi) ≈ L ·Mc +

D∑
d=1

wi
d · (L ·Bc

d). (20)

Implementing the clustering algorithm, then com-
puting the means and the eigenvectors of the clus-
ters, and finally projecting the points of the clusters
to subspaces, are non-trivial tasks. Fortunately, func-
tions exist in DirectX 9.0 that can do these jobs for
us.

7.1. Pre-computed radiance transfer

The classical pre-computed radiance transfer
[SKS02, Gre03] assumes that the lighting comes
from directional lights or from environment lighting
and that the surfaces are diffuse, reducing the vari-
ables of the transfer function to exit point ~x and
incoming direction ~ωi. The exit radiance is obtained
just at sampling points ~xk. The remaining directional
dependence is represented by directional basis func-
tions. In this special case the output radiance at the

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

sample point ~xk is:

Lout(~xk) =

M∑
m=1

Tm · Lm. (21)

If T = [T1, . . . , TM] and L = [L1, . . . , LM] are inter-
preted as M dimensional vectors, the result becomes
an M dimensional dot product. Note that this formula
is able to cope with translucent materials (subsurface
scattering) [LGB∗03] as well as opaque objects. When
Sloan obtained this formula, he proposed the applica-
tion of real spherical harmonics basis functions in the
directional domain [SKS02]. While even surprisingly
short spherical harmonics series are good to approxi-
mate smooth functions, they fail to accurately repre-
sent sharp changes. To solve this problem, Ng [NRH03]
replaced spherical harmonics by Haar-wavelets to al-
low high frequency environment maps. However, work-
ing with wavelets we lose the rotational invariance of
spherical harmonics, which allows the fast computa-
tion of the exit radiance when either the scene or the
environment map is rotated [WLHN06].

If non-diffuse scenes are also considered under en-
vironment map illumination, the output radiance for-
mula gets a little more complex:

Lout(~xk, ~ωo) =

L∑
l=1

M∑
m=1

Dl(ωo) · Tml · Lm, (22)

which means that the radiance vector is multiplied by
both a vector and a matrix [KSS02, LK03].

Classical pre-computed radiance transfer assumed
infinitely far illumination source (directional or envi-
ronment map illumination), which eliminated the de-
pendence on entry point ~y. To cope with light sources
in finite distance, the dependence of entry point ~y
should also be handled. Such approaches are called
local methods.

In [AKDS04] a first-order Taylor approximation has
been used to consider midrange illumination.

Kristensen et al. [KAMJ05] discretized the incident
lighting into a set of localized (i.e. point) lights. Hav-
ing a point light, we should integrate only in the do-
main of incoming directions since for a point light, the
direction unambiguously determines entry point ~y.

7.2. Implementation the diffuse pre-computed
radiance transfer in DirectX

Since DirectX 9.0 PRT has become an integral part of
the API. DirectX 9.0 implements both the per-vertex
and the per-pixel approach. In the case of the per-
vertex approach the algorithm requires highly tessel-
lated models and vs 1 1 compatible hardware. In the

case of per-pixel PRT, ps 2 0 compatible pixel shader
is needed.

Finite element
approximation
and GI solution

CPCA
compression

meshes and materials

Finite element
approximation

PRT
shader

environment map and
infinitely far lights

light source
coefficients

output radiance

transfer vector
coefficients

compressed
transfer vectors

R
e
a
l
-
t
i
m
e

P
r
e
p
r
o
c
e
s
s
i
n
g

Figure 58: The simplified block diagram of PRT

The process of the application of the built-in func-
tions during pre-processing is:

1. Preprocessing of the transfer functions: we have to
calculate the transfer function values Ti at each
vertices of the highly tessellated mesh.

2. Compression of the transfer function values using
CPCA.

3. Preprocessing of the environment lighting resulting
in L = [L0, · · · , LN].

We have to calculate outgoing radiance as the sum
of the dot products of the transfer functions and en-
vironment lighting as given by equation 20. This op-
eration is executed partly on the CPU and partly on
the GPU. The CPU computes dot products L · Mc

and L · Bc
d for each cluster c = 1, . . . C, dimension

d = 1 . . . D, and for each channel of red, green, blue.
The result is a sequence of C ·3 ·(D+1) floats that can
be stored in an array, and passed as a uniform parame-
ter. To take into account that GPUs work with float4

data elements, these constants can also be stored in
C ·(1+3 ·(D+1)/4) number of float4 registers (Dots
in the implementation). The array offset of the data
belonging to cluster k is passed as an input parameter.

The GPU is responsible for multiplying with
weights wd

i and adding the results together. The
weight and the cluster id of a sample point are passed
as texture coordinates. In the following function the
number of clusters C is denoted by NCLUSTERS and
number of dimensions D + 1 by NPCA:

// Dot products computed on the CPU

float4 Dots[NCLUSTERS*(1+3*(NPCA/4))];

float4 GetPRTDiffuse(int k, float4 w[NPCA/4]) {

float4 col = dots[k]; // (M[k] dot L)

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

float4 R = float4(0,0,0,0);

float4 G = float4(0,0,0,0);

float4 B = float4(0,0,0,0);

// Add (B[k][j] dot L) for each j = 1.. NPCA

// Since 4 values are added at a time,

// the loop is iterated until j < NPCA/4

for (int j=0; j < (NPCA/4); j++) {

R += w[j] * dots[k+1+(NUM_PCA/4)*0+j];

G += w[j] * dots[k+1+(NUM_PCA/4)*1+j];

B += w[j] * dots[k+1+(NUM_PCA/4)*2+j];

}

// Sum the elements of 4D vectors

col.r += dot(R,1);

col.g += dot(G,1);

col.b += dot(B,1);

return col;

}

A possible implementation calls this function from
the vertex shader to obtain the vertex color. The frag-
ment shader takes the interpolated color and assign it
to the fragment.

void PRTDiffuseVS(

in float4 Pos : POSITION,

in int k : BLENDWEIGHT, // cluster

in float4 w[NUM_PCA/4] : BLENDWEIGHT1 // weights

out float4 hPos : POSITION;

out float4 Color : COLOR0;

) {

hPos = mul(Pos, WorldViewProj);

Color = GetPRTDiffuse(k, w);

}

float4 StandardPS(in Color : COLOR0) : COLOR0 {

return Color;

}

Figures 59, 60, and 61 show diffuse scenes rendered
with the discussed method. During preprocessing a
single bounce is computed with 1024 random rays.
The environment map resolution is 256×256, and the
order of spherical harmonics approximation, i.e. the
number of directional basis functions is 6. Figures 59
and 61 computed just single bounces, thus these im-
ages are local illumination solutions using image based
lighting. Figure 60, on the other hand, was computed
simulating 6 bounces of the light. After preprocessing
the camera can be animated at 466 FPS.

Figure 59: During preprocessing 1 light bounce is
computed in 12 sec

Figure 60: During preprocessing 5 bounces are com-
puted in 173 sec

Figure 61: During preprocessing 1 bounce is com-
puted in 723 sec

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

7.3. Light path maps

Pre-computed radiance transfer approaches use finite-
element representation for all variables except for exit
point ~x, which is handled by sampling. However, we
could handle other variables with sampling as well,
and the collection of sampled data could be stored in
maps. Using sampling instead of finite-element rep-
resentation has both advantages and disadvantages.
Wavelet or spherical harmonics based finite-element
methods provide more compact representation, and
thus require less memory. However, they are more
difficult to compute and update to cope with slowly
changing dynamic scenes. Thus sampling can be bet-
ter when we want to trade pre-processing or update
time for storage.

If we use sampling, the transfer coefficients are
stored for sampled entry-exit point pairs, and stored
in textures. The discussed method [SSKS06] consists
of a preprocessing step and a fast rendering step.

Preprocessing

The preprocessing step determines the indirect illumi-
nation capabilities of the static scene. This informa-
tion is computed for finite number of exit points on
the surface, and we use interpolation for other points.
Exit points are depicted by symbol × in figure 62. The
exit points can be defined as points corresponding to
the texel centers of the texture map of the surface.

The first step of preprocessing is the generation of
certain number of entry points on the surface. These
entry points are samples of first hits of the light emit-
ted by moving light sources. During preprocessing we
usually have no specific information about the position
and the intensity of the animated light sources, thus
entry points should cover the surfaces densely for all
possible light source positions, and unit incoming ra-
diance is assumed at these sample points. Entry points
are depicted by symbol • in figure 62. Entry points are
used as the start of a given number of light paths. A
light path is a random or a quasi-random walk [Kel97]
along the surface. In order to limit the length of paths,
we can use random termination (Russian-roulette), or
some deterministic decimation scheme [Kel97] to de-
termine the maximum length of each path.

The visited points of the generated paths are con-
nected to all those exit points that are visible from
them. In this way we obtain a lot of paths originating
at an entry point and arriving at one of the exit points.
The contribution of a path divided by the probability
of the path generation is a Monte Carlo estimate of the
indirect illumination caused by the given exit lighting
environment from which the rays are sampled. The
sum of the Monte Carlo estimates of paths associated

with the same entry and exit point pair is stored. We
call this data structure the precomputed radiance map,
or PRM for short. Thus a PRM contains items cor-
responding to groups of paths sharing the same entry
and exit points. Items that belong to the same entry
point constitute a PRM pane.

Rendering

During real-time rendering, PRM is taken advantage
of to speed up the global illumination calculation. The
lights and the camera are placed in the virtual world
(figure 63). The direct illumination effects are com-
puted by standard techniques, which usually include
some shadow algorithm to identify those points that
are visible from the light source. PRM can be used
to add the indirect illumination. This step requires
visibility calculations, which is for free, since this vis-
ibility information was already obtained during direct
illumination computation when shadows were gener-
ated [DS05].

A PRM pane stores the indirect illumination com-
puted for the case when the respective entry point has
unit irradiance. During the rendering phase, however,
we have to adapt to a different lighting environment.
The PRM panes associated with entry points should
be weighted in order to make them reflect the actual
lighting situation. Doing this for every entry point and
adding up the results, we can obtain the visible color
for each exit point. Then the object is rendered in a
standard way with linear interpolation between the
exit points.

Implementation

The light path maps algorithm consists of a prepro-
cessing step, which builds the PRM, and a rendering
step, which takes advantage of the PRM to evaluate
indirect illumination. For the preprocessing step we
implemented a combined CPU ray-tracing and GPU
method. On the other hand, the rendering step was
realized completely on the GPU.

First, a CPU program samples entry points, and
generate random paths starting from them. Having
completed a path, we compute the visibility between
each path point and each exit point. Assuming that
the entry point has unit irradiance, the contribution
from the exit points are evaluated. For each exit point,
the sum of the contributions is stored together with
the index of the entry point, which constitutes the
PRM. While generating random walks is best done on
the CPU, the GPU is better in computing the effect of
path points on exit points. In fact, we should execute a
virtual light source algorithm [Kel97, WKB∗02]. Since
the exit points are the texels of a texture map, the
virtual light source algorithm should be implemented

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

entry point

reference points

entry point entry point

S

S

Si

k

j

unit
irradiance

1. Exit points are defined and 2. Path generation from the 3. S is the illumination of exit points

entry points are sampled entry points PRM = {(•,×, S)}

Figure 62: Overview of the preprocessing phase of the light path maps method. Entry points are depicted by •,
and exit points by ×. The PRM is a collection of (entry point •, exit point ×, illumination Sk) triplets, called
items.

entry point

S

S

Si

k

j

entry point

S

S

Si

k

j

irradiance I

I.

I.

I.

1. Direct illumination + entry point visibility 2. Weighting irradiance I with items S

Figure 63: Overview of the rendering phase of the light path maps method. The illumination of the entry points
are computed, from which the illumination of the exit points is obtained by weighting according to the PRM.

in a way that it renders into a texture map. Items
are computed by rendering into the texture with the
random walk nodes as light sources. Visibility can be
determined using the shadow map technique.

reference point (u,v)

entry point r,g,b PRM pane

PRM item

Figure 64: Representation of a PRM as an array in-
dexed by entry points and exit points. A single element
of this map is the PRM item, a single row is the PRM
pane.

PRMs are stored in textures for real-time rendering.
A single texel stores a PRM item that represents the
contribution of all paths connecting the same entry
point and exit point. A PRM can thus be imagined

as an array indexed by entry points and exit points,
and storing the radiance on the wavelengths of red,
green, and blue (figure 64). Since a exit point itself
is identified by two texture coordinates (u, v), a PRM
can be stored either in a 3D texture or in a set of
2D textures (figure 65), where each represents a single
PRM pane (i.e. a row of the table in figure 64, which
includes the PRM items belonging to a single entry
point).

reference point

entry point 1

r,g,b
u

v reference point

entry point 2

r,g,b
u

v

Figure 65: PRM stored as 2D textures

The number of 2D textures is equal to the num-
ber of entry points. However, the graphics hardware
has just a few texture units. Fortunately, this can be

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

sidestepped by tiling the PRM panes into one or more
larger textures.

Using the method as described above allows us to
render indirect illumination interactively with a typ-
ical number of 256 entry points. While this figure is
generally considered sufficient for a medium complex-
ity scene, difficult geometries and animation may em-
phasize virtual light source artifacts as spikes or flick-
ering, thus requiring even more samples. Simply in-
creasing the number of entry points and adding corre-
sponding PRM panes would quickly challenge even the
latest hardware in terms of texture memory and tex-
ture access performance. To cope with this problem,
we can apply an approximation (a kind of lossy com-
pression scheme), which keeps the number of panes
under control when the number of entry points in-
crease.

The key recognition is that if two entry points are
close and lay on similarly aligned surfaces, then their
direct illumination will be probably very similar dur-
ing the light animation. Of course this is not true
when a hard shadow boundary separates the two en-
try points, but due to the fact that a single entry
point is responsible just for a small fraction of the
indirect illumination, these approximation errors can
be tolerated and do not cause noticeable artifacts.
This property can also be understood if we exam-
ine how clustering affects the represented indirect il-
lumination. Clustering entry points corresponds to a
low-pass filtering of the indirect illumination, which
is usually already low-frequency by itself, thus the fil-
tering does not cause significant error. Furthermore,
errors in the low frequency domain are not disturb-
ing for the human eye. Clustering also helps to elim-
inate animation artifacts. When a small light source
moves, the illumination of an entry point may change
abruptly, possibly causing flickering. If multiple entry
points are clustered together, their average illumina-
tion will change smoothly. This way clustering also
trades high-frequency error in the temporal domain for
low-frequency error in the spatial domain. Our clus-
tering approach aims at compressing indirect illumi-
nation information similarly to precomputed radiance
transfer and to Lightcuts [WFA∗05]. However, in our
case not the incoming radiance field is compressed,
but the indirect illumination capabilities, which have
low-frequency characteristics.

To reduce the number of panes, contributions of a
cluster of nearby entry points are added and stored
in a single PRM pane. As these clustered entry points
cannot be separated during rendering, they will all
share the same weight when the entry point contribu-
tions are combined. This common weight is obtained
as the average of the individual weights of the entry

points. Clusters of entry points can be identified by the
K-means algorithm [KMN∗02] or, most effectively, by
a simple object median splitting kd-tree. It is notable
that increasing the number of samples via increasing
cluster size Nc has only a negligible overhead during
rendering, namely the computation of more weight-
ing factors. The expensive access and combination of
PRM items is not affected. This way the method can
be scaled up to problems of arbitrary complexity at
the cost of longer preprocessing only.

While rendering the final image, the values stored
in the PRM should be weighted according to the cur-
rent lighting and be summed. Computing the weight-
ing factors involves a visibility check that could be
done using ray casting, but, as rendering direct illumi-
nation shadows would require a shadow map anyway,
it can effectively be done in a shader, rendering to
a one-dimensional texture of weights. Although these
values would later be accessible via texture reads, they
can be read back and uploaded into constant registers
for efficiency. Furthermore, zero weight textures can
be excluded, sparing superfluous texture accesses.

In order to find the indirect illumination at an exit
point, the corresponding PRM items should be read
from the textures and their values summed having
multiplied them by the weighting factors and the light
intensity. In the uncompressed case we can limit the
number of entry points to those having the highest
weights. Selection of the currently most significant tex-
ture panes can be done on the CPU before uploading
the weighting factors as constants.

Figures 66 and 67 show a marble chamber test scene
consisting of 3335 triangles, rendered on 1024×768 res-
olution. We used 4096 entry points. Entry points were
organized into 256 clusters (Nc = 4096/256). Split-
ting factor Ns was 2. We set the PRM pane resolution
to 256× 256, and used the 32 highest weighted entry
clusters. In this case the peak texture memory require-
ment was 128 Mbytes. The constant parameters of the
implementation were chosen to fit easily with hard-
ware capabilities, most notably the maximum texture
size and the number of temporary registers for opti-
mized texture queries, but these limitations can be
sidestepped easily. As shown in figure 66, a high en-
try point density was achieved. Assuming an average
albedo of 0.66 and a splitting factor of 2, the 4096 en-
try points displayed in figure 66 translate to approxi-
mately 24000 virtual light sources.

For this scene, the preprocessing took 8.5 sec, which
can further be decomposed as building the kd-tree for
ray casting (0.12 sec), light tracing with ray casting
(0.17 sec), and PRM generation (8.21 sec). Having
obtained the PRM, we could run the global illumi-

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 66: Entry points

nation rendering at 40 frames per second interactively
changing the camera and light positions.

Figure 67 shows screen shots where half of the image
was rendered with the new algorithm, and the other
half with local illumination to allow comparisons. The
effects are most obvious in shadows, but also notice
color bleeding and finer details in indirect illumination
that could not be achieved by fake methods like using
an ambient lighting term.

Figure 67: Comparison of local illumination and the
proposed global illumination rendering methods. The
lower half of these images has been rendered with local
illumination, while the upper half with the proposed
global illumination method at 40 FPS.

Conclusion

The role of the light path map method in interactive
applications is similar to that of light maps. It renders
indirect lighting of static geometry, but allows for dy-
namic lighting. Global illumination computations are
performed in a precomputing step, using ray casting

Figure 68: The chairs scene lit by a rectangular spot
light, whose illumination can be easily identified. The
rest is pure indirect illumination obtained with the pro-
posed method at 35 FPS.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

and indirect photon mapping (the virtual light sources
method). The contributions of virtual light samples
are computed on the GPU, with depth mapping. How-
ever, instead of computing a single light map, multiple
texture atlases (constituting the PRM) are generated
for the scene objects, all corresponding to a cluster of
indirect lighting samples. These atlases are combined
according to actual lighting conditions. Weighting fac-
tors depend on how much light actually arrives at the
sample points used for PRM generation, which is also
computed in a GPU pass.

The final result will be a plausible rendering of in-
direct illumination. Indirect shadows and color bleed-
ing effects will appear, illumination will change as the
light sources move. However, this comes at the price of
fetching data from all PRM texture panes (clusters of
indirect illumination) instead of just fetching a light
map color. This limits the number of panes we can
use. The accuracy will depend on a number of factors:

• First of all, the number of samples (entry points).
Increasing this number will make preprocessing
longer, but not influence rendering times.

• Then, the number of PRM panes (independent en-
try point clusters). In the demo implementation this
number is 32, which provides pretty accurate, light-
ing dependent indirect illumination, but may not be
affordable if the approach is combined with other ef-
fects. Decreasing this number will still produce nice
indirect illumination, although with less fidelity to
the changes of actual lighting.

• The resolution of the PRM atlas is of course impor-
tant. In the demo program this is 256 x 256 for every
pane, requiring 4 Mbytes of video RAM for every
static object. As indirect illumination tends to be
low frequency, this resolution is usually sufficient.
However, large objects will have large texels, and
should be avoided. Large objects like complete lev-
els should be separated into smaller ones like rooms.
This will also make it possible to use a large number
of indirect illumination clusters, but only store and
use some of them for individual objects.

The program performs two tasks: compute the
PRM, and use it to display the scene with indirect il-
lumination. The PRM, along with the location of the
sample points, is saved to files, and does not need to
be computed every time.

Program resources

The PathMap application is a DirectX program. Class
PathMapEffect manages all resources necessary to
represent the scene entities, compute the PRMs and
render to the screen. As rendering the PRMs is a com-
bined ray-tracing and GPU rendering task, a repre-
sentation of all meshes and entities that supports the

ray intersection operation is also maintained. Class
PathMapEffect contains the following PRM-related
resources:

• bushStarters: a vector of entry points (Entry
points are primary sample points on the surface.
As they are the starting points of a bush of light
paths, they will act as virtual light sources, just
like any node of a light path. Just like all virtual
light sources, they are referred to in the code as ’ra-
dions’, or, being at the root of a radion bush, ’bush
starters’)

• clusterLength: an array of cluster length (the vec-
tor of entry points is sorted so that it can be divided
into cluster of samples near to each other. How long
each cluster is, is given in this array.)

• radionTexture: a texture containing entry point
positions and surface normals

• for every scene entity:

– nearClusterIndices: an array of cluster indices
(A large level geometry may require a higher
number of clusters, but most of them will not
influence a given object. This array contains the
indices of those clusters, which should be com-
puted and used for the illumination of this en-
tity.)

– prmTexture: a PRM texture (The PRM tex-
ture contains mini-lightmap atlases, tiled next to
each other (Figure 69). These atlases (the PRM
panes) correspond to those entry point clusters,
which have been listed in the array of near cluster
indices for this entity.)

• depthMapTexture: a depth texture (When rendering
the contribution of virtual light sources into PRM
atlases, we need to account for shadows. For ev-
ery virtual light source, we will prepare a depth
map, and use it when rendering its illumination.
The same depth texture is reused for every light
source.)

• weightsTexture: a weights texture (a render target
to compute the form factor, or weight, correspond-
ing to all entry points)

• weights: a cluster weights array (an array to hold
the averaged weights of entry points in clusters)

Figure 69: A few tiles of a PRM texture. Illumination
corresponding to clusters of entry points is stored in
tiled atlases.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Shader techniques

All of the shader techniques contains a single pass,
with a unique vertex and pixel shader.

• Depth: Renders the scene with the given
WorldViewProj transformation. Color is irrele-
vant. This technique is invoked for every entity,
with appropriate model and camera settings to
render a depth map. It is more robust to render
back faces when rendering the depth map, to
avoid z-fighting when determining shadows. For a
detailed description of a depth map rendering pass,
refer to Section 3.1.1.

• ToAtlas: Renders the contribution of a single vir-
tual light source (described by lightPos, lightDir,
lightPower) into a texture atlas. This technique is
invoked with a tile of a PRM set as the render target
and viewport. Blending is used to add up the contri-
butions of radions that belong to the same cluster in
a tile of the entity’s PRM. Comparison with a depth
map is used to determine shadows. We explain this
shader in detail in Section 7.3.

• ComputeWeights: Takes a texture containing an ar-
ray of entry point positions and surface normals as
input (radionSamper), and computes the weights
corresponding to every individual entry point into a
target texture (weightsTexture). Weights are actu-
ally the incoming illuminations of the entry points:
they involve finding the visibility and the form fac-
tor. Visibility is determined using a depth map
(depthMapSampler), which should be previously
rendered using technique Depth. The form factor
is computed for a spotlight (lightPos, lightDir,
lightPower). When the direct illumination of the
scene will be computed in technique Walk, the same
spotlight characteristics should be used.

• Walk: The final rendering technique, named as such
because it is used for walkthroughs of the scene
when precomputing is already done. It computes in-
direct and direct lighting for a spotlight (lightPos,
lightDir, lightPower). For direct lighting shad-
ows, a depth map is used (depthMapSampler, the
same depth map that was used to find entry point
visibilities for weight computation.) For indirect
lighting, tiled PRM panes from the texture assigned
to filteredAtlasSampler are combined, according to
the weights specified in uniform parameter array
weightsa. The weight should be the average weight
of those entry points, whose contribution has been
rendered to the PRM pane. Individual weights are
computed by technique ComputeWeights, averages
must be computed on the CPU.

Precomputing

For the indirect lighting of the scene, we need the PRM
textures and the array of entry points along with clus-

tering information. Precomputation has the following
steps:

• Entry points are generated on the surfaces.
• Entry points are clustered according to their posi-

tion and orientation.

– Initial clustering is performed by building a bal-
anced kd-tree, forming uniformly sized clusters.

– More refined clustering is done using k-means
clustering, where the initial clusters are itera-
tively reclustered. Empty clusters are illegal, if
any cluster would be empty, half of the contents
of another cluster is moved to it.

• For every entity, the clusters relevant for its illumi-
nation are found, and stored.

• For all entry points in a cluster, a bush of virtual
light sources is generated using ray shooting. Then,
for all entities in the vector entities, the contribu-
tion of all virtual light sources is added to the PRM
texture. This is done in the following steps:

– For the actual cluster, the corresponding tile in
the PRM texture of the entity is found using the
nearClusterIndices array. If the current cluster
is not listed, it is not relevant for the shading of
the entity, so nothing is rendered.

– For all virtual light sources in the cluster:

◦ A depth map is rendered using technique
Depth, into depth buffer depthMap.

◦ Using blending, the contribution of the vir-
tual light source, respecting shadows as per
the depth map, is rendered to the appropri-
ate PRM tile with technique ToAtlas.

After these steps, the PRM textures for all entities
are ready. All precomputed data might be saved to
disk or used instantly. With the appropriate weight-
ing the PRM textures can be used to render indirect
illumination. Weighting factors are computed at final
rendering time, based on current lighting.

Final rendering

During the final walkthrough (Figure 70), we have to
find weights based on the light position, and entry
point visibility, and then use them to render objects
combining texture atlases in PRMs. After computing
the weights with technique ComputeWeights, the result
texture weightsTexture has to be read into system
memory. The weights are averaged in every cluster,
and cluster weights are passed to final rendering pass
Walk in shader parameter weightsa. Both for weights
computation and direct illumination computation in
the final rendering, a depth map depthTexture has to
prepared for the light source in advance.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

PRM
texture

(precomputed)

depth map
generation

depth
map

texture

weight
computation

entry
points
data

texture
(precomputed)

weights
texture

CPU
render
frame

light source data
(constant)

weights data
(constant)

frame
buffer

select
highest
weights

render direct
illumination

render self-
illumination

compute
cluster
weights

Figure 70: Data flow between shaders during
the final rendering (walkthrough) phase. Rounded
rectangles correspond to shader techniques Depth,
ComputeWeights, and Walk.

Render-to-atlas shader implementation

The key technique for the generation of the PRM is
technique ToAtlas. One pass using the technique ren-
ders the illumination due to a single point-like virtual
light source into a texture atlas. The texture atlas is in
a tile of the PRM texture: the rendertarget viewport
is set to be that tile. Blending must be enabled to add
the contribution of multiple light sources. When ren-
dering to a texture atlas, all the triangles should be
transformed to their positions in texture space. This is
done in the vertex shader. Furthermore, the modeling
transformation World has to be applied to get world
space coordinates for per-pixel shading. We also com-
pute the depth map texture position dhPos for shad-
owing.

void ToAtlasVS(

in float4 Pos : POSITION,

in float2 Tex : TEXCOORD0,

in float3 Norm : NORMAL,

out float4 tPos : POSITION,

out float4 wPos : TEXCOORD0,

out float3 wNorm : TEXCOORD1,

out float4 dhPos : TEXCOORD2) //depth map

{

tPos.xy = float2(2,-2) * Tex - float2(1,1);

tPos.y = -tPos; //Tex space to screen space

tPos.zw = 0;

wPos = mul(Pos, World);

wNorm = mul(Norm, WorldIT);

dhPos = mul(wPos, DepthViewProjTex);

}

The point-to-point form factor between the vir-
tual light source and the shaded fragment is modi-
fied if the shaded fragment is near to the plane of the
light source. This avoids typical virtual light source

artifacts like spikes and dark corner edges. The ba-
sic assumption is that the virtual light source is on
a plane. Form factors for points near to this plane
(distance squared less than cutNearness2) are con-
sidered inaccurate because of insufficient sampling.
cutNearness2 is set according to the sampling prob-
ability. Any shaded fragment that is considered too
close will be moved futher away for the purpose of
form factor computing. Geometrically, it is projected
onto the cutting plane, along the surface normal at the
virtual light source. This ensures that a planar surface
perpendicular to the surface of the virtual light source
will receive uniform illumination near the corner. Oth-
erwise, a regular per-pixel shading step with hardware
shadow mapping is perfomed.

void ToAtlasPS(

in float4 wPos : TEXCOORD0,

in float3 wNorm : TEXCOORD1,

in float4 dhPos : TEXCOORD2,

out float4 oColor : COLOR)

{

//homogenous division

dhPos /= dhPos.h;

wNorm = normalize(wNorm);

float3 diff = lightPos - wPos.xyz;

float3 diffDir = normalize(diff);

float cosa = dot(diffDir, wNorm);

float cosb = -dot(diffDir, normalize(lightDir));

float dist2 = dot(diff, diff);

oColor = 0;

float visibility = tex2Dproj(depthMapSampler, dhPos);

float formFactor;

if(cosa > 0.0 && cosb > 0.0)

{ \\facing the light

\\distance from light source plane

float nearness = cosb * cosb * dist2;

if(nearness < cutNearness2)

{ \\modified FF

float e2 = dist2 * (1.0 - cosb * cosb);

float dist2dash = e2 + cutNearness2;

formFactor =

cosa * sqrt(cutNearness2 / dist2dash)

/ dist2dash;

}

else \\standard FF

formFactor = cosa * cosb / dist2;

oColor = float4(

lightPower * formFactor * visibility, 1);

}

}

If we render to a texture atlas, and apply this tex-
ture on the object later, artifacts near texturing seams
may appear (Figure 71). This happens because we
might access a texel which we have never rendered to.
The underlying cause is how the hardware rasterizes

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 71: Stairs rendered with indirect illumination
using light path maps, without and with supplemental
seam edge rendering.

Figure 72: The hardware supported triangle rasteri-
zation scheme.

triangles. The general rule for drawing a triangle is to
color those pixels, whose center is within the triangle
(Figure 72. With adjacent triangles, this ensures there
are no holes and no doubly colored pixels in the image.
However, if we apply this rasterization rule when ren-
dering to the texture atlas, there may be some texels
whose center is not within the triangle, but they are
overlapping with it. The texture coordinates in these
areas will address a texel which was not considered by
the rasterization, and therefore the pixel shader com-
puting the value that should be there was not invoked.

These texels will appear as non-initialized or black
blocks or stripes near the seams of the texture atlas.
These cases can be avoided by very careful texturing,
if the seams are all horizontal or vertical in texture
space, but they will always appear in the general case
of slant-edged triangle mesh atlases. Furthermore, if
the texture is read using linear filtering, these non-
initialized values will influence and even larger area.

Looking at the texture atlas, we can realize that we
actually need to extend the contours of the charts of
adjacent triangles. We only need to rasterize a few line
segments along the seams. In order to do this, we need
to identify those edges of the model mesh which are
duplicated and placed on seams, and offset the line
segments to augment the triangles so that they cover
all texels they were overlapping with, as depicted in
Figure 73.

Figure 73: Triangle rasterization with supplemental
edges at texture seams.

Thus we acquire a supplemental set of geometry
made up of line segments. Whenever rendering the
original geometry to the atlas, we can also render the
supplemental geometry as a vertex buffer describing
line primitives. As all vertex data are derived from
the original triangle vertices, and the texture coordi-
nates have not been manipulated, there is no need to
change the shaders. Neither the vertex shader nor the
pixel shader will experience any difference from what
happens when rendering the original triangles.

However, in the special case of rendering the con-
tribution of a single light source into the PRM, we
also use blending. Therefore, we must not render to a
texel more than once, which is not guaranteed using
the supplemental edge geometry. Therefore, we use the
stencil test to exclude a texel once it has been rendered
to.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

7.4. Participating Media Illumination
Networks

This section discusses a real-time method to com-
pute multiple scattering in non-homogeneous partici-
pating media having general phase functions. The vol-
ume represented by a particle system is supposed to
be static, but the lights and the camera may move.
Lights can be arbitrarily close to the volume and can
even be inside. Real-time performance is achieved by
reusing light scattering paths that are generated with
global line bundles traced in sample directions in a
preprocessing phase. For each particle we obtain those
other particles which can be seen in one of the sam-
ple directions, and their radiances toward the given
particle. This information is stored in an illumination
network that allows the fast iteration of the volumet-
ric rendering equation. The illumination network can
be stored in two-dimensional arrays indexed by the
particles and the directions, respectively. Interpreting
these two-dimensional arrays as texture maps, the it-
eration of the scattering steps can be efficiently exe-
cuted by the graphics hardware, and the illumination
can spread over the media in real-time.

Physically plausible rendering of participat-
ing media simulates multiple scattering effects
[Max94, NDN96, LBC95]. As in case of surface mod-
els, accurate images require a lot of light paths, whose
computation can be speeded up by reusing previously
generated path segments. Paths to be reused are often
built of parallel lines [BF89, Sbe96, SK99b, DMK00].
The set of global line bundles form an illumination
network, which can replace the geometry of the
surfaces or the density of the volume in illumination
computations [HDKS00, SMKY04].

In the presented method [SKSU05] we use the global
line bundle illumination network concept to partici-
pating media represented by a particle system, and
obtain the particle radiance with iteration. Since the
iteration works on the illumination network, it does
not require ray casting or queries of the particle sys-
tem. Encoding the illumination networks by textures,
the GPU can calculate a scattering step on all parti-
cles and in all sampled directions rendering a single
textured quadrilateral.

7.4.1. Multiple scattering in volumes

Let us consider how the light goes through participat-
ing media. The change of radiance L on path of length
ds and of direction ~ω depends on different phenomena:

• Absorption and outscattering : the light is absorbed
or scattered out from its path when photons collide
with the particles. If the probability of collision in
a unit distance is τ , then the radiance changes by

−τ · L · ds due to the collisions. After collision a
particle may be either absorbed or reflected with
the probability of albedo a.

• Emission: the radiance may be increased by the
photons emitted by the participating media (e.g.
fire). This increase is Le ·ds where Le is the emission
density.

• Inscattering : photons originally flying in a differ-
ent direction may be scattered into the considered
direction. The expected number of scattered pho-
tons from differential solid angle dω′ equals to the
product of the number of incoming photons and the
probability that the photon is scattered from dω′

to ~ω. The scattering probability is the product of
the collision probability (τ), the probability of not
absorbing the photon (a), and the probability den-
sity of the reflection direction, called phase function
P . We use the Henyey-Greenstein phase function
[HG40, CS92]:

P (~ω′, ~ω) =
1

4π
· 3(1− g2) · (1 + (~ω′ · ~ω)2)

2(2 + g2) · (1 + g2 − 2g(~ω′ · ~ω))3/2
,

where g ∈ (−1, 1) is a material property describ-
ing how strongly the material scatters forward or
backward.
Taking into account all incoming directions Ω′, we
obtain the following radiance increase due to inscat-
tering:

ds · τ(s) · a(s) ·

∫

Ω′

L(s, ~ω′) · P (~ω′, ~ω) dω′

 .

window

ss+ds

L(s+ds) L(s)τ L(s)

L(s)

s=0

e
inscattering

Figure 74: Modification of the radiance of a ray in
participating media.

Adding the discussed changes, we obtain the fol-
lowing volumetric rendering equation for radiance L
of the ray at s + ds:

L(s + ds, ~ω) = (1− τ(s) · ds) · L(s, ~ω) + ds · Le(s, ~ω)+

ds · τ(s) · a(s) ·
∫

Ω′

L(s, ~ω′) · P (~ω′, ~ω) dω′. (23)

The particle system model of the volume corre-
sponds to a discretization, when we assume that scat-
tering can happen only at N discrete points called

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

particles. We assume that particles are sampled ran-
domly, preferably from a distribution proportional to
collision density τ , and we do not require them to be
placed at grid points [GRWS04]. As demonstrated in
[HL01] such particle systems can generate acceptable
clouds with a few hundred particles. Let us assume
that particle p represents its spherical neighborhood
of diameter ∆s(p), and introduce its opacity as α(p) =

1−e−τ(p)·∆s(p)
, its emission as E(p) = Le,(p) ·∆s(p), its

incoming radiance by I(p), and its outgoing radiance
by L(p). The discretized volumetric rendering equation
at particle p is then:

L(p)(~ω) = (1− α(p)) · I(p)(~ω) + E(p)(~ω)+

α(p) · a(p) ·
∫

Ω′

I(p)(~ω′) · P (p)(~ω′, ~ω) dω′.

In homogeneous media, albedo a and phase func-
tion P are the same for all particles. In non-
homogeneous media, these parameters are particle at-
tributes [REK∗04].

We solve the discretized volumetric rendering equa-
tion by iteration. The volume is represented by a set
of randomly sampled particle positions. Suppose that
we have an estimate of particle radiance values (and
consequently, of incoming radiance values) at iteration
step m−1. The new particle radiance in iteration step
m is obtained by substituting these values to the right
side of the discretized volumetric rendering equation:

L(p)
m (~ω) = (1− α(p)) · I(p)

m−1(~ω) + E(p)(~ω)+

α(p) · a(p) ·
∫

Ω′

I
(p)
m−1(~ω

′) · P (p)(~ω′, ~ω) dω′. (24)

This iteration is convergent if the opacity is in [0, 1]
and the albedo is positive and less than 1, which is
always the case for physically plausible materials.

In order to calculate the directional integral rep-
resenting the inscattering term of equation 24, we
suppose that D random directions ~ω1, . . . , ~ωD are ob-
tained from uniform distribution of density 1/(4π),
and the integral is estimated by Monte Carlo quadra-
ture:

∫

Ω′

I(p)(~ω′) · P (p)(~ω′, ~ω) dω′ ≈

1

D
·

D∑
d=1

I(p)(~ω′d) · P (p)(~ω′d, ~ω) · 4π.

ω1

ω2ω3

ω5

ω4

ω6

p

V[p,5] V[p,6]

V[p,3]
V[p,2]

V[p,1]

V[p,4]

I[p,6]I[p,5]
I[p,4]

I[p,1] I[p,2]
I[p,3]

Figure 75: Illumination and visibility networks

7.4.2. Building the illumination network

If we use the same set of sample directions for all par-
ticles, then the incoming radiance and therefore the
outgoing radiance are needed only at these directions
during iteration. For a single particle p, we need D
incoming radiance values I(p)(~ωd) in ~ω1, . . . , ~ωD, and
the reflected radiance needs to be computed exactly
in these directions. In order to update the radiance of
a particle, we should know the indices of the particles
visible in sample directions, and also the distances of
these particles to compute the opacity. This informa-
tion can be stored in two-dimensional arrays I and
V of size N ×D, indexed by particles and directions
respectively (figure 75). Array I is called the illumina-
tion network and stores the incoming radiance values
of the particles on the wavelengths of red, green, and
blue. Array V is the visibility network and stores in-
dex of visible particle vp and opacity α for each par-
ticle and incoming direction, that is, it identifies from
where the given particle can receive illumination (fig-
ure 76).

particles

directions

particles

r,g,b vp,a

pp

d

vp

pvp
r,g,b

illumination network visibility network

ωd

Figure 76: Storing the networks in arrays

In order to handle emissions and the direct illumi-
nation of light sources, we use a third array E that
stores the sum of the emission and the reflection of
the direct illumination for each particle and discrete
direction. This array can be initialized by rendering
the volume from the point of view of the light source
and identifying those particles that are directly visible.
At a particular particle, the discrete direction closest

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

to the illumination direction is found, and the reflec-
tion of the light source is computed from the incoming
discrete direction for each outgoing discrete direction.

Visibility network V expressing the visibility be-
tween particles is constructed during a preprocessing
phase (figure 77). The bounding sphere of the vol-
ume is constructed and then D uniformly distributed
points are sampled on its surface. Each point on the
sphere defines a direction aiming at the center of the
sphere, and also a plane perpendicular to the direc-
tion. A square window is set on this plane to include
the projection of the volume, and the window is dis-
cretized to M ×M pixels.

1

2 3 4

5 6

7
8 9

10

1
2

5

7
8

10

first pass

3 4

6

9

3

6

9

second pass

44

third pass

Figure 77: Constructing the visibility network

When a particular direction is processed, particles
are orthographically projected onto the window, and
rendered using a standard z-buffer algorithm, having
set the color of particle p equal to its index p (fig-
ure 77). The contents of the image and depth buffers
are read back to the CPU memory, and the indices
and depths of the visible particles are stored together
with the pixel coordinates. The particles that were
visible in the preceding rendering step are ignored in
the subsequent rendering steps. Repeating the render-
ing for the remaining particles and reading back the
image and depth buffers again, we can obtain the in-
dices of those particles which were occluded in the
previous rendering step. Pairing these indices to those
previously obtained ones which have the same pixel
coordinates, we can get the pairs of particles that oc-
clude each other in the given direction. On the other
hand, the difference of the depth values is the dis-
tance of the particles, from which the opacity can be
computed. Repeating the same step until the image
is empty, we can build lists of particles that are pro-
jected onto the same pixel. Subsequent pairs of these
lists define a single row of array V corresponding to
this direction (figure 76). Executing this algorithm for
all predefined directions, the complete array can be
filled up.

Note that multiple z-buffer steps carry out a depth-
peeling procedure. Since this happens in the prepro-
cessing step, its performance is not critical. However,
if we intend to modify the illumination network dur-

ing rendering in order to cope with animated vol-
umes, then the performance should be improved. For-
tunately, the depth peeling process can also be realized
on the GPU as suggested by [Eve01, Hac04].

7.4.3. Iterating the illumination network

The solution of the global illumination problem re-
quires the iteration of the illumination network. A sin-
gle step of the iteration evaluates the following formula
for each particle p = 1, . . . , N and for each incoming
direction i = 1, . . . , D:

I[p, i] = (1− αV[p,i]) · I[V[p, i], i] + E[V[p, i], i]+

4π · αV[p,i] · aV[p,i]

D
·

D∑
d=1

I[V[p, i], d] · PV[p,i](~ω
′
d, ~ωi).

Interpreting the two-dimensional arrays of the emis-
sion, visibility and illumination maps as textures, the
graphics hardware can also be exploited to update
the illumination network. The first texture is visibil-
ity network V storing the visible particle in red and
the opacity in green channels, the second stores emis-
sion array E in the red, green, and blue channels, and
the third texture is the illumination map, which also
has red, green and blue channels. Note that in practi-
cal cases number of particles N is about a thousand,
while number of sample direction D is typically 128,
and radiance values are half precision floating point
numbers, thus the total size of these textures is quite
small (1024× 128× 8× 2 bytes = 2 Mbyte).

I[vp,d]

I[vp,d’]

I[vp,i]

V[p,i] = vp

pdirection i

radiance I[p,i]

P(d,i)

Figure 78: Notations in the pixel shader code

In the GPU implementation a single iteration step
is the rendering of a viewport sized, textured rect-
angle, having set the viewpoint resolution to N × D
and the render target to the texture map represent-
ing the updated illumination network. A pixel corre-
sponds to a single particle and single direction, which
are also identified by input variable texcoord. The
pixel shader obtains the visibility network from tex-
ture Vmap, the emission array from texture Emap, and
the illumination map from texture Imap. Function P is
responsible for the phase function evaluation, which is
implemented by a texture lookup of prepared values

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

20 iterations 40 iterations 60 iterations 80 iterations

Figure 79: A cloud illuminated by two directional lights rendered with different iteration steps

Figure 80: Globally illuminated clouds of 512 particles rendered with 128 directions at 45 FPS.

allowing other phase functions to be also easily incor-
porated [REK∗04]. In this simple implementation we
assume that opacity alpha is precomputed and stored
in the visibility texture, but albedo alb are constant
for all particles. Should it not be the case, the albedo
could also be looked up in a texture.

When no other particle is seen in the input direc-
tion, then the incoming illumination is taken from the
sky radiance (sky). In this way not only a single sky
color, but sky illumination textures can also be used
[PSS99, REK∗04].

For particle p and direction i, the pixel shader finds
opacity alpha and visible particle vp in direction i,
takes its emission or direct illumination Evp, and com-
putes and radiance Ip as the sum of the direct illumi-
nation and the reflected radiance values for its input
directions d = 1...D (figure 78):

float p = texcoord.x; // particle

float i = texcoord.y; //input direction

float vp = tex2d(Vmap, float2(p,i)).r;

if (vp >= 0) { // another particle is seen

float alpha = tex2d(Vmap, float2(p,i)).g;

float3 Evp = tex2d(Emap, float2(vp,i)).rgb;

float3 Ivp = tex2d(Imap, float2(vp,i));

float3 Ip = (1 - alpha) * Ivp + Evp;

for(int d = 0; d < 1; d += 1.0/D) {

Ivp = tex2d(Imap, float2(vp, d));

float3 BRDF = alb * alpha * P(d,i);

Ip += BRDF * Ivp * 4 * PI / D;

}

return Ip;

} else return sky; // no particle is seen

The illumination network provides a view indepen-
dent radiance representation. When the final image is
needed, we can use a traditional participating media
rendering method, which sorts the particles according
to their distance from the camera, splats them, and
adds their contributions with alpha blending.

When the outgoing reflected radiance of a particle
is needed, we compute the reflection from the sampled
incoming directions to the viewing direction. Finally
the sum of particle emission and direct illumination
of the external lights is interpolated from the sample
directions, and is added to the reflected radiance.

In the current implementation we compute one iter-
ation in each frame, and when the light sources move,
we take the solution of the previous light position as
the initial value of the iteration, which results in fast
convergence.

The results are shown in figures 79 and 80. The
cloud model consists of 1024 particles, and 128 discrete
directions are sampled. With these settings the typical
rendering speed is about 26 frames per second, and is
almost independent of the number of light sources and
of the existence of sky illumination. The albedo is 0.9
and material parameter g is 0. In figure 79 we can
follow the evolution of the image of the same cloud
after different iteration steps, where we can observe
the speed of convergence.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

8. Fake global illumination

Global illumination computation is inherently costly
since all other points may affect the illumination of a
single point. The inherent complexity can be reduced
if the physically plausible model is replaced by another
model that is simpler to solve but provides somehow
similarly looking results. The dependence of the radi-
ance of a point on all other points can be eliminated
if we recognize that the illumination influence dimin-
ishes with the distance, thus it is worth considering
only the local neighborhood of each point during shad-
ing. In directions where the local neighborhood is not
visible, a constant or direction dependent ambient il-
lumination is assumed, similarly to local illumination
models.

In the obscurances method the “illumination of
the local neighborhood” is expressed by the average
of the the spectral reflectivities of its points, thus
even color bleeding effects can be cheaply simulated
[ZIK98, IKSZ03, MSC∗05].

On the other hand, ambient occlusion
[Hay02, PG04, KA06] approximates only the solid
angle in which the neighborhood is seen, and com-
putes a scalar occlusion factor. Recent work [Bun05]
extended this algorithm as well to incorporate color
bleeding.

Here we discuss only the obscurances method in de-
tails.

8.1. The obscurances method

In the obscurances method the effects of direct and
indirect diffuse illumination are decoupled. Instead of
working with the physically based reflected radiance
formula of equation 1, for the sake of simplification,
the reflection of the indirect diffuse illumination for
point ~x is defined as:

Lind(~x) = fr(~x)·La·
∫

~ω′∈Ω′

ρ(d(~x, ~ω′))·cos+ θ′ dω′ (25)

where

• fr(~x) is the BRDF at ~x,
• La is the ambient light intensity,
• d(~x, ~ω′) is the distance between ~x and the next sur-

face at direction ~ω′ or ∞ is there is no occlusion in
this direction,

• ρ(d) is the scaling of ambient light incoming from
distance d, which takes values between 0 and 1,

• θ′ is angle between direction ~ω′ and the normal at
~x.

Function ρ() increases with distance d thus the illu-
mination of distant occluders is gradually replaced by
the ambient light (figure 81).

1

ρ (d)

ddmax

Figure 81: Shape of ρ(d) function.

Maximum distance for interaction dmax is defined
so that ρ(d) = 1 when d ≥ dmax. This means that we
take into account only a dmax-neighborhood of ~x. In
other words, we are not taking into account occlusions
farther than dmax. The function used for this purpose
is

ρ(d) =
√

d/dmax

if d < dmax and 1 otherwise.

The obscurance of point ~x is then defined as:

W (~x) =
1

π
·

∫

~ω′∈Ω′

ρ(d(~x, ~ω′)) · cos+ θ′ dω′ (26)

Since 0 ≤ ρ(d) ≤ 1 , we can assume that 0 ≤ W (P) ≤
1. The obscurance for a patch is the average of the
obscurances for all points within the patch. An obscu-
rance value of 1 means that the patch is totally open
(or not occluded by neighboring polygons), while a
value of 0 means that it is totally closed (or occluded
by neighboring polygons).

For a closed environment, the ambient light in (25)
can be computed as the average light intensity in the
scene using the following formula:

La =
Rave

1−Rave
·
∑n

i=1
AiL

e
i

AT
(27)

where

Rave =

∑n

i=1
Aifi

AT
· π (28)

is the average reflectivity and Ai, Le
i , and fi are the

area, emission radiance, and reflectivity of patch i, re-
spectively, AT is the sum of the areas, and n is the
number of patches in the scene. The ambient term con-
sidered here corresponds to the indirect illumination
only, as direct illumination is computed separately.

The obscurance approach as presented so far lacks
one of the features which comes from radiosity light-
ing, color bleeding. Since the light reflected from a
patch acquires some of its color, the surrounding
patches receive colored indirect lighting. To account

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

for color bleeding, the obscurances formula (26) is
modified slightly to include the reflectivity term of the
patches:

W (~x) =

∫

~ω′∈Ω′

fr(~y) · ρ(d(~x, ~ω′)) · cos+ θ′ dω′ (29)

where fr(~y) is the diffuse BRDF of point ~y seen from ~x
in direction ~ω′. When no surface is seen at a distance
less than dmax in direction ~ω′, the obscurance takes
the value of Rave.

For coherency, the ambient light equation (27) also
has to be modified, yielding the following value:

La =
1

1−Rave
·
∑n

i=1
AiL

e
i

AT
. (30)

The usual option to compute the obscurance equa-
tion (29) uses Monte Carlo (or quasi Monte Carlo)
ray casting technique, which casts several rays from
a patch at random directions sampled with probabil-
ity density cos+ θ′/π. The obscurance for patch i will
then be the average of the values gathered by the rays
cast from this patch:

W (i) ≈ π

Ni
·

Ni∑
j=1

ρ(dj)fr(~yj) (31)

where Ni is the number of rays cast from patch i, ~yj

is the point hit by ray j, and dj is the length of this
ray.

Since casting cosine distributed rays from all
patches in the scene is equivalent to casting global ray
bundles of uniformly distributed random directions
[Sbe97], obscurances can also be obtained with global
ray bundles (Figure 82). The term global ray means
that we use all ray-surface intersections not only the
hit point closest to the ray origin as in the case of local
rays.

Bundles of parallel global rays can be efficiently cast
on the graphics hardware using the depth peeling al-
gorithm [SKP98, Eve01, Hac05].

Rays from every patch Global lines Bundles of parallel rays

Figure 82: Different sampling techniques to generate
cosine distributed rays.

The depth peeling algorithm renders the scene us-
ing orthogonal projection and sets patch colors to their

IDs. Generating this image is equivalent to tracing a
bundle of parallel rays through the scene where each
pixel corresponds to a ray in the bundle. Each of these
rays may intersect several surfaces in the scene, but
the z-buffer algorithm keeps only the ID of the clos-
est surface in the color buffer and its distance from
the front clipping plane in the depth buffer. Since we
need not only the first hits of the rays but all surface
ray intersections, the rendering process is repeated.
However, in the second run, the pixel shader will ig-
nore those surfaces are not farther than the respective
distance stored of the z-buffer of the previous run.
The first layer of the scene is peeled away and the
second rendering identifies the second ray-surface in-
tersections. Repeating this process we can identify all
ray-surface intersections not only the closest ones.

We assume that in a pre-processing step the scene is
completely mapped to a single texture atlas. A texel of
the texture atlas corresponds to a small surface patch.
When a patch is referenced, we can simply use the
texture address of the corresponding texel. The obscu-
rance computation picks a random direction and car-
ries out depth-peeling process in this direction. When
we let the GPU do it for us, we use an orthogonal pro-
jection, and from the sampled direction we render the
scene setting the model-view transform to rotate the
sample direction to the z axis.

We use the pixel (RGBA) of the floating point
format render target to store the patch identifica-
tion, a flag that indicates whether the patch is front-
facing or back-facing to the global direction, and
the patch distance from the bounding sphere in the
global direction. Our render target is initialized with
(−1.0,−1.0, 1.0, 1.0), giving reasonable default values.

The facing direction of a pixel can be determined
by using the cosine of the angle between the camera’s
−z vector and the normal vector of the patch. If the
result is greater than 0, it is front-facing, otherwise it
is back-facing.

As we store the pixels in a four-component float ar-
ray (or the RGBA color), we use the first two compo-
nents to store the patch ID (RG ← (u, v)), the third to
store the cosine (B ← cos α), and the fourth compo-
nent to store the distance between the front clipping
plane and the patch (A ← z).

The vertex shader receives the vertex coordinates,
the texture coordinates, and the normal, and it gen-
erates the cosine and the transformed vertex position.
Note that the following shaders are written in Cg and
assume OpenGL API, thus uniform parameters are
also passed formally, and matrix vector multiplications
have different order than in DirectX/HLSL programs:

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

void PeelVS(

in float4 Pos : POSITION, // modeling space

in float2 PatchId : TEXCOORD0,// patch ID

in float4 Norm : NORMAL, // normal vector

out float4 oPos : POSITION, // camera space

out float2 oPatchId : TEXCOORD0,// patch ID

out float cosine : TEXCOORD1

uniform float4x4 WorldView,

uniform float4x4 WorldViewIT)

{

oPos = mul(WorldView, Pos); // To camera space

oPatchId = PatchId;

// sample direction is rotated to (0,0,1)

cosine = mul(WorldViewIT, Norm).z;

}

The fragment shader receives the interpolated tex-
ture coordinates of the fragment, the position (where
z is the depth), the cosine and the interpolated tex-
ture coordinates of the patch. For the first layer, the
depth does not need to be compared with the previous
one. However, for all subsequent layers, we sample the
previous layer using the texture coordinates and dis-
card the current fragment if the depth of the previous
layer (the fourth component of the sample) is closer
to the camera than the current fragment thus getting
the peeling effect (Figure 83).

Fragment
Shader
Depth
Peeling

Previous
depth

Images

Figure 83: Depth peeling with GPU.

This rendering step is repeated until all pixels are
discarded. The images of all the rendered layers define
all ray-surface intersections.

The fragment shader code is:

float4 PeelPS(

float4 wPos : WPOS, // viewport space

float2 PatchId : TEXCOORD0, // patch ID

float cosine : TEXCOORD1,

uniform sampler2D ztex, // prev. layer

uniform float res, // target resolution

uniform float first // is first layer?

) : COLOR

{

if (first == 0.0) { // if not first layer -> peel

// get depth of the previous layer

float depth = tex2D(ztex, wPos.xy/res).a;

if (wPos.z < (depth + eps))

discard; // ignore previous layers

}

float4 color;

color.rg = PatchId;

color.b = cosine;

color.a = wPos.z; //new depth

return color;

}

In the obscurance computation method random di-
rections are sampled. Once we have chosen a random
direction for the bundle, the computation is divided
into two phases. In the first phase, layers are obtained
using depth-peeling. In the second phase, the obscu-
rances between each pair of layers are computed and
the result is added and averaged in the corresponding
obscurance map position.

Now, for each pair of consecutive layers, the obscu-
rance formula has to be computed. We configure the
camera to obtain a one-to-one mapping between pix-
els and texels. The size of the viewport is set to the
same resolution as the obscurance map, starting from
(0, 0), with an orthogonal projection from −1 to +1
in both dimensions.

Now each pair of consecutive images is taken from
the texture memory and sent to the graphic pipeline as
a stream of points of size 1.0 (render to vertex array).
This way we can update a single position in the target
buffer for each element of the image. This will gener-
ate a pair of point streams A and B that are merged
together and sent to the vertex shader. Stream A is
sent as vertex positions and stream B as texture coor-
dinates. As we generate the streams in both images in
the same way, points at the same position in streams A
and B are at the same position in consecutive images,
thus may see each other in the sampling direction and
transfer energy consequently (Figure 84).

Vertex
Shader to

calculate the
obscurances

A

B

Vertex
Positions

Texture
Coordinates

Figure 84: Two consecutive layers (left) generate two
streams of points carrying patch ID’s (middle) that
are merged together and processed by the vertex shader
(right).

The obscurance computation needs to be done bidi-
rectionally but we cannot generate two values in differ-
ent positions of the target buffer in a single pass and

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

thus we have to do a two-pass transfer. In the first
pass, we update the patches in the projection that
generated stream A using the information in pixels of
stream B (Figure 84). In the second pass the streams
are exchanged, thus the same set of shaders are used
in both directions.

If a patch in stream A cannot see the correspond-
ing patch in stream B, the vertex carrying this patch
is eliminated by moving it out of the view frustum.
If patches see each other and the difference between
their distances to the camera is less than dmax, then
the transfer is done. If the distance is greater, then the
patch gets the ambient reflectivity. When the trans-
fer process is done, we generate vertex coordinates to
update the position in the obscurance map that cor-
responds to the patch identified by the two first com-
ponents of the current pixel element in stream A.

The vertex shader needs to generate vertex coor-
dinates in homogeneous clipping space. The desired
position is encoded as texture coordinates, and is con-
sequently in the unit interval. The following formula
computes homogeneous clip coordinates correspond-
ing to given normalized device coordinates assuming
OpenGL API (this is slightly different in DirectX):

xc

yc

zc

wc

 =

2xw − 1
2yw − 1
2zw − 1

1

 (32)

Note that the clipping process only keeps the frag-
ment if −wc ≤ zc ≤ wc assuming OpenGL API. As
we set wc to 1, the clipping process will only keep the
fragment when −1 ≤ zc ≤ 1. If zc = 2.0, then the
fragment is out of the view frustum and is discarded.
If we set zc = 0.0, then the vertex is kept by the clip-
ping process. So we can use the zc value as a way to
accept or discard vertices. The vertex shader for the
obscurance transfer process is:

void ObsTransVS(

in float4 A : POSITION, // ID+cosine+depth

in float4 B : TEXCOORD0, // ID+cosine+depth

out float4 oPos : POSITION,

out float2 pA : TEXCOORD0, // IDs of A

out float2 pB : TEXCOORD1, // IDs of B

out float dist : TEXCOORD2, // length of ray

uniform float dir) // forward/backward

{

// If patches see each other, i.e. both exist

// and one is front facing, the other is back facing

if (((dir == 0) && (A.r != -1) && (A.b < 0)

&& ((B.b > 0) || (B.r == -1)))

|| ((dir == 1) && (A.r != -1) && (A.b > 0)

&& ((B.b < 0) || (B.r == -1)))) {

pA = A.rg;

Figure 85: Obscurances with (left) and without
(right) color bleeding.

pB = B.rg;

// Create vertex to update desired position.

oPos = float4(2 * pA.r - 1, 2 * pA.g - 1, 0, 1);

// Calculate distance.

dist = (texCoord.b != 1.0)? abs(B.a - A.a) : 1;

} else // If no transfer, move out of the view frustum.

oPos = float4(0, 0, 2, 1);

}

}

The fragment shader evaluates the obscurance for-
mula:

float4 ObsTransPS(

float2 pA : TEXCOORD0, // patch A

float2 pB : TEXCOORD1, // patch B

float dist : TEXCOORD2,// distance of patches

uniform sampler2D refl, // reflectivities

uniform float dmax, // max distance

uniform float3 ambient // ambient light

) : COLOR

{

float4 Color;

if(d >= dmax)

Color.rgb = ambient;

else Color.rgb = tex2D(refl, pB).rgb *

sqrt(distance/dmax);

Color.a = 1.0;

return Color;

}

In figure 85 we show the Cornell box scene computed
using the obscurances method without and with color
bleeding.

Figures 86, 87, and 88 show the application of the
obscurances map, obscurances with direct illumina-
tion, and direct illumination with constant ambient
term.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

Figure 86: Cathedral model, 193180 polygons, obscurances computed in 38 seconds. Left: obscurances map, middle:
obscurances with direct illumination, right: constant ambient term with direct illumination.

Figure 87: Tank model, 225280 polygons, obscurances computed in 38 seconds. Left: obscurances map, middle:
obscurances with direct illumination, right: constant ambient term with direct illumination.

Figure 88: Car model, 97473 polygons, obscurances computed in 32 seconds. Left: obscurances map, middle:
obscurances with direct illumination, right: constant ambient term with direct illumination.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

9. Conclusions

In this tutorial, we have described the basic concepts
and methods applied in global illumination compu-
tations on the GPU. Based on these elements, we
have detailed a number of sophisticated rendering al-
gorithms addressing various global illumination ef-
fects. Together, these provide a wide spectrum of tools,
which can be combined to render realistic images in-
teractively.

The scope of this tutorial could not encompass all
techniques possibly required in a general rendering
engine application. Well known hardware supported
features like bump, normal or vertex displacement
mapping are always a valuable asset. High dynamic
range computations we performed in GI algorithms
allows for post-processing effects that mimic the char-
acteristics of image capture equipment or the human
eye: tone mapping, glow, motion blur or lens flare
[GWWH03][Tót06]. While those techniques do not
strictly address global illumination problems, they are
also helpful in creating a more immersive viewer ex-
perience.

We also did not go into details about the wide va-
riety of advanced shadow rendering techniques that
either reduce shadow map artifacts (shadow map fo-
cusing, perspective shadow maps [SD02], light space
perspective shadow maps [WSP04], silhouette map
[SCH03]) or render plausible approximate soft shad-
ows [HLHS03]. Depending on the area of application,
these improvements might make a crucial performance
difference.

The algorithms we have described are all targeted
at a range of speeds from real-time to interactive.
However, using a combination of them for more com-
plex geometries may challenge current graphics cards.
A full, global illumination solution for a general dy-
namic scene remains a task of extreme complexity for
which no processing power is undepletable. The fu-
ture capabilities of graphics cards will call for new
ways to accommodate existing general global illumi-
nation methods and extend current the CPU-based
ones. Currently, with adequate precomputation and a
careful selection of tools, it is absolutely possible to
render a scene in a real-time application like a com-
puter game, with plausible, if not accurate, global il-
lumination.

Figure 89: Two scenes rendered in an interactive
game environment, using global illumination meth-
ods including shadow mapping, environment mapping,
diffuse indirect illumination, approximate ray-casting
with distance impostors for reflections and caustics.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

10. Acknowledgement

This work has been supported by OTKA (ref. No.:
T042735), GameTools FP6 (IST-2-004363) project,
by the Spanish-Hungarian Fund (E-26/04), and by
TIN2004-07451-C03-01 from the Spanish Govern-
ment.

References

[AH93] Aupperle L., Hanrahan P.: A hierarchi-
cal illumination algorithms for surfaces with glossy
reflection. Computer Graphics (SIGGRAPH ’93
Proceedings) (1993), 155–162.

[AKDS04] Annen T., Kautz J., Durand F., Sei-
del H.-P.: Spherical harmonic gradients for mid-
range illumination. In Eurographics Symposium on
Rendering (2004).

[Bek99] Bekaert P.: Hierarchical and stochastic al-
gorithms for radiosity. PhD thesis, University of
Leuven, 1999.

[BF89] Buckalew C., Fussell D.: Illumination
networks: Fast realistic rendering with general re-
flectance functions. SIGGRAPH ’89 Proceedings 23,
3 (1989), 89–98.

[BGZ97] Bastos R., Goslin M., Zhang H.: Effi-
cient radiosity rendering using textures and bicubic
reconstruction. In ACM-SIGGRAPH Symposium
on Interactive 3D Graphics (1997).

[Bjo04] Bjorke K.: Image-based lighting. In GPU
Gems, Fernando R., (Ed.). NVidia, 2004, pp. 307–
322.

[Bly05] Blythe D.: The Direct3D 10 system. In
SIGGRAPH ’2006 Proceedings (2005).

[BN76] Blinn J. F., Newell M. E.: Texture and
reflection in computer generated images. Commu-
nications of the ACM 19, 10 (1976), 542–547.

[BSKS05] Barsi A., Szirmay-Kalos L., Szijártó
G.: Stochastic glossy global illumination on the
GPU. In Proc. Spring Conference on Computer
Graphics (SCCG ’2005) (Slovakia, 2005), Comenius
University Press.

[Bun05] Bunnel M.: GPU Gems II. Addison-
Wesley, 2005, ch. Dynamic Ambient Occlusion and
Indirect Lighting, pp. 223–233.

[CCWG88] Cohen M. F., Chen S. E., Wallace
J. R., Greenberg D. P.: A progressive refine-
ment approach to fast radiosity image generation. In
Computer Graphics (SIGGRAPH ’88 Proceedings)
(1988), pp. 75–84.

[CG85] Cohen M., Greenberg D.: The hemi-
cube, a radiosity solution for complex environments.

In Computer Graphics (SIGGRAPH ’85 Proceed-
ings) (1985), pp. 31–40.

[CHH02] Carr N., Hall J., Hart J.: The ray en-
gine. In Proc. of Graphics Hardware (2002).

[CHH03] Carr N., Hall J., Hart J.: GPU algo-
rithms for radiosity and subsurface scattering. In
Proc. of Workshop on Graphics Hardware (2003),
pp. 51–59.

[CHL04] Coombe G., Harris M. J., Lastra A.:
Radiosity on graphics hardware. In Graphics Inter-
face (2004).

[CS92] Cornette W., Shanks J.: Physical reason-
able analytic expression for single-scattering phase
function. Applied Optics 31, 16 (1992), 31–52.

[DBB03] Dutre P., Bekaert P., Bala K.: Ad-
vanced Global Illumination. A K Peters, 2003.

[Deb98] Debevec P.: Rendering synthetic objects
into real scenes: Bridging traditional and image-
based graphics with global illumination and high
dynamic range photography. In SIGGRAPH ’98
(1998), pp. 189–198.

[DLW93] Dutre P., Lafortune E., Willems
Y. D.: Monte Carlo light tracing with direct com-
putation of pixel intensities. In Compugraphics ’93
(Alvor, 1993), pp. 128–137.

[DMK00] Dachille F., Mueller K., Kaufman
A.: Volumetric global illumination and reconstruc-
tion via energy backprojection. In Symposium on
Volume Rendering (2000).

[DS03] Dachsbacher C., Stamminger M.:
Translucent shadow maps. In Proceedings of the
Eurographics Symposium on Rendering (2003),
pp. 197–201.

[DS05] Dachsbacher C., Stamminger M.: Re-
flective shadow maps. In SI3D ’05: Proc. of the
2005 Symp. on Interactive 3D Graphics and Games
(2005), pp. 203–231.

[EMD∗05] Estalella P., Martin I., Drettakis
G., Tost D., Devilliers O., Cazals F.: Accurate
interactive specular reflections on curved objects. In
Proc. of VMV 2005 (2005).

[EMDT06] Estalella P., Martin I., Drettakis
G., Tost D.: A GPU-driven algorithm for accurate
interactive specular reflections on curved objects. In
Proceedings of the 2006 Eurographics Symposium on
Rendering (2006).

[Eve01] Everitt C.: Interactive order-independent
transparency. Tech. rep., NVIDIA Corporation,
2001.

[FS05] Foley T., Sugerman J.: Kd-tree accelera-
tion structures for a GPU raytracer. In Proceedings
of Graphics Hardware 2005 (2005).

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

[GD01] Granier X., Drettakis G.: Inremental
updates for rapid glossy global illumination. Com-
puter Graphics Forum 20, 3 (2001), 268–277.

[Gre84] Greene N.: Environment mapping and
other applications of world projections. IEEE Com-
puter Graphics and Applications 6, 11 (1984), 21–
29.

[Gre03] Green R.: Spherical Harmonic Light-
ing: The Gritty Details. Tech. rep., 2003.
http://www.research.scea.com/gdc2003/ spherical-
harmonic-lighting.pdf.

[GRWS04] Geist R., Rasche K., Westall J.,
Schalkoff R.: Lattice-boltzmann lighting. In Eu-
rographics Symposium on Rendering (2004).

[GSHG98] G. G., Shirley P., Hubbard P.,
Greenberg D.: The irradiance volume. IEEE
Computer Graphics and Applications 18, 2 (1998),
32–43.

[GWWH03] Goodnight N., Wang R., Woolley
C., Humphreys G.: Interactive time-dependent
tone mapping using programmable graphics hard-
ware. In Rendering Techniques 2003: 14th Euro-
graphics Symposium on Rendering (2003), pp. 26–
37.

[Hac04] Hachisuka T.: Final gathering on GPU.
In ACM Workshop on General Purpose Computing
on Graphics Processors (2004).

[Hac05] Hachisuka T.: High-quality global illumi-
nation rendering using rasterization. In GPU Gems
II, Parr M., (Ed.). Addison-Wesley, 2005, pp. 615–
634.

[Har02] Harris M. J.: Real-time cloud rendering
for games. In Game Developers Conference (2002).

[Hay02] Hayden L.: Production-Ready Global Illu-
mination. Tech. rep., SIGGRAPH Course notes 16,
2002. http://www.renderman.org/RMR/Books/
sig02.course16.pdf.gz.

[HDKS00] Heidrich W., Daubert K., Kautz J.,
Seidel H.-P.: Illuminating micro geometry based
on precomputed visibility. In SIGGRAPH 2000
Proceedings (2000), pp. 455–464.

[HG40] Henyey G., Greenstein J.: Diffuse radia-
tion in the galaxy. Astrophysical Journal 88 (1940),
70–73.

[HH04] Hargreaves S., Harris M.: Deferred
Shading. Tech. rep., http://download.nvidia.com/
developer/presentations/ 2004/6800 Leagues/
6800 Leagues Deferred Shading.pdf, 2004.

[HL01] Harris M., Lastra A.: Real-time cloud
rendering. Computer Graphics Forum 20, 3 (2001).

[HLHS03] Hasenfratz J.-M., Lapierre M.,

Holzschuch N., Sillion F. X.: A survey of
realtime soft shadow algorithms. In Eurographics
Conference. State of the Art Reports (2003).

[HSA91] Hanrahan P., Salzman D., Aupperle
L.: Rapid hierachical radiosity algorithm. Computer
Graphics (SIGGRAPH ’91 Proceedings) (1991).

[IKSZ03] Iones A., Krupkin A., Sbert M.,
Zhukov S.: Fast realistic lighting for video games.
IEEE Computer Graphics and Applications 23, 3
(2003), 54–64.

[JC95] Jensen H. W., Christensen N. J.: Photon
maps in bidirectional Monte Carlo ray tracing of
complex objects. Computers and Graphics 19, 2
(1995), 215–224.

[Jen96] Jensen H. W.: Global illumination using
photon maps. In Rendering Techniques ’96 (1996),
pp. 21–30.

[Jen01] Jensen H. W.: Realistic Image Synthesis
Using Photon Mapping. AK Peters, 2001.

[JMLH01] Jensen H., Marschner S., Levoy M.,
Hanrahan P.: A practical model for subsurface
light transport. Computer Graphics (SIGGRAPH
2001 Proceedings) (2001).

[KA06] Kontkanen J., Aila T.: Ambient occlu-
sion for animated characters. In Proceedings of
the 2006 Eurographics Symposium on Rendering
(2006).

[Kaj86] Kajiya J. T.: The rendering equation. In
Computer Graphics (SIGGRAPH ’86 Proceedings)
(1986), pp. 143–150.

[KAMJ05] Kristensen A., Akenine-Moller T.,
Jensen H.: Precomputed local radiance transfer
for real-time lighting design. In SIGGRAPH 2005
(2005).

[Kel97] Keller A.: Instant radiosity. In SIG-
GRAPH ’97 Proceedings (1997), pp. 49–55.

[Kin05] King G.: Real-time computation of dy-
namic irradiance environment maps. In GPU Gems
II, Parr M., (Ed.). Addison-Wesley, 2005, pp. 167–
176.

[KK03] Kollig T., Keller A.: Efficient illumina-
tion by high dynamic range images. In Eurographics
Symposium on Rendering (2003), pp. 45–51.

[KM00] Kautz J., McCool M.: Approximation of
glossy reflection with prefiltered environment maps.
In Graphics Interface (2000).

[KMN∗02] Kanungo T., Mount D., Netanyahu
N., Piatko C., Silverman R., Wu A.: An ef-
ficient k-means clustering algorithm: Analysis and
implementation. IEEE Trans. Pattern Analysis and
Mach. Int. 24, 7 (2002), 881–892.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

[KSS02] Kautz J., Sloan P., Snyder J.: Fast,
arbitrary BRDF shading for low-frequency lighting
using spherical harmonics. In 12th EG Workshop
on Rendering (2002), pp. 301–308.

[KVHS00] Kautz J., Vzquez P., Heidrich W.,
Seidel H.-P.: A unified approach to prefiltered en-
vironment maps. In 11th Eurographics Workshop
on Rendering (2000), pp. 185–196.

[LBC95] Languenou E., Bouatouch K., Chelle
M.: Global illumination in presence of participat-
ing media with general properties. In Eurographics
Workshop on Rendering (1995), pp. 69–85.

[LGB∗03] Lensch H., Goesele M., Bekaert P.,
Kautz J., Magnor M., Lang J., Seidel H.-P.:
Interactive rendering of translucent objects. Com-
puter Graphics Forum 22, 2 (2003), 195–195.

[LK03] Lehtinen J., Kautz J.: Matrix radiance
transfer. In SI3D ’03: Proceedings of the 2003 sym-
posium on Interactive 3D graphics (2003), pp. 59–
64.

[Llo82] Lloyd S.: Least square quantization in
pcm. IEEE Transactions on Information Theory
28 (1982), 129–137.

[LSK05] Lazányi I., Szirmay-Kalos L.: Fresnel
term approximations for metals. In WSCG 2005,
Short Papers (2005), pp. 77–80.

[LW93] Lafortune E., Willems Y. D.: Bi-
directional path-tracing. In Compugraphics ’93
(Alvor, 1993), pp. 145–153.

[Max94] Max N. L.: Efficient light propagation for
multiple anisotropic volume scattering. In Euro-
graphics Workshop on Rendering (1994), pp. 87–
104.

[MH84] Miller G. S., Hoffman C. R.: Illumina-
tion and reflection maps: Simulated objects in sim-
ulated and real environment. In SIGGRAPH ’84
(1984).

[MPM02] Mantiuk R., Pattanaik S.,
Myszkowski K.: Cube-map data structure
for interactive global illumination computation in
dynamic diffuse environments. In International
Conference on Computer Vision and Graphics
(2002), pp. 530–538.

[MSC∗05] Mendez A., Sbert M., Cata J., Sun-
yer N., Funtane S.: Real-time obscurances with
color bleeding. In ShaderX4: Advanced Rendering
Techniques, Engel W., (Ed.). Charles River Media,
2005.

[MSW04] Mei C., Shi J., Wu F.: Rendering
with spherical radiance transport maps. Computer
Graphics Forum (Eurographics 04) 23, 3 (2004),
281–290.

[NC02] Nielsen K., Christensen N.: Fast texture
based form factor calculations for radiosity using
graphics hardware. Journal of Graphics Tools 6, 2
(2002), 1–12.

[NDN96] Nishita T., Dobashi Y., Nakamae E.:
Displaying of clouds taking into account multiple
anisotropic scattering and sky light. In SIGGRAPH
’96 Proceedings (1996), pp. 379–386.

[Neu95] Neumann L.: Monte Carlo radiosity. Com-
puting 55 (1995), 23–42.

[NRH03] Ng R., Ramamoorthi R., Hanrahan
P.: All-frequency shadows using non-linear wavelet
lighting approximation. ACM Trans. Graph. 22, 3
(2003), 376–381.

[ODJ04] Ostromoukhov V., Donohue C.,
Jodoin P.-M.: Fast hierarchical importance
sampling with blue noise properties. In Proc.
SIGGRAPH 2004 (2004).

[OLG∗05] Owens J. D., Luebke D., Govin-
daraju N., Harris M., Krüger J., Lefohn
A. E., Purcell T. J.: A Survey of General-
Purpose Computation on Graphics Hardware. In
EG2005-STAR (2005), pp. 21–51.

[Pat95] Patow G. A.: Accurate reflections through
a z-buffered environment map. In In Proceedings
of Sociedad Chilena de Ciencias de la Computacion
(1995).

[Pat97] Patow G.: A faster algorithm for the il-
lumination from curved reflectors. In Siggraph’97
Technical Sketches (1997).

[PBMH02a] Purcell T., Buck I., Mark W.,
Hanrahan P.: Ray tracing on programmable
graphics hardware. ACM Transactions on Graph-
ics 21, 3 (2002), 703–712.

[PBMH02b] Purcell T. J., Buck I., Mark
W. R., Hanrahan P.: Ray tracing on pro-
grammable graphics hardware. ACM Transactions
of Graphics 21, 4 (2002), 703–712.

[PDC∗03] Purcell T., Donner C., Cammarano
M., Jensen H. W., Hanrahan P.: Photon map-
ping on programmable graphics hardware. In Pro-
ceedings of Graphics Hardware (2003), pp. 41–50.

[PG04] Parr M., Green S.: GPU Gems. Addison-
Wesley, 2004, ch. Ambient Occlusion, pp. 279–292.

[PMDS06] Popescu V., Mei C., Dauble J., Sacks
E.: Reflected-scene impostors for realistic reflections
at interactive rates. Computer Graphics Forum (Eu-
rographics’2006) 25, 3 (2006).

[PSS99] Preetham A., Shirley P., Smits B.: A
practical analytic model for daylight. In SIG-
GRAPH ’99 Proccedings (1999), pp. 91–100.

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

[REK∗04] Riley K., Ebert D., Kraus M.,
Tessendorf J., Hansen C.: Efficient rendering
of atmospheric phenomena. In Eurographics Sym-
posium on Rendering (2004), pp. 374–386.

[RH01] Ramamoorthi R., Hanrahan P.: An ef-
ficient representation for irrandiance environment
maps. SIGGRAPH 2001 (2001), 497–500.

[RHS06] Roger D., Holzschuch N., Sillion F.:
Accurate specular reflections in real-time. Com-
puter Graphics Forum (Eurographics’2006) 25, 3
(2006).

[RTJ94] Reinhard E., Tijssen L. U., Jansen W.:
Environment mapping for efficient sampling of the
diffuse interreflection. In Photorealistic Rendering
Techniques. Springer, 1994, pp. 410–422.

[Sbe96] Sbert M.: The Use of Global Directions to
Compute Radiosity. PhD thesis, Catalan Technical
University, Barcelona, 1996.

[Sbe97] Sbert M.: The Use of Global Random Di-
rections to Compute Radiosity: Global Monte Carlo
Techniques. PhD thesis, Universitat Politecnica de
Catalunya, Barcelona, Spain, 1997. Available from
http://ima.udg.es/ mateu.

[Sch93] Schlick C.: A customizable reflectance
model for everyday rendering. In Fourth Eurograph-
ics Workshop on Rendering (1993), pp. 73–83.

[SCH03] Sen P., Cammarano M., Hanrahan P.:
Shadow silhouette maps. ACM Trans. Graph. 22, 3
(2003), 521–526.

[SD02] Stamminger M., Drettakis G.: Perspec-
tive shadow maps. In SIGGRAPH 2002 (2002),
pp. 557–562.

[SHHS03] Sloan P., Hall J., Hart J., Snyder
J.: Clustered principal components for precomputed
radiance transfer. In SIGGRAPH 2003 (2003).

[Shi91] Shirley P.: Time complexity of Monte-
Carlo radiosity. In Eurographics ’91 (1991), Elsevier
Science Publishers, pp. 459–466.

[SK99a] Szirmay-Kalos L.: Monte-Carlo Meth-
ods in Global Illumination. Institute of Computer
Graphics, Vienna University of Technology, Vienna,
1999. http: //www.iit.bme.hu/˜szirmay/script.pdf.

[SK99b] Szirmay-Kalos L.: Stochastic iteration
for non-diffuse global illumination. Computer
Graphics Forum 18, 3 (1999), 233–244.

[SKAB03] Szirmay-Kalos L., Antal G.,
Benedek B.: Global illumination animation
with random radiance representation. In Rendering
Symposium (2003).

[SKAL05] Szirmay-Kalos L., Aszódi B., Lazányi
I.: Ray-tracing effects without tracing rays. In

ShaderX4: Lighting & Rendering, Engel W., (Ed.).
Charles River Media, 2005.

[SKALP05] Szirmay-Kalos L., Aszódi B.,
Lazányi I., Premecz M.: Approximate ray-
tracing on the GPU with distance impostors.
Computer Graphics Forum 24, 3 (2005), 695–704.

[SKe95] Szirmay-Kalos (editor) L.: The-
ory of Three Dimensional Computer Graph-
ics. Akadémia Kiadó, Budapest, 1995.
http://www.iit.bme.hu/˜szirmay.

[SKL06] Szirmay-Kalos L., Lazányi I.: Indirect
diffuse and glossy illumination on the GPU. In
SCCG 2006 (2006), pp. 29–35.

[SKM95] Szirmay-Kalos L., Márton G.: On con-
vergence and complexity of radiosity algorithms. In
Winter School of Computer Graphics ’95 (Plzen,
Czech Republic, 14–18 February 1995), pp. 313–322.
http//www.iit.bme.hu/˜szirmay.

[SKP98] Szirmay-Kalos L., Purgathofer W.:
Global ray-bundle tracing with hardware accelera-
tion. In Rendering Techniques ’98 (1998), pp. 247–
258.

[SKS02] Sloan P., Kautz J., Snyder J.: Precom-
puted radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In
SIGGRAPH 2002 Proceedings (2002), pp. 527–536.

[SKSU05] Szirmay-Kalos L., Sbert M., Umen-
hoffer T.: Real-time multiple scattering in partic-
ipating media with illumination networks. In Euro-
graphics Symposium on Rendering (2005), pp. 277–
282.

[SMKY04] Slater M., Mortensen J., Khanna
P., Yu I.: A virtual light field approach to global
illumination. In Computer Graphics International
(2004), pp. 102–109.

[Sob91] Sobol I.: Die Monte-Carlo Methode.
Deutscher Verlag der Wissenschaften, 1991.

[SP05] Shah M., Pattanaik S.: Caustics Mapping:
An Image-Space Technique for Real-Time Caus-
tics. Tech. Rep. CS-TR-50-07, University of Central
Florida, August 2005.

[SSKS06] Szécsi L., Szirmay-Kalos L., Sbert
M.: Light animation with precomputed light paths
on the GPU. In GI 2006 Proceedings (2006).

[SSSK04] Sbert M., Szécsi L., Szirmay-Kalos
L.: Real-time light animation. Computer Graph-
ics Forum (Eurographics 04) 23, 3 (2004), 291–300.

[Tót06] Tóth B.: Real-time tone mapping on the
GPU. In BUTE Technical Report, 2006-05-01
(2006).

c© The Eurographics Association 2006.

Szirmay-Kalos, Szécsi, Sbert / GPUGI: Global Illumination Effects on the GPU

[TS00] Trendall C., Stewart A.: General calcu-
lations using graphics hardware, with application to
interactive caustics. In Rendering Techniques 2000
(2000), pp. 287–298.

[WBS03] Wald I., Benthin C., Slussalek P.: In-
teractive global illumination in complex and highly
occluded environments. In 14th Eurographics Sym-
posium on Rendering (2003), pp. 74–81.

[WD06a] Wyman C., Dachsbacher C.: Improving
Image-Space Caustics Via Variable-Sized Splatting.
Tech. Rep. Technical Report UICS-06-02, Univer-
sity of Utah, 2006.

[WD06b] Wyman C., Davis S.: Interactive image-
space techniques for approximating caustics. In
Proceedings of ACM Symposium on Interactive 3D
Graphics and Games (March 2006).

[WEH89] Wallace J. R., Elmquist K., Haines
E.: A ray tracing algorithm for progressive radios-
ity. In Computer Graphics (SIGGRAPH ’89 Pro-
ceedings) (1989), pp. 315–324.

[Wei03] Weisstein E.: World of
Mathematics. Tech. rep., 2003.
http://mathworld.wolfram.com/Curvature.html.

[WFA∗05] Walter B., Fernandez S., Arbree A.,
Bala K., Donikian M., Greenberg D. P.: Light-
cuts: A scalable approach to illumination. In SIG-
GRAPH 2005 (2005).

[Wil78] Williams L.: Casting curved shadows
on curved surfaces. In Computer Graphics (SIG-
GRAPH ’78 Proceedings) (1978), pp. 270–274.

[Wil01] Wilkie A.: Photon Tracing for Complex
Environments. PhD thesis, Institute of Computer
Graphics, Vienna University of Technology, 2001.

[WKB∗02] Wald I., Kollig T., Benthin C.,
Keller A., Slussalek P.: Interactive global il-
lumination using fast ray tracing. In 13th Euro-
graphics Workshop on Rendering (2002).

[WLHN06] Wang R., Luebke D., Humphreys G.,
Ng R.: Efficient wavelet rotation for environment
map rendering. In Proceedings of the 2006 Euro-
graphics Symposium on Rendering (2006).

[WS03] Wand M., Strasser W.: Real-time caus-
tics. Computer Graphics Forum 22, 3 (2003), 611–
620.

[WSP04] Wimmer M., Scherzer D., Purgath-
ofer W.: Light space perspective shadow maps.
In EG Symposium on Rendering (2004).

[Wym05] Wyman C.: An approximate image-space
approach for interactive refraction. ACM Transac-
tions on Graphics 24, 3 (July 2005), 1050–1053.

[ZIK98] Zhukov S., Iones A., Kronin G.: An am-
bient light illumination model. In Proceedings of
the Eurographics Rendering Workshop (June 1998),
pp. 45–56.

c© The Eurographics Association 2006.

