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Caustic Triangles on the GPU

Abstract This paper proposes a robust algorithm to
compute caustics caused by multiple reflections and re-
fractions on the GPU. The proposed algorithm solves
two problems of previous methods, caustic light leaks
and caustic undersampling. In order to eliminate caustic
light leaks, terminal photon hits are stored and caus-
tic patterns are reconstructed on the faces of a layered
distance map attached to the caustic generator. To avoid
undersampling, we propose caustic triangles to be drawn
instead of splatting photon hits. Unlike splatting, caustic
triangles adapt to the local density of the uneven pho-
ton distribution, always form continuous patterns, do not
cause excessive blurring, and do not require manual user
intervention to set the size of these splats.

Keywords Caustics · Global Illumination · GPU · Ray
tracing · Real-time rendering

1 Introduction

Caustics show up as high frequency patterns on diffuse
or glossy surfaces, formed by light paths originating at
light sources and visiting mirrors or refracting surfaces.
A caustic is the concentration of light, which can “burn”.
The name caustic, in fact, comes from the Latin “causti-
cus” derived from Greek “kaustikos”, which means “burn-
ing”. These indirect effects have a significant impact on
the final image [9,18,20].

Light paths starting at the light sources and visit-
ing specular reflectors and refractors until they arrive at
diffuse surfaces need to be simulated to create caustic ef-
fects. Theoretically such paths can be built starting the
path at the light source and following the direction of
the light (light or photon ray tracing), or starting at the
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receiver surfaces and going opposite to the normal light
(visibility ray tracing). If light sources are small, then the
probability that visibility ray tracing finds them is neg-
ligible, thus visibility ray tracing is inefficient to render
general caustics.

In GPU based caustic algorithms, the photon trac-
ing part requires the implementation of some ray tracing
algorithm on the GPU. When a ray is traced the com-
plete scene representation needs to be processed. Since
the shader processors of GPUs may access just the cur-
rently processed varying item (vertex, primitive or frag-
ment), global parameters, and textures, this requirement
can be met if the scene geometry is stored in textures.

This paper is organized as follows. In Section 2 we
survey the previous work on GPU based caustic effects
and in Section 3 we review an existing ray tracing al-
gorithm that we utilized during photon tracing and final
rendering. Section 4 discusses the new caustic algorithm.
Finally we present the results and the conclusions.

2 Previous work on GPU based caustic effects

General and effective caustic generation algorithms have
two phases [1], where the first phase identifies the ter-
minal hits of light paths using some kind of photon ray
tracing, and the second projects caustic patterns onto
the receiver surfaces.

In the first phase, putting the view plane between
the light and the refractor (Figure 3), the scene is ren-
dered from the point of view of the light source, and the
terminal hits of caustic paths are determined.

The location of the terminal hits are stored in pixels
of the render target called the photon hit location image.
Note that photon hits can be computed by the fragment
shader, or alternatively by the geometry shader of Shader
Model 4 GPUs.

From discrete photon hits a continuous caustic pat-
tern needs to be reconstructed and projected onto the
caustic receiver surfaces. During reconstruction a pho-
ton hit should affect not only a surface point, but also a
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surface neighborhood where the power of the photon is
distributed. A neighborhood consists of points that are
in the same direction from the caustic generator object
and are all visible from the caustic generator. In order
to eliminate light leaks, this neighborhood information
should be preserved in the space where photon hits are
stored and caustics are reconstructed.

There are several alternatives for spaces to represent
the location of a photon hit, having different advantages
and disadvantages:

3D grid [15]: Similarly to classical photon mapping pho-
ton hits can be stored independently of the surfaces
in a regular or adaptive 3D grid. When the irradi-
ance of a point is needed, hits that are close to the
point are obtained. If the surface normal is also stored
with the photon hits, and only those hits are taken
into account which have similar normal vectors as the
considered surface point, then light leaks can be min-
imized and photons arriving at back faces can be ig-
nored. Unfortunately, GPUs are not good in manag-
ing adaptive data structures needed by this approach,
so such approaches are not effective.

Texture space [5,17,3]: Considering that the reflected ra-
diance caused by a photon hit is the product of the
BRDF and the power of the photon, and the BRDF
is most conveniently fetched according to the texture
coordinates, one straightforward possibility to iden-
tify a photon hit is the texture coordinates of that
surface point which is hit by the ray. A pixel of the
photon hit location image stores the two texture co-
ordinates of the hit position and the luminance of the
power of the photon. Since the texture space neigh-
borhood of a point visible from the caustic generator
may also include occluded points, light leaks might
occur.

Screen or image space [11,24]: A point in the scene can
be identified by the pixel coordinates and the depth
when rendered from the point of view of the camera.
This screen space location can also be written into
the photon hit location image. If photon hits are rep-
resented in image space, photons can be splat directly
onto the image of the diffuse caustic receivers with-
out additional transformations. However, the BRDF
of the surface point cannot be easily looked up with
this representation, and we should modulate the ren-
dered color with the caustic light, which is only an
approximation. This method is also prone to creating
light leaks.

Ray space [7,4,10]: Instead of the hit point, the ray after
the last specular reflection or refraction can also be
stored. When caustic patterns are projected onto the
receiver surfaces, the first hit of these rays need to be
found to finalize the location of the hit, which is com-
plicated. Thus these methods either ignore visibility
[7,4] or do not apply filtering [10].

Shadow map space [16]: In the coordinate system of the
shadow map, where the light source is in the ori-

gin, a point is identified by the direction in which
it is visible from the light source. An advantage of
this approach is that rendering from the light’s point
of view is needed by shadow mapping anyway. The
drawbacks are the possibility of light leaks and that
caustics coming from the outside of the light’s frus-
tum are omitted.

Photon hits form a discrete representation of a con-
tinuous phenomena. The distribution of these photon
hits are very uneven, since the photon density follows the
high frequency caustic patterns. Thus the reconstruction
filter and the number of traced photons need to be care-
fully selected. If the number of traced photons is low,
then undersampling effects occur. If this number is high,
then the algorithm would be slow.

Most of the GPU based algorithms reconstructed the
continuous caustic pattern from discrete hits with pho-
ton splatting [20,17,16,24,23]. However, photon splat-
ting has drawbacks. The size of splats should be carefully
selected in order to preserve high frequency details but
to eliminate dot patterns (Figure 1). To find a uniformly
good splat size is impossible due to the very uneven dis-
tribution of the photon hits. On the other hand, splat-
ting does not take into account the orientation of the
receiver surface, which results in unrealistically strong
caustics when the surface is lit from grazing angles. The
reconstruction problems of splatting can be reduced by
adaptive size control [23] or by hierarchical methods [22],
but these approaches either always work with the largest
splat size or with multiple hierarchical levels, which re-
duces their rendering speed.

In addition to splatting, another possibility for recon-
struction is to take three neighboring hits, assume that
they form a caustic triangle or caustic beam, and this
beam is intersected with the caustic surfaces. Evolving
on an original idea from Nishita and Nakamae [13] for
rendering underwater caustics based on the beam-tracing
approach, Iwasaki, Dobashi and Nishita [7,8] developed
methods for the fast rendering of refractive and reflective
caustics due to water surfaces, which were subdivided
into triangular meshes. At each water surface mesh ver-
tex, the refracted vector is computed. They call the vol-
ume defined by sweeping the reflected or refracted vector
at each vertex of a caustic generator triangle the illumi-
nation volume. Caustics patterns are displayed by draw-
ing the intersection areas between all of the illumination
volumes and the receiver surfaces, and by accumulating
the intensities of light reaching the intersection area. Un-
fortunately, this method treated neither shadows nor the
case of warped volumes which can occur in beam trac-
ing Ernst et al. [4] solved some of these problems and
also presented a caustic intensity interpolation scheme
to reduce aliasing, which resulted in smoother caustics.
However, this algorithm also ignored occlusions, so was
unable to obtain shadows.

To attack the problems of previous GPU based meth-
ods, we propose a new algorithm that
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Fig. 1 The problems of splatting. The left image was rendered with too small splatting filter, the right one with too large.
To obtain the middle image, the splatting size was manually optimized.

– stores photon hits and reconstructs caustic patterns
in the cube map space of the caustic generator and
takes into account visibility information when pro-
jecting reconstructed caustic patterns onto the sur-
faces in order to avoid light leaks,

– renders caustic triangles instead of splatting to re-
duce undersampling artifacts.

3 Ray tracing using layered distance maps

As mentioned, all caustic algorithms should involve a
ray tracing method that identifies the terminal hits of
the photon paths. In our caustic algorithm we use the
method of ray tracing in layered distance maps [19]. Rep-
resenting the geometry as layered distance maps has sev-
eral advantages, including the seamless integration into
rendering engines based on the concept of rasterization
and the ease of incorporation of fast visibility algorithms
developed for static [2] and dynamic scenes [21].

A single layer of these layered distance maps is a cube
map, where a texel contains the material properties, the
distance, and the normal vector of the point that is in
the texel’s direction. The material property is the re-
flected radiance for diffuse surfaces and a Fresnel factor
at perpendicular illumination for specular reflectors. For
refractors, the index of refraction is also stored as a ma-
terial property. The distance is measured from the center
of the cube map, which is called the reference point.

The computation of distance maps is very similar to
that of classical environment maps. The only difference is
that not only the color, but the distance and the normal
vector are also calculated and stored in additional cube
maps. The set of layers representing the scene could be
obtained by depth peeling [12] in the general case. How-
ever, in our case correct depth order is not required be-
tween subsequent layers, so layers are organized to main-
tain the smoothness of the distance values instead of as-
signing the closest points to the same layer.

The distance map is a sampled representation of the
scene geometry, which is searched during ray tracing.
When a ray of origin x and direction R is traced, ray
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Fig. 2 Tracing a ray from x at direction R

parameter d should be approximated, which expresses
the hit point as x + Rd. The accuracy of an arbitrary
approximation d can be checked by reading the distance
of the environment surface stored with the direction of
l = x+Rd in the cube map (|l′|) and comparing it with
the distance of approximating point l on the ray (|l|).
If |l| ≈ |l′|, then we have found the intersection. If the
point on the ray is in front of the surface, that is |l| < |l′|,
the current approximation is an undershooting. On the
other hand, the case when point l is behind the surface
(|l| > |l′|) is called overshooting.

Ray parameter d can be found by an iterative process.
The process starts with ray marching, i.e. by a linear
search, then continues with a secant search. The linear
search provides robustness and guarantees that no hit is
missed, while the secant search is responsible for accu-
racy. Note that such two level searches are also used in
displacement mapping [14] and in volume ray-casting [6].

An important observation we should make is that this
algorithm maintains a cube map centered at the caustic
generator object and represents the geometry as distance
values stored in cube map texels. In the proposed caustic
generation algorithm we exploit this structure also for
caustic reconstruction and projection.
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Fig. 3 Caustics generation renders into the photon hit loca-
tion image where each pixel stores the location of the photon
hit with respect to some coordinate system.

4 The new caustics generation algorithm

As concluded during the review of the previous work,
a critical issue of all caustic algorithms is the selection
of the coordinate system where photon hits are stored
and the definition of the algorithm that reconstructs the
continuous caustic pattern from these discrete hits.

In order to support artifact free filtering and recon-
struction, in this space two points should be close if they
are seen in similar directions from the point of view of the
caustic generator object. Furthermore, we need a way to
separate those points which can be hit by rays leaving
the caustic generator objects from those points which
cannot be hit due to occlusions.

Let us note that the coordinate system of the dis-
tance map used to trace rays leaving the caustic genera-
tor meets these requirements. Points that are represented
in neighboring texels are seen in similar direction from
the center of the cube map, and are potentially affected
by neighboring photon paths. On the other hand, com-
paring the distance of the point from the center of the
cube map to the stored distance of the cube map layers,
we can decide whether a point is occluded or visible from
the center of the caustic generator object.

A point is identified by the direction in which it is
visible from the reference point, i.e. the texel of the cube
map, and also by the distance from the reference point.
An appropriate neighborhood for filtering is defined by
those points that are projected onto neighboring texels
taking the reference point as the center of projection,
and having similar distances from the reference point as
stored in the distance map. Note that this approach is
very similar to classical shadow mapping and successfully
eliminates light leaks.

The caustic generation algorithm has multiple passes.
See Figure 4. Firstly, the Photon tracing pass builds the
Photon hit Location Image, followed by the Caustic re-
construction pass which reconstructs the caustic patterns

on the cube map face of the distance map and, finally, the
Camera pass, which projects the caustic patterns onto
the caustic receiver surfaces.

Fig. 4 Overview of the new caustics generation algorithm:
Firstly, the Photon tracing pass (a), followed by the Caustic
reconstruction pass (b) and finally, the Camera pass(c).

4.1 Photon tracing pass

The caustic generator algorithm first identifies those caus-
tic generators that are visible from the light sources and
may cast caustics onto caustic receivers that are visible
from the camera. Layered distance maps are generated
for the scene. Theoretically, one layered distance map is
enough for the whole scene, but due to accuracy reasons
we generate a separate distance map for each of these
caustic generators if they are far from each other.

Then each caustics generator is rendered from the
point of view of each light source (Figure 3). The shaders
are set so that the vertex shader transforms the caustic
generator to clipping space, and also to the coordinate
system of the cube map by first applying the modeling
transform, then translating to the reference point. When
the fragment shader processes a point on the caustic gen-
erator, the light ray defined the light source position and
the current pixel is traced, possibly multiple times, un-
til a diffuse or glossy surface is found. The direction of
this point with respect to the center of the cube map
and the power of the photon are written into the pro-
cessed fragment. The power is obtained by multiplying
the power going through a pixel of the light’s camera
and the Fresnel factors along the path (or the comple-
ment of the Fresnel if refraction happens). To distinguish
fragments where the caustic generator is not visible, the
render target is initialized with negative power values.
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4.2 Caustic reconstruction pass

∆A

Fig. 5 Computation of the irradiance at the vertices of caus-
tic triangles. The same caustic triangle is shown on the pho-
ton hit location image, on the light cube map face, and pro-
jected onto the caustic receiver.

We propose caustic patterns to be reconstructed on
the cube map face of the distance map, and then project-
ing the caustic patterns onto the caustic receiver surfaces
(Figure 5).

During reconstruction neighboring photon hits are
found in adjacent texels of the photon hit location image.
These texels contain all information (direction and dis-
tance) to determine the vertices of the caustic triangle.
A caustic triangle is drawn onto the surface of the cube
map, where the vertex locations are set as the directions
stored in the photon hit location image. We send two
times as many triangles as pixels the photon hit location
image has (Figure 6) down the pipeline. We can avoid
the expensive GPU to CPU transfer of this image, if ver-
tices are sent with dummy coordinates, or with photon
hit location image coordinates, and the vertex shader
sets the world or cube map space coordinates according
to the content of the photon hit location image. This
operation requires at least Shader Model 3 GPUs that
allow the vertex shader to access textures. If a pixel of
the photon hit location image has negative power, i.e. it
is invalid since the caustic generator is not visible in this
pixel, then the corresponding vertex is placed outside
the clipping region. This way we can exploit the clipping
hardware to eliminate invalid triangles and vertices.

The irradiance at a vertex can be computed as the
ratio of power ∆Φ arriving at neighborhood of area ∆A,
i.e. as I = ∆Φ/∆A. Area ∆A is approximated from the
areas of projected caustic triangles adjacent to this ver-
tex (Figure 5). Since we use Gouraud shading, i.e. linear
interpolation between vertices, power distribution area
∆A is computed as the half of the total areas of trian-
gles attached to this vertex.

Photon hit 
location image

Vertex
shader

Pixel
shader

Triangles with
vertex coords
of the photon hit 
location image

Triangle with vertices 
in cube map space

Cube map face

Fig. 6 Rendering to the light cube map.

The compositing operator should be set to “add”
since the contributions of different photon hits should
be added.

The resulting cube map with irradiance values in its
texels is called the light cube map, which can be consid-
ered as a direction dependent point light source that is
responsible for adding the caustic contribution.

4.3 Camera pass

light cube map

blurred
photon 
hits

caustic
receiver

Fig. 7 Light projections in the final camera pass.

During the final camera pass, the light cube map acts
as an additional light source (Figure 7). The texels of
the cube map already have distance information, thus
this cube map is also a shadow map. When a point is
processed by the fragment shader during final gathering,
the direction between the center of the light cube map
and the shaded point is obtained. The light cube map
is looked up in this direction. If the distance stored in
the light cube map texel is similar to the distance to the
shaded point, then the irradiance stored in the texel is
multiplied by the BRDF of the shaded point and result
is added to the reflection of other light sources. Note
that not only the irradiance but also the direction of the
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illumination is available during this computation thus
glossy BRDFs can also be correctly processed.

5 Optimizations

In the presented method the area computation of a tri-
angle is repeated if a vertex is reused in other triangles.
So we can implement a separate pass to render just a
single quad at the resolution of the photon hit location
image. This pass computes the area of triangles adjacent
to a single vertex.

This step can also be utilized to execute hierarchical
reconstruction similarly to [22], but unlike in Wyman’s
approach not the photon hits but caustic triangles are
merged together. The hierarchical reconstruction can ad-
dress the oversampling problem, i.e. that caustic trian-
gles may be very small in the focus (i.e. smaller than a
texel of the light cube map or a pixel on the screen).
It is worth combining small triangles into a single trian-
gle adding up their power, using the geometry shader of
Shader Model 4 GPUs. We consider the implementation
of this mipmap based approach as an important future
work.

Another important area of further study is the rep-
resentation of high frequency caustics into the process:
now, represented caustics are limited by the resolution of
both the Photon Hit Location Image and the Cubemap
surface. Although the usage of triangles built from the
Photon Hit Location Image generates patterns without
noticeable artifacts, small details could be lost. A pos-
sible workaround this problem is to employ an adaptive
or hierarchical solution, as mentioned before. In our ex-
periments, we have not seen any serious problem with
respect to the dependency on the cubemap resolution
(we used maps of 6× 512× 512, see below).

6 Results

The discussed algorithm has been implemented in Di-
rectX/HLSL environment and integrated into the Ogre3D
game engine. Figure 9 shows the photon hit location im-
age, the projected photon hits visualized by point prim-
itives, and the result with caustic triangles. We used a
128×128 pixel resolution photon hit location image, and
a Cubemap of 6×512×512. Figure 8 shows a glass head
in the “laboratory” scene. Since the caustic cube map
can be looked up not only when the primary ray hits a
surface but also when secondary reflective or refractive
rays are traced, the proposed method can produce the re-
flections or refractions of caustics as well. Note that even
with shadow, reflection, and refraction computation, the
method runs at 60 FPS on an NV6800GT GPU.

Fig. 8 Real-time caustics caused by a glass head and ren-
dered by the proposed method rendered at 60 FPS on an
NV6800GT GPU.

7 Conclusions

We proposed a robust algorithm to compute caustics by
tracing rays in scenes represented by layered distance
maps. The ray tracing algorithm is used in a multi-pass
method where one pass traces light rays and the second
eye rays. Unlike splatting-based methods our caustic al-
gorithm does not exhibit problems depending on a splat-
ting filter since caustic triangles provide continuous pat-
terns without overblurring even at moderate resolutions.
Also, unlike [4], the proposed approach can correctly take
into account occlusions and warped volumes, which al-
lows accurate shadow computations. On the other hand,
the method presented here inherits some of the limita-
tions of distance map based ray tracing: the step size of
the linear search and the number of iterations of the se-
cant search should be carefully chosen to guarantee that
artifacts in the ray tracing stage are minimized.
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(a) (b) (c)

Fig. 9 (a) The 128 × 128 resolution photon hit location image, (b) photon hits rendered as points, and (c) the caustics as
a collection of transparent triangles rendered at 80 FPS on an NV6800GT GPU.
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